wo 2014/008286 A1 I} A1 00O YO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/008286 A1

9 January 2014 (09.01.2014) WIPOIPCT
(51) International Patent Classification: (74) Agent: FITZGERALD, Kelly Patrick; Shumaker & Sief-
HO4N 7/26 (2006.01) fert, P.A., 1625 Radio Drive, Suite 300, Woodbury, Min-
ta 55125 .
(21) International Application Number: flesota (US)
PCT/US2013/049121 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
2 July 2013 (02.07.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
o . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/667,387 2 July 2012 (02.07.2012) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
61/669,587 9 July 2012 (09.07.2012) US SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
61/798,135 15 March 2013 (15.03.2013) Us IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
13/932,909 1 July 2013 (01.07.2013) US (84) Designated States (unless otherwise indicated, for every
(71) Applicant: QUALCOMM INCORPORATED [US/US], kind Of regional pl‘OleCliOl’l available): ARIPO (BW, GH,
ATTN: International IP Administration, 5775 Morehouse GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Drive, San Diego, California 92121-1714 (US). UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors: CHEN, Ying; 5775 Morehouse Drive, San EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

Diego, California 92121-1714 (US). WANG, Ye-Kui;
5775 Morehouse Drive, San Diego, California 92121-1714
(US).

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: VIDEO PARAMETER SET FOR HEVC AND EXTENSIONS

(57) Abstract: A video processing device can be configured to process one

(171

PROCESS ONE OR MORE INITIAL SYNTAX
ELEMENTS FOR A PARAMETER SET
ASSOCIATED WITH A VIDEO BITSTREAM

172
(

RECEIVE IN THE VIDEO BITSTREAM AN
OFFSET SYNTAX ELEMENT FOR THE
PARAMETER SET

173
(

SKIP A NUMBER OF BITS WITHIN THE
PARAMETER SET BASED ON THE OFFSET
SYNTAX ELEMENT

174

-

PROCESS ONE OR MORE ADDITIONAL
SYNTAX ELEMENTS IN THE PARAMETER SET

FIG. 7

or more initial syntax elements for a parameter set associated with a video
bitstream; receive in the parameter set an offset syntax element for the para-
meter set that identities syntax elements to be skipped within the parameter
set; and based on the offset syntax element, skip the syntax elements within
the parameter set and process one or more additional syntax elements in the
parameter set that are after the skipped syntax elements in the parameter set.

WO 2014/008286 A1 WAL 00T 000N AR AR

Published:
— with international search report (Art. 21(3))

WO 2014/008286 PCT/US2013/049121

VIDEO PARAMETER SET FOR HEVC AND EXTENSIONS

[0001] This application is related to:
U.S. Provisional Application No. 61/667,387 filed 2 July 2012,
U.S. Provisional Application No. 61/669,587 filed 9 July 2012, and
U.S. Provisional Application No. 61/798,135 filed 15 March 2013,

the entire content of each of which is incorporated by reference herein.

TECHNICAL FIELD
[0002] This disclosure relates to the processing of video data and, more particularly,
this disclosure describes techniques related to generating and processing parameter sets

for video data.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()

slice of a picture are encoded using spatial prediction with respect to reference samples

WO 2014/008286 PCT/US2013/049121

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY
[0006] This disclosure describes design techniques for parameter sets in video coding,
and more particularly, this disclosure describes techniques related to video parameter
sets (VPSs). VPSs are a syntax structure that may apply to multiple entire video
sequences. According to the techniques of this disclosure, a VPS may include an offset
syntax element to enable a media aware network element (MANE) to skip from one set
of fixed length syntax elements to another set of fixed length syntax elements, with the
skipped syntax element potentially including variable length syntax elements.
[0007] In one example, a method of processing video data includes processing one or
more initial syntax elements for a parameter set associated with a video bitstream;
receiving in the parameter set an offset syntax element for the parameter set, wherein
the offset syntax element identifies syntax elements to be skipped within the parameter
set; based on the offset syntax element, skipping the syntax elements within the
parameter set; and, processing one or more additional syntax elements in the parameter
set, wherein the one or more additional syntax elements are after the skipped syntax

clements in the parameter set.

WO 2014/008286 PCT/US2013/049121

[0008] In another example, a method of processing video data includes generating one
or more initial syntax elements for a parameter set associated with a video bitstream;
generating an offset syntax element for the parameter set, wherein the offset syntax
clement identifies a number of syntax elements to be skipped within the parameter set;
generating the syntax elements to be skipped; and, generating one or more additional
syntax elements in the parameter set, wherein the one or more additional syntax
clements are after the syntax elements to be skipped in the parameter set.

[0009] In another example, a method of decoding video data includes decoding one or
more initial syntax elements for a parameter set associated with a video bitstream;
receiving in the video bitstream an offset syntax element for the parameter set, wherein
the offset syntax element identifies syntax elements to be skipped within the parameter
set; and decoding the syntax elements to be skipped.

[0010] In another example, video processing device includes a video processing
element configured to process one or more initial syntax elements for a parameter set
associated with a video bitstream; receive in the parameter set an offset syntax element
for the parameter set, wherein the offset syntax element identifies syntax elements to be
skipped within the parameter set; based on the offset syntax element, skip the syntax
elements within the parameter set; and process one or more additional syntax elements
in the parameter set, wherein the one or more additional syntax elements are after the
skipped syntax elements in the parameter set.

