(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

AT 0 0 OO

(43) International Publication Date (10) International Publication Number
19 September 2002 (19.09.2002) PCT WO 02/073442 A1l
(51) International Patent Classification’: GO6F 15/16 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/08063 CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(22) International Filing Date: 14 March 2002 (14.03.2002) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(25) Filing Language: English SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.
(26) Publication Language: English
L. (84) Designated States (regional): ARIPO patent (GH, GM,
(30) Priority Data: KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
60/275,809 14 March 2001 (14.03.2001) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
10/017,680 22 October 2001 (22.10.2001) US European patent (AT, BE, CH, CY, DE, DK, ES, FL FR,
10/033,177 22 October 2001 (2210.2001) US GB, GR, l-E, IT, LU, MC, NL, PT, SE, TR), OAPI patent
. (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
(71) Applicant: MICROSOFT CORPORATION [US/US]; NE, SN, TD, TG).

One Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: WHITE, Steven, D.; 6122 144th PI SE, Belle-  Published:
vue, WA 98006 (US). FANG, Lijiang; 23618 NE 25th —  With international search report
Way, Sammamish, WA 98074 (US).
For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: MICHALIK, Albert, S.; Suite 193, 704-228th Av-  ance Notes on Codes and Abbreviations" appearing at the begin-
enue NE, Sammamish, WA 98074 (US). ning of each regular issue of the PCT Gazette.

(54) Title: SERVICE-TO-SERVICE COMMUNICATION FOR NETWORK SERVICES

600 610
{ ‘

Publisher Subscriber
602 612
Protocol  _ LI Protocol M /
Handler > Handler 1
Connection 604 Connection 614
Table +11 Table |1
Publications A 606 Subscriptions 616
Queve 1 Queue L
Publications /608 Subscriptions 618
Table -1 Table -

(57) Abstract: A robust and efficient service-to-service communications protocol that handles change information in an identity-
centric data access architecture. The protocol enables the automatic publication and subscription by services of changes made to data
of millions of users. The protocol is role-based in that a user controls the users that can subscribe for the user’s data changes and is
efficient in that data is change data for users are combined and batched, and robust to handle failure scenarios. In one implementation,
the a "publisher (600)" refers to the NET MyServices service which is the source of the data, while a "subscriber (610)" refers to
the NET MyServices service that receives the data. The publisher and subscriber maintain updated information about each other’s
g users in order to accomplish selective data communication and filtering. To provide robustness, requests are acknowledged, and until
acknowledged, retried regularly for awhile, with delays between regular retries.

0 02/073442 Al



10

15

20

25

30

WO 02/073442 PCT/US02/08063

SERVICE-TO-SERVICE COMMUNICATION FOR NETWORK SERVICES
CROSS REFERENCE TO RELATED APPLICATIONS
The present application claims priority from co-pending United States provisional
application serial number 60/275,809, filed March 14, 2001 and entitled “Identity-Based
Service Communication Using XML Messaging Interfaces”, which is hereby
incorporated herein by reference in its entirety. The present application is related to
United States Patent Application serial number 10/017,680 entitled Schema-Based
Services for Identity-Based Data Access, filed concurrently herewith on October 22,

2001.

COPYRIGHT DISCLAIMER

A portion of the disclosure of this patent document contains material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

FIELD OF THE INVENTION

The invention relates generally to computer network services for user data access,
and more particularly to systems, methods and data structures for communication

between the services.

BACKGROUND OF THE INVENTION

There are many types of data that users need to manage and otherwise access. For
example, users keep word processing documents, spreadsheet documents, calendars,
telephone numbers and addresses, e-mail messages, financial information and so on. In
general, users maintain this information on various personal computers, hand-held
computers, pocket-sized computers, personal digital assistants, mobile phones and other
electronic devices. In most cases, a user’s data on one device is not accessible to another
device, without some manual synchronization process or the like to exchange the data,
which is cumbersome. Moreover, some devices do not readily allow for synchronization.
For example, if a user leaves his cell phone at work, he has no way to get his stored

phone numbers off the cell phone when at home, even if the user has a computing device



10

15

20

25

30

WO 02/073442

or similar cell phone at his disposal. As is evident, these drawbacks result from the
separate devices each containing their own data.

Corporate networks and the like can provide users with remote access to some of
their data, but many users do not have access to such a network. For many of those that
have access, connecting to a network with the many different types of devices, assuming
such devices can even connect to a network, can be a complex or overwhelming problem.

Moreover, even if a user has centrally stored data, the user needs the correct type
of device running the appropriate application program to access that data. For example, a
user with a PDA that runs a simple note taking application program ordinarily will not be
able to use that program to open documents stored by a full-blown word processing
program at work. In general, this is because the data is formatted and accessed according
to the way the application program wants it to be formatted.

What is needed is a model wherein data is centrally stored for users, with a set of
services that control access to the data with defined methods, regardless of the application
program and/or device. When accessed, the data for each service should be structured in
a defined way that complies with defined rules for that data, regardless of the application
program or device that is accessing the data. Moreover, the data should be controllable
by a user so as to automatically adjust for changes made thereto by other users. This
model should scale and interrelate the data of millions of users in virtually any

combination, in a highly efficient robust manner.

SUMMARY OF THE INVENTION

Briefly, the present invention provides a set of services for central (e.g., Internet)
access to per-user data, based on each user’s identity, with a service-to-service
communications protocol that handles change information for millions of users. The
protocol enables the automatic publication and subscription by services of changes made
to data. The protocol is role-based in that a user controls the users that can subscribe for
the user’s data changes. The protocol is efficient in that data is change data for users are
combined and batched, and robust to handle failure scenarios.

In one implementation, the a “publisher” refers to the NET MyServices service
which is the source of the data, while a “subscriber” refers to the .NET MyServices
service that receives thé data. In general, SSCP is a generic way for a .NET MyServices
service to publish data changes to another .NET MyServices service. To ensure

robustness in such an environment of transient network and/or service failures, the

PCT/US02/08063



10

15

20

25

30

WO 02/073442 PCT/US02/08063
present invention establishes common message formats, and an accepted set of primitives
that the parties involved understand, so that transactions among them follow predictable
logical sequences. SSCP also establishes handshaking procedures with ACK to handle
lost messages.

In order to accomplish such selective data communication and filtering, the
publisher maintains information about the identifier (ID) of the subscribing users. Also,
for each subscribing user, the publisher maintains the ID of the user’s data for which they
have subscribed. The publisher also maintains information regarding the role of the
subscribing user. In order for the publisher to keep this information current, the
subscriber notifies the publisher whenever one of its users wants to unsubscribe or add a
new subscription. SSCP provides for transmission of subscription updates from
subscriber to publisher using the same robust mechanism as are used for transmitting data
changes.

To provide robustness, each request from a sender should have a response from
the receiver. If the message fails to reach the receiver, e.g. due to transient network
and/or service failure, it is resent during the next update interval. This resend process is -
repeated until a response is received, with a specified number of such retries performed,
after which no further attempts are made for an appropriately longer time. More subtle
types of failures also need to be handled. For example, consider a publisher sending a
request to the subscriber, informing it of the change in a stored profile. The subscriber
ordinarily receives and processes the request, and sends a response to the publisher.
However, if the network connection between the subscriber and the publisher has a
transient failure and the response fails to reach the publisher, the publisher will re-send its
request it request during the next update interval. In SSCP, the subscriber recognizes that
this is a redundant request, and that it has already been processed, whereby the subscriber
acknowledges the request again, but does not process it.

For efficiency, because a typical service manages enormous amounts of data,
partitioned over millions of users and the source data will be almost constantly changing,
the protocol batches multiple requests and send them periodically. To this end, a protocol
handler at the service periodically wakes up after a specified interval and sends the
batched messages. Moreover, if a catastrophic failure (such as loss of power) occurs, this
state data regarding the messages to send should not be lost, so data pertaining to protocol

state should be stored in a durable manner, e.g., persisted to a hard disk. To implement



10

15

20

25

30

WO 02/073442 PCT/US02/08063

. SSCP, protocol haﬁc}]ers the publisher and subscriber track of several pieces of
information, such as' in respective tables.

To send a réiquest or a response, the service needs to know where the target-is
located, and, to en;ufe proper handling of the number of retries for a particular service,
the handler needs to keep track of how many retries have been done. This information is
kept in a connections table. A publications table is used by the publisher to track the
users across the services that have subscriptions with it. The publisher includes a
publications queue table that is used by the publisher for batching requests until the
protocol handler sends the requests at an update interval. The publisher also retries
requests for which a response has not been received, and thus tracks messages that need
to be sent for the first time, or need to be resent, in the publications queue table.

The subscriber service includes subscriptions table to track of its subscriptions
that are in effect. When a subscription is added, the subscribing user specifies the user’s
identity of the user whose data he or she wants to subscribe to. A subscriptions queue
table is used by the subscriber to batch its requests for sending by the protocol handler at
the update interval. Also, the subscriber is required to retry requests for which a response
has not been received, and thus keeps track of messages that need to be sent for the first
time, or need to be resent, which is also done in the subscriptions queue table.

Moreover, the amount of information that is transmitted from one service to
another is significantly reduced in SSCP because the change information for one user at a
publisher service that is subscribed to by multiple users at a subscriber service who are
assigned the same role at the publishing service, are aggregated into a single message. In
other words, the publisher operates in a fan-in model to put change information together
based on their roles, rather than separate it per user recipient, and leaves it up to the
subscriber to fan the information out to the appropriate users.

Other benefits and advantages will become apparent from the following detailed

description when taken in conjunction with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram representing an exemplary computer system into
which the present invention may be incorporated;
FIG. 2 is a bleck diagram representing a generic data access model;

FIG. 3 is a representation of services for identity-based data access;



10

15

20

25

30

WO 02/073442 ] PCT/US02/08063

FIG. 4 is a block diagram representing a schema-based service for accessing data
arranged in a logical content document based on a defined schema for that sef\}ice;

FIGS. 5-7 aré block diagram generally representing publishers and subscribers
interconnected via a service-to-service communication protocol in accordance with one
aspect of the present invention;

FIGS. 8-16B comprise flow diagrams generally representing operation of the
service-to-service communication protocol in accordance with one aspect of the present
invention; and

FIGS. 17-18 are block diagram generally representing publishers and subscribers
interconnected via a service-to-service communication protocol in accordance with an
alternative aspect of the present invention; and

FIGS. 19-20 are block diagram generally representing models in which the
service-to-service communication protocol may be implemented, in accordance with an

aspect of the present invention.

DETAILED DESCRIPTION
EXEMPLARY OPERATING ENVIRONMENT

FIGURE 1 illustrates an example of a suitable computing system environment
100 on which the invention may be implemented. The computing system environment
100 is only one example of a suitable computing environment and is not intended to
suggest any limitation as to the scope of use or functionality of the invention. Neither
should the computing environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the
exemplary operating environment 100.

The invention is operational with numerous other general purpose or special
purpose computing system environments or configurations. Examples of well known
computing systems, environments, and/or configurations that may be suitable for use with
the invention include, but are not limited to: personal computers, server computers, hand-
held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed computing environments that include
any of the above systems or devices, and the like.

The invention may be described in the general context of computer-executable

instructions, such as program modules, being executed by a computer. Generally,



10

15

20

25

30

WO 02/073442 - PCT/US02/08063
program modules include routines, programs, objects, components, data structures, and
so forth, that perform particular tasks or implement particular abstract data types. The
invention may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that air’e linked through a communications
network. In a distributed computing environment, program modules may be located in
local and/or remote computer storage media including memory storage devices.

With reference to FIG. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer 110.
Components of the computer 110 may include, but are not limited to, a processing unit
120, a system memory 130, and a system bus 121 that couples various system
components including the system memory to the processing unit 120. The system bus
121 may be any of several types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
By way of example, and not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA)
bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezzanine bus.

The computer 110 typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by the
computer 110 and includes both volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation, computer-readable media may
comprise computer storage media and communication media. Computer storage media
includes both volatile and nonvolatile, removable and non-removable media implemented
in any method or technology for storage of information such as computer-readable
instructions, data structures, program modules or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and
which can accessed by the computer 110. Communication media typically embodies
computer-readable instructions, data structures, program modules or other data in a
modulated data signal such as a carrier wave or other transport mechanism and includes
any information delivery media. The term “modulated data signal” means a signal that

has one or more of its characteristics set or changed in such a manner as to encode

-6-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

information in the signal. By way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared and other wireless media. Combinations of the any
of the above should also be included within the scope of computer-readable media.

The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on
by processing unit 120. By way of example, and not limitation, FIG. 1 illustrates
operating system 134, application programs 135, other program modules 136 and
program data 137.

The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates
a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile
magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable,
nonvolatile optical disk 156 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is typically connected to the
system bus 121 through a non-removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are typically connected to the system
bus 121 by a removable memory interface, such as interface 150.

The drives and their associated computer storage media, discussed above and
illustrated in FIG. 1, provide storage of computer-readable instructions, data structures,
program modules and other data for the computer 110. In FIG. 1, for example, hard disk
drive 141 is illustrated as storing operating system 144, application programs 145, other
program modules 146 and program data 147. Note that these components can either be
the same as or different from operating system 134, application programs 135, other
program modules 136, and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data 147 are given different

-7-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

numbers herein to illustrate that, at a minimum, they are different copies. A user may
enter commands and information into the computer 20 through input devices such as a
tablet, or electronic digitizer, 164, a microphone 163, a keyboard 162 and pointing device
161, commonly referred to as moﬁse, trackball or touch pad. Other input devices not
shown in FIG. 1 may include a joystick, game pad, satellite dish, scanner, or the like.
These and other input devices are often connected to the processing unit 120 through a
user input interface 160 that is coupled to the system bus, but may be connected by other
interface and bus structures, such as a parallel port, game port or a universal serial bus
(USB). A monitor 191 or other type of display device is also connected to the system bus
121 via an interface, such as a video interface 190. The monitor 191 may also be
integrated with a touch-screen panel or the like. Note that the monitor and/or touch
screen panel can be physically coupled to a housing in which the computing device 110 is
incorporated, such as in a tablet-type personal computer. In addition, computers such as
the computing device 110 may also include other peripheral output devices such as
speakers 195 and printer 196, which may be connected through an output peripheral
interface 194 or the like.

The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server, a router, a network PC, a
peer device or other common network node, and typically includes many or all of the
elements described above relative to the computer 110, although only a memory storage
device 181 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1
include a local area network (LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Internet. For example, in the
present invention, the computer system 110 may comprise source machine from which
data is being migrated, and the remote computer 180 may comprise the destination
machine. Note however that source and destination machines need not be connected by a
network or any other means, but instead, data may be migrated via any media capable of
being written by the source platform and read by the destination platform or platforms,

When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically includes a modem 172 or other

means for establishing communications over the WAN 173, such as the Internet. The

-8-



10

15

20

25

30

WO 02/073442

modem 172, which may be internal or external, may be connected to the system bus 121
via the user input interface 160 or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
limitation, FIG. 1 illustrates remote application programs 185 as residing on memory
device 181. It will be appreciated that the network connections shown are exemplary and

other means of establishing a communications link between the computers may be used.

DATA ACCESS MODEL

The present invention generally operates in an architecture / platform that
connects network-based (e.g., Internet-based) applications, devices and services, and
transforms them into a user’s personal network which works on the user’s behalf, and
with permissions granted by the user. To this end, the present invention is generally
directed to schema-based services that maintain user, group, corporate or other entity data
in a commonly accessible virtual location, such as the Internet. The present invention is
intended to scale to millions of users, and be stored reliably, and thus it is likely that a
user’s data will be distributed among and/or replicated to numerous storage devices, such
as controlled via a server federation. As such, while the present invention will be
generally described with respect to an identity-centric model that enables a user with an
appropriate identity and credentials to access data by communicating with various core or
other services, it is understood that the schema-based services described herein are
arranged for handling the data of millions of users, sorted on a per-user-identity basis.
Note that while “user” is generally employed herein for simplicity, as used herein the
term “user” is really a substitute for any identity, which may be a user, a group, another
entity, an event, a project, and so on.

As generally represented in FIG. 2, a data access model 200 of Figure 2 illustrates
a generic navigation module 202 through which applications 204 and the like may access
a wide variety of identity-based data, such as maintained in an addressable store 206. To
access the data, a common set of command methods may be used to perform operations
on various data structures that are constructed from the data in the addressable store 206,
even though each of those data structures may represent different data and be organized
quite differently. Such command methods may describe generic operations that may be
desired on a wide variety of data structures. Such operations may include, for example,

insert, delete, replace, update, query or changequery operations.

-9.

PCT/US02/08063



10

15

20

25

30

WO 02/073442

The data is arranged according to various schemas, with the schemas
corresponding to identity-based services through which users access their data. As used
herein, a “schema” generally rgorrﬁprises a set of rules that define how a data structure may
be organized, e.g., what elerr;ént‘s are supported, in what order they appear, how many
times they appear, and so on. In addition, a schema may define, via color-coding or other
identification mechanisms, what portions of an XML document (that corresponds to the
data structure) may be operated on. Examples of such XML documents are described
below. The schema may also define how the structure of the XML document may be
extended to include elements not expressly mentioned in the schema.

As will be understood below, the schemas vary depending on the type of data they
are intended to organize, e.g., an email-inbox-related schema organizes data differently
from a schema that organizes a user’s favorite websites. Further, the services that employ
schemas may vary. As such, the generic navigation module 202 has associated therewith
a navigation assistance module 208 that includes or is otherwise associated with one or
more schemas 210. As will be understood, a navigation assistance module 208 as
represented in FIG. 2 corresponds to one or more services, and possesses the information
that defines how to navigate through the various data structures, and may also indicate
what command methods may be executed on what portions of the data structure.
Although in FIG. 2 only one navigation assistance module 208 is shown coupled to the
generic navigation module 202, there may be multiple navigation assistance modules that
may each specialize as desired. For example, each navigation assistance module may
correspond to one service. Moreover, although the navigation assistance module 208 is
illustrated as a separate module, some or all of the operations of the navigation assistance
module 208 may be incorporated into the generic navigation module 202, and vice versa.
In one embodiment, the various data structures constructed from the schema and
addressable store data may comprise XML documents of various XML classes. In that
case, the navigation assistance module 208 may contain a schema associated with each of
the classes of XML documents.

A number of schema-based services facilitate data access based on the identity of
a user. Preferably, the user need not obtain a separate identity for each service, but rather
obtains a single identity via a single set of credentials, such as with the Microsoft®
Passport online service. With such an identity, a user can access data via these services
from virtually any network connectable device capable of running an application that can

call the methods of a service.

-10-

PCT/US02/08063



10

15

20

25

30

WO 02/073442 7 PCT/US02/08063

SERVICES AND SCHEMAS

“NET My Services” comprises identity-centric services which may be generally
implemented in XML (eXtensible Markup Language) Message Interfaces (XMIs). While
the present invention will be described with respect to XML and XMI, it can readily be
appreciated that the present invention is not limited to any particular language or set of
interfaces. The .NET My Services model essentially corresponds to one implementation
of the generic data access model 200 of FIG. 2.

As generally represented in FIG. 3, NET My Services 300 is implemented as a
set of Web services 301-316, each bound to a .NET Identity (PUID, such as a Passport®
unique identifier similar to a globally unique identifier when Passport® is the
authentication service). The services 301-316 can communicate with one another via a
service-to-service communications protocol (SSCP), described below with respect to
FIG. 5-23. As also described below, each service presents itself as a set of XML
documents that can be manipulated from an application program 202 (FIG. 2) or the like
using a set of standard methods and domain-specific methods. To this end, a user device
320 (endpoint) running such application programs connects a user’s applications to the
services, and the data controlled by those services, such as over the Internet or an
Intranet, such as over the Internet or an Intranet. Note that endpoints can be client
devices, applications or services. In keeping with the present invention, virtually any
device capable of executing software and connecting to a network in any means may thus
give a user access to data that the user is allowed to access, such as the user’s own data,
or data that a friend or colleague has specified as being accessible to that particular user.

In general, a .NET Identity is an identifier assigned to an individual, a group of
individuals, or some form of organization or project. Using this identifier, services
bound to that identity can be located and manipulated. A general effect is that each
identity (e.g., of a user, group or organization) has tied to it a set of services that are
partitioned along schema boundaries and across different identities. As will be
understood, the XML-document-centric architecture of NET My Services provides a
model for manipulating and communicating service state that is very different from prior
data access models. The XML-document-centric approach, in conjunction with loose
binding to the data exposed by the services, enables new classes of application programs.
As will also be understood, the NET My Services model 300 presents the various

services 301-316 using a uniform and éonsistent service and method model, a uniform

-11-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

and consistent data access and manipulation model, and a uniform and consistent security
authorization model.

In a preferred implementation:the .NET My Services model 300 is based upon
open Internet standards. Sefvices are accessed by means of SOAP (Simple Object Access
Protocol) messages containing an XML payload. Service input and output is expressed
as XML document outlines, and each of these document outlines conform to an XML
schema document. The content is available to a user from the interaction with the NET
My Services service endpoint 320.

One significant aspect of the present invention is that a schema (or description)
essentially describes a web service, such as in XML. More particularly, a service author
begins to write a web service by defining an XML schema that defines what the data
model looks like, e.g., the supported elements, their relative ordering, how many times
they appear, and other similar definitions, as will become apparent below. This service
definition also applies to an author determining what roles and methods are supported,
e.g., which operations are supported, and the extent of the data that can be returned for
each method. Another way of stating this concept is that the author starts by building a
complete definition of a service, such as in XML, and specifies the verbs (methods) that
an application will use to talk to it.