[0011] In another example, a video processing device includes a video processing
element configured to generate one or more initial syntax elements for a parameter set
associated with a video bitstream; generate an offset syntax element for the parameter
set, wherein the offset syntax element identifies a number of syntax elements to be
skipped within the parameter set; generate the syntax elements to be skipped; generate
one or more additional syntax elements in the parameter set, wherein the one or more
additional syntax elements are after the syntax elements to be skipped in the parameter
sct.

[0012] In another example, a video processing device includes a video processing
element configured to decode one or more initial syntax elements for a parameter set
associated with a video bitstream; receive in the video bitstream an offset syntax
clement for the parameter set, wherein the offset syntax element identifies syntax
elements to be skipped within the parameter set; and decode the syntax elements to be

skipped.

WO 2014/008286 PCT/US2013/049121

[0013] In another example, a video processing device includes means for processing
one or more initial syntax elements for a parameter set associated with a video
bitstream; means for receiving in the parameter set an offset syntax element for the
parameter set, wherein the offset syntax element identifies syntax elements to be
skipped within the parameter set; means for skipping the syntax elements within the
parameter set based on the offset syntax element; means for processing one or more
additional syntax elements in the parameter set, wherein the one or more additional
syntax elements are after the skipped syntax elements in the parameter set.

[0014] In another example, a computer readable storage medium storing instructions
that when executed cause one or more processors to process one or more initial syntax
elements for a parameter set associated with a video bitstream; receive in the parameter
set an offset syntax element for the parameter set, wherein the offset syntax element
identifies syntax elements to be skipped within the parameter set; skip the syntax
elements within the parameter set based on the offset syntax element; and, process one
or more additional syntax elements in the parameter set, wherein the one or more
additional syntax elements are after the skipped syntax elements in the parameter set.
[0015] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.

[0017] FIG. 2 is a conceptual diagram illustrating an example MVC decoding order.
[0018] FIG. 3 is a conceptual diagram showing an example MVC temporal and inter-
view prediction structure.

[0019] FIG. 4 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0020] FIG. 5 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0021] FIG. 6 is a block diagram illustrating an example set of devices that form part of

a network.

WO 2014/008286 PCT/US2013/049121

[0022] FIG. 7 is a flowchart showing an example method for processing a parameter set
in accordance with the techniques of this disclosure.

[0023] FIG. 8 is a flowchart showing an example method for generating a parameter set
in accordance with the techniques of this disclosure.

[0024] FIG. 9 is a flowchart showing an example method for decoding a parameter set
in accordance with the techniques of this disclosure.

[0025] FIG. 10 is a flowchart showing an example method for processing a parameter
set in accordance with the techniques of this disclosure.

[0026] FIG. 11 is a flowchart showing an example method for generating a parameter
set in accordance with the techniques of this disclosure.

[0027] FIG. 12 is a flowchart showing an example method for processing a parameter
set in accordance with the techniques of this disclosure.

[0028] FIG. 13 is a flowchart showing an example method for generating a parameter

set in accordance with the techniques of this disclosure.

DETAILED DESCRIPTION
[0029] This disclosure describes design techniques for parameter sets in video coding,
and more particularly, this disclosure describes techniques related to video parameter
sets (VPSs). In addition to VPSs, other examples of parameter sets include sequence
parameter sets (SPSs), picture parameter sets (PPSs), and adaptation parameter sets
(APSs), to name a few.
[0030] A video encoder encodes video data. The video data may include one or more
pictures, where each of the pictures is a still image forming part of a video. When the
video encoder encodes the video data, the video encoder generates a bitstream that
includes a sequence of bits that form a coded representation of the video data. The
bitstream may include coded pictures and associated data, where a coded picture refers
to a coded representation of a picture. The associated data may include various types of
parameter sets including VPSs, SPSs, PPSs, and APSs, and potentially other syntax
structures. SPSs are used to carry data that is valid to a whole video sequence, whereas
PPSs carry information valid on a picture-by-picture basis. APSs carry picture-adaptive
information that is also valid on a picture-by-picture basis but is expected to change
more frequently than the information in the PPS.
[0031] HEVC has also introduced the VPS which the HEVC working draft describes as

follows:

WO 2014/008286 PCT/US2013/049121

video parameter set (VPS): A syntax structure containing syntax

elements that apply to zero or more entire coded video sequences

as determined by the content of a video parameter set id syntax

element found in the sequence parameter set referred to by the

seq_parameter_set id syntax element, which is found in the picture

parameter set referred to by the pic parameter set id syntax

element found in each slice segment header.
[0032] Thus, as VPSs apply to entire coded video sequences, the VPS includes syntax
clements that change infrequently. The VPS, SPS, PPS, and APS mechanism in some
versions of HEVC decouples the transmission of infrequently changing information
from the transmission of coded video block data. VPSs, SPSs, PPSs, and APSs may, in
some applications, be conveyed “out-of-band” i.e., not transported together with the
units containing coded video data. Out-of-band transmission is typically reliable, and
may be desirable for improved reliability relative to in-band transmission. In HEVC
WD7, an identifier (ID) of a VPS, an SPS, a PPS, or an APS may be coded for each
parameter set. Each SPS includes an SPS ID and a VPS ID, each PPS includes a PPS
ID and an SPS ID, and each slice header includes a PPS ID and possibly an APS ID. In
this way, ID’s can be used to identify the proper parameter set to be used in different
instances.
[0033] As introduced above, video encoders typically encode video data, and decoders
typically decode video data. Encoders and decoders, however, are not the only devices
used for processing video data. When video is transported, for example as part of a
packet-based network such as a local area network, a wide-area network, or a global
network such as the Internet, routing devices and other such devices may process the
video data in order to deliver it from a source to a destination device. Special routing
devices, sometimes called media aware network elements (MANESs), may perform
various routing functions based on the content of the video data. To determine the
content of the video data and perform these routing functions, the MANE may access
information in the encoded bitstream, such as information in the VPS or SPS.
[0034] In a parameter set, some syntax elements are coded using a fixed number of bits,
while some syntax elements are coded using a variable number of bits. In order to
process syntax elements of variable length, a device may require entropy decoding
capabilities. Performing entropy decoding, however, may introduce a level of

complexity that is undesirable for a MANE or other network elements. According to

WO 2014/008286 PCT/US2013/049121

one technique introduced in this disclosure, an offset syntax element can be included in
a parameter set, such as a VPS in order to aid network elements in identifying syntax
elements that can be decoded without any entropy decoding. The offset syntax element
may be preceded by fixed length syntax elements. The offset syntax element may then
identify syntax elements in the parameter set that are to be coded using variable length
syntax elements. Using the offset syntax element, a device, such as a MANE, may skip
over the variable the length coded syntax elements and resume processing fixed length
syntax elements. The offset syntax element may identify the syntax elements to be
skipped by identifying a number of bytes within the parameter set that are to be skipped.
These skipped bytes may correspond to the skipped syntax elements. As mentioned
above, the skipped syntax elements may include variable length coded syntax elements
and may also include fixed length coded syntax elements.

[0035] In this context, skipping the syntax elements means the MANE may avoid
parses or other processing of the syntax elements that are coded with variable lengths.
Thus, the MANE can process some syntax elements in the VPS (e.g., fixed length
elements) without having to perform entropy decoding, while skipping some syntax
clements that may otherwise require entropy decoding. The syntax elements skipped by
the MANE are not limited to variable length syntax elements, as some fixed length
syntax elements may also be skipped in various examples. A video decoder may be
configured to, upon receiving the offset syntax element, essentially ignore one or more
of the syntax elements, meaning the video decoder may avoid parsing and processing
the syntax elements that were skipped by the MANE.

[0036] The use of an offset syntax element may reduce the complexity needed for a
MANE to process portions of a parameter set, ¢.g., by eliminating a need for the MANE
to perform entropy decoding. Additionally, the use of an offset syntax element, as
proposed in this disclosure, may enable the use of a hierarchical format for parameter
sets. As an example of a hierarchical format, in a VPS, instead of having syntax
clements for a base layer and an enhancement layer intermixed within the VPS, all or
substantially all syntax elements of a base layer may precede all or substantially all
syntax elements of a first enhancement layer, which in turn may precede all or
substantially all syntax elements for a second enhancement layer, and so on. Using the
offset syntax element introduced in this disclosure, a MANE may process a number of
fixed length syntax elements for a base layer, skip a number of variable length syntax

elements for the base layer, process a number of fixed length syntax elements for a first

WO 2014/008286 PCT/US2013/049121

enhancement layer, skip a number of variable length syntax elements for the first
enhancement layer, process a number of fixed length syntax elements for a second
enhancement layer, and so on. A video decoder may be configured to parse and process
the syntax elements skipped by the MANE.
[0037] The use of an offset syntax element may additionally enable future extensions to
a video coding standard. For example, even if other types of variable length coded
information were added to a bitstream (e.g., according to a future extension to HEVC),
the one or more offset syntax elements may be defined to facilitate skipping of such
variable length elements. In other words, the one or more offset syntax elements can be
used to identify the location of fixed length syntax elements within the bitstream, and
the offset syntax elements may be modified to account for the addition of any other
clements in the bitstream for which decoding may be avoided, ¢.g., by a MANE.
[0038] This disclosure additionally proposes including syntax elements related to
session negotiation in the video parameter set as opposed to in another parameter set,
such as an SPS. By including syntax elements related to session negotiation in the VPS,
signaling overhead may be able to be reduced especially when the VPS describes
information for multiple layers of video as opposed to information only for a single
layer. Moreover, this disclosure proposes using fixed length syntax elements for the
session negotiation syntax elements, and the fixed length session negotiation syntax
clements can be located before any variable length syntax elements. In order to process
syntax elements of variable length, a device needs to be able to perform entropy
decoding. Performing entropy decoding, however, may introduce a level of complexity
that is undesirable for a MANE. Thus, by using fixed length syntax elements that are
present in the VPS prior to any variable length syntax elements, a MANE may be able
to parse the syntax elements for session negotiation without having to perform entropy
decoding.
[0039] Table 2 below shows examples of session negotiation-related syntax elements
that may be included in the VPS. Examples of information for session negation include
information identifying profiles, tiers, and levels. The HEVC working draft describes
profiles, tiers, and levels as follows:

A “profile” is a subset of the entire bitstream syntax that is specified by

this Recommendation | International Standard. Within the bounds

imposed by the syntax of a given profile it is still possible to require a

very large variation in the performance of encoders and decoders

WO 2014/008286 PCT/US2013/049121

depending upon the values taken by syntax elements in the bitstream

such as the specified size of the decoded pictures. In many applications,

it is currently neither practical nor economic to implement a decoder

capable of dealing with all hypothetical uses of the syntax within a

particular profile.