At this point, the service author has an XML definition that has been declared,
and this declarative definition may be run through a compilation process, resulting in a
fully operational service. It should be noted that a general purpose interpreter-like |
mechanism already exists that, when fed one of these declarative XML definitions, adapts
to the declarative XML definitions, thereby knowing what to do and how to act. From
that point on a service exists that is capable of operating. In a simple service (e.g., with
no domain-specific methods or complex logic), no new code needs to be written to
provide such an operational service. As will be understood, such authoring of a service
without coding is possible due to the data driven model of the present architecture.

Turning to FIG. 4, in the NET My Services model, an application 400 requests
performance of a method that operates on data structures, in a manner that is generic with
respect to the type of data structure being operated upon and without requiring dedicated
executable code for manipulating data structures of any particular data type. To this end,
the application first contacts a special myServices service 314 to obtain the information
needed to communicate with a particular service 404, through a set of methods 406 of

that service 404, For example, the needed information received from the myServices

-12-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

service 314 includes a URI of that service 404. Note that the service 404 may
correspond to essentially any of the services represented in FIG. 3.

The service 404 includes or is otherwise associated with a set of methods 406
including standard methods 408, such as to handle requests directed to insert, delete,
replace, update, query or ckféngequery operations on the data. The set of methods of a
particular service may also include service specific methods 410. In general, the only
way in which an application can communicate with a service are via that service’s
methods.

Each service includes service logic 412 for handling requests and providing
suitable responses. To this end, the service logic performs various functions such as
authorization, authentication, and signature validation, and further limits valid users to
data which they are permitted to access. The security aspect of a service is not discussed
herein, except to note that in general, for otherwise valid users, the user’s identity
determines whether a user can access data in a requested manner. To this end, a roleMap
414 comprising service-wide roleList document templates 415 and scopes (e.g., part of
the overall service’s schema 416) in conjunction with user-based data maintained in an
addressable store 418 determines whether a particular requested method is allowed, €.g.,
by forming an identity-based roleList document 420. If a method is allowed, the scope
information in the roleMap 414 determines a shape of data to return, e.g., how much
content is allowed to be accessed for this particular user for this particular request. The
content is obtained in accordance with a content document 422 in the service’s schema
416 and the actual user data corresponding to that content document in the addressable
store 418. In this manner, a per-identity shaped content document 424 may be essentially
constructed for returning to the user, or for updating the addressable store, as appropriate
for the method. Note that FIG. 4 includes a number of ID-based roleList documents and
ID-based content documents, to emphasize that the service 406 is arranged to serve
multiple users. Also, in FIG. 4, a system document 426 is present as part of the schema
416, as described below.

Returning to FIG. 3, in one implementation, access to .NET My Services 300 is
accomplished using SOAP messages formatted with .NET My Services-specific header
and body content. Each of the NET My Services will accept these messages by means of
an HTTP POST operation, and generate a response by “piggy-backing” on the HTTP
Response, or by issuing an HTTP POST to a .NET My Services response-processing
endpoint 320. In addition to HTTP as the message transfer protocol, NET My Services

-13-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

will support raw SOAP over TCP, a transfer protocol known as Direct Internet Message
Encapsulation (or DIME). Other protocols for transferring messages are feasible.

Because .NET My Services are accessed by protocol, no particular client-side
binding code, object models, API layers, or equ.ivalents are required, and are thus
optional. The .NET My Services will support Web Services Description Language
(WSDL). It is not mandatory that applications wishing to interact with NET My
Services make use of any particular bindings, and such bindings are not described herein.
Instead, the present invention will be generally described in terms of messages that flow
between requestors of a particular service and the service endpoints. In order to interact
with NET My Services, a service needs to format a .NET My Services message and
deliver that message to a NET My Services endpoint. In order to format a message, a
client needs to manipulate XML document outlines, and typically perform some simple,
known (public-domain) cryptographic operations on portions of the message.

In accordance with one aspect of the present invention, and as described in FIG. 4
and below, in one preferred implementation, each .NET My Services service presents
three logical XML documents, a content document 422, roleList document 415 (of the
roleMap 414), and a system document 426. These documents are addressable using
NET My Services message headers, and are manipulated using standard NET My
Services methods. In addition to these common methods, each service may include
additional domain-specific methods. For example, as described below, the “NET
Calendar” service 303 might choose to expose a “getFreeBusy” method rather than
expose free/busy as writeable fragments in the content document.

Each NET MyServices service thus logically includes a content document 422,
which in general is the main, service-specific document. The schema for this document
422 is a function of the class of service, as will become apparent from the description of
each sefvicc’s schema below. For example, in the case of the NET Calendar service 303,
the content document presents data in the shape dictated by the NET My Services .NET
Calendar schema, whereas in the case of the “.NET FavoriteWebSites” service 308, the
content document presents data in the shape dictated by the NET My Services NET
FavoriteWebSites schema.

Each service also includes a roleList document 415 that contains roleList
information, comprising information that governs access to the data and methods

exported by the service 404. The roleList document is manipulated using the NET My

-14 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

Services standard data manipulation mechanisms. The shape of this document is
governed by the .NET My Services core schema’s roleListType XML data type.

Each service also includes a system document 426, which contains service-
specific system data such as the roleMap, schemaMap, messageMap, version
information, and service specific global data. The document is manipulated using the
standard .NET My Services data manipulation mechanism, although modifications are
limited in a way that allows only the service itself to modify the document. The shape of
this system document 426 may be governed by the system document schema for the
particular service, in that each service may extend a base system document type with
service specific information. For purposes of simplicity herein, the base system
document is described once, rather than for each service, with only those services having
extended service specific information separately described. Notwithstanding, it should be
understood that each service includes at least the base system portion in its system
document.

As is understood, the present invention is generally directed to schemas, which in
general comprise a set of rules or standards that define how a particular type of data can
be structured. By the schemas, the meaning of data, rather than just the data itself, may
be communicated between computer systems. For example, a computer device may
recognize that a data structure that follows a particular address schema represents an
address, enabling the computer to “understand” the component part of an address. The
computer device may then perform intelligent actions based on the understanding that the
data structure represents an address. Such actions may include, for example, the
presentation of an action menu to the user that represents things to do with addresses.
Schemas may be stored locally on a device and/or globally in the federation’s “mega-
store.” A device can keep a locally stored schema updated by subscribing to an event
notification service (in this case, a schema update service) that automatically passes
messages to the device when the schema is updated. Access to globally stored schemas is

controlled by the security infrastructure.

SERVICE TO SERVICE COMMUNICATION

The various .NET MyServices services described above are loosely coupled
services, and have the ability to share data with each other. It is thus possible for the data
to be stored and managed by one service, regardless of how many services or applications

make use of the data.

-15-



10

15

20

25

30

WO 02/073442 ) ~ PCT/US02/08063

Generally, there are at least two ways that this data sharing can tak’éi place
(assuming that appropriate security constraints are satisfied), a first of which is that one
service that wants ’data queries another service that has the data, i.e., a pull model.
;‘\ltematively, aéervice that wan}s data can informs the service that has the data to send it
the current cop)'}fot: the data and places an outstanding request to send it any changes to
that data. The said changes are sent asynchronously. This is a push model.

The .NET services defines verbs such as query, update, etc., which can be used as
a basis for the pull data pipe between services. But for reasons of bandwidth optimization
and robustness, the push model turns out to be a better choice for service to service
communication. To this end, and in accordance with one aspect of the present invention,
a service-to-service communication protocol (SSCP) is provided that supports a push
model of data sharing between .NET MyServices services.

As used herein, a “publisher” refers to the NET MyServices service which is the
source of the data, while a “subscriber” refers to the .NET MyServices service that
receives the data. In general, SSCP is a generic way for a NET MyServices service to
publish data changes to another NET MyServices service. For example, SSCP does not
make any assumptions on what data is being published, and the data may be from any
source, e.g., .NET Contacts, .NET Profile, .NET Presence, .NET Inbox and so forth.
SSCP also does not make any assumptions on which services can be publishers and
which services can be subscribers. With SSCP, the same service can be a publisher and
subscriber, publishers can publish to multiple subscribers and subscribers can subscribe
to multiple publishers.

In general, a given service can publish/subscribe to a static list of other services,
e.g., NET Contacts (alternatively referred to as myContacts) may be configured with the
list of services (e.g., NET Profile / myProfile, NET Inbox / myInbox and so on) that it
wants to publish to and/or subscribe from, and this list will ordinarily not change.
However, although the services are static, the instances of services are not. For example,
once a service A is configured with the ability to publish or subscribe from service B,
service A can do so with any instance of B For security reasons and the like, only NET
services can participate in data communication over SSCP.

For purposes of explanation, the present invention will be described with respect
to a number of examples. However, while these examples correspond to likely scenarios

and implementations, it is understood that the present invention is not limited to the

-16-



10

15

20

25

30

WO 02/073442 7 PCT/US02/08063

particular examples used, but rather works with essentially any service’s data
communication with essentially any other service.

By way of a first ekgihple, consider a scenario of an email whitelist, which is a list
of addresses that are alloQ:é%to send email to a particular recipient. Email from people
belonging to the whitelist :i's.but in the inbox; all other email is sent to a Junk Mail folder
or to the deleted folder. Sométimes, the whitelist of a user is the same as her contact list —
this would be the case with the NET Inbox service. Even if this is not the case, it is fairly
straightforward to store a wﬁitelist in .NET Contacts by the use of a categorization
mechanism present in .NET My Services.

Using the pull model, a white list can be implemented in a brute force fashion by
arranging the NET Inbox service (e.g., directly or in conjunction with an application
program) to look at the sender address whenever a message is received. The NET Inbox
service may query the user’s .NET Contacts service to see if the sender is in the contact
list, whereby depending on the result of the query, .NET Inbox service either puts the
message in the Inbox or puts it in the Junk Mail folder. As can be understood, this
approach has obvious performance and scaling problems, as it is impractical or
impossible for any service that handles hundreds of millions of email messages every day
to use such a model; the sheer volume of traffic between NET Inbox and .NET Contacts
would bring down both the services.

In keeping with the present invention, a superior approach is for the NET Inbox
service to maintain a local copy of the whitelist, and subscribe to the .NET Contacts data
of every user that has enabled a Junk Mail filter. Whenever changes occur to the
whitelist, the .NET Contacts service uses SSCP to send those changes to the NET Inbox
service. Because the .NET Inbox service has a local copy of the white list, the
performance/scaling issues are avoided, and any traffic between the .NET Inbox service
and the .NET Contacts service occurs only when the whitelist changes in the NET
Contacts service, the .NET Inbox service subscribes to the .NET Contacts service
document of a new user (or a user who has newly activated her junk mail filters) or the
.NET Inbox service asks the .NET Contacts service to delete the subscription of a
currently subscribed user.

Whitelists represent a simple publish-subscribe scenario in that user id’s of the
publisher and subscriber are the same. There is no requirement to take into account the
role of the subscriber in the publisher’s document, the assumption being that the same id

plays the “owner” role on both sides of this communication channel. A more complex

-17-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

example is that of Live Contacts. Among the contacts managed by the .NET Contacts
service, it is likely that many are users of .NET My Services. As a result, these contacts
will have a .NET Profile service which manages data in their profile. In general, the data
stored in a contact record of NET Contacts is a subset of what is stored in that contact’s
profile, the boundaries of the said subset being determined by the role of the subscriber in
the originating profile’s role list. Thus, it is natural for NET Contacts service to
subscribe to the NET Profile service to get the data for many of the contacts that it
manages. From the other perspective, the NET Profile service publishes its data to the
NET Contacts service.

In accordance with one aspect of the present invention, because, NET Profile of
this user publishes any changes to the NET Contacts service of each appropriately
authorized user (e.g., in a trusted circle of friends), whenever a user updates his profile,
such as to change his or her email address, that change becomes immediately visible to
the users in his or her trusted circle when they look up his email via their NET Contacts
service. Note that SSCP works across realms as well as between services in the same
realm, e.g., a subscriber contacts service in a realm corresponding to MSN.com will be
able to receive published changes from a publisher profile service in a realm
corresponding to a provider such as XYZ.com, as well as from an MSN.com profile
service.

The present invention favors the push model over the pull model. While the pull
model is usually simpler, its conceivable use is limited to data pipes with low traffic
and/or few subscribers. However, the push model, while a little more involved, provides
a bandwidth optimized, robust data pipe and is ideal for high-traffic and/or large number
of subscribers. To ensure robustness in such an environment of transient network and/or
service failures, the present invention establishes common message formats, and an
accepted set of primitives that the parties involved understand, so that transactions among
them follow predictable logical sequences. SSCP also establishes handshaking
procedures with ACK to handle lost messages.

FIG. 5 provides a representation of an example publisher-subscriber relationship.
In FIG. 5, there are two .NET Profile services 501 and 502, each managing the profiles of
three users, 504-506 and 508-510, respectively. There is one instance of a NET Contacts
service 520 shown in FIG. 5, which manages the contact information sets (521 and 522)
of two users. As is understood, in an actual implementation, each of these services 501,

502 and 520 will typically manage the data for hundreds of millions of users. Note that

-18-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

for each user, access to the various contact information sets is on a per-identifier basis,
e.g., a contact that is specified as a friend by a user may be assigned different access
rights to the user’s contacts than a contact that is specified as an associate by the same
user.

As represented by the logical connections (shown in FIG. 5 as arrows) between
the identity-based contacts and the identify-based profiles, the NET Contacts service
520 has subscriptions in two different .NET Profile services, namely 501 and 502.
Similarly, it is likely that a given publisher will publish to multiple subscribers. Note that
a single service may act both as a subscriber and a publisher, €.g., in the whitelist
example above, the .NET Contacts service is a publisher, while in the Live Contacts
example, NET Contacts service is a subscriber.

As represented in FIG. 5, when the profile information for User6 (maintained in
NET Profile 510) changes, change information is published by the NET Profile
service2 502 to the .NET Contacts service 520, as both Userl and User2 have subscribed
for the service. Note that in FIG. S this is indicated by the arrow to a particular contact
for each user. Note that within the context of a given topic, the data flows from the
publisher to the subscriber. As also represented by the arrows in FIG. 5, only User2 has
subscribed for profile changes of User5. Thus, when User5’s profile is changed, the
NET Profile service 502 will publish the changes only to User2’s NET Contacts , and
Userl’s NET Contacts does not see these changes.

Returning to User6, consider that User1’s role in User6’s .NET Profile is that of
an associate, while the role of User2 is that of a friend. When .NET Profile publishes the
data, it sends data visible to an associate to Userl, and data visible to a friend to User2.
To this end, SSCP sends changes only to subscribed users within a subscribing service,
and determines the role of each subscribing user and filters the data based on the role.
Furthermore, if User3’s role was also that of an associate, then only one copy of the
associate data would be sent to the subscribing service, thus optimizing usage of network
TESOUICES.

In order to accomplish such selective data communication and filtering, the
publisher maintains information about the identifier (ID) of the subscribing users, (e.g.,
Userl, User2). Also, for each subscribing user, the publisher maintains the ID of the
user’s data for which they have subscribed, e.g., for Userl of .NET Contacts , this is

User2 and User3 in .NET Profile servicel. The publisher also maintains information

-19-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

regarding the role of the subscribing user, e.g., in the context of User6 in .NET Profile
service2, this is associate for Userl, friend for User2).

In order for the publisher to keep this information current, the subscriber notifies
the publisher whenever one of its users wants to unsubscribe or add a new subscri;;tion.
For example, consider that Userl wants to add User4 into his live contact list, and
remove User6. SSCP provides for transmission of subscription updates from subscriber
to publisher using the same robust mechanism as are used for transmitting data changes.

The SSCP data pipe is robust and as such, is tolerant of transient network and/or
service failures. At a fundamental level, to provide robustness, the publisher or subscriber
needs to know that their transmitted messages have reached the destination, which means
that each request from a sender should have a response from the receiver. If the message
fails to reach the receiver, e.g. due to transient network and/or service failure, it is resent
during the next update interval. This resend process is repeated until a response is
received, with a specified number of such retries performed, after which no further
attempts are made for an appropriately longer time to prevent a flood of retry messages,
e.g., in the case of a catastrophic failure at the destination.

More subtle types of failures also need to be handled. For example, consider a
publisher sending a request to the subscriber, informing it of the change in a stored
profile. The subscriber ordinarily receives and processes the request, and sends a
response to the publisher. However, if the network connection between the subscriber
and the publisher has a transient failure and the response fails to reach the publisher, the
publisher will re-send its request it request during the next update interval. In SSCP, the
subscriber recognizes that this is a redundant request, and that it has already been
processed, whereby the subscriber acknowledges the request again, but does not process
it. In other words, a request is processed only once even if it is sent multiple times.
Alternatively, a subscriber can process a repeat request any number of times, however the
result of any subsequent processing should not change the first processing result. This
property is referred to as idempotency.

For efficiency, because a typical service manages enormous amounts of data,
partitioned over millions of users and the source data will be almost constantly changing,
the protocol batches multiple requests and send them periodically. To this end, a protocol
handler at the service periodically wakes up after a specified interval and sends the

batched messages. Moreover, if a catastrophic failure (such as loss of power) occurs, this

=20 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063
state data regarding the messages to send should not be lost, so data pertaining to protocol
state should be stored in a durable manner, e.g., persisted to a hard disk.

As generally represented in FIG. 6, SSCP is implemented at a publisher (service)
600 and subscriber (service) 610 by respective protocol handlers 602, 612, such as
daemon processes or the like running with respect to a service. The publisher 600 and
subscriber 610 exchange messages, and use this as a mechanism to communicate
changes.

The requirements of the protocol dictate that SSCP handlers 602, 612 maintain
several pieces of data, the sum total of which represents the state of a publisher or
subscriber. As conceptually represented in FIG. 6, this data can be viewed as being
segmented over several data structures 604-618. Note however that the arrangements,
formats and other description presented herein are only logically represent the schema;
the actual storage format is not prescribed, and an implementation may store in any
fashion it deems fit as long as it logically conforms to this schema.

A publisher 600 communicates with a subscriber 610 using request and response
messages. For example, when data changes at the publisher 600, the publisher 600, sends
a request message to the subscriber 610 informing the subscriber that data has changed,
normally along with the new data. The subscriber 610 receives the message, makes the
required updates, and sends back an ACK message acknowledging that the message was
received and that the changes were made. A subscriber 610 can also send a request
message, such as when the subscriber 610 wants to subscribe or un-subscribe to a piece
of datum. When the publisher 600 receives this message, the publisher 600 updates its list
of subscriptions (in a publications table 608) and sends back a response acknowledging
the request. Note that SSCP is agnostic to whether a response message for a given
request is synchronous or asynchronous.

Thus, there are two primary parts to SSCP, a first from the publisher to the
subscriber, which deals with sending changes made to the publisher’s data, and a second
from subscriber to the publisher, which deals with keeping the list of subscriptions
synchronized. Furthermore, every service is required to provide notification to all other
services that have subscriptions with it, or services with which it has subscriptions, when
it is going offline or online.

The table below summarizes request messages, each of which having a
corresponding response (e.g., ACK) message.

TABLE 1- REQUEST MESSAGES

-21-



10

15

WO 02/073442 PCT/US02/08063
Message Description Type From /To
UpdateSubscriptionData Used by the publisher to publish | Request | Publisher
changes to its data to Subscriber
updateSubscriptionDataResponse | Used by the subscriber to ACK | Response ' | Subscriber
updateSubscriptionData | to Publisher
UpdateSubscriptionMap Used by the subscriber to inform | Request | Subscriber
the publisher that subscriptions to Publisher
have been added or deleted
UpdateSubscriptionMapResponse | Used by the publisher to ACK Response | Publisher
updateSubscriptionMap to Subscriber
ServiceStatus Used by both publisher and Request Both
subscriber to inform that they directions
are going offline, or have come
online
Standard .NET My Services ack | Used by both publisher and Response | Both
subscriber to ACK serviceStatus directions

request

Protocol parameters are supported by both the publisher and the subscriber and

control the behavior of the protocol.

As noted above, SSCP supports the ability to batch request messages. Whenever

there is a need to send a request message, such as when there are changes in publisher

data or subscriptions, the service puts the corresponding request message into a publisher

message queue 606. Periodically, the protocol handler 602 in the publishing service 600

wakes up and processes the messages in the queue 606. This period is called as the

Updatelnterval, and is a configurable parameter.

To satisfy the robustness requirement, the publisher’s protocol handler 602 needs

to periodically resend requests until the publisher service 600 receives an acknowledge

message (ACK). If the ACK for a message is successfully received, this message is

purged from the queue 606. Until then, the message remains in the queue, flagged as

having been sent at least once, so it will be retried at the next update interval. The

number of times the publisher the publisher service 600 retries sending a message to the

subscriber service 610 is configurable by the parameter RetryCount, i.e., after retrying

this many times, the publisher service 600 assumes that the subscriber service 610 is

dead. Then, once the maximum number of retries is over, the publisher service 600 waits

_22.