In order to deal with this problem, “tiers” and “levels” are specified

within each profile. A level of a tier is a specified set of constraints

imposed on values of the syntax elements in the bitstream. These

constraints may be simple limits on values. Alternatively they may take

the form of constraints on arithmetic combinations of values (e.g. picture

width multiplied by picture height multiplied by number of pictures

decoded per second). A level specified for a lower tier is more

constrained than a level specified for a higher tier.
[0040] During session negotiation between a client and a MANE, a client may inquire
about the availability at the MANE of video data coded according to a certain profile,
level, and/or tier. The MANE may be able to parse the first portion (i.c. a fixed-length
coded portion) of the VPS which includes the profile, level, and tier information.
Among the operation points available at the MANE, a proper one can be chosen by the
client, and the MANE can forward the corresponding packages to the client after the
session is negotiated.
[0041] This disclosure additionally proposes including syntax elements for identifying a
hypothetical reference decoder (HRD) in the video parameter set as opposed to in
another parameter set, such as an SPS. The HRD parameters identify a hypothetical
decoder model that specifies constraints on the variability of conforming NAL unit
streams or conforming byte streams that an encoding process may produce. Two types
of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) may be
included in the VPS. NAL HRD parameters pertain to Type II bitstream conformance,
while VCL HRD parameters pertain to all bit stream conformance. HEVC currently
distinguished between two types of bitstream that are subject to HRD conformance.
The first is called a Type 1 bitstream and refers to a NAL unit stream containing only the
VCL NAL units and filler data NAL units for all access units in the bitstream. The
second type of bitstream is called a Type II bitstream and contains the VCL NAL units
and filler data NAL units for all access units in the bitstream plus other types of

additional NAL units.

WO 2014/008286 PCT/US2013/049121
10

[0042] The techniques of this disclosure can be applied in single-layer coding as well as
to scalable and multiview video coding. A layer may, for example, be a spatial scalable
layer, a quality scalable layer, a texture view, or a depth view. In HEVC, a layer
generally refers to a set of video coding layer (VCL) NAL units, and associated non-
VCL NAL units, that all have a particular layer ID value. Layers can be hierarchical in
the sense that a first layer may contain a lower layer. A layer set is sometimes used to
refer to a set of layers represented within a bitstream created from another bitstream by
operation of sub-bitstream extraction process. An operation point generally refers to a
bitstream created from another bitstream by operation of the sub-bitstream extraction
process with the another bitstream. An operation point may either include all the layers
in a layer set or may be a bitstream formed as a subset of the layer set.

[0043] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize the techniques described in this disclosure. As shown in
FIG. 1, system 10 includes a source device 12 that generates encoded video data to be
decoded at a later time by a destination device 14. The encoded video data may be
routed from source device 12 to destination device 14 by media aware network element
(MANE) 29. Source device 12 and destination device 14 may comprise any of a wide
range of devices, including desktop computers, notebook (i.e., laptop) computers, tablet
computers, set-top boxes, telephone handsets such as so-called “smart” phones, so-
called “smart” pads, televisions, cameras, display devices, digital media players, video
gaming consoles, video streaming device, or the like. In some cases, source device 12
and destination device 14 may be equipped for wireless communication.

[0044] System 10 may operate in accordance with different video coding standards, a
proprictary standard, or any other way of multiview coding. For example, video
encoder 20 and video decoder 30 may operate according to a video compression
standard, such as the include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or
ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264
(also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
and Multiview Video Coding (MVC) extensions. The recent, publicly available joint
draft of the MVC extension is described in “Advanced video coding for generic
audiovisual services,” ITU-T Recommendation H.264, Mar 2010. A more recent,
publicly available joint draft of the MVC extension is described in “Advanced video
coding for generic audiovisual services,” ITU-T Recommendation H.264, June 2011. A

current joint draft of the MVC extension has been approved as of January 2012.

WO 2014/008286 PCT/US2013/049121
11

[0045] In addition, there is a new video coding standard, namely High Efficiency Video
Coding (HEVC) standard presently under development by the Joint Collaboration Team
on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and
ISO/IEC Motion Picture Experts Group (MPEQG). A recent Working Draft (WD) of
HEVC, and referred to as HEVC WD7 hereinafter, is available, as of 1 July 2013, from
http://phenix.int-evry.fr/jct/doc_end user/documents/9 Geneva/wgl1/JCTVC-11003-
v6.zip.

[0046] Development of the HEVC standard is ongoing, and a newer Working Draft
(WD) of HEVC, referred to as HEVC WD9 is available, as of 1 July 2013, from
http://phenix.int-evry.fr/jct/doc_end user/documents/11_Shanghai/wgl1/JCTVC-
K1003-v10.zip. For purposes of description, video encoder 20 and video decoder 30 are
described in context of the HEVC or the H.264 standard and the extensions of such
standards. The techniques of this disclosure, however, are not limited to any particular
coding standard. Other examples of video compression standards include MPEG-2 and
ITU-T H.263. Proprietary coding techniques, such as those referred to as On2
VP6/VP7/VP8, may also implement one or more of the techniques described herein. A
newer draft of the upcoming HEVC standard, referred to as “HEVC Working Draft 10”
or “HEVC WD10,” is described in Bross et al., “Editors’ proposed corrections to HEVC
version 1,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, 13" Meeting, Incheon, KR, April 2013, which as of 1
July 2013, is available from http://phenix.int-

evry.fr/jct/doc_end user/documents/13 Incheon/wgl1/JCTVC-M0432-v3.zip, the
entire content of which is hereby incorporated by reference.