10

15

20

25

WO 02/073442 PCT/US02/08063
for a relatively longer time. Once this longer time is elapsed, the publisher service 600
sets the RetryCount parameter to zero and begins resending the queued up requests over
again. This longer time (before beginning the retry cycle), is configurable by the
parameter ResetIntervgl.’r . 7

Below is the summary of these protocol parameters:

TABLE 1 - PROTOCOL PARAMETERS

Parameter Use

The interval after which the protocol handler wakes up and
Updatelnterval

processes batched requests.

The number of times we retry a connection before assuming the
RetryCount o

remote service is dead.

The interval after which a service marked as dead is retested for
ResetInterval )

aliveness.

Thus, to implement SSCP, the protocol handlers 602, 610 at the publisher and
subscriber, respectively, track of several pieces of information, such as in their respective
tables 604-618.

As with .NET in general, SSCP relies on the entities (services and users) being
uniquely identifiable by the use of identifiers, e.g., every user in .NET has a unique
identifier assigned by the Microsoft® Passport service. Each service, be it acting as a
publisher or subscriber, also has a unique identifier, and in practice, a service ID will be a
certificate issued by a certification authority.

Since there are various different kinds of identifiers, the following naming
conventions are used herein:

SID  Generic Service Identifier

PSID Publishing Service Identifier

SSID Subscribing Service Identifier

PUID Publishing User Identifier (PUID of myPublishingService user)

SUID Subscribing User Identifier (PUID of mySubscribingService user)

To send a request or a response, the service needs to know where the target is
located, and, to ensure proper handling of the number of retries for a particular service,
the handler needs to keep track of how many retries have been done. As mentioned

above, this information is kept in the connections table, e.g., the connections table 604 for

223 -



10

15

20

25

30

WO 02/073442

the publishing service 600 and the connections table 614 for the subscribing service 610.
The following sets forth the information included in a connections table:

SID | TO | | CLUSTER | RETRY

wherein “SID” comprises the service ID of a Subscriber or Publisher, “TO” comprises the
URL at which the service is expecting requests comprises, “CLUSTER”  comprises the
cluster number of this service and “RETRY” comprises the current retry number of the
service. There is one entry in this table for every target service. For a publisher 600, this
means for each service that has one or more subscriptions registered with it; for a
subscriber, this means every publisher that it has one ore more subscriptions with. When
RetryCount < RETRY < ResetInterval, the target service is assumed to be dead. Note
that when an unknown service is recognized (i.e., one that is not present in the
connections table), an attempt is made to contact immediately, without waiting until the
next interval.

As also represented in FIG. 6, a publications table 608 is used by the publisher
600 to track the users across the services that have subscriptions with it. The publications
table 608 includes records with the following fields:
PUID | SUID | SSID | ROLE | CN

wherein PUID comprises the identifier of the publishing user, SUID comprises the
identifier of the subscribing user, SSID comprises the identifier of the subscribing
service, ROLE comprises the role assign to this SUID and CN comprises the last known
change number of the publisher’s data which was delivered to the subscriber (for
updating deltas). There is one row (record) in the publications table 608 for each
subscribing user/publishing user/subscribing service combination. The CN field is
required to ensure recovery from certain catastrophic failures, as described below. The
publications table 608 may be made visible at the schema level, but ordinarily should be
read-only.

In general, given a publishing service P and a subscribing service S, there will
exist a [possibly empty] set SM = {(PUi, SUi), fori=1 to n} such that PUi is a user
managed by P, SUi is a user managed by S, and SUi subscribes to PUi’s data. The set
SM is referred to as the subscription map of P with respect to S. The subscription map is
obtained by the following query:

SELECT PUID, SUID

.24 -

PCT/US02/08063



10

15

20

25

30

WO 02/073442 PCT/US02/08063

FROM PUBLICATIONS
WHERE SSID =8

As further represented in FIG. 6, the publisher 600 includes a publications queue
table 606 that is used by the publisher for batching requests until the protocol handler 602
sends the requests when the Updatelnterval time is achieved. The publisher also retries
requests for which a response has not been received, and thus tracks messages that need
to be sent for the first time, or need to be resent, in the publications queue table 606.

An entry in the table 606 looks like this:
SUID | PUID | SSID

wherein SUID comprises the identifier of the subscribing user, PUID comprises the
identifier of the publishing user, and SSID comprises the identifier of the subscribing
service. Note that for practical reasons, the publication queue 606 does not store
messages, because a publisher services millions of users, whereby at any given instant,
the publications queue 606 is likely have thousands of entries, and thus the amount of
change data may be enormous. Thus, rather than storing the change data for each
message in the table 608, the publisher 600 uses the entries in the queue table 606 to look
up the ROLE of the SUID (from the publications table 608), and dynamically generates
the request message during an update interval.

Turning to the subscriber service 610, a subscriptions table 618 is used by the
subscriber 610 to track of its subscriptions that are in effect. An entry in the table 618
looks like this:

SUID | PUID | PSID | CN

wherein SUID comprises the identifier of the subscribing user, PUID comprises the
identifier of the publishing user, PSID comprises the identifier of the publishing service,
and CN comprises the last known change number received from the publisher. Note that
the existence of a row in this table implies that the associated publishing service 600 has
one or more associated entries in its publications table 608. The CN field is required to
ensure that publisher retries are idempotent.

When a subscription is added, the subscribing user specifies the PUID of the user

whose data he or she wants to subscribe to. For example, if a user] changes a telephone

-25-



10

15

20

25

30

WO 02/073442

PCT/US02/08063

number in userl’s profile, user2 can subscribe to see the change in user2 ’vs contacts,
whereby (if user2 is properly authorized) the profile service becomes a publisher of
userl’s changes and the contacts service becomes of subscriber of userl’s changes. The
subscriber queries NET Services (myServices) to find out the ID of the publisher (PSID)
and stores the SUID/PUID/PSID in subscriptions table 618.

A subscriptions queue table 616 is used by the subscriber 610 to batch its requests
for sending by the protocol handler 610 whenever the Updatelnterval timer goes off.
Also, the subscriber is required to retry requests for which a response has not been
received, and thus keeps track of messages that need to be sent for the first time, or need
to be resent, which is also done in the subscriptions queue table 616. An entry in the table
looks like this:

SUID | PUID | PSID | OPERATION | GENERATION

wherein SUID comprises the identifier of the subscribing user, PUID comprises the
identifier of the publishing user, PSID the comprises the identifier of the publishing
service, OPERATION comprises the Boolean (TRUE is an addition of a subscription and
FALSE is a deletion of a subscription) and GENERATION indicates whether this
message is fresh or has been sent one or more times already. In one implementation, the
subscription queue 616 does not store the messages, but rather during an update interval,
the protocol handler simply looks at the OPERATION field (which indicates whether this
request is to add a subscription or delete a subscription) and dynamically generates the
appropriate request message.

As an example of the use of GENERATION, consider a user adding a
subscription, but deciding to delete it before the publisher has responded to the original
add request. If the addition and deletion happened within the same update interval, that
1s, the add request has not been sent to the publisher yet, the row can simply be deleted
from the queue 616. However, if the addition happened during a previous update
interval, the add request was sent to the publisher, but an ACK was not received. In this
case, the row cannot simply be deleted from the queue, as the publisher may have already
received the add request and updated its subscription map. Thus, a delete request needs
to be sent. To send a delete request, the OPERATION bit is changed from TRUE to
FALSE. Then, when the subscriber sends the message again during the next update

interval, the publisher simply deletes an added subscription. Note that if the publisher did

=26 -



10

15

20

25

WO 02/073442 PCT/US02/08063

not receive the original add or delete requests, it is equivalent to asking it to add an
existing row or delete a non-existent row, which is handled by the idempotency rules.

As set forth in TABLE! above, SSCP defines several messages and the responses
thereof.

The updateSubscriptionData message is used when a user’s document gets
modified, to send change information to the subscribers. When a document is modified,
the publishing service 600 checks the contents of the publications table 608 for interested
subscribers by issuing the following logical query:

SELECT * FROM PUBLICATIONS
WHERE PUID=%AFFECTED_PUID%
GROUP BY SSID, ROLE

The publisher 600 uses the resultant information to create an entry in the queue;
the said entry records the information necessary to construct an updateSubscriptionData
message to each affected subscribing service. At the next update interval, for the set of
distinct ROLES used within the publication queue entries, an associated set of filtered
data is created in a service- dependent manner. The data is then factored by SSID, and an
updateSubscriptionData message is created for each affected subscriber and sent. arrives.
The message format for updateSubscriptionData follows the following schema using the

XMI conventions:

<updateSubscriptionData topic="###">1..1
<updateData publisher="...”
changeNumber="###">0..unbounded
<subscriber>0..unbounded</subscriber>
<subscriptionData>1..1</subscriptionData>

</updateData>

</updateSubscriptionData>

The data contained in the subscriptionData entity is defined by the participants in
the service-to-service communication. Services which engage in multiple service-to-
service communications should use the @topic attribute to disambiguate the meaning of

the content. The @topic attribute is a URI and is specific to the instance of service-to-

-27-



10

15

20

WO 02/073442 PCT/US02/08063

service communication. For instance the NET Profile to NET Contacts communication
could use a URI such as “urn:microsoft.com:profile-contacts:1.0.” No service should
attempt to accept an updateSubscriptionMap request for any conversation that they have
not been explicitly configured to accept. . _

The format of the response message, updateSubscrlptlonDataResponse foliows

the following schema using the XMI conventions:

<updateSubscriptionDataResponse topic="###">1..1
<updatedData publisher="...”>0..unbounded
<subscriber>0..unbounded</subscriber>
</updatedData>

<deleteFromSubscriptionMap subscriber="...” />0..unbounded

</updateSubscriptionDataResponse>

The function of <updatedData> is to inform the publisher, while the
<deleteFromSubscriptionMap> is used by the subscriber to tell the publisher that this
SUID has been deleted, as described below. Note that if a response is received for data
that is not subscribed, an immediate delete may handle such a response.

The updateSubscriptionMap message is used when a set of one or more users
changes their subscription status(es). When this occurs, the set of changes are sent to the
affected publishers within an updateSubscriptionMap message. When the publisher
receives this message it updates the records in the publications table 608. It is not an
error to add an entry more than once, nor to delete a non-existent entry. In both these
cases the response is formatted so that success is indicated. This is required to ensure that
retries are idempotent.

The request message format for updateSubscriptionMap follows the following

schema using the XMI conventions:

=28 -



WO 02/073442 PCT/US02/08063

<updateSubscriptionMap topic="###">1..1 T

<addToSubscriptionMap subscriber="...”>0..unbounded
<publisher>0..unbounded</publisher>
</addToSubscriptionMap>
<deleteFromSubscriptionMap subscriber="...”>0..unbounded
<publisher>0..unbounded</publisher>
</deleteFromSubscriptionMap>
</updateSubscriptionMap>

The addToSubscriptionMap section is used to make additions to the
subscriptionMap, while the deleteFromSubscriptionMap removes entries.
5 The response message for updateSubscriptionMapResponse is formatted

according to the following schema using the XMI conventions:

<updateSubscriptionMapResponse topic="###">1..1
<addedToSubscriptionMap subscriber="...”>0..unbounded
<publisher>0..unbounded</publisher>
</addedToSubscriptionMap>
<deletedFromSubscriptionMap subscriber="...”>0..unbounded
<publisher>0..unbounded</publisher>
</deletedFromSubscriptionMap>
<unknownPID publisher="...” />0..unbounded
</updateSubscriptionMapResponse>

The <addedToSubscriptionMap>‘and <deletedFromSubscriptionMap> provide
status information, while the entity <unknownPID> is used in situations where a
10  publishing user is deleted.
Services also need to send out messages when they come on-line, e.g., to wake up
other services which have stopped sending them messages. To this end, whenever a
service is going offline or coming online, the service should send out the following
message to its partner services stored in its connections table (604 if a publisher, 614 ifa
15  subscriber, although it is understood that a service may be both a publisher and a
subscriber and thus access both tables at such a time time). The format of this message

using the XMI conventions is:

-29 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

<serviceStatus>1..1
<online/>0..1
<offline />0..1

</serviceStatus>

Only one of the online or offline entities should be sent in any given message.

There is no defined response format for this message, as the normal NET My
Services ACK or fault response supplies the information needed.

By way of explanation of the operation of SSCP, a protocol handler wakes up
when the interval timer goes off, whereby the handler sends the queued up requests, or
when a request is received from another service, whereby the handler performs the
requested action and sends a response.

For purposes of this explanation of SSCP, a “Live Contacts” example, as
generally discussed above, will be used herein. In the example, generally represented in
FIG. 7, three NET Profile services, having IDs of PSID;, PSID,, and PSIDj;, will be
described. PSID, contains the profile documents of three users, namely PUID,;,, PUID,,
and PUID,3; PSID; contains profile documents of two users: PUID;; and PUID,;; and
PSID; contains profile documents of two users: PUID3; and PUIDs;. There are two .NET
Contacts services whose IDs are SSID1 and SSID2, wherein SSID1 manages contact
documents of three users, SUID;;, SUID;;, and SUID 3, and SSID2 manages contact
documents of two users SUID;; and SUID»;.

Consider an initial subscription map, generally represented in FIG. 7, indicating
with respect to PSID;:

PUID;;: friend(SUID;;), associate(SUID;2)

PUID;: other(SUID,;)

PUID;;5:
with respect to PSID;:

PUIDy;: friend(SUID, ;)

PUID,;: friend(SUID;;,SUIDy,), associate(SUID);,)
and with respect to PSID;:

PUID;;: associate(SUID, ), other(SUID;3)

PUIDs;: friend(SUID;,), associate(SUIDy;)

and also indicating with respect to SSID;:

230 -



WO 02/073442

SUID,;: PUIDy;, PUID;,, PUID3,
SUID]22 PUID]], PUIDzz

SUID|3Z PUID3|
and with respect to SSID;:

5 SUIDle PUID12, PUIDzz, PUID32
SUIDzz: PUIDzz, PUID32

PCT/US02/08063

As described above, for the example data, the two contacts services each include a

connections table. For SSID, this table (with included information such as cluster and

10 URL omitted for simplicity) looks like:

SSID; CONNECTIONS Table

PSID;

PSID,

PSID;

while for SSID; the connections table looks like:

SAID, CONNECTIONS Table

PSID,

PSID,

PSID;

As described above, in addition, the three profile services each contain a

15  publications table. For PSID; this table (with included information such as change

number omitted for simplicity) looks like:

PSID, PUBLICATIONS Table

PUIDy,

SUIDy;

SSID,

friend

PUIDy;

SUIDy,

SSID,

associate

PUID,,

SUIDz 1

SSID,

other

which for PSID, looks like:

PSID, PUBLICATIONS Table

PUID;,

SUIDy,

SSID,

friend

PUID;;

SUID;

SSID,

associate

-31-



WO 02/073442

PUID;;

SUID;;

SSID,

friend

PUID,;

SUID,;

SSID,

friend

and for PSID3 this looks like:

PSID; PUBLICATIONS Table

PUID3,

SUIDy,

SSID;

associate

PUID;,

SUID3

SSID,

other

PUIDs;

SUID;;

SSID,

friend

PUIDs;

SUID»,

SSID,

associate

PCT/US02/08063

If during an update interval on SSID;, the user SUID;; adds links to PUID,, and
5 PUIDs; and deletes the link from PUID;,, while SUID); deletes the link to PUID;; the

contents of the subscriptions queue for SSID; is:

SSID, SUBSCRIPTIONS_QUEUE

SUIDH

PUID,,

PSID,

TRUE

SUIDy,

PUID3,

PSID;

TRUE

SUID”

PUIDy;

PSID;

FALSE

SUID]Z

PUIDy,

PSID,

o O O ©

FALSE

When processed, this table will generate two different updateSubscriptionMap

requests that are sent to the two affected .NET Profile services.

10 PSID; is sent:

-32.



WO 02/073442 PCT/US02/08063

<updateSubscriptionMap topic=""####">
<addToSubscriptionMap subscriber="SUID,;,">
<publisher>PUID,</publisher>
</addToSubscriptionMap>
<deleteFromSubscriptionMap subscriber="SUID; ;>
<publisher>PUID, </publisher>
</deleteFromSubscriptionMap>
<deleteFromSubscriptionMap subscriber="SUID,,”">
<publisher>PUID,</publisher>
</deleteFromSUbscriptionMap>

</updateSubscriptionMap>

and PSID; is sent:

<updateSubscriptionMap topic="#HH">
<addToSubscriptionMap subscriber="SUID, ;>
<publisher>PUID3,</publisher>
</addToSubscriptionMap>
</updateSubscriptionMap>

After receiving these messages, each .NET Profile service updates the contents of
their publications table as follows (with the CN change number column omitted).

For PSID,, the resulting table looks like:
PSID, PUBLICATIONS Table
PUID,; | SUID,; | SSID, | Other
PUID,, | SUIDy; | SSID, | associate

and for PSID;, the resulting table looks like:

PSID; PUBLICATIONS Table
PUIDs, | SUIDy, | SSID, | associate
PUID;, | SUID;3 | SSID; | Other
PUIDs; | SUIDy, | SSID; | Other
PUID;; | SUID;, | SSID; | Friend

=33 -



WO 02/073442

PUID3,

SUID22

SSID,

associate

PCT/US02/08063

Based on the original configuration, PUID;; changes the contents on its profile,

whereby PSID; constructs the following updateSubscriptionData message to SSID;:

</updateData>

</updateData>
</updateSubscriptionData>

<updateSubscriptionData topic="####">

<subscriber>SUID;;</subscriber>

<subscriber>SUID,</subscriber>

<updateData publisher="PUID,,” changeNumber="###">
<subscriptionData>friend-info</subscriptionData>
<updateData publisher="PUID,,” changeNumber="###">

<subscriptionData>associate-info</subscriptionData>

Note that the message is split between two updateData blocks because of different

roles being assigned. If PUID,; were to change their profile information this would result

in PSID; sending out two updateSubscriptionData messages to SSID; and SSID;.

10 The message to SSID;:

</updateData>

</updateSubscriptionData>

<updateSubscriptionData topic="####">

<subscriber>SUID,</subscriber>

<updateData publisher="PUID,,” changeNumber="###">

<profileData>associate-information</profileData>

The message to SSID;:

-34 -



10

15

20

25

WO 02/073442 PCT/US02/08063

<updateSubscriptionData topic="####">
<updateData publisher="PUID,,” changeNumber="###">
<subscriber>SUID,;</subscriber>
<subscriber>SUID,,</subscriber>
<profileData>friend-information</profileData>
</updateData>
</updateSubscriptionData>

Note in this case, the message to SSID; only contains one copy of the data
optimizing for identical roles.

Thus, as demonstrated above, and in accordance with one aspect of the present
invention, the amount of information that is transmitted from oné service to another is
significantly reduced in SSCP because the change information for one user at a publisher
service that is subscribed to by multiple users at a subscriber service who are assigned the
same role at the publishing service, are aggregated into a single message. In other words,
the publisher operates in a fan-in model to put change information together based on their
roles, rather than separate it per user recipient, and leaves it up to the subscriber to fan the
information out to the appropriate users. By way of example, a user may change his
profile to reflect a new telephone number, address, occupation and so forth;, , based on
what they are authorized to see, e.g., as friends (who can see all such changes) or
associates (who can only see telephone number and occupation changes), SSCP
constructs a message with one copy of the friends data and one copy of the associates
data, and sends this message to the subscriber. The implicit assumption in this description
is that all the subscribers reside on the same service. Should any of the subscribers reside
on a different service, a separate message will be sent to that service, following the same
aggregation principles outlined above.

SSCP is a robust protocol which is able to handle many different kinds of failure
scenarios, including when the publisher fails, the subscriber fails, the link between
publisher and subscriber goes down before the subscriber can respond (after it has
received a request), the link between publisher and subscriber goes down before the
publisher can respond (after it has received a request), the publisher loses the subscription
map, and the subscriber loses published data. In general, these failure scenarios are

handled by message retries and idempotency, as generally described below.

-35-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

Message retries will be described with respect to an example that assumes the
publisher sends the request message. However the message-retry mechanism applies
equally well when the subscriber sends the retry message. When the publisher sends a
request message, the publisher sends the message from the publications queue and waits
for a response to this message. If the publisher gets a response, it deletes the message
from the queue, otherwise it keeps the message in the queue and resends it the next time
Update Interval timer goes off. As described above the number of retries occurs a
specified maximum number of times, after which the subscriber is considered dead.
After some longer interval time, the subscriber is automatically tested for aliveness, and
the process begins all over. This aliveness testing can also be limited to some number of
times. This method ensures that an alive subscriber does not miss an
updateSubscriptionData message.

As described above, retry attempts should idempotent — that is, multiple retries of
a request should behave as if the request had been sent only once. Idempotency is
achieved by keeping track of the change number, or CN, which is a column in the
publications and subscriptions tables as described above. Note that the underlying
service implementation has change number data and keep track of it, entirely independent
of SSCP. As used herein, change numbers are represented as an as an integer sequence,
although it is understood that change numbers need not be sequential, but may be
whatever the service has, as long as it increases (or decreases) monotonically. Note also
that the smallest unit of change is a NET blue node, the smallest query-able, cacheable,
unit of data in .NET.

In general, when a fresh subscription is created, the publisher 600 adds a row into
the publications table 608 (FIG. 6), with CN being set to the lower (upper) bound for the
change number. . Note that since every .NET blue node already has a change number
associated with it, this value is guaranteed to be available. The subscriber 610 also keeps
track of the value of this CN in its subscriptions table 618. Whenever the publisher 600
sends an updateSubscriptionData request to the subscriber, it includes the value of CN
that it currently has for this [ NET blue]node. It records this CN in the publications table
608.