[0047] The techniques of this disclosure are potentially applicable to several MVC
and/or 3D video coding standards, including the HEVC-based 3D-Video coding (3D-
HEVC). The techniques of this disclosure may also be applicable to the H.264/3D-
AVC and H.264/MVC+D video coding standards, or extensions thereof, as well as other
coding standards. The techniques of this disclosure may at times be described with
reference to or using terminology of a particular video coding standard; however, such
description should not be interpreted to mean that the described techniques are limited
only to that particular standard.

[0048] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the

encoded video data from source device 12 to destination device 14. In one example,

WO 2014/008286 PCT/US2013/049121
12

link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local arca
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14. Link 16 may include one or more MANEs, such as MANE 29,
that route the video data from source device 12 to destination device 14.

[0049] Alternatively, encoded data may be output from output interface 22 to a storage
device 27. Similarly, encoded data may be accessed from storage device 27 by input
interface. Storage device 27 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, storage device 27 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored
video data from storage device 27 via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 27 may be a
streaming transmission, a download transmission, or a combination of both. Video data
retrieved from storage device 27 may be routed to destination device 14 using one or
more MANEs, such as MANE 29.

[0050] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

WO 2014/008286 PCT/US2013/049121
13

any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, streaming video
transmissions, €.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured to support one-way or
two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0051] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. Video encoder 20 may, for example, generate
the offset syntax described in this disclosure. In some cases, output interface 22 may
include a modulator/demodulator (modem) and/or a transmitter. In source device 12,
video source 18 may include a source such as a video capture device, ¢.g., a video
camera, a video archive containing previously captured video, a video feed interface to
receive video from a video content provider, and/or a computer graphics system for
generating computer graphics data as the source video, or a combination of such
sources. As one example, if video source 18 is a video camera, source device 12 and
destination device 14 may form so-called camera phones or video phones. However,
the techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications.

[0052] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 12. The encoded video data may be transmitted directly to destination
device 14 via output interface 22 of source device 20. The encoded video data may also
(or alternatively) be stored onto storage device 27 for later access by destination device
14 or other devices, for decoding and/or playback.

[0053] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. Video decoder 30 may parse the offset syntax element described in
this disclosure. As described above, video decoder 30 may in some instances ignore the
offset syntax element, thus enabling video decoder 30 to parse syntax elements skipped
by a MANE. In some cases, input interface 28 may include a receiver and/or a modem.
Input interface 28 of destination device 14 receives the encoded video data over link 16.
The encoded video data communicated over link 16, or provided on storage device 27,
may include a variety of syntax elements generated by video encoder 20 for use by a

video decoder, such as video decoder 30, in decoding the video data. Such syntax

WO 2014/008286 PCT/US2013/049121
14

elements may be included with the encoded video data transmitted on a communication
medium, stored on a storage medium, or stored a file server.

[0054] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0055] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0056] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0057] The JCT-VC is working on development of the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction encoding modes, the HM
may provide as many as thirty-three intra-prediction encoding modes.

[0058] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCU) that include

both luma and chroma samples. A treeblock has a similar purpose as a macroblock of

WO 2014/008286 PCT/US2013/049121
15

the H.264 standard. A slice includes a number of consecutive treeblocks in coding
order. A video frame or picture may be partitioned into one or more slices. Each
treeblock may be split into coding units (CUs) according to a quadtree. For example, a
treeblock, as a root node of the quadtree, may be split into four child nodes, and each
child node may in turn be a parent node and be split into another four child nodes. A
final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.c., a
coded video block. Syntax data associated with a coded bitstream may define a
maximum number of times a treeblock may be split, and may also define a minimum
size of the coding nodes.

[0059] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each
CU may contain one or more PUs and one or more TUs. Syntax data associated with a
CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square in shape.

[0060] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as “residual quad tree” (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefficients, which may be quantized.
[0061] In general, a PU includes data related to the prediction process. For example,
when the PU is intra-mode encoded, the PU may include data describing an intra-
prediction mode for the PU. As another example, when the PU is inter-mode encoded,
the PU may include data defining a motion vector for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the

motion vector, a vertical component of the motion vector, a resolution for the motion

WO 2014/008286 PCT/US2013/049121
16

vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference picture list (e.g., List 0,
List 1, or List C) for the motion vector.

[0062] In general, a TU is used for the transform and quantization processes. A given
CU having one or more PUs may also include one or more transform units (TUs).
Following prediction, video encoder 20 may calculate residual values corresponding to
the PU. The residual values comprise pixel difference values that may be transformed
into transform coefficients, quantized, and scanned using the TUs to produce serialized
transform coefficients for entropy coding. This disclosure typically uses the term
“video block” to refer to a coding node of a CU. In some specific cases, this disclosure
may also use the term “video block” to refer to a treeblock, i.e., LCU, or a CU, which
includes a coding node and PUs and TUs.

[0063] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0064] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0065] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a

WO 2014/008286 PCT/US2013/049121
17

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0066] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise pixel data in the spatial domain (also referred to as the pixel domain) and the
TUs may comprise coefficients in the transform domain following application of a
transform, e.g., a discrete cosine transform (DCT), an integer transform, a wavelet
transform, or a conceptually similar transform to residual video data. The residual data
may correspond to pixel differences between pixels of the unencoded picture and
prediction values corresponding to the PUs. Video encoder 20 may form the TUs
including the residual data for the CU, and then transform the TUs to produce transform
coefficients for the CU.

[0067] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where 7 is greater than m.

[0068] In some examples, video encoder 20 may utilize a predefined scan order to scan
the quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform an adaptive scan. After
scanning the quantized transform coefficients to form a one-dimensional vector, video
encoder 20 may entropy encode the one-dimensional vector, e.g., according to context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability
Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements associated with the encoded

video data for use by video decoder 30 in decoding the video data.

WO 2014/008286 PCT/US2013/049121
18

[0069] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.

Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0070] This disclosure describes design methods for parameter sets, including both
video parameter sets and sequence parameter sets, which can be applied in single-layer
coding as well as scalable and multiview coding in a mutually-compatible manner.
Multiview video coding (MVC) is an extension of H.264/AVC. The MVC specification
is briefly discussed below.

[0071] FIG. 2 is a graphical diagram illustrating an example MVC encoding or
decoding order, in accordance with one or more examples described in this disclosure.
For example, the decoding order arrangement illustrated in FIG. 2 is referred to as time-
first coding. In FIG. 2, SO-S7 each refers to different views of the multiview video.
TO-T8 each represents one output time instance. An access unit may include the coded
pictures of all the views for one output time instance. For example, a first access unit
includes all of the views S0—-S7 for time instance TO (i.e., pictures 0-7), a second access
unit includes all of the views S0—S7 for time instance T1 (i.e. pictures 8-15), and so
forth. In this examples, pictures 0—7 are at a same time instance (i.c., time instance TO0),
pictures 8—15 at a same time instance (i.¢., time instance T1). Pictures with the same
time instance are generally displayed at the same time, and it is the horizontal disparity,
and possibly some vertical disparity, between the objects within the pictures of the same
time instance that cause the viewer to perceive an image that encompasses a 3D volume.
[0072] In FIG. 2, each of the views includes sets of pictures. For example, view S0
includes set of pictures 0, 8, 16, 24, 32, 40, 48, 56, and 64, view S1 includes set of
pictures 1, 9, 17, 25, 33, 41, 49, 57, and 65, and so forth. Each set includes two
pictures: one picture is referred to as a texture view component, and the other picture is
referred to as a depth view component. The texture view component and the depth view
component within a set of pictures of a view may be considered as corresponding to one

another. For example, the texture view component within a set of pictures of a view can

WO 2014/008286 PCT/US2013/049121
19

be considered as corresponding to the depth view component within the set of the
pictures of the view, and vice-versa (i.c., the depth view component corresponds to its
texture view component in the set, and vice-versa). As used in this disclosure, a texture
view component and a depth view component that correspond may be considered to be
part of a same view of a single access unit.

[0073] The texture view component includes the actual image content that is displayed.
For example, the texture view component may include luma (Y) and chroma (Cb and
Cr) components. The depth view component may indicate relative depths of the pixels
in its corresponding texture view component. As one example, the depth view
component may be similar to a gray scale image that includes only luma values. In
other words, the depth view component may not convey any image content, but rather
provide a measure of the relative depths of the pixels in the texture view component.
[0074] For example, a pixel value corresponding to a purely white pixel in the depth
view component may indicate that its corresponding pixel or pixels in the corresponding
texture view component is closer from the perspective of the viewer, and a pixel value
corresponding to a purely black pixel in the depth view component may indicate that its
corresponding pixel or pixels in the corresponding texture view component is further
away from the perspective of the viewer. The pixel values corresponding to the various
shades of gray in between black and white indicate different depth levels. For instance,
a very gray pixel in the depth view component indicates that its corresponding pixel in
the texture view component is further away than a slightly gray pixel in the depth view
component. Because only one pixel value, similar to gray scale, is needed to identify
the depth of pixels, the depth view component may include only one pixel value. Thus,
values analogous to chroma components are not needed when coding depth.

[0075] The depth view component using only luma values (e.g., intensity values) to
identify depth is provided for illustration purposes and should not be considered
limiting. In other examples, any technique may be utilized to indicate relative depths of
the pixels in the texture view component.

[0076] In accordance with MVC, the texture view components are inter-predicted from
texture view components in the same view or from texture view components in one or
more different views. The texture view components may be coded in blocks of video
data, which are referred to as “video blocks” and commonly called “macroblocks” in the

H.264 context.

WO 2014/008286 PCT/US2013/049121
20

[0077] In MVC, inter-view prediction is supported by disparity motion compensation,
which uses the syntax of the H.264/AVC motion compensation, but allows a picture in a
different view to be used as a reference picture for predicting a picture being coded.

The coding of two views can also be supported by MVC. One potential advantage of
MVC is that an MVC encoder can take more than two views as a 3D video input, and an
MVC decoder can decode such a multiview representation of the captured video. Any
renderer with an MVC decoder may process 3D video contents with more than two
Views.

[0078] In MVC, inter-view prediction is allowed between pictures in the same access
unit (i.e., with the same time instance). When coding a picture in a non-base view, a
picture may be added into a reference picture list if the picture is in a different view but
with a same time instance. An inter-view prediction reference picture can be put in any
position of a reference picture list, just like any inter prediction reference picture.