On receiving the updateSubscriptionData message, the subscriber 610 updates its
copy of the CN (present in the CN field of subscriptions table 618) to the new value. If,
due to a transient network failure, the publisher 600 fails to receive the response message

from the subscriber, the publisher resends the request message again at the next update

-36 -



10

15

20

25

30

WO 02/073442 7 PCT/US02/08063

interval. On receiving this request, the subscriber inspects the CN, and determihesj that it
has already processed this message because the CN in the message is thé same as the CN

that it has. The subscriber treats this as a no-op with respect to making any update, and

message from the message queue. The net result is that any message received multiple
times by the subscriber is processed exactly once, i.e., retries are idempotent.

The subscriber achieves idempotency because when a publisher receives a request
to add a preexisting entry to its subscription map, it should treat this as a no-op, and not
return an error. When the publisher receives a request to delete a non-existent entry from
its subscription map, it should treat this as a no-op and not return an error. As can be
readily appreciated, multiple add or delete from subscription map requests behave as if
there was only one such request.

If the publisher fails, the publisher will not be able to respond to subscriber
requests to update the subscription map. This is handled by resending the message until a
response is received. As with other retries, long-term or catastrophic failures are handled
by having a limit on the number of retries and waiting for a longer time before starting all
over, and then if still no response after some number of “longer” time cycles, requiring
the attempted recipient to initiate contact.

If down, the publisher will also not receive any responses that the subscriber may
have sent to its updateSubscriptionData requests. From the point of view of the
subscriber, this is logically indistinguishable from the case where the link between
subscriber and publisher fails, and is handled as described below.

Subscriber failures are very similar to what happens when the publisher fails. The
subscriber continues to resend the updateSubscriptionMap requests until it receives a
response from the publisher, or the retry limit is reached, whereupon the retry attempts
will be held off for a longer delay time. As in the publisher case, the non-reception of
responses by the subscriber is the same as a link failure, the handling of which is
explained below.

In the case where the link between the publisher and subscriber fails, the
subscriber has sent an updateSubscriptionMap message, the publisher has processed this
message and sent a response, but the subscriber does not receive the response. As
described above, this causes the subscriber to resend the message. Thus the publisher

receives a duplicate updateSubscriptionMap message from the subscriber, detected via

-37-



10

15

20

25

WO 02/073442 PCT/US02/08063

the change number. Since retries are idempotent, the publisher simply sends back a
response to the subscriber. A subscriber to publisher link failure is handled similarly.

Occasionally, a PUID may be deleted from the publisher and for some reason the
subscriber does not get notified of this event. When a subscriber sends an

updateSubscriptionMap request concerning a PUID that no longer exists in the publisher,

. the publisher comes back with the <unknownPID> entity in the response. This tells the

subscriber to update its image of the subscription map.

Similarly, a SUID may be occasionally deleted at the subscriber and in general,
the publisher has no way of knowing it. On data change, the publisher sends an update
request to the deleted SUID, and when this happens, the subscriber sends a
<deleteFromSubscriptionMap> entity in its response to notify the publisher of the SUID
deletion. This tells the publisher to update its subscription map.

One catastrophic form of failure is when a publisher loses its subscription map or
the subscriber loses its subscription data. This can cause various levels of data loss. For
example, if the publisher has experienced a catastrophic failure, such as disk crash, the
publisher needs to revert to data from a back up medium such as tape. As a result, its
subscription map is out of date. For the subscriber, a similar situation makes its
subscribed data out of date.

In such an event, the service that experienced the loss sends a message requesting
an update. The publisher’s subscription map can be brought up to date by the
information stored in subscriptions table in the subscriber, while a subscriber’s data can
be made up to date by the subscription map and the change number stored in the
publications table.

The following section describes pseudocode for implementing key aspects of
publisher and subscriber protocol handlers.

When the data changes occur in the publisher, actions implied by the following

pseudo-code (as generally represented in FIG. 8) are taken:

-38 -



WO 02/073442 PCT/US02/08063

AddToPublicationQueue(PUID, CN)

{
// PUID is the user id whose data was changed. Query the publications
// table for all SUIDs that are affected, and insert this data into
// the PUBLICATIONS_QUEUE, if it does not exist already

## IF NOT EXISTS (

# SELECT SUID, PUID, SSID

# FROM PUBLICATIONS

# WHERE PUBLICATIONS.PUID = %PUID%)
#4  INSERT INTO PUBLICATIONS QUEUE

# SELECT SUID, PUID, SSID

# FROM PUBLICATIONS

## WHERE PUBLICATIONS.PUID = %PUID%

// we also need to record the new value of the change number.
## UPDATE PUBLICATIONS SET CN = %CN%
## WHERE PUBLICATIONS.PUID = %PUID%

When a publisher receives a request message, actions implied by the following
pseudo-code (also represented in FIG. 9) are taken:
OnRequestPub(SSID, requestMessage)

{

// what kind of a request message is this?
switch (requestType)

{

// request is for updating subscription map

case updateSubscriptionMap:

// the request can have multiple entities. Loop for each
for (each entity in request)
{

// See if the PUID of the <publisher> is known

if (LookUpUser(PUIDY))

{

-39-



WO 02/073442

PCT/US02/08063

// new subscription

if (entity = "<addToSubscriptionMap>")

{

// determine role of the subscriber

role = Findkole(SUID);

// insert into PUBLICATIONS table. Note that

/I CN is initialized to the current value that the publisher
// has for it, Note also that

// trying to add an existing row is not an error

## IF NOT EXISTS

## (SELECT SUID

## FROM PUBLICATIONS

## WHERE

## SUID = %SUID% AND

## PUID = %PUID% AND

## SSID = %SSID%)

## INSERT INTO PUBLICATIONS VALUES

## (%PUID%, %SUID%, %SSID%, %role%, %CN%)

// append to the response message

response +="<addedToSubscriptionMap>";

} // addToSubscriptionMap

else if (entity == "<deletedFromSubscriptionMap>")

{

// delete from PUBLICATIONS table. If a non-existent
// row is asked to be deleted, the delete will simply

// return without deleting anything

## DELETE PUBLICATIONS

## WHERE

## SUID = %SUID% AND

## PUID = %PUID% AND

## SSID = %SSID%

// append to the response message

-40 -



WO 02/073442 PCT/US02/08063

response += "<deletedFromSubscriptionMap>";

} // deleteFromSubscriptionMap

} // LookUpUser(PUID)

else

{
// append an "unknown PUID entity to response
response += "<unknownPUID>";

}// for (each entity in request)

break; // updateSubscriptionMap

case serviceStatus:

/1 if serviceStatus is online

if (entity == "<online>")

{
// reset retry count to zero
## UPDATE CONNECTIONS
## SET RETRY =0
## WHERE SID = %SSID%

}

else if (entity == offline)

{
/I resent retry count to maximum
## UPDATE CONNECTIONS
## SET RETRY = %RetryCount%
## WHERE SID = %SSID%

// append a standard .NET ack message

response += "<standard NETck>";

-4] -



WO 02/073442 PCT/US02/08063

break; // serviceStatus

} 1/ switch (requestType)

// Send response back service

Send(SSID, response);

When the update interval timer goes off at the publisher, it takes actions implied
by the following pseudo-code, as generally represented in FIGS. 10 and 11A-11B:
Onlnterval TimerPub()

{

// get a list of all Subscribes that have live connections

## SELECT SID AS SSID, RETRY FROM CONNECTIONS

for (each SSID in result set)
{

if (RETRY < RetryCount)
{
/l more retries left. process messages in the publication queue
// for this SSID
if (ProcessPublicationQueue(SSID))
{
// all requests in queue for this SSID have been sent, and
// responses have been received
## UPDATE CONNECTIONS
## SET RETRY =0
## WHERE SID = %SSID%

else

// no response from SSID; increment retry counter
## UPDATE CONNECTIONS

## SET RETRY =RETRY + 1

## WHERE SID = %SSID%

-42-



WO 02/073442

PCT/US02/08063

}
} // retry < retryCount
else if (RETRY < ResetInterval)
{
// retry count exceeded; see if it's time to check for alive-ness
## UPDATE CONNECTIONS
## SET RETRY = RETRY + 1
## WHERE SID = %SSID%
} // retry < retryInterval
else
{
/1 check for alive-ness by starting another series of retries
## UPDATE CONNECTION
## SET RETRY =0
## WHERE SID = %SSID%
}

} // for (each SSID in result set)

{

ProcessPublicationQueue(SSID)

/I select requests in the queue for this SSID; group them by
// PUID followed by ROLE. The rows in each group will result
/I in one updateSubscriptionData message
## SELECT * FROM PUBLICATIONS_QUEUE
## WHERE SSID = %SSID%
## GROUP BY PUID, ROLE
for (each group of rows in the result set)
{
// generate an updateSubscriptionData message

request += GenerateMessage(group);

// Send request to the subscriber
if (!Send(SSID, request)) return FALSE;

/] Receive response from service

-43 -



WO 02/073442 PCT/US02/08063

if ('Recv(SSID, response)) return FALSE;

// The response has one entity for each SUID
for (each entity in response)

{

success = true;

if (entity == "<updatedData>")

{
/I publisher needs to check the change number returned in the
/l response message and verify if it matches; if it does, then
// everything is cool; if not, then the subscriber has sent a
/I spurious response for a previous request, and so this
// message is ignored
## SELECT CN AS STORED_CN
## FROM PUBLICATIONS
## WHERE PUID = %publisher% AND SUID = %subscriber%
// CN is the change number contained in the response
if (STORED_CN !=CN)
success == false;
}
if (entity == "<deleteFromSubscriptionMap>")
{
/I subscriber did not find PUID in its SUBSCRIPTIONS table
// publisher should update its subscription map
## DELETE FROM PUBLICATIONS
## WHERE PUID=%subscriber% AND SSID=%SSID%
}

// since request has received the proper response, it can be deleted from
// the publication queue
if (success == true)
{
## DELETE FROM PUBLICATIONS_QUEUE
## WHERE SSID = %SSID% AND PUID = %publisher% AND SUID =

%subscriber%

-44 -



WO 02/073442

PCT/US02/08063

}

When a subscription is added, the actions implied by the following pseudo-code

(also generally represented in FIG. 12) are taken:

{

AddSubscription(suid, puid, psid)

// check if the publisher has an entry in the CONNECTIONS table for this
// PSID

if (UnknownServiceID( psid })
{

// no entry exists; send an addSubscription message immediately to
// the publisher.
UpdateSingleSubscriptionMap( suid, puid, psid );
}
else
{
/1 see if row exists in the subscriptions queue
if (LookUpQueue(suid, puid, psid)
{
/1 if a row exists in the subscription queue then:

// if OPERATION is TRUE (=add) then do nothing

-45.



WO 02/073442 PCT/US02/08063

//if it is FALSE (=delete) and GENERATION = 0, then
/I delete the row; otherwise, change FALSE to TRUE

## SELECT OPERATION, GENERATION
## FROM SUBSCRIPTIONS_QUEUE
## WHERE SUID = %suid% AND PUID = %puid% AND PSID = %psid%

if (OPERATION == FALSE)
if (GENERATION == 0)
{
## DELETE SUBSCRIPTIONS_QUEUE
## WHERE SUID = %suid% AND PUID = %puid% AND PSID =
%psid%

else

## UPDATE SUBSCRIPTIONS _QUEUE

## SET OPERATION = TRUE

## WHERE SUID = %suid% AND PUID = %puid% AND PSID =
%psid%

}

else
{
// row does not exist; insert into the queue
## INSERT INTO SUBSCRIPTION_QUEUE
## VALUES (%suid%, %puid%, %psid%, TRUE, 0)

When a subscription is removed, the subscriber takes actions implied by the

following pseudo-code, as generally represented in FIG. 13:

-46 -



WO 02/073442 PCT/US02/08063

RemoveSubscription(from, to, sid)
{
/I see if row exists in the subscriptions queue
if (LookUpQueue(suid, puid, psid)
{
// if a row exists in the subscription queue then:
// if OPERATION is FALSE (=delete) then do nothing
/1 if it is TRUE (=add) and GENERATION = 0, then
/[ delete the row; otherwise, change TRUE to FALSE

## SELECT OPERATION, GENERATION
## FROM SUBSCRIPTIONS_QUEUE
## WHERE SUID = %suid% AND PUID = %puid% AND PSID = %psid%

if (OPERATION == TRUE)
if (GENERATION == 0)

{
## DELETE SUBSCRIPTIONS_QUEUE
## WHERE SUID = %suid% AND PUID = %puid% AND PSID = %psid%
}
else
{
## UPDATE SUBSCRIPTIONS_QUEUE
## SET OPERATION = FALSE
## WHERE SUID = %suid% AND PUID = %puid% AND PSID = %psid%
}
}
else
{
/l row does not exist; insert into the queue
## INSERT INTO SUBSCRIPTION_QUEUE
## VALUES (%suid%, %puid%, %psid%, FALSE, 0)
}

-47 -



WO 02/073442 PCT/US02/08063

When a subscriber receives a request, the actions implied by the following
pseudo-code are performed as generally represented in FIG. 14:
OnRequestSub(PSID, request)
{

// what kind of a request message is this?

switch (requestType)
{

// request is for updating subscription map

case updateSubscriptionData:

// request may contain multiple entities
for (each entity in request)
{
// check to see if the publisher's PUID is in the SUBSCRIPTIONS table
if (LookUpPUID(publisher))
{
// is this a duplicate request message? I can find this by looking
// at change numbers
## SELECT CN AS STORED_CN
## FROM SUBSCRIPTIONS
## WHERE PUID = %publisher% AND SUID = %subscriber%
## AND PID = %pid%

// en is the change number present in the message
if (cn 1= STORED_CN)
{
// This function updates subscribed data
UpdateData(entity);

// update the change number

## UPDATE SUBSCRIPTIONS

## SET CN =cn

## WHERE PUID = %publisher% AND SUID = %subscriber%
## AND PID = %pid%

-48 -



WO 02/073442 PCT/US02/08063

/I append to response

response += "<updatedData>";

}
else
{ .
// publisher is unknown; signal publishing service to delete it
response += "<deleteFromSubscriptionMap>";
}
} /1 for

// send response to the publishing service

break; // updateSubscriptionData

case serviceStatus:

/1 if serviceStatus is online

if (entity == "<online>")

{
// reset retry count to zero
# UPDATE CONNECTIONS
#SET RETRY =0
# WHERE SID = %PSID%

}

else if (entity == offline)

{
/I resent retry count to maximum
# UPDATE CONNECTIONS

# SET RETRY = %RetryCount%
# WHERE SID = %PSID%

// append a standard .NETack message
response += "<standard NETAck>";

break; // serviceStatus

} // switch (requestType)

- 49 -



WO 02/073442 » PCT/US02/08063

- // Send response back service

Send(PSID, resbonse);

When the update interval timer goes off at the subscriber, it takes actions implied
by the following pseudo-code as generally represented in FIGS. 15 and 16A-16B:
Onlnterval TimerSub()

{

// get a list of all publishers that have live connections

## SELECT SID AS PSID, RETRY FROM CONNECTIONS

for (each PSID in result set)
{

if (RETRY < RetryCount)
{
/I more retries left. process msgs in the publication q for this SSID
if (ProcessSubscriptionQueue(PSID))
{
/1 all requests in queue for this PSID have been sent, and
// responses have been received
## UPDATE CONNECTIONS
## SET RETRY =0
## WHERE SID = %PSID%

else

// no response from PSID; increment retry counter
## UPDATE CONNECTIONS
## SET RETRY = RETRY +1
## WHERE SID = %PSID%
}
} 1/ retry < retryCount
else if (RETRY < Resetlnterval)

-50-



WO 02/073442 PCT/US02/08063
{

// retry count exceeded; see if it's time to check for alive-ness
## UPDATE CONNECTIONS
## SET RETRY =RETRY + 1
## WHERE SID = %PSID%
} // retry < retryInterval
else
{
// check for alive-ness by starting another series of retries
## UPDATE CONNECTION
## SET RETRY =0
## WHERE SID = %PSID%

}
} // for (each SSID in result set)

-51-



WO 02/073442

PCT/US02/08063

{

ProcessSubscriptianueue(PSID)

/1 select requests in the queue for this PSID; group them by

/1 PUID followed by OPERATION. The rows in each group will result
/I in one updateSubscriptionData message

## SELECT * FROM PUBLICATION_QUEUE

## WHERE PSID = %PSID%

/I generate an updateSubscriptionMap message. Note that all requests
/1 for a given psid can be bunched into one single message. Thus, there
// no need to group by column and loop for each group

request += GenerateMessage();

// Send request to the publisher
if (!Send(PSID, request)) return FALSE;

// Receive response from service

if ({Recv(PSID, response)) return FALSE;

// The response has one entity for each row in subscription queue
for (each entity in response)
{
if (entity == "<addedToSubscriptionMap>")
{
/1 publisher successfully added its subscription map
// subscriber now adds to its subscriptions table
## INSERT INTO SUBSCRIPTIONS
## VALUES (%subscriber%, %publisher%, %psid%)
}
if (entity == "<deletedFromSubscriptionMap>")
{
// publisher successfully deleted from its subscription map
// subscriber now deletes from its subscriptions table
## DELETE FROM SUBSCRIPTIONS
## WHERE SUID=%subscriber% AND PUID = %publisher% AND

PSID=%PSID%

-52-



WO 02/073442 PCT/US02/08063

}

// since request has received the proper response, it can be deleted from

// the subscriptions queue

## DELETE FROM SUBSCRIPTIONS_QUEUE

## WHERE PSID = %PSID% AND PUID = %publisher% AND SUID =
%subscriber%

}

}
SSCP ALTERNATIVE

As described above, alternative ways to implement a service-to-service
5  communications protocol are feasible. This section describes one such way, and also

exemplifies an alternative wherein each user can have multiple instances of a .NET (or

-53-



10

15

20

25

30

WO 02/073442 ) PCT/US02/08063
my*) service. For example, a user can have two instances of the myContacts service, one

for company contaéts and one for personal contacts, (although the same segmentation can

" also be achieved using categories). To distinguish between multiple instances of a user’s

services, there exists an identifier called INSTAN CE, stored in the myServices sgw1ce
For a given user and a given service, there alsé §5(ists the notion of a default insf;lﬁce. The
combination of an owner-id (OID) and INSTANCE is enough to uniquely identify a
content document. Conceptually, a content document (determined by the
OID/INSTANCE pair of the publisher) gets published to another content document
(determined by the OID/INSTANCE pair of the subscriber), which are sometimes
referred to herein as the publishing document and subscribing document, respectively.

FIG. 17 shows an example of a publisher-subscriber relationship. In FIG. 17,
there are two myProfile services 1701 and 1702, each managing the profiles of three
users. User, has three instances (1704,-1704;) of a myProfile service, and users has four
instances, one of which resides in the first myProfile service 1701, three of which reside in
the second myProfile service 1702. There is one myContacts service 1720, which
manages the contact information of two users; user; has two instances (1722, and 1722;)
of the service. In the real world, each of these services will manage the data for millions
or even hundreds of millions of users.

As represented in FIG. 17, that myContacts service has subscriptions in the two
different myProfile services 1701 and 1702; it is similarly likely that a given publisher will
publish to multiple NET services. Finally, it should be possible for a single service to act
both as a subscriber and a publisher (e.g., in the whitelist example, myContacts is a
publisher; in the Live Contacts example, it is a subscriber). Thus, as represented in FIG.
17, when the profile information for myProfileDocs; changes, this information should be
published by myProfile service; 1702, to myContacts service 1720, as both
myContactsDoc; 1721 and myContactsDoc,; 1722, have subscribed for the service.
SSCP enables the publishing of data as changes occur, via the push model. Furthermore,
in keeping with the present invention, the publisher should make all attempts to batch the
changes to maximally utilize bandwidth.

In FIG. 17, note that only myContactsDoc,; subscribes to the profile changes of
myProfileDocs. Thus, when Users’s profile is changed, myProfile should publish the
changes only to myContactsDoc,;, and myContactsDoc, should not see these changes.
Returning to Users, assume that User,’s role in myProfileDocg; is that of an associate; the

role of User; is that of a friend. When a myProfile service publishes the data, it should

-54-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

send data visible to an associate to myContactsDoc; and data visible to a friend to
myContactsDoc,;. As should be apparent, SSCP sends changes only to subscribed
documents (user/instance) within a subscribing service, and determines the role of each
subscribing user, and filter the data based on the role. To this end, the publisher
maintains information about documents wanting subscriptions, which is determined by
the OID/INSTANCE pair (myContactsDoc; and myContactsDoc;(). For each
subscribing document, the publisher also maintains information about the document it is
subscribing to (for myContactsDoc;, this is myProfileDoc; and myProfileDoc; in
myProfile Service,), and about the role played by the owner of the subscribing document
(for myProfileDocg; in myProfile Service;, this is associate for myContactsDoc;, friend
for myContactsDoc;)).

In order for the publisher to keep this information current, the subscriber should notify
the publisher whenever one of its users wants to unsubscribe or add a new subscription.
Note that technically, it is a document that subscribes; that is, a user specifies an instance
of the service which wants to act as a subscriber, but for purposes of description the user
can be thought of as a subscribing. By way of example, consider For example, User,
wants to add Usery into his live contact list and remove Users. SSCP should allow for
transmission of this information from subscriber to publisher. SSCP allows the
subscriber to send subscription updates to the publisher.