[0079] FIG. 3 is a conceptual diagram illustrating an example MVC prediction pattern.
In the example of FIG. 3, eight views (having view IDs “S0” through “S7”) are
illustrated, and twelve temporal locations (“T0” through “T11”) are illustrated for each
view. That is, each row in FIG. 3 corresponds to a view, while each column indicates a
temporal location. In the example of FIG. 3, capital “B” and lowercase “b” are used to
indicate different hierarchical relationships between pictures, rather than different
coding methodologies. In general, capital “B” pictures are relatively higher in the
prediction hierarchy than lowercase “b” frames.

[0080] In FIG. 3, view SO may be considered as a base view, and views S1-S7 may be
considered as dependent views. A base view includes pictures that are not inter-view
predicted. Picture in a base view can be inter-predicted with respect to other pictures in
the same view. For instance, none of the pictures in view S0 can be inter-predicted with
respect to a picture in any of views S1-S7, but some of the pictures in view SO can be
inter-predicted with respect to other pictures in view SO.

[0081] A dependent view includes pictures that are inter-view predicted. For example,
cach one of views S1-S7 includes at least one picture that is inter-predicted with respect
to a picture in another view. Pictures in a dependent view may be inter-predicted with
respect to pictures in the base view, or may be inter-predicted with respect to pictures in
other dependent views.

[0082] A video stream that includes both a base view and one or more dependent views

may be decodable by different types of video decoders. For example, one basic type of

WO 2014/008286 PCT/US2013/049121
21

video decoder may be configured to decode only the base view. In addition, another
type of video decoder may be configured to decode each of views S0-S7. A decoder
that is configured to decode both the base view and the dependent views may be
referred to as a decoder that supports multiview coding.

[0083] Pictures in FIG. 3 arc indicated at the intersection of each row and each column
in FIG. 3. The H.264/AVC standard with MVC extensions may use the term frame to
represent a portion of the video, while HEVC standard may use the term picture to
represent a portion of the video. This disclosure uses the term picture and frame
interchangeably.

[0084] The pictures in FIG. 3 are illustrated using a shaded block including a letter that
designates whether the corresponding picture is intra-coded (that is, an I-picture), inter-
coded in one direction (that is, as a P-picture), or inter-coded in multiple directions (that
18, as a B-picture). In general, predictions are indicated by arrows, where the pointed-to
pictures use the pointed-from picture for prediction reference. For example, the P-
picture of view S2 at temporal location TO is predicted from the I-picture of view SO at
temporal location TO.

[0085] As with single view video encoding, pictures of a multiview video coding video
sequence may be predictively encoded with respect to pictures at different temporal
locations. For example, the B-picture of view S0 at temporal location T1 has an arrow
pointed to it from the I-picture of view SO at temporal location T0, indicating that the b-
picture is predicted from the I-picture. Additionally, however, in the context of
multiview video encoding, pictures may be inter-view predicted. That is, a view
component (e.g., a texture view component) can use the view components in other
views for reference. In MVC, for example, inter-view prediction is realized as if the
view component in another view is an inter-prediction reference. The potential inter-
view references are signaled in the Sequence Parameter Set (SPS) MVC extension and
can be modified by the reference picture list construction process, which enables
flexible ordering of the inter-prediction or inter-view prediction references.

[0086] FIG. 3 provides various examples of inter-view prediction. Pictures of view S1,
in the example of FIG. 3, are illustrated as being predicted from pictures at different
temporal locations of view S1, as well as inter-view predicted from pictures of views SO
and S2 at the same temporal locations. For example, the B-picture of view S1 at

temporal location T1 is predicted from each of the B-pictures of view S1 at temporal

WO 2014/008286 PCT/US2013/049121
22

locations TO and T2, as well as the B-pictures of views SO and S2 at temporal location
T1.

[0087] FIG. 3 also illustrates variations in the prediction hierarchy using different levels
of shading, where a greater amount of shading (that is, relatively darker) frames are
higher in the prediction hierarchy than those frames having less shading (that is,
relatively lighter). For example, all I-pictures in FIG. 3 are illustrated with full shading,
while P-pictures have a somewhat lighter shading, and B-pictures (and lowercase b-
pictures) have various levels of shading relative to each other, but always lighter than
the shading of the P-pictures and the I-pictures.

[0088] In general, the prediction hierarchy may be related to view order indexes, in that
pictures relatively higher in the prediction hierarchy should be decoded before decoding
pictures that are relatively lower in the hierarchy. Those pictures relatively higher in the
hierarchy can be used as reference pictures during decoding of the pictures relatively
lower in the hierarchy. A view order index is an index that indicates the decoding order
of view components in an access unit. The view order indices are implied in the
sequence parameter set (SPS) MVC extension, as specified in Annex H of H.264/AVC
(the MVC amendment). In the SPS, for each index i, the corresponding view_id is
signaled. The decoding of the view components may follow the ascending order of the
view order index. If all the views are presented, then the view order indexes are in a
consecutive order from 0 to num_views minus_1.

[0089] In this manner, pictures used as reference pictures are decoded before pictures
that depend on the reference pictures. A view order index is an index that indicates the
decoding order of view components in an access unit. For each view order index i, the
corresponding view _id is signaled. The decoding of the view components follows the
ascending order of the view order indexes. If all the views are presented, then the set of
view order indexes may comprise a consecutively ordered set from zero to one less than
the full number of views.