As above, the alternative embodiment described in this section provides
robustness, to guarantee that the publisher and subscriber see the messages that they are
supposed to see. At the most fundamental level, the publisher or subscriber need to know
that their messages have reached the destination, whereby a message from the sender has
a corresponding acknowledgement (ACK) returned from the receiver. The ACK need not
be synchronous with respect to the message, and can instead be sent / received
asynchronously.

The robust protocol of the present invention also handles the failures of publishers
or subscribers, which is generally accomplished by resending a request until a response is
received. However, to prevent a flood of retry messages in case of a catastrophic failure
at the destination, a limited number of retries are specified, after which no further
attempts are made for a longer time. This is accomplished via a reset interval (which is
relatively much longer than the retry interval) after which the entire retry process begins.

A more subtle type of failure occurs when, for example, a publisher sends a

request to the subscriber, informing it of the change in a stored profile, the subscriber

-55-



10

15

20

25

30

WO 02/073442 PCT/US02/08063

processes the request, and sends a response to the publisher, but the network connection
between the subscriber and the publisher has a transient failure and the response does not
reach the publisher. As described above, to retry, the publisher resends its request. For
the protocol to work correctly, the subscriber recognizes that this is a redundanfrrequest
that has already been processed. In other words, a request should be processed only once
even if it is sent multiple times; alternatively, the request could be processed any number
of times, but the next result should be as if it was processed only once. As described
above, in SSCP, retries are idempotent.

A typical service manages gigabytes of data, partitioned over millions of users.
This means that in its role as a publisher, the source data will be frequently, if not almost
constantly, changing. For efficiency, every change is not published immediately, but
instead change requests are batched, and send occasionally (e.g., periodically). To this
end, the protocol handler at the service periodically wakes up after a specified interval
and sends the batched messages, as described above with respect to FIG. 6.

As generally represented in FIG. 6, SSCP is implemented at a publisher (service)
600 and subscriber (service) 610 by respective protocol handlers 602, 612, such as
daemon processes or the like running with respect to a service. The publisher 600 and
subscriber 610 exchange messages, and use this as a mechanism to communicate
changes.

The requirements of the protocol dictate that SSCP handlers 602, 612 maintain
several pieces of data, the sum total of which represents the state of a publisher or
subscriber. As conceptually represented in FIG. 6, this data can be viewed as being
segmented over several data structures 604-618. Note however that the arrangements,
formats and other description presented herein are only logically represent the schema;
the actual storage format is not prescribed, and an implementation may store in any
fashion it deems fit as long as it logically conforms to this schema.

A publisher 600 communicates with a subscriber 610 using request and response
messages. For example, when data changes at the publisher 600, the publisher 600, sends
a request message to the subscriber 610 informing the subscriber that data has changed,
normally along with the new data. The subscriber 610 receives the message, makes the
required updates, and sends back an ACK message acknowledging that the message was
received and that the changes were made. A subscriber 610 can also send a request
message, such as when the subscriber 610 wants to subscribe or un-subscribe to a piece

of datum. When the publisher 600 receives this message, the publisher 600 updates its list

-56 -



10

WO 02/073442

PCT/US02/08063

of subscriptions (in a publications table 608) and sends back a response acknowledging

the request. Note that SSCP is agnostic to whether a response message for a given

request is synchronous or asynchronous.

Thus, there are two primary parts to SSCP, a first from the publisher to the

subscriber, which deals with sending changes made to the publisher’s data, and a second

from subscriber to the publisher, which deals with keeping the list of subscriptions

synchronized. Furthermore, every service is required to provide notification to all other

services that have subscriptions with it, or services with which it has subscriptions, when

it is going offline or online.

The table below summarizes request messages, each of which having a

corresponding response (e.g., ACK) message.

Message Description Type From/To
updateSubscriptionData Used by the publisher to | Request | Publisher
publish changes to its data to
Subscriber
updateSubscriptionDataResponse | Used by the subscriber to | Response | Subscriber
ack to Publisher
updateSubscriptionData
updateSubscriptionMap Used by the subscriber to | Request | Subscriber
inform the publisher that to Publisher
subscriptions have been
added or deleted
updateSubscriptionMapResponse | Used by the publisher to | Response | Publisher
ack to
updateSubscriptionMap Subscriber
serviceStatus Used by both publisher Request | Both
and subscriber to inform directions
that they are going
offline, or have come
online
serviceStatusResponse Used by both publisher Response | Both
and subscriber to ack directions
serviceStatus request

-57-



10

15

20

WO 02/073442 _ PCT/US02/08063

Protocol parameters are supported by t;oth the publisher and the subscriber and
control the behavior of the protocol. |

As noted above, SSCP supports the ability to batch request messages. Whenever
there is a need to send a request message, such as when there are changes in publisher
data or subscriptions, the service puts the corresponding request message into a publisher
message queue 606. Periodically, the protocol handler 602 in the publishing service 600
wakes up and processes the messages in the queue 606. This period is called as the
Updatelnterval, and is a configurable parameter.

To satisfy the robustness requirement, the publisher’s protocol handler 602 needs
to periodically resend requests until the publisher service 600 receives an acknowledge
message (ACK). If the ACK for a message is successfully received, this message is
purged from the queue 606. Until then, the message remains in the queue, flagged as
having been sent at least once, so it will be retried at the next update interval. The
number of times the publisher the publisher service 600 retries sending a message to the
subscriber service 610 is configurable by the parameter RetryCount, i.e., after retrying
this many times, the publisher service 600 assumes that the subscriber service 610 is
dead. Then, once the maximum number of retries is over, the publisher service 600 waits
for a relatively longer time. Once thisllonger time is elapsed, the publisher service 600
sets the RetryCount parameter to zero and begins resending the queued up requests over
again. This longer time (before beginning the retry cycle), is configurable by the
parameter ResetInterval.

Below is the summary of these protocol parameters:

Parameter Use

The interval after which the protocol handler wakes
Updatelnterval

up and processes batched requests.

The number of times we retry a connection before
RetryCount ) o

assuming the remote service is dead.

The interval after which a service marked as dead is
ResetInterval i

retested for alive-ness.

The maximum number of sub-messages to chain
BoxcarLength )

together on a given boxcar.

- 58 -



10

15

20

25

WO 02/073442 PCT/US02/08063

Thus, to implement SSCP, the protocol handlers 602, 610 at the publisher and
subscriber, respectively, track of several pieces of information, such as in their respective
tables 604-618. |
| As with .NET in gener;dl,_ SSCP relies on the entities (services and uisers) being
uniquely identifiable by the use of identifiers, e.g., every user in .NET has a unique
identifier assigned by the Microsoft® Passport service. Each service, be it acting as a
publisher or subscriber, also has a unique identifier, and in practice, a service ID will be a
certificate issued by a certification authority.
SID  Generic Service Identifier
PSID Publishing Service Identifier
SSID Subscribing Service Identifier
POID Publishing Owner Identifier (PUID of myPublishingService user)
PINST Instance ID of POID
SOID Subscribing Owner Identifier (PUID of mySubscribingService
user)

SINST Instance ID of SOID

To send a request or a response, the service needs to know where the target is
located. For purposes of the protocol a service is identified either by just the URL or by a
series of URL/CLUSTER entries. To ensure proper handling of the number of retries for
a particular service, the handler needs to keep track of how many retries have been done.
All this information is kept in the CONNECTIONS table, which is used by both

publishers and subscribers:

SID | URL | CLUSTER | RETRY

SID The primary key for this table; the service ID of a Subscriber or
Publisher
URL the URL at which the service is expecting requests

CLUSTER | the cluster number of this service

RETRY the current retry number of the service

There is one entry in this table for every target service. For a publisher, this means
every service that has subscriptions with it; for a subscriber, this means every publisher

that it has subscriptions with. When RetryCount < RETRY < ResetInterval, the target

-59-



10

15

WO 02/073442 PCT/US02/08063
E serv1ce is assumed to be dead. Note that when an unknown service (i.e:; one that is not

' present_m the CONNECTIONS tab_le) sends a request, an attempt is made to contact it

immediately, without waiting until the next interval.

The publisher tracks the us;eré’across the services with which it has subscriptions.
This is done in the PUBLICATiONS table. The PUBLICATIONS table, used by the
publisher, looks like:
PKEY | POID | PINST | SOID | SINST | SSID | SCN | ROLE | TOPIC

wherein:

PKEY The primary key for this table; note that the columns POID, PINST,
SOID, SINST and SSID form a candidate key

POID Owner-ID of the publisher

PINST Instance ID of the publishing service

SOID Owner-ID of the subscriber

SINST Instance ID of the subscribing service

SSID ID of the subscribing service

SCN Last known change number of an add or delete request received from the
subscriber.

ROLE Subscribing Owner-ID role in the publishing Owner-ID/Instance’s
roleList for this document

TOPIC If the subscribing document is having multiple subscriptions with a
publishing document, then a TOPIC is used to distinguish them.

There is one row in this table for each document/topic/subscribing service
combination. The PUBLICATIONS table be made visible at the schema level, but should
be read only.

Given a publishing service P and a subscribing service S, there will exist a
(possibly empty) set SM = {(PO,, PI;, SO;, SI;, T)), fori=1to n} such'that:

1) PO; is a user managed by P

2): SO; is a user managed by S

3) The document (SO, SI;) subscribes to the document (PO;, PI;) with topic

-60-




WO 02/073442 PCT/US02/08063
The set SM is referred to as the subscription map of P with respect to S, wherein
the subscription map may be obtained by the following query:
SELECT POID, PINST, SOID, SINST, TOPIC
FROM PUBLICATIONS
5 WHERE SSID =S8

The PUBLICATIONS QUEUE table is used by the publisher to batches the
requests for the protocol handler to send when the interval is achieved, e.g., the
10  Updatelnterval timer goes off. Also, the publisher is required to retry requests for which
a response has not been received. The publisher thus tracks the messages that need to be

sent for the first time, or those that need to be resent. This is done in the

PUBLICATIONS_QUEUE table, which looks like this:

PQKEY | PKEY | PCN

15

wherein:

PQKEY Primary key for this table

PKEY Identifies the row in PUBLICATIONS table — effectively pointing to a
document in the publisher service, the changes to which needs to be
published to a subscribing document

PCN Last known change number of the publisher’s data which was sent to the
subscriber

The PCN field is required to ensure correct updates in situations when multiple

20  updates happen to the underlying data before a response is received from the subscriber.
By way of example, suppose that change number five (5) occurs during update interval
ten (10); a row is inserted into the PUBLICATION_QUEUE, with PCN=(5). When the
interval timer goes off for the tenth time, a message is sent to the subscriber, with the
changes relating to PCN=5. Assume that for whatever reason, a response from the

25  subscriber is not received for this message, and during update interval eleven (11),
change number six (6) occurs. This causes the PCN in the PUBLICATION_QUEUE to
be updated from five (5) to six (6). At this time, the response comes back from the

-61 -



10

15

20

25

WO 02/073442 PCT/US02/08063

subscriber for the original message contai‘ni'ng the change number that it had received,

which is equal to five (5). The publisher compares this change number with the change

~ number that it has stored in the PUBLICATION_QUEUE table, and finds that the one in

the table has a value of 6. So, it knows that more changes need to be sent to the
subscriber (those corresponding to change number six (6)), and hence it retains the row in
the queue. Note that if during update interval eleven (11), change number six (6) did not
occur, then the PCN in the PUBLICATION_ QUEUE would still be five (5) and the
publisher’s comparison of this change number with the change number that it has stored
in the PUBLICATION_QUEUE, would be true and the publisher would have deleted the
row from the queue.

As described above, the Publication Queue Store does not store messages, but the
information needed to create the messages. One reason is that the storage required by
these messages is likely to be huge, so rather than storing the actual messages in the table,
during an update interval, the publisher uses entries in this table to look up the ROLE of
the owner of the subscribing document (from the PUBLICATIONS table), and generates
the request message at the time of sending it. Another reason for not storing messages
deals with multiple updates occurring within a single updateinterval. In this case multiple
copies of the messages would needlessly get generated and then overwritten. Another
reason to not store messages in the queue is that messages are collated so that similar data
payloads get combined into a single outbound request. Generating messages for every
queue entry would mean a redundant effort, discarded at message send time.

The subscriber uses a SUBSCRIPTIONS table to keep track of the
subscriptions that are in effect:

SKEY | SOID | SINST | POID | PINST | PSID { PCN | TOPIC

wherein:

SKEY The primary key for this table; note that the columns POID, PINST,
SOID, SINST and PSID form a candidate key

SOID Owner-ID of the subscriber

SINST Instance ID of the subscribing service

POID Owner-ID of the publisher

PINST Instance-ID of the publishing service

PSID ID of the publishing service

PCN Last known change number of the publisher’s data received from the

-62-



10

15

20

WO 02/073442

PCT/US02/08063

publisher

TOPIC

If the subscribing document is having multiple subscriptions with a

publishing document, then a TOPIC is used to distinguish them.

Note that the existence of a row in this table implies that the associated publishing

service has one or more associated entries in its PUBLICATIONS table. The PCN field

1s required to ensure that publisher retries are idempotent.

Recall that the subscriber batches requests and the protocol handler sends the

requests every time the Updatelnterval timer goes off. Also, the subscriber is required to

retry requests for which a response has not been received. Thus it needs to keep track of

all messages that need to be sent for the first time, or need to be resent, which is done in

the SUBSCRIPTIONS_QUEUE table: -

SQKEY | SOID | SINST | TOPIC | POID | PINST | OPERATION | SCN

wherein:

SQKEY The primary key for this table

SOID Owner-ID of the subscriber

SINST Instance ID of the subscribing service

TOPIC The TOPIC ID for this subscription

POID Owner-ID of the publisher

PINST Instance-ID of the publishing service

OPERATION | Boolean; TRUE is addition and FALSE is deletion of subscription

SCN Change number that keeps track of how many times this subscription
has been added or deleted.

Note that the subscription queue does not store messages. Instead, the

OPERATION field in the Queue indicates whether this request is to add a subscription or

delete a subscription. During an update interval, the protocol handler simply looks at the

OPERATION field and dynamically generates the appropriate request message. Thus,

even though the subscription queue does not store the message, it has the information

needed to formulate the message. Further, note that the subscription queue has multiple

columns, while the publication-queue has only a key, because the publication queue only

needs to identify which one of the pre-existing subscriptions needs a data update. Thus,

-63 -



10

15

20

25

WO 02/073442 PCT/US02/08063

it only needs to store the row-id in the PUBLICATIONS table. However, the subscription
queue sometimes needs to add a subscription, and the information needed for this
purpose should be in the subscription queue. = The SCN field is required to ensure
correctness in cases where the user adds/deletes the same subscription multiple times —
for example, the user adds a subscription, and then deletes it or deletes a subscription and
then adds it — before the original request was sent to, and a response received from, the
publisher. In such cases, each change of mind on the part of the user is treated as a
change, and is assigned a change number. This number is passed back and forth between
subscriber and publisher in the request and response messages and ensure that the
multiple adds and deletes are processed properly.

This updateSubscriptionData message is provided when a user’s document gets
modified. The publishing service checks the contents of the PUBLICATIONS table for
interested subscribers by issuing the following logical query:

SELECT * FROM PUBLICATIONS

WHERE POID=%AFFECTED_POID% AND PINST=%AFFECTED_PINST%

AND

TOPIC=%TOPIC%

GROUP BY SSID, ROLE

The publisher uses this information to construct an updateSubscriptionData
message to each affected subscribing service. For the set of distinct ROLES used within
the result set an associated set of filtered data is created in a service dependent manner.
Then, the data is factored by SSID and each affected subscriber is sent an
updateSubscriptionData message (actually the messages are queued up and sent the next
time the Update Interval timer goes off).

The message format for updateSubscriptionData follows the following schema

using the XMI conventions:

<updateSubscriptionData topic="###">

» »

<updateData publisher=""..
instance="...”
changeNumber="###">y_uubounded
<subscription subscriber="...”
instance="..."/>="..." unbounded

<subscriptionData>, ;</subscriptionData>

-64 -



10

15

20

WO 02/073442 PCT/US02/08063

</updateData>

</updateSubscﬁptionData>

The data contained in the subscriptionData entity is defined by the }gaﬁicipﬁﬁté in
the service-to-service communication. Documents which engage in multipi%: = ;
publish/subscribe relationships should use ;hc @topic attribute to disambig‘ﬁaté the
meaning of the content. The @topic attribute is a URI and is specific to the instance of
service-to-service communication. For instance the myProfile to myContacts
communication topic could use a URI like:
urn:microsoft.com:profile-contacts:1.0. No service should attempt to accept an
updateSubscriptionMap request for any conversation that they have not been explicitly
configured to accept.

The message format for updateSubscriptionDataResponse follows the following

schema using the XMI conventions:

<updateSubscriptionDataResponse topic="###"> ,

”»

<updatedData publisher="...” changeNumber="...
instance="...">y_unhounded
<subscription subscriber="...”
instance="...”/>="...”) unbounded
</updatedData>
»

<deleteFromSubscriptionMap subscriber="...

instance="..." / 0. .unbounded

</updateSubscriptionDataResponse>

The function of <updatedData> is to inform the publisher, while
<deleteFromSubscriptionMap> is used by the subscriber to tell the publisher that this
SOID/SINST has been deleted.

When a set of users change their subscription statuses, the set of changes are sent
to the affected Publishers within an updateSubscriptionMap message. When the
Publisher receives this message it updates the records in the PUBLICATION TABLE. It
is important to the correctness of the protocol that all updates are handled robustly. In
particular it is not an error to add an entry more than once. Likewise it is not an error to
delete a non-existent entry. In both these cases it is important to format the response so

that success is indicated for these cases.

-65-



5

WO 02/073442 PCT/US02/08063

The message format for updateSubscriptionMap follows the following schema

using the XMI conventions:

<updateSubscriptionMap topic="###">, ,

4] ked

<addToSubscriptionMap subscriber=".

3 33

instance="".

SCIl:”###”>OA.un bounded

<subscription publisher="...”
instance="...”/>=""..”_unbounded
</addToSubscriptionMap>
<deleteFromSubscriptionMap subscriber="...”
instance="...”

scn:”###”>()..unbuundcd

k1] ”»

<subscription publisher="..
instance="...”/>="...") unbounded
</deleteFromSubscriptionMap>

</updateSubscriptionMap>

The addToSubscriptionMap section is used to make additions to the
subscriptionMap, while the deleteFromSubscriptionMap removes entries.
The message format for updateSubscriptionMapResponse follows the following

schema using the XMI conventions:

<updateSubscriptionMapResponse topic="###"> ,

bl »

<addedToSubscriptionMap subscriber=".

th] ”

instance=".

Y 9
SCn="#H#">), unbounded

9 ”

<subscription publisher="..
instance="...”/>_unbounded
</addedToSubscriptionMap>

22l ”

<deletedFromSubscriptionMap subscriber=".

instance="...”
SC="F#H#">(_unbounded

<subscription publisher="...”

instance="...”/>q_unbounded

</deletedFromSubscriptionMap>

- 66 -



10

15

20

25

WO 02/073442 PCT/US02/08063

<unknownPID publisher="...” instance="..."”/>¢_unbounded

</updateSubscriptionMapResponse>

The <addedToSubscriptionMap> and <deletedFromSubscriptionMap> provide
status information, while the entity <unknownPID> is used in situations where a
publishing user is deleted.

Services also need to send out messages when they come on-line, e.g., to wake up
other services which have stopped sending them messages. To this end, whenever a
service is going offline or coming online, the service should send out the following
message to its partner services stored in its connections table (604 if a publisher, 614 if a
subscriber, although it is understood that a service may be both a publisher and a
subscriber and thus access both tables at such a time time). The format of this message

using the XMI conventions is:

<serviceStatus>1..1
<online/>0..1
<offline />0..1

</serviceStatus>

Only one of the online or offline entities should be sent in any given message.

There is no defined response format for this message, as the normal .NET My
Services ACK or fault response supplies the information needed.

SSCP is designed so that the protocol does not impose any indigenous restrictions
on what can or cannot be subscribed to. At the one extreme, a service can request a
subscription to all of publisher’s data (at least, all that is visible to it). However, it may
also subscribe to only a subset of it. The “topic” attribute of updateSubscriptionMap
message is used to specify this. From the perspective of SSCP, a topic is simply an
identifier (mutually agreed upon by the subscriber and publisher) which specifies what
the subscriber wants to subscribe to. For instance, if mylnbox service only wants to
subscribe to an email address in myContacts service (which is the case for whitelists)
then one way of using “topic” attribute would be:

1) myInbox and myContacts agree that the identifier “emailOnly” indicates

that only the email address should be subscribed to.

-67 -



10

15

20

25

30

35

WO 02/073442 PCT/US02/08063
2) myInbox sends an updateSubscriptionMap request to myContacts in which

it sets topic="emailOnly”.
3) When email data for a contact changes, the publisher sends knows to send
out an updateSubscriptionData message with only the email changes to the -

subscriber; in this message, it sets topic="emailOnly”.

Because the value of the topic attribute is included in updateSubscriptionData
message, a subscribing document S can have multiple subscriptions with a publishing
document P where each subscription differs by only the topic attribute.

By way of explanation of the operation of the present invention, the protocol handler
wakes up when the interval timer goes off, and the handler sends the queued requests, or
a request is received from another service, and the handler performs the requested action
and sends a response. By way of example using the Live Contacts operation, consider
FIG. 18, in which there are three myProfile services whose IDs are PSID,, PSID, and
PSID;. InFIG. 18:

PSID, contains the profile documents of three users: POID;,, POID;,, POID;;

POIDy, has three instance documents: 1, 2, and 3.

POID;; and POID,; have one instance document each.

PSID; contains profile documents of two users: POID,; and POID,,, each having

one instance document.

PSID; contains profile documents of two users: POID3; and POID;,.

POID;, has one instance document.

POID;, has two instance documents: 1 and 2.

There are two myContacts services whose IDs are SSID,; and SSID,.

SSID; manages contact documents of three users: SOIDy;, SOID;,, and SOID;3,

each with one instance document.

SSID, manages contact documents of two users: SOID;; and SOID»,.

SOID,; has two instance documents: 1 and 2.

SOID,, has one instance document.

The initial subscription maps look like below, with each document represented by
the tuple (owner-id, instance):
PSID;:
(POIDyy,1): friend(SOIDy;4, 1), associate(SOID, 1)

-68-



10

15

20

25

WO 02/073442 PCT/US02/08063

(POID2,1): other(SOID;;,2)
(POID;3,1);

PSID;:
(POIDyy,1): friend(SOIDy;,1)
(POID23,1): friend((SOID;1,2),(SOID2,,1)),

associate(SOID),1)

PSID;:
(POID3,,1): associate(SOID;y,1), other(SOID;3,1)
(POID3,,2): friend(SOID;4,2), associate(SOIDy,,1)

SSID;:
(SOIDy;,1): (POID3,1), (POID;y,1), (POID3;,1)
(SOID;3,1): (POID1,1), (POIDy2,1)
(SOID;3,1): (POID3;,1)

SSID;:
(SOID;1,2): (POID)3,1), (POID,1), (POID3,,2)
(SOID,1): (POID,1), (POID1,,2)

The two contacts services each include a CONNECTIONS table (for simplicity,
information such as cluster, URL, and so on, are not shown below).

For SSID, the connections table includes:
SSID; CONNECTIONS Table
PSID;
PSID,
PSID;

while for SSID; the connections table includes:
SSID, CONNECTIONS Table
PSID,

PSID,

PSID;

The three profile services each contain a PUBLICATIONS table (for simplicity,

information such as PKEY or SCN columns are not shown below).

-69 -



WO 02/073442 PCT/US02/08063
For PSID; this looks like: A
PSID; PUBLICATIONS Table

POID PINST | SOID | SINST | SSID | ROLE
POIlSl 1)1 SOIDy; | 1 SSID, | friend
POIDy; | 1 SOIDy; | 1 SSID; | associate
POIDy; | 1 SOID,; | 2 SSID; | other

And for PSID, this looks like:
PSID; PUBLICATIONS Table

POID | PINST | SOID |SINST | SSID | ROLE
POID;; | 1 SOIDy; | 1 SSID, | friend
POIDy; | 1 SOID;; | 1 SSID; | associate
POIDy; | 1 SOID;y; |2 SSID; | friend
POID;; | 1 SOID;; | 1 SSID; | friend

5 Finally for PSID; this looks like:

PSID; PUBLICATIONS Table

POID | PINST | SOID | SINST | SSID | ROLE
POID;, | 1 SOIDy; | 1 SSID, | associate
POID;; | 1 SOIDy3 | 1 SSID, | other
POID;; | 2 SOIDy; | 2 SSID, | friend
POID;; | 2 SOIDy; | 1 SSID; | associate

Updating Subscription Map
If during an update interval on SSID; document SOID,/instancel adds links to
the documents POID,/instancel and POIDs,/instance?2 and deletes the link from
10  POID,//instancel, while SOID;y/instancel deletes the link from POID, /instancel the
contents of the SUBSCRIPTIONS_QUEUE for SSID; is:

-70 -



WO 02/073442 PCT/US02/08063
SSID; SUBSCRIPTIONS_QUEUE
SOID | SINST |POID | PINST | PSID | OPERATION | SCN
SOIDy; | 1 POID;, | 1 PSID; | TRUE 0
SO, | 1 POID;; | 2 PSID; | TRUE o
SO, | 1 POID;, | 1 PSID, | FALSE 0
SODy, | 1 POID,; | 1 PSID; | FALSE 0

When processed this will generate two different updateSubscriptionMap requests

that are sent to the two affected myProfile services. PSID; is sent:

</updateSubscriptionMap>

</addToSubscriptionMap>

<updateSubscriptionMap topic="###H{">

scn:”O”>

<addToSubscriptionMap subscriber="SOID,;” instance="1"

<subscription publisher="POID,” instance="1"/>

<deleteFromSubscriptionMap subscriber="SOID,,”

instance="1" scn="0"">

</deleteFromSubscriptionMap>

<subscription publisher="POID,,” instance="1"/>

<deleteFromSubscriptionMap subscriber="SOID;,”

instance="1" scn="1">

</deleteFromSUbscriptionMap>

<subscription publisher="POID;,” instance="1"/>

And PSID; is sent:

</updateSubscriptionMap>

</addToSubscriptionMap>

<updateSubscriptionMap topic="####">

<addToSubscriptionMap subscriber="SOID,,”

instance="1"" scn="0"">

<subscription publisher="POID;,” instance="2"/>

E

After receiving these messages each myProfile service updates the contents of

their PUBLICATIONS table as follows (with the TOPIC and SCN columns not shown).

-71-



WO 02/073442 PCT/US02/08063
For PSID, the resulting table looks like:

PSID, PUBLICATIONS Table

POID |PINST | SOID | SINST | SSID | ROLE

POID; | 1 SOID;y; | 2 SSID; | Other

POID;, | 1 SOIDy; | 1 SSID; | associate

And for PSID; the resulting table looks like:
PSID; PUBLICATIONS Table

POID |PINST | SOID |SINST |SSID | ROLE
POID;; | 1 SOIDy; | 1 SSID, | associate
POID;; | 1 SOIDy; | 1 SSID; | Other
POIDs; | 2 SOIDy; | 1 SSID; | Other
POIDs; | 2 SOIDy; | 2 SSID; | Friend
POID;; | 2 SOID,;, | 1 SSID, | associate

Assuming from the original configuration that document POID,,/instancel
changes the contents on his or her profile. So PSID, constructs the following

updateSubscriptionData message to SSID;:

<updateSubscriptionData topic="####">
<updateData publisher="POID;,” instance="1"
changeNumber="###">
<subscription subscriber="SOID;,” instance="1"/>
<subscriptionData>friend-info</subscriptionData>
</updateData>
<updateData publisher="POID,,” instance="1"
changeNumber="###">
<subscription subscriber="SOID;,” instance="1""/>
<subscriptionData>associate-info</subscriptionData>

</updateData>

</updateSubscriptionData>

Note that the message is split between two updateData blocks because of different
roles being assigned. If POID,,/instacel was to change his profile information this would

result in PSID; sending out two updateSubscriptionData messages to SSID, and SSID,.

-72-



WO 02/073442 PCT/US02/08063

<!--to SSID; -->

<updateSubscriptionData topic="####">
<updateData puBlisher=”POD)22” instance="1"
changeNumber="###">
<subscription subscriber="SOID,,” instance="1"/>
<subscriptionData>associate-info</subscriptionData>
</updateData>
</updateSubscriptionData>
<updateSubscriptionData topic="####">

5 <!-toSSID; -->

<updateSubscriptionData topic="####">
<updateData publisher="POID»,” instance="1"
changeNumber="###">
<subscription subscriber="SOID,,” instance="2"/>
<subscription subscriber="SOID;,” instance="1"/>
<subscriptionData>friend-info</subscriptionData>
</updateData>
</updateSubscriptionData>

Note in this case the message to SSID, only contains one copy of the data
10  optimizing for identical roles.
As described herein, SSCP is a robust protocol which is able to handle many
different kinds of failure scenarios, including:
1) Publisher fails
2) Subscriber fails
15 3) The link between publisher and subscriber goes down before the

subscriber can respond (after it has received a request)

4) The link between publisher and subscriber goes down before the

publisher can respond (after it has received a request)

-73 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

5) Publisher loses the subscription map
6) Subscriber loses published data
These failure scenarios are handled by the protocol via message retries and
idempotency.l
| In the following explanation, it is assumed that the publisher sends the request
message, however this applies equally well when the subscriber sends the request
message.
When the publisher sends a request message, SSCP follows the following
algorithm:

1) Publisher sends a message from the PUBLICATIONS QUEUE.

2) It waits for a response to this message
a) If it gets a response, it deletes the message from the queue
b) Otherwise, it keeps the message in the queue and resends it the

next time the Update Interval timer goes off.
3) As explained herein, the number of times a message is resent is bounded
by a maximum after which the subscriber is considered dead. It is tested for alive-
ness after a “long time” and the process begins all over.
4) This method ensures that the subscriber does not miss an

updateSubscriptionData message.

As described above, retry attempts should idempotent, i.e., multiple retries of a
request should behave as if the request had been sent only once. Idempotency is achieved
by keeping track of the change number, or PCN (which is a column in the
PUBLICATIONS and SUBSCRIPTIONS tables). Note that the underlying service
implementation has change number data, and keeps track of it, independent of SSCP. As
used herein such changed numbers are logically reflected as an integer sequence, however
in general, the PCNs need not be sequential, but instead may be whatever the service has,
as long as it increases or decreases monotonically. Note also that the smallest unit of
change is a NET blue node, wherein currently a blue node is the smallest query-able,
cacheable, unit of data in .NET.

Change numbers generally work as follows:

When a fresh subscription is created, the publisher adds a row into the
PUBLICATIONS table, with PCN being set to 0 to indicate that no data has yet been
exchanged. The subscriber also keeps track of the value of this PCN in its

-74 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

SUBSCRIPTIONS table. Whenever the publisher sends an updateSubscriptionData
request to the subscriber, it includes the value of PCN that it currently has for this (e.g.,
blue) node. It records this PCN in the PUBLICATIONS table. On receiving the
updateSubscriptionData message, the subscriber updates its copy of the PCN (present in
the PCN field of SUBSCRIPTIONS table) to the new value. If, due to a transient
network failure, the publisher fails to receive the response message from the subscriber, it
resends the request message again at the next update interval. On receiving this request,
the subscriber inspects the PCN; it knows that it has already processed this message
because the publisher’s change number in the message is the same as the PCN that it has,
and thus treats this as a no-op and sends back a response. The publisher deletes this
message from the message queue, and the net result is, any message received multiple
times by the subscriber is processed exactly once — i.e., retries are idempotent.

The subscriber achieves idempotency is by the following rules: when a publisher
receives a request to add a preexisting entry to its subscription map, it should treat this as
a no-op and not return an error. When the publisher receives a request to delete a non-
existent entry from its subscription map, it should treat this as a no-op and not return an
error. As can be appreciated, multiple add or delete from subscription map requests
behave as if there of only one such request.

The SCN field is required to ensure correctness in cases where the user
adds/deletes the same subscription multiple times — for example, the user adds a
subscription, and then deletes it or deletes a subscription and then adds it — before the
original request was sent to, and a response received from, the publisher. In such cases,
each change of mind on the part of such a user is treated as a change, and is assigned a
change number. Change numbers are monotonically increasing. Here is how change
numbers (SCN) are treated with in the publisher and subscriber algorithms:

A) Whenever a user adds or deletes a subscription, the subscriber looks at its
subscription queue to see if there exists a pending request in queue from this

user/instance pair to the corresponding publishing document.

I) If there exists such a pending request, then the subscriber replaces the request

with the new one.
IT) If a pending request does not exist, then the subscriber inserts the new request.

IIT) In either case, the SCN is updated to a new increased value.

=75 -



10

15

20

25

WO 02/073442 PCT/US02/08063

B) The net result of the above is: at any given point, the subscription queué c_ofiiains only
the last request made by the user; but the change number has increased every time the

user changes his mind.

C) The updateSubscriptionMap request includes the current value of the change number

from the queue for each add or delete entity present in the request.

D) When the publisher receives an updateSubscriptionMap request, it does the following
for every add/delete entity in the request:

I) If the entity is add, then:
i) If this subscription is already present in the publications table and then:

(1) if the SCN in the message is greater than the SCN that it has, then it
updates to the higher value of SCN

(2) Otherwise it is ignored.

il) Otherwise it inserts this subscription into the publications table, records the
SCN.

II) If the entity is delete, and if this subscription is present in the publications table

then:

1) Itis deleted if the SCN in the message is greater than the SCN that the

publisher has, it deletes the subscription from its publications table.
if) Otherwise it is ignored.

In any case, it sends the SCN that it received as part of the response message.
E) When a subscriber receives an updateSubscriptionMapResponse from the publisher,

it does the following for each entity in the response:

I) If there is no entry in the subscription queue corresponding to this entity, then it is

ignored
) Otherwise:
i) If the SCN in the entity is less than the SCN in the queue, then it is ignored.

ii) Otherwise, the corresponding entry in the queue is removed.

To see why this algorithm works, consider the following cases:

-76 -



10

15

20

25

WO 02/073442 PCT/US02/08063

1) Inan ordinary case (happens large majority of the time), when a User does an add (or

2)

3)

a delete)

a)
b)

c)

d

The add (delete) is stored in the queue with SCN =2
(Assume) This subscription does not exist (exists) at the publisher.

At the next update interval, the subscriber sends an updateSubscriptionMap
message with an add (delete) entity for which SCN =2

The publisher receives this request; it adds it to (deletes it from) the publication
table with SCN=2, and sends back a response with SCN=2

The subscriber compares the SCN in the response finds that it is the same as what

is in the queue, and purges the queue.

Net effect: the subscription is added (deleted).

In extraordinary cases:

User does an Add followed by a delete within the same update interval:

a)
b)
c)
d)

The add is stored in the queue with SCN =2
The delete request overwrites the add request, and the SCN is updated to 3.
(Assume) This subscription does not exist at the publisher.

At the next update interval, the subscriber sends an updateSubscriptionMap
message with a delete entity for which SCN =3

The publisher receives this request; since the subscription does not exist, it does

nothing, and sends back a response with SCN=3

The subscriber compares the SCN in the response finds that it is the same as what

is in the queue, and purges the queue.

Same as abdve, but add and delete happen within different update intervals

a)
b)

©)

Add is stored in the queue with SCN =2

When update interval timer goes off, an updateSubscriptionMap is sent with an

add entity for which SCN = 2.

Three cases are generally possible:

-77-



WO 02/073442 PCT/US02/08063

i) The message reaches the publisher and it sends a response which reaches the

subscriber. Call this SUCCESS case.

ii) The message reaches the publisher and it sends back a response which does

not reach the subscriber. Call this PARTIAL case
5 iii) The message does not reach the publisher. Call this the FAILURE case.
d) Inthe SUCCESS case:

1) The process of addition takes place at the publisher as explained in case (1).

An SCN of 2 is stored in the publication table.

i1) The user now asks that the subscription be deleted, which causes a delete to be

10 stored in the queue with SCN = 3.

iii) During the next update interval, an updateSubscriptionMap message is sent

with a delete entity for which SCN = 3.
iv) The process of deletion takes place as explained in case (1)
e) Inthe PARTIAL case:

15 i) Since the publisher has received the add message, the process of addition
takes place at the publisher as explained in case (1). An SCN of 2 is stored in
the publication table.

ii) The subscriber has not received a response for the add, so the add remains in

the queue.

20 i) The user now asks that the subscription be deleted, which causes a delete to be

stored in the queue with SCN = 3. The add has been over-written.

iv) During the next update interval, an updateSubscriptionMap message is sent

with a delete entity for which SCN = 3.
v) A delete is performed as explained in case (1)

25 vi) If, for some reason, the original response that the publisher sent for the add
message now reaches the subscriber, the subscriber simply ignores it since

there is no entity in the subscription queue that corresponds to this response.

f) With respect to the subscriber, the FAILURE case is logically equivalent to the
PARTIAL case and is handled identically; with respect to the publisher, the only

-78-



10

15

20

25

30

WO 02/073442 PCT/US02/08063
difference between PARTIAL and FAILURE is: in the FAILURE case, the delete

request is a no-op since the publisher never received the add request.

The cases above have considered an add followed by a delete. Clearly, a delete
followed by an add also works similarly. Furthermore, a series of adds/deletes by the user
(in any order and in any interval and in any combination of the success/partial/failure

- cases) will also work and the right things will happen. However, there is are cases that
are particularly problematic:

4) A trick case: requests arrive at the publisher out of sequence.
a) The user does an add. This request is kept in the queue with an SCN = 2.

b) At the next update interval, an updateSubscriptionMap request is sent to the
publisher with an add entity and SCN =2,

¢) Next the user does a delete of the same subscription. This request is kept in the

queue with an SCN = 3.

d) At the next update interval, an updateSubscriptionMap request is sent to the
publisher with an add entity and SCN = 3.

e) For some strange reason, the delete request arrives at the publisher before the add

request.

f) The publisher processes the delete request by removing this subscription (if it

exists), and sends a response with SCN = 3.
g) The subscriber deletes the corresponding entity from the queue.

h) Now the publisher receives the add request with SCN = 2. According to the
algorithm, it adds the subscription to its publication queue. And it sends back a
response with SCN =2,

i) The subscriber ignores this response since there is no entity in the subscription

queue corresponding to this response.

The net of this is, there now exists a subscription in the publisher which
shouldn’t be there. The net result of the trick case is that it is possible for a rogue
subscription to exist at the publisher; the subscriber has no record of this subscription

in its subscription table. As a result, it is possible for the subscriber to receive an

-79 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

updateSubscriptionData message for a subscription that does not exist. When this
happens, the subscriber does the following:
A) It checks its subscription queue to see if the queue has a delete or an add message for

this subscription. If there is one, then it does nothing.

B) Ifthere isn’t a delete message in the queue already, it inserts a message in the queue

with an incremented SCN

C) At the next update interval, an updateSubscriptionMap message is sent to the

publisher.
D) When the publisher receives this message:

I) it checks its publication queue to see if there are any pending messages to be sent
to this subscription in its publication queue. If there is, these pending messages

are removed.

IT) It deletes the subscription from its publications table and sends a response back.

The cases above have considered an add followed by a delete, but note that a
delete followed by an add also works similarly. Furthermore, a series of adds/deletes by
the user (in any order and in any interval and in any combination of the
success/partial/failure cases) will also work and the right things will happen. However,
another case is particularly problematic:

5) A trick case: requests arrive at the publisher out of sequence.

a) The user does an add. This request is kept in the queue with an SCN = 2.

b) At the next update interval, an updateSubscriptionMap request is sent to the
publisher with an add entity and SCN = 2.

c) Next the user does a delete of the same subscription. This request is kept in the
queue with an SCN = 3,

d) At the next update interval, an updateSubscriptionMap request is sent to the

publisher with an add entity and SCN = 3.

€) For some strange reason, the delete request arrives at the publisher before the add
request.
f) The publisher processes the delete request by removing this subscription (if it

exists), and sends a response with SCN = 3,

2) The subscriber deletes the corresponding entity from the queue.

-80 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

h) Now the publisher receives the add request with SCN = 2. According to the
algorithm, it adds the subscription to its publication queue. And it sends back a response
with SCN = 2.

1) The subscriber ignores this response since there is no entity in the subscription
queue corresponding to this response. -

The net of this is, there now exists a subscription in the publisher which shouldn’t
be there. The net result of the trick case is that it is possible for a rogue subscription to
exist at the publisher; the subscriber has no record of this subscription in its subscription
table. As a result, it is possible for the subscriber to receive an updateSubscriptionData
message for a subscription that does not exist. When this happens, the subscriber does the
following:

E) It checks its subscription queue to see if the queue has a delete or an add message for
this subscription. If there is one, then it does nothing.

F) If there isn’t a delete message in the queue already, it inserts a message in the queue
with an incremented SCN

G) At the next update interval, an updateSubscriptionMap message is sent to the
publisher.

H) When the publisher receives this message:

) it checks its publication queue to see if there are any pending messages to be sent
to this subscription in its publication queue. If there is, these pending messages are
removed.

) It deletes the subscription from its publications table and sends a response back.

Thus, this unusual case simply means that there will exist one or more rogue
subscriptions at the publisher until such time that the data subscribed by these rogue
subscriptions change. At this point, the protocol logic takes over and deletes the rogue
subscription. Note that the vast majority of the time, the simple case (1) is what takes
place, and the other cases occur only very rarely.

When the publisher fails, the publisher will not be able to respond to subscriber
requests to update the subscription map, which is handled by resending the message until
a response is received. Long-term or catastrophic failures are handled by having a limit
on the number of retries and waiting for a “long time” before starting all over. The
publisher will also not receive any responses that the subscriber may have sent to its

updateSubscriptionData requests. From the point of view of the subscriber, this is

-81 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

logically indistinguishable from the case where the link between subscriber and publisher
fails.

When the subscriber fails, it is very similar to what happens when the publisher
fails. The subscﬁber continues to resend the updateSubscriptionMap requests until it
receives a response from the publisher. As in the publisher case, the non-reception of
responses by the subscriber is the same as a link failure.

A failure case can occur when the subscriber has sent an updateSubscriptionMap
message, and the publisher has processed this message and sent a response, but the link
between the publisher and subscriber fails. As a result, the subscriber does the not
receive the response. As described in the section “Message retries”, this causes the
subscriber to resend the message. Thus the publisher receives a duplicate
updateSubscriptionMap message from the subscriber. Since retries are idempotent, the
publisher simply sends back a response to the subscriber. When the subscriber to
publisher link fails, it is handled similarly.

Occasionally, POID/INSTANCE is deleted from the publisher, and the subscriber
usually does not get notified of this event. Thus, when the subscriber sends an
updateSubscriptionMap request concerning a POID/INSTANCE that no longer exists in
the publisher, the publisher comes back with an <unknownPID> entity in the response.
This tells the subscriber to update its image of the subscription map.

Occasionally, a SOID/INSTANCE is deleted at the subscriber; in general, the
publisher has no way of kriowing it. On data change, the publisher sends an update
request to the deleted SOID/INSTANCE; when this happens, the subscriber sends a
<deleteFromSubscriptionMap> entity in its response to notify the publisher of the
SOID/INSTANCE deletion. This tells the publisher to update its subscription map.

One catastrophic form of failure is when a publisher loses its subscription map or
the subscriber loses its subscription data. This can cause various levels of data loss. For
example, if the publisher has experienced a catastrophic failure, such as disk crash, the
publisher needs to revert to data from a back up medium such as tape. As a result, its
subscription map is out of date. For the subscriber, a similar situation makes its
subscribed data out of date. In such an event, the service that experienced the loss sends
a message requesting an update. The publisher’s subscription map can be brought up to
date by the information stored in subscriptions table in the subscriber, while a
subscriber’s da:té can be made up to date by the subscription map and the change number

stored in the publications table.

-82-



WO 02/073442 PCT/US02/08063

In general, the service that experienced the loss has enough knowledge to send a

message requests an update. The publishér’s subscription map can be brought up to date

by the information stored in SUBSCR[PTIONS table in the subscriber. A subscriber’s

data can be made up toydate by“the éubscription map and the publisher’s change number

5 stored in the PUBLICATIONS fable.

The following describe-s‘the pseudo code for implementing key aspects of

publisher and subscriber protocol handlers. Note that to avoid repetition and for brevity,

separate flow diagrams are not provided to secondarily represent this pseudocode.
When the service or cluster starts up or is going through an orderly shutdown it

10  sends out status messages to all connected services.

ServiceStartup()
{

serviceStatusRequest request;

request.entity = "<startup/>";

## SELECT SID FROM CONNECTIONS
for (each SID in result set)

{
Send(SID,request);

}

ServiceShutdown()
{

serviceStatusRequest request;

request.entity = "<shutdown/>";

## SELECT SID FROM CONNECTIONS
for (each SID in result set)

{
Send(SID,request);

-83-



WO 02/073442 PCT/US02/08063
When the update interval timer goes off at the subscriber or publisher, it takes
actions implied by the following pseudo-code. Note that the ProcessQueue routine is

implemented differently by subscribers and publishers:

OnlIntervalTimer()
{
/I get a list of all live connections
## SELECT SID, RETRY FROM CONNECTIONS
for (each SID in result set)
{
if (RETRY < RetryCount)
{
// more retries left. process messages in the queue
// for this SID. The topics collection is stored in the
// standard XML system configuration document
for (TOPIC in TOPICS)
ProcessQueue(SID, TOPIC);
}
else if (RETRY < ResetInterval)
{
// retry count exceeded; see if it's time to check for alive-
ness
## UPDATE CONNECTIONS
## SET RETRY =RETRY + 1
## WHERE SID = %SID%
}
else
{
/I check for alive-ness by starting another series of retries
## UPDATE CONNECTION
## SET RETRY =0
## WHERE SID = %SID%
}
}

-84 -



5

10

WO 02/073442

PCT/US02/08063

}

Service Status Messages

When a publisher or a subscriber receives a ServiceStatusMessage the following code is

executed:
OnServiceStatus(SID, requestMessage)
{

serviceStatusResponse response;

/1 if serviceStatus is online

if (requestMessage.entity == "<online/>")

{
/] reset retry count to zero
## UPDATE CONNECTIONS
## SET RETRY =0
## WHERE SID = %SID%
response.entity = "<online/>";
Send(SID, response);

}

else if (requestMessage.entity == "<offline/>")

{
// resent retry count to maximum
## UPDATE CONNECTIONS
## SET RETRY = %RetryCount%
## WHERE SID = %SID%

}

}

-85 -



WO 02/073442 PCT/US02/08063

When the data changes occur in the publisher, actions implied by the following
pseudo-code are taken:

OnDataChanged(PUID, PINST, PCN, TOPIC)
{

// PUID/PINST is the user id whose data was changed. Query the publications
// table for all SUIDs that are affected, and insert this data into
// the PUBLICATIONS_QUEUIE, if it does not exist already.

## SELECT PKEY FROM PUBLICATIONS
## WHERE POID = %POID%
## AND PINST = %PINST% AND TOPIC = %TOPIC%

for (each PKEY in the result)

{
## IF NOT EXISTS (
## SELECT * FROM PUBLICATIONS_QUEUE
iz WHERE PUBLICATIONS.PKEY= %PKEY %)

# INSERT INTO PUBLICATIONS_QUEUE

H (PKEY, PCN) VALUES (%PKEY%, %PCN%)

## ELSE

#H UPDATE PUBLICATIONS_QUEUE SET PCN=%PCN%
HH WHERE PUBLICATIONS_QUEUE.PKEY = %PKEY%

When the update interval timer goes off at the publisher, it takes actions implied
5 by the following pseudo-code:
ProcessQueue(SSID, TOPIC)
{

UpdateSubscriptionDataRequest request;

/1 select requests in the queue for this SSID; group them by
// PUID followed by ROLE. The rows in each group will result

// in one updateSubscriptionData message

- 86 -



WO 02/073442

PCT/US02/08063

## SELECT POID, PINST, SOID, SINST, ROLE, PCN

## FROM PUBLICATIONS_QUEUE PQ JOIN PUBLICATIONS P

## ON PQ.PKEY =P.PKEY
## WHERE SSID = %SSID AND PQ.TOPIC = %TOPIC%
## GROUP BY POID, PINST, ROLE

for (each group of rows in the result set)

{
/1 gather up data for the per-topic part of this message
data = GenerateTopicData(POID, PINST, ROLE, TOPIC)
/I generate an updateSubscriptionData message
request += GenerateMessage(group, data);

}

// Send request to the subscriber

Send(SSID, request);

// Assume the worst and age the connection
## UPDATE CONNECTIONS

## SET RETRY = RETRY + 1

## WHERE SID = %SSID%

When a publisher receives an UpdateSubscriptionMap message, actions implied

by the following pseudo-code are taken:

{

OnUpdateSubscriptionMap(SSID, requestMessage)

UpdateSubscriptionMapResponse response;

// Mark this connection as live
## UPDATE CONNECTIONS
## SET RETRY =0

## WHERE SID = %SSID%

-87-



WO 02/073442 PCT/US02/08063

// the request can have multiple entities. Loop for each
for (each entity in requestMessage)
{
// See if the POID, PINST of the <publisher> is known
if (LookUpUser(POID, PINST))
{
// new subscription
if (entity == "<addToSubscriptionMap>")
{
addToSubscriptionMap(SSID, entity, response, TOPIC);
}
else if (entity == "<deletedFromSubscriptionMap>")
{
deleteFromSubscriptionMap(SSID, entity, response,
TOPIC);
} // deleteFromSubscriptionMap
}
else
{
// append an "unknown PUID entity to response
response+="<unknownPUID publisher=""+POID+"’
instance=""+PINST+""/>";
}
}
Send(SSID, response);
}

// Helper routine to handle add subMessage

addToSubscriptionMap(SSID, subMessage, response, TOPIC)

{
response += "<addedToSubscriptionMap ";

response += "subscriber=""+SOID+"’ instance=""+SINST+"’/>";

-88 -



WO 02/073442 PCT/US02/08063

// the request can have multfple enfities. Loop for each
/I determine role of the subscriber
igr (sjlb in'subMessage)
{ | -
. ROLE= FindRole(POID, PINST, SOID);

=

#4 IF NOT EXISTS
## (SELECT PKEY
* ## FROM PUBLICATIONS
## WHERE
# SOID = %SOID% AND SINST = %SINST% AND
# POID = %POID% AND PINST = %PINST% AND
i SSID = %SSID% AND TOPIC = %TOPIC%)
## BEGIN
it INSERT INTO PUBLICATIONS VALUES
it (%POID%, %PINST%, %SOID%, %SINST%, %SSID%,

_%SCN%, %ROLE%, %TOPIC%)

// set an initial message to update this subscriber

i INSERT INTO PUBLICATIONS_QUEUE VALUES
#Hh (@@IDENTITY, %PCN%)
## END
## ELSE
## BEGIN
#H UPDATE PUBLICATIONS SET SCN = sub.SCN
#H WHERE
#H SOID = %SOID% AND SINST = %SINST% AND
#H POID = %POID% AND PINST = %PINST% AND
# SSID = %SSID% AND TOPIC = %TOPIC% AND
# SCN < sub.SCN
## END

response += "<subscription publisher=""+POID+"’

instance=""+PINST+" ’/>";‘

-89 -



WO 02/073442

PCT/US02/08063

// append to the response message

response += "</addedToSubscriptionMap>";

{

// Helper routine to handle delete subMessage
deleteFromSubscriptionMap(SSID, subMessage, response, TOPIC)

response += "<deletedFromSubscriptionMap ";

response += "subscriber=""+SOID+"’ instance=""+SINST+"’/>";

// the request can have multiple entities. Loop for each
for (sub in subMessage)
{
/I delete from PUBLICATIONS table. If a non-existent
/1 row is asked to be deleted, the delete will simply
/I return without deleting anything
## SELECT SCN AS STORED_SCN FROM PUBLICATIONS
## WHERE
## SOID = %SOID% AND SINST = %SINST% AND
## POID = %POID% AND PINST = %PINST% AND
## SSID = %SSID% AND TOPIC = %TOPIC%)
HH
## IF (result is not empty or STORED_SCN < %SCN%)

## DELETE PUBLICATIONS

#H WHERE

## " SOID = %SOID% AND SINST = %SINST% AND
## POID = %POID% AND PINST = %PINST% AND
## SSID = %SSID% AND TOPIC = %TOPIC%)

// NOTE: Are assuming cascade delete on PKEY is set up

-90 -



WO 02/073442 PCT/US02/08063

response += "<subscription publisher=""+POID+"’

instance=""+PINST+"’/>";

}

// append to the response message

response += "</deletedFromSubscriptionMap>";

When a publisher receives an UpdateSubscriptionDataResponse message, actions

implied by the following pseudo-code are taken:

OnUpdateSubscriptionDataResponse(SSID, response)
{

// Mark this connection as live

## UPDATE CONNECTIONS

## SET RETRY =0

## WHERE SID = %SSID%

// The response has one entity for each SOID
for (each entity in response)
{
if (entity == "<updatedData>")
{
updatedData(SSID, entity, TOPIC);

}
if (entity == "<deleteFromSubscriptionMap>")

{
/1 subscriber did not find SOID/SINST in its SUBSCRIPTIONS table
// publisher should update its subscription map
## DELETE FROM PUBLICATIONS
## WHERE SOID=%SOID% AND SINST=%SINST%

-91] -



WO 02/073442 PCT/US02/08063

// Helper routine to handle the update subMessage
updatedData(SSID, subMessage, TOPIC)
{
for (sub in subMessage)
{
// publisher needs to check the change number returned in the
// response message and verify if it is valid; if it is, then
// everything is cool; if not, then the subscriber has sent a
// spurious response for a previous request, and so this

// message is ignored

## DELETE FROM PUBLICATIONS QUEUE
## WHERE PKEY = %PKEY% AND PCN <= %subMessage. PCN%

When a subscription is added, the actions implied by the following pseudo-code

are taken:

{

/I check if the publisher has an entry in the CONNECTIONS table for this
// PSID

if (UnknownServiceID(PSID))

{

// no entry exists; send an addSubscription message immediately to
/I the publisher.
UpdateSingleSubscriptionMap(SOID, SINST, POID, PINST, PSID, TOPIC,
SCN);
}

else

{

/I see if row exists in the subscriptions queue

## IF EXISTS (

#HH SELECT SKEY FROM SUBSCRIPTIONS QUEUE
it WHERE SOID = %SOID% AND SINST = %SINST%

-92-



WO 02/073442 PCT/US02/08063

HH AND POID = %POID% AND PINST = %PINST%
#HH AND PSID = %PSID% AND TOPIC = %TOPIC%)
## BEGIN

HH UPDATE SUBSCRIPTIONS_QUEUE

#H SET OPERATION = TRUE, SCN = %SCN%

#HH WHERE SOID = %SOID% AND SINST = %SINST%
i AND POID = %POID% AND PINST = %PINST%
HH AND PSID = %PSID% AND TOPIC = %TOPIC%
## ELSE

## BEGIN

// row does not exist; insert into the queue
#t  INSERT INTO SUBSCRIPTION_QUEUE
##  VALUES (%SOID%, %SINST%, %TOPIC%, %POID%, %PINST%,
TRUE, %SCN%)
## END

}
AddSubscription(SOID, SINST, POID, PINST, PSID, TOPIC, SCN)

When a subscription is removed, the subscriber takes actions implied by the

following pseudo-code:

-93-



WO 02/073442 PCT/US02/08063

RemoveSubscription(SOID, SINST, POID, PINST, PSID, TOPIC, SCN)
{ ,
// see if row exists in the subscriptions queue
## IF EXISTS (
H SELECT SKEY FROM SUBSCRIPTIONS_QUEUE
## WHERE SOID = %SOID% AND SINST = %SINST%

## AND POID = %POID% AND PINST = %PINST%
## AND PSID = %PSID% AND TOPIC = %TOPIC%)
## BEGIN

##  UPDATE SUBSCRIPTIONS QUEUE

## SET OPERATION = FALSE, SCN = %SCN%

##  WHERE SOID = %SOID% AND SINST = %SINST%

## AND POID = %POID% AND PINST = %PINST%

## AND PSID = %PSID% AND TOPIC = %TOPIC%

## END

## ELSE

## BEGIN

// row does not exist; insert into the queue

##  INSERT INTO SUBSCRIPTION_QUEUE

#  VALUES (%SOID%, %SINST%, %TOPIC%, %POID%, %PINST%,
FALSE, %SCN%)

## END

When the update interval timer goes off at the subscriber, it takes actions implied
by the following pseudo-code:
ProcessQueue(PSID, TOPIC)

{

UpdateSubscriptionMap request;

// select requests in the queue for this PSID; order them by

/I PUID then by OPERATION. The rows in each group will result
// in addSubscription and deleteSubscription subMessage

## SELECT * FROM PUBLICATION_QUEUE

-94 -



WO 02/073442 PCT/US02/08063

## WHERE PSID = %PSID% AND TOPIC = %TOPIC%
## ORDER BY POID, PINST, OPERATION

request += GenerateMessage();

// Send request to the publisher
Send(PSID, request);

/I Assume the worst and age the connection
## UPDATE CONNECTIONS

## SET RETRY = RETRY + 1

## WHERE SID = %SSID%

When a subscriber receives a request, the actions implied by the following

pseudo-code are performed:

OnUpdateSubscriptionData(PSID, request)
{

UpdateSubscriptionDataResponse response;

// Mark this connection as live
## UPDATE CONNECTIONS
## SET RETRY =0

## WHERE SID = %PSID%

// request may contain multiple entities
for (each entity in request)
{

for (sub in entity)

{

// check to see if this is a known subscriber

if (LookUpUser(sub.SOID, sub.SINST))
{ .

// is this a duplicate request message? I can find this by looking

-95.-



WO 02/073442 PCT/US02/08063

/I at change numbers

## SELECT PCN AS STORED_PCN

## FROM SUBSCRIPTIONS

## WHERE POID = %POID% AND PINST = %PINT%
## AND SOID = %SOID% AND SINST = %SINST%
## AND TOPIC = %TOPIC% AND PSID = %PSID%

// result set empty means subscriber does not have
/I a subscription on publisher’s document
if (result set is empty)
{
/1 do not send a response for this request.

// send prepare for an unsub request instead

## IF NOT EXISTS (

## SELECT * FROM SUBSCRIPTIONS_QUEUE

#t WHERE POID = %POID% AND PINST =
%PINST%

# AND SOID = %SOID% AND SINST = %SINST%

#t AND TOPIC = %TOPIC% AND %PSID% =
%PSID%)

## BEGIN

RemoveSubscription(%SOID%, %SINST%, %POID%, %PINST%,
. %PSID%, %TOPIC%, %SCN%),
## END

// pen is the change number present in the message
else

{

if (entity. PCN > STORED_PCN)

{

// This function updates subscribed data

UpdateData(entity);

-96 -



WO 02/073442 PCT/US02/08063

// update the change number

## UPDATE SUBSCRIPTIONS

## SET PCN = entity.PCN

## WHERE POID = %POID% AND PINST = %PINT%
## AND SOID = %SOID% AND SINST = %SINST%
## AND TOPIC = %TOPIC% AND PSID = %PSID%

/I append to response

response += "<updatedData>";

}
}
else
{
/1 subscriber is unknown; signal publishing service to delete it
response += "<deleteFromSubscriptionMap ";
response += "subscriber=""+SOID+"* instance=""+SINST+"*/>";
}

Send(SSID, response);

When a subscriber receives an UpdateSubscriptionMapResponse message, the

actions implied by the following pseudo-code are performed:

OnUpdateSubscriptionMapResponse(PSID, request)
{

// Mark this connection as live

## UPDATE CONNECTIONS

## SET RETRY =0

-97-



WO 02/073442 PCT/US02/08063

## WHERE SID = %PSID%

/1 The response has one entity for each row in subscription queue
for (each entity in response)
{
if (entity == "<addedToSubscriptionMap>")
{
for (sub in entity)
{
// publisher successfully added its subscription map
// subscriber now adds to its subscriptions table
## IF EXISTS (-
# SELECT * FROM SUBSCRIPTIONS_QUEUE
# WHERE POID = %P0OID% AND PINST = %PINT%
#it AND SOID = %SOID% AND SINST = %SINST%
# AND TOPIC = %TOPIC% AND PSID = %PSID%
# AND SCN = %SCN%)
## BEGIN
it INSERT INTO SUBSCRIPTIONS
# VALUES (%SOID%, %SINST%,
%POID%,
%PINST%, %PSID%,
0,
#H %TOPIC%)

/1 since request has received the proper response,

/1 it can be deleted from the subscriptions queue

## DELETE FROM
SUBSCRIPTIONS_QUEUE

it WHERE POID = %POID% AND PINST
%PINT%

#H# AND SOID = %SOID% AND SINST =
%SINST%

## AND TOPIC = %TOPIC% AND PSID =
%PSID%

## AND OPERATION =1

-98 -



WO 02/073442 PCT/US02/08063

#H AND SCN = %SCN%
## END
}
}
if (entity = "<deletedFromSubscriptionMap>")
{
for (sub in entity)
{
// publisher successfully deleted from its subscription
map
/! subscriber now deletes from its subscriptions table
## IF EXISTS (
# SELECT * FROM SUBSCRIPTIONS_QUEUE
H# WHERE POID = %POID% AND PINST = %PINT%
## AND SOID = %SOID% AND SINST = %SINST%
## AND TOPIC = %TOPIC% AND PSID = %PSID%
#H# AND SCN = %SCN%)

## BEGIN

## DELETE FROM SUBSCRIPTIONS

## WHERE POID = %POID% AND PINST
%PINT%

#H AND SOID = %SOID% AND SINST =
%SINST%

## AND TOPIC = %TOPIC% AND PSID =
%PSID%

// since request has received the proper response,

// it can be deleted from the subscriptions queue

## DELETE FROM
SUBSCRIPTIONS_QUEUE
## WHERE POID = %POID% AND PINST
%PINT%
## AND SOID = %SOID% AND SINST =
%SINST%
#H AND TOPIC = %TOPIC% AND PSID =

-99.



10

15

20

25

WO 02/073442

%PSID%
#H AND SCN = %SCN%
## END

Eventually .NET services are expected to handle hundreds of millions of users.
As a result, the implementation should be extremely scalable and fault-tolerant. One way
in which this may be achieved is by having multiple clusters, with each cluster having
front-end servers and backend servers. In one architecture, every backend server will
handle the data for a subset of users. FIG. 19 represents one such cluster architecture.

As represented in FIG. 19, when a request comes in, the load balancer redirects
the request to a front end server (FE), based on load balancing and fault-tolerance
considerations. The FE does some preliminary processing on the request, locates the
back-end server (BE) servicing this user, and forwards the request to the back end server.
The BE returns with a response, which the FE puts into an appropriate message format
(e.g., .NET data language) and sends it off to its destination. Note the as a result from
this architecture, the FEs are stateless; they carry no memory of previous .NET data
language requests. As a result, any FE can handle any given request. Thus, two messages
bound for the same BE can be processed by two different FEs. Further, because FEs are
stateless, the load-balancer, on an incoming request, can distribute load by choosing an
FE which is not busy. The same property allows the 1oad balancer to be fault-tolerant
when an FE fails. The BE is stateful; when required by the semantics of a service, the
BE remembers history. Moreover, each BE services a subset of the users of the entire
service, and while the choice of an FE is arbitrary, a given request always corresponds to
one specific BE — the one which stored the user’s data.

In FIG. 19, the arrows labeled with circled numerals one (1) through eight (8)
represent the data flow on a typical request, with (1), a request comes to the service’s load
balancer 1900. Then,the Tdad balancer determines that FE; is the right front-end to

handle this requeét (based on load and failover considerations), and (2) provides the

o -100-

PCT/US02/08063



10

15

20

25

30

WO 02/073442 PCT/US02/08063

request to FE; which processes the request. FE; determines the user identity, and locates
the BE that services this user, which in the present example, is BE;. FE; determines what
data is needed from the backend, and FE3 sends database requests to BE, (arrow labeled
three (3)). "

In turn, BE, retrieves the required data from the database (arrows labeled four (4)
and five (5)), and BE,; sends data back to FE;, in the form of database response (arrow six
(6)). Then, FE; returns the data back into an appropriate response and sends the message
off to its destination (arrows labeled seven (7) and eight (8)).

The model represented in FIG. 19 works fine for handling incoming SSCP
requests. For example, when an updateSubscriptionMap request comes into a publisher, it
is processed in the general manner described above. However, for outgoing requests,
such as when the publisher needs to send the updateSubscriptionData message, an
enhanced model is provided, generally because in the SSCP protocol, a publisher or a
subscriber processes its queue every time the interval timer goes off, and for the protocol
to function correctly, a single reader should drain the queue, and also because in the
model described in the previous section, the BE has no reason to initiate a request
message; its job is to process a request and generate an appropriate response. However,
SSCP requires that the participating services generate requests when the interval timer
goes off:

a) A publisher sends updateSubscriptionData messages

b) A subscriber sends updateSubscriptionMap messages

This is handled as below, wherein for the purposes of this description, the word
“service” refers to either the publisher or the subscriber, and the word “queue” refers to
either the publication queue or the subscription queue. To enhance the model, the FEs
run code for inbound SSCP messages, just as they do for other inbound .NET data
language messages. This means that the FEs run code for updating subscription data (on
the subscribing side), code for updating subscription maps (on the publishing side), and
processing SSCP responses (both subscriber and publisher).

The BEs run code for outbound SSCP messages. This code runs every time the
interval timer goes off. This code handles the publication queue and generating
updateSubscriptionData messages (publisher), handling subscription queue and
generatil;g u;r)dateSub'scriptionMap messages (subscriber). The process generally works

as follows:

-101 -



10

15

20

25

30

WO 02/073442 PCT/US02/08063

1) Each BE stores a slice of the persistent SSCP data. Taking the example of a
publishing service, if BE1 manages user;; and user;z, and BE, manages user;; and
user,; then
BE, stores PUBLICATIONS and PUBLICATIONS QUEUE and
CONNECTION tables which handle the subscription / publication requirements
for data from user;; and user;;. BE, stores PUBLICATIONS and
PUBLICATIONS_QUEUE and CONNECTION tables which handle the sub/pub
requirements for data from user;; and user,,.

2) When the interval timer goes off at a service, each BE wakes up to process its
queue.

3) If the queue is not empty, then the BE constructs the appropriate message(s) —
such as updateSubscriptionData, or updateSubscriptionMap. For each message:

a) The BE picks an FE (e.g., at random) and sends the message to it.

b) The FE simply forwards the message along to its destination —i.e., it acts as a
proxy.

c) A response is handled in the usual way (since incoming SSCP messages don’t

require any changes)

FIG. 20 generally represents this model when the interval timer goes off and the
following things happen at BE, (similar things also happen at other BEs). Assume that
BE), has to send two requests, requestl and request2, as a result of processing its queue
during this interval timer event. In the arrows labeled (A), BE; sends request] through
FE;3, which is randomly picked. The arrows labeled (B) represent a response arriving
from a destination service through FE;, which is picked by the load balancer according to
its algorithms. The arrows labeled (C) represent BE sending request2 through randomly
picked FE;. The arrows labeled (D) represent a response arriving from a destination
service through FE; (which is picked by the load balancer according to its algorithms).

While the invention is susceptible to various modifications and alternative
constructions, certain illustrated embodiments thereof are shown in the drawings and
have been described above in detail. It should be understood, however, that there is no
intention to limit the invention to the specific forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative constructions, and equivalents falling

within the spirit and scope of the invention.

-102 -



10

15

20

25

WO 02/073442 PCT/US02/08063

WHAT IS CLAIMED IS:

L. In a computer network, a system comprising:

a first service for providing access to data based on an associated identity of each user;

a second service for providing access to data based on an associated identity of each
user; and

a communications mechanism configured to exchange information between the first
service and the second service, the first service configured as a publisher of change data made by
users via the first service, and the second service configured as a subscriber of the change data,
the communications mechanism communicating change information of the first service to the
second service including determining the role of each subscribing user and filtering the data

based on each determined role.

2. In a computer network, a method comprising:

communicating data from a first service to a second service, the data including change
data of at least one user of the first service;

receiving the data at the second service; and

updating information at the second service based on the change data.

3. In a computer network, a method comprising:
receiving a change from a user at a first service; and
communicating change data from a first service to a second service that subscribes to

change information from the first service, the change data communicated automatically.

4. In a computer network, a method comprising:
at a second service, subscribing for change information from a first service;
at the second service, receiving the change information; and

updating data maintained by the second service based on the change information.

-103-



PCT/US02/08063

WO 02/073442

1122

—__ SWvH90ud 00} .
8T NOLLYOINddY Lo ¢3§os_ QL L 'OIld
181 JLONW3Y \
= Lyl S31NAOW Svi PPT
) ~ 291 oIN Yo
T EET_L viva [ wvuooud | swwvuooud [ waisas
AP Bl WY¥90ud |9FF ¥3IHLO | NOLLVOIddV | ONLLVYIdO
| ell 58 B | | 3eiqe ” N P
2T NN 7
(s)19ndwo) N -
ajowdy WIpoON e @ __ __ N \\
~
MJOM)BN ealy dPIM Whr a5k _.mw N v _-~
[ N\pomeN s o 2y e ¥ A
081 il “
oLt k 1 |
4 D NI e o1 |
aoeHdU| Aiowap aoeMAU| 7¢y viva
ld N oo || du opuon | | Asowew ‘top-uon Wv¥oodd |||
MIOMBN Baly 1890 _ Jasn Amv..ugo—:@w_ 9]qeAOWIY-UON _
|
| 0s1 z1 5T SIINAOW |
B—— | I WYH90¥d ¥3IHLO _
‘|
. _ sng wajsAs —_— _
k SAVYOO¥d
s6l “ vmv Sth olvonddy ﬂ
19ulld  [4— " vep W3LSAS "
\ _ woutﬁc_ S wz_.r@n_o _
961 _ jesayduad 0oPIA i Zct (wvy) |!
~ __ indino : Iun \ IIIIIIIIII "
AR I 061 J \ Buissasold [0€L || €1 soig |
| — |
X fe ___wer_(wow |
Loh Jojuoy ) _ oTT 0zl Kiowapy waysAg “




WO 02/073442 PCT/US02/08063

2/22

200 \
04
/- 2

' Application
Request Response
Message Message
/ 208 (SOAP) (SOAP)
T
Navigation — . L
Assistance Module Generic Navigation _— 202
Module q
—
Schema(s)
ya
7
!
210
v/ 206

Addressable
Store

(

FIG. 2



PCT/US02/08063

WO 02/073442

3/22

€ ‘Old

sjuawnsogiw sadnagiw 90¢
P e
S9)ISqOAOILIOARIAW [
~ L0¢ sjoejuO0DAW
80¢ .
S3VIAIBG N~ S0¢€
(pepuax3)
91t —1 1340 sauobajenfw
\
~—ypo¢
xoqujAw
60 —L N i -
Jepuajeniw
(wuiodpu3) < coc
s)sinAw 921A3(] J9SN
ol ——
_\ sbuiyasuonesddyiw
0zt N—zo0c
uonesojAw
e —C
suajyAw
b"[
aouasaidAiw 10€
r4 %%
39]lemAw
ayoadAw N
gle —C

Sie
AJOSAW
seoin1a8A N0z

vie



WO 02/073442

400

4] 22

PCT/US02/08063

314

\

N\
&~ Application myServices
A
404 Request Response
Message Message

/ (SOAP) (SOAP)

Service 7 406
Y r
4/1 0 408 Methods
]

/
Service Specific Methods

Standard Methods

AT

ARRZIIIIIIIIITTIIIMIMIITININNNY

roleMap 4 414 420 IF'
vocument] | 41| 412 _E ID-based
422 \vy roleList
Content |~ Service Document
- — .
Document Logic [
426 416 A -
System 1~ W ID-based
. >
Document , Content
4241 pocuments
Service Schema

U

418
V
Addressable

Store

(

FIG. 4




WO 02/073442 PCT/US02/08063

51722

501 W

520 w myProfile Serviceq

myContacts Service myProfile for Userq

myContacts for User 504

-
o

myProfile for Usery

P, Y N
[Nl

505

52>Z/\ myProfile for Users

myContacts for Users

502
- w

v/\ myProfile Service,
522 myProfile for Usery
\ﬂ_i}_/——\

myProfile for Userg

\5_0_9/'—\

myProfile for Userg

\5%0/‘_\

FIG. 5



WO 02/073442

'/ 600

Publisher

Protocol
Handler

Connection
Table

|Publications

Queue -

Publications

Table -

s

_—

PCT/US02/08063

(‘ 610

Subscriber

6/22
/602
o

|- 604
-t

606
|~

608
|~

FIG. 6

Protocol
Handler

Connection

Table 4

Subscriptions

——

Queue

Subscriptions

Table

P

612

614

616

618



WO 02/073442

myContacts Service SSID4

myContacts for SUID1,1

7122

PCT/US02/08063

myProfile Service PSID4

myProfile for PUID4 4

myContacts for SUIDq 2

\/\

PUID2; |
PUID2, |

I\ S\

\/—\

myContacts for SUIDq 3

\/_\

myContacts Service SSIDy

myContacts for SUID; 4

myProfile for PUID4 2

\/'_\

myProfile for PUID4 3

\/_\

myProfile Service PSID,

myProfile for PUID2 4

\_/—\

myProfile for PUID2 >

e, -, |

\_/_\

myContacts for SUID3 2

v, -

myProfile Service PSID3

myProfile for PUID3 4

D22 |e
PUID37 |

\_/—\

FIG. 7

\_/—\

myProfile for PUID3 2

\/\




WO 02/073442 _ PCT/US02/08063

8122

FIG. 8

Publisher Change Detect;
AddToPublicationQueue(PUID)

800

Message
Already in

Publications
Queue
?

802

Select Information
From Publications
Table

Yes

804

/

Insert Information
From Publications

Table
806
Update Change
Number




WO 02/073442 PCT/US02/08063

9/22

Message Received at Publisher
( OnRequestPub(SSID, requestMessage) ) F I G' 9

900
No - (case Request Yes - (case
serviceStatus) to Update updateSubscriptionMap)
930

Subscription
Map

No Select (next) /
934 Entity in Request
/ 904
Retry Count Retry

= Max Retry Count=0

) 906
Response = /
Standard ACK
Response
) 916 = Unknown
936 K Determine Role of PUID
the Subscriber —
910 Delete from
\__| Publications
" Table
Yes 91\4 Response =
92{ No Delete
Insert Into
Publications Table

.l 940

922 [ Append To
\—] Response
Message )

.

Another
Entity in
Request

Yes

Send Response




WO 02/073442 PCT/US02/08063

10/ 22

C Interval Timer Goes Off ) FIG. 10

OnintervalTimerPub()

Y

Get List of Subscribers that _— 1000
have Live Connections

r

Select (next) SSID | _—1002
from Result Set

More
Retries
Left
?

1006

Yes ‘ \

To / from FIG. 11A
ProcessPublication-
Queue(SSID)

Time To

1008
Check For
Alive?
101\8 106\0 1010 No Yes 1012
Set Retry = \ \
SetRetry =0 Set Retry = _
Retry + 1 Retry + 1 Set Retry =0

Yes




WO 02/073442 _‘ PCT/US02/08063

11722

CrocessPublicationQueue(SSlDD F IG- 11A

(From FIG. 10)

Y

Select Requests in the Queue for /-1100
this SSID; Group By PUID, ROLE

r

Select (next) Group of | —1102
Rows from Result Set

~ Generate 1104
updateSubscriptionData
Message

1106

Another
Group of Rows
in Result
Set?

Yes

1108

)

Send Request to The
Subscriber

1110
1112

\ ‘ Yesw No

Receive Response
from Service 1116

Sucess Status
= False

FIG. 10




WO 02/073442 PCT/US02/08063

12/ 22
___ FIG. 11B
FIG. 11A-
r 1130

Sucess Status = True

y
Select SUID Entity |_—1132
from Response

1134

Entity =
<updatedData>

1140 ?

1136

Change
Number
Matches
?

<deleteFromSub-
criptionMap>

1142

)

Sucess Status
= False PUID not found; Update

Subscription Map

- 1144

1146

Gos )

Delete From
Publications Queue

Another
Entity in
Response,

FIG. 11A




WO 02/073442

PCT/US02/08063

131722

C AddSubscription(suid, puid, psid) 3 FIG. 12

1204

Publisher
have Entry in
Connections Table
or this PSID

l 1202
Send addSubscription
message to Publisher

LookUpQueue(suid,
puid, psid

1208

1206

Row

/ |

Exists

No

Insert Row into the
Subscriptions

1210 #

Operation

Queue 1212 True Yes
(=Delete) ? (=Add)
Is
Generation

1214 =0 1216

/ " y
Delete

Subscriptions Update Subscriptions
Queue Queue
1218 ‘
K Set Operation =
True

>V »4 l




WO 02/073442 PCT/US02/08063

14/ 22

( RemoveSubscription(from,

S ) FiG. 13

l

LookUpQueue(suid, / 1300
puid, psid

1304

(L =

Is
Operation

Insert Row into the
Subscriptions

1306

Queue True —
(=Delete)
Generation
1}10 A 1312
Delete -_
Subscriptions Update g‘l‘lgzzﬂptlons
Queue

l 1714

False

Set Operation =

e




WO 02/073442 PCT/US02/08063

15722

OnRequestSub(PSID, requestMessage)

< Request Received at Subscriber FIG. 14

1400

No - (case Request Yes - (case
serviceStatus) to Update updateSubscriptionData)
1430 Subscription

Map 1402
No Select (next)
1434 Entity in Request
L 1404
Retry Count Retry
= Max Retry Count=0
+ [ 1406
Response = /
Standard ACK -
Signal
J Publishing
Service to
1436 1410 Update ¢ Delete
\__| Subscribed es
Data
Y
1414 Update Change
Number
1420
1440
Append Updated é‘:zg:?;
Data to response
R

Send Response




WO 02/073442 PCT/US02/08063

16/ 22

< Interval Timer Goes Off ) FIG. 15

OnintervalTimerPub()

Y

Get List of Subscribers that | _— 1500
have Live Connections

h

Select (next) PSID | _— 1502
from Result Set

More
Retries
Left
?

1506

Yes l \

To / from FIG. 16A
ProcessSubscription-
Queue(PSID)

Time To

1508
Check For
Alive?
1518 1520 Ye
\ \ 1510 |N° S 11512
Set Retry = \ \
Set Retry =0 Set Retry = -
Retry + 1 Retry + 1 SetRetry =0
> l i -

Another
PSID in

Result
Set?

Yes



WO 02/073442 PCT/US02/08063

171 22

(From FIG. 15)

Y

Select Requests in the Queue for /1600
this PSID; Group By PUID, ROLE

!

Generate |- 1602
updateSubscriptionData
Message

1604 {
Send Request to The
Publisher

CrocesssubscriptionQueue(PSIDD F I G- 16A

1606

' Success
160\8 l Yes\?/NO

Receive Response
from Service

Y

» 1612

')

Sucess Status
= False




WO 02/073442 PCT/US02/08063

18/ 22

FIG. 16B

From
FIG. 16A

Sucess Status = True

Y

Select Entity from |_—1632
Response

1634

1642 <ad_de_dToSub.
\ l Yos \.scriptionMap>
Insert Into

Subscriptions

Table

Delete From

1642 Subscriptions
Table
Delete From
Subscriptions [
Queue

1648

Another
Entity in
Response

Yes

FIG. 16A



WO 02/073442 PCT/US02/08063

19/ 22

1701 myProfile Serviceq 17043
)

1720 1704, 7
_.~\‘ \\\\.. 2 -

myProfileDocq4:
Document for Userq,

myContacts Service

myContacts Docq

INSTANCE=1
Document for User4 17044

) myProfileDocj:
Document for 1705

v, —

-
d

Users

EL/\ myProfileDoc3:
1721 ¥ 4706

Document for

" myContacts Docys
myContacts Docyq myProfileDocgq 1707
Document for Userp INSTANCE=4
Instance = 1
w € : ses
myProfile Service,

y/\ myProfileDocy: 1708
17224 Document for User

myProfileDocg: 1709

Document for Userg

myProfileDocgq:
Document for Userg,
INSTANCE=1

FIG. 17

17104




WO 02/073442

myContacts Service SSID4

myContacts for SOID4 4
INSTANCE 1

PUIDy; |

20/ 22

PCT/US02/08063

myProfile Service PSID4

myProfile for POID1 1,

PUD2; |e

PUID3; |

w

myContacts for SOID4 5
INSTANCE1

INSTANCE 1

J\

PUIDyy |e

PUID2; |

P

myContacts for SOID4 3
INSTANCE 1
PUD3; |

wq W,

-~ O

myContacts Service SSID5

| myContacts for SOID2 4
INSTANCE 2

myProfile for POID4 2
INSTANCE 1

\/_\

myProfile for POID4 3
INSTANCE 1

\/\

myProfile Service PSID,

myProfile for POID> 4,

INSTANCE 1

&/—\

myProfile for POIDz,z,

P,

PUIDy2 |e
PUID22 |e

PUID35

——

myContacts for SOID3 2
INSTANCE1

PUID77 |

S —— |, (¥
N\

INSTANCE 1

\_/\

myProfile Service PSID3

myProfile for POID3 1,
INSTANCE 1

N
.

PUID3, ‘

O

myProfile for POID3,2,
INSTANCE 2

\_/—\

FIG. 18




WO 02/073442 PCT/US02/08063

21/ 22

of |@
1900L_. Load Balancer
1@
®

BE,y ana BEpy

BE, BEm
DB DB

FIG. 19



WO 02/073442 PCT/US02/08063

w 7 /]
a

/
FE4 FEo FE3 . FEN

de || 6
e~

BE1 BE2 aus BEM

FIG. 20



INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/080638

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GosF 15/16
US CL :Please See Extra Sheet.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. :  709/208, 219, 220, 229, 238; 707/8, 9, 10, 100, 201; 718/154, 165, 182, 200; 705/50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C.  DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 6,044,372 A (ROTHFUS et al) 28 MARCH 2000, ABSTRACT, | 1-4
FIGURES 1, 6, ITEM 106, COL. 2, LINES 58-67, COL. 3, LINES
1-67, COL. 4, LINES 1-67, COL. 5, 1-2, COL. 6, LINES 1-67,
COL. 7, LINES 1-67.

A US 6,148,301 A (ROSENTHAL) 14 NOVEMBER 2000, COL. 3,| 1
LINES 35-52
Y US 6,167,408 A (CANNON et al) 26 DECEMBER 2000,| 1-4

ABSTRACT, FIGURES 3 AND 4, COL. 2, LINES 30-67, COL. 3,
LINES 1-67, COL. 4, LINES 1-20, TABLES 1, 2 AND 3

Y,P US 6,266,690 Bl (SHANKARAPPA et al) 24 JULY 2001, 1-4
ABSTRACT, FIGURES 3A, 3C, COL. 2, LINES 66-67, COL. 3,
LINES 1-67, COL. 4, LINES 1-4.

Further documents are listed in the continuation of Box C. I:] See patent family annex.

Special categories of cited documents: " later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
- . . . s - "X" document of particular relevance; the claimed invention cannot be
E earlier document published o or after the international filing date considered novel or cannot be con;idomd to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other ) ) . ) .
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the docnment is combined
"o" document referring to an oral disclosure, use, exhibition or other with one or more other such d ts, such bination being
means obvious to a person skilled in the art
P document published prior to the international filing date but later ~g~ document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

06 MAY 2002 30 MAY ZBBZ

Name and mailing address of the ISA/US Authorized officer —
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231 WILLIA AUGHN, JR

Facsimile No.  (708) 305-3230 Telephone A4 (708) 306-9129

Form PCT/ISA/210 (second sheet) (July 1998)» 4



INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/08063
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X P US 6,269,369 B1 (ROBERTSON) 31 JULY 2001, ABSTRACT, 1-4

WHOLE PATENT

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%




INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/08063

A. CLASSIFICATION OF SUBJECT MATTER:
US CL

709/208, 219, 220, 229, 238, 707/8, 9, 10, 100, 201; 713/154, 165, 182, 200; 705/50

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

EAST, INTERNET, NPL
search terms: access, control, database, repository, update, synchronize, client, subscriber, subscription, publisher,
consumer, profile, preferences

Form PCT/1SA/210 (extra sheet) (July 1998)%



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