[0090] For certain pictures at equal levels of the hierarchy, the decoding order may not
matter relative to each other. For example, the I-picture of view S0 at temporal location
TO may be used as a reference picture for the P-picture of view S2 at temporal location
T0, which, in turn, may be used as a reference picture for the P-picture of view S4 at
temporal location TO. Accordingly, the I-picture of view S0 at temporal location TO
should be decoded before the P-picture of view S2 at temporal location TO, which in

turn, should be decoded before the P-picture of view S4 at temporal location TO.

WO 2014/008286 PCT/US2013/049121
23

However, between views S1 and S3, a decoding order does not matter, because views
S1 and S3 do not rely on each other for prediction. Instead views S1 and S3 are
predicted only from other views that are higher in the prediction hierarchy. Moreover,
view S1 may be decoded before view S4, so long as view S1 is decoded after views SO
and S2.

[0091] In this manner, a hierarchical ordering may be used to describe views S0 through
S7. In this disclosure, the notation “SA > SB” means that view SA should be decoded
before view SB. Using this notation, SO > S2 > S4 > S6 > S7, in the example of FIG. 2.
Also, with respect to the example of FIG. 2, SO > S1, S2 > S1, S2 > S3, S4 > S3, S4 >
S5, and S6 > S5. Any decoding order for the views that does not violate this
hierarchical ordering is possible. Accordingly, many different decoding orders are
possible, with limitations based on the hierarchical ordering.

[0092] The SPS MVC Extension will now be described. A view component can use the
view components in other views for reference, which is called inter-view prediction. In
MVC, inter-view prediction is realized as if the view component in another view was an
inter prediction reference. The potential inter-view references, however are signaled in
the Sequence Parameter Set (SPS) MVC extension (as shown in the following syntax
table, Table 1) and can be modified by the reference picture list construction process,
which enables flexible ordering of the inter prediction or inter-view prediction
references. Video encoder 20 represents an ex example of a video encoder configured
to generate syntax as shown in Table 1, and video decoder 30 represents an example of

a video decoder configured to parse and process such syntax.

WO 2014/008286 PCT/US2013/049121
24

Table 1

seq_parameter_set mvc_extension() { Descriptor

num_views_minus1 ue(v)

for(1=0;1<=num views minusl; i++)

view_id[1] ue(v)

for(i=1;1<=num views minusl; i++) {

num_anchor_refs 10[1] ue(v)
for(j=0;j <num_anchor refs 10[1];j++)

anchor_ref 10[1][;] ue(v)
num_anchor_refs 11]1] ue(v)

for(j=0;j <num anchor refs 11[1];j++)

anchor_ref 11[1][;] ue(v)

}

for(i=1;1<=num views minusl; i++) {

num_non_anchor_refs_10[1] ue(v)

for(j=0;j<num non anchor refs 10[1]; j++)

non_anchor_ref 10[1][j] ue(v)

num_non_anchor_refs 11[1] ue(v)

for(j=0;j<num non anchor refs 11[1]; j++)

non_anchor_ref 11[1][j] ue(v)

}

num_level_values_signaled_minus1 ue(v)

for(1=0;1<=num level values signaled minusl; i++) {
level idc[i] u(8)

num_applicable_ops_minus1[1] ue(v)

for(j =0;j <=num applicable ops minusl[i];j++) {

applicable_op_temporal_id[1][]] u(3)

applicable_op_num_target_views_minus1[1][]] ue(v)

for(k=0; k<=

applicable op num target views minusl[1i][j]; k++)

applicable_op_target_view_id[1][j][k] ue(v)

applicable_op_num_views_minus1[i][]] ue(v)

§
§
§

[0093] In the SPS MVC extension, for cach view, the number of views that can be used
to form reference picture list 0 and reference picture list 1 are signaled. A prediction
relationship for an anchor picture, as signaled in the SPS MVC extension, can be
different from the prediction relationship for a non-anchor picture (signaled in the SPS
MVC extension) of the same view.

[0094] Parameter scts for HEVC will now be described. In HEVC WD7, the video,
sequence, picture and adaptation parameter set mechanism in HEVC decouples the

transmission of infrequently changing information from the transmission of coded block

WO 2014/008286 PCT/US2013/049121
25

data. Video, sequence, picture and adaptation parameter sets may, in some applications,
be conveyed “out-of-band,” i.¢., not transported together with the units containing coded
video data. Out-of-band transmission is typically reliable.

[0095] In HEVC WD?7, an identifier of a video sequence parameter set (VPS), sequence
parameter set (SPS), picture parameter set (PPS) or adaptation parameter set (APS) is
coded using a variable length syntax element 'ue(v)'. Each SPS includes an SPS ID and
a VPS ID, cach PPS includes a PPS ID and an SPS ID, and each slice header includes a
PPS ID and possibly an APS ID.

[0096] Though a video parameter set (VPS) is supported in HEVC WD7, most of the
sequence level information parameters are still only present in the SPS. Several
problems or potential drawbacks of the VPS design of WD7 exist. As one example, a
significant amount of the information contained in SPSs might either be the same for all
the SPSs or be the same for at least two SPSs. Duplicating this information in the SPS
requires higher bandwidth. The parameter sets (including at least VPS, SPS and PPS)
may need to be signaled out-of-band. If signaled in-band, such bit-rate increase is
effective to each tune-in at a random access point.

[0097] As a second example, in potential HEVC extensions, if similar design principles
as AVC are followed, then a majority of the operation point description information
may not be included in the SPS or VPS, and instead, SEI messages may be used for
session initialization and negotiation. Thus, a MANE may be required to parse SPS,
VPS, and SEI messages for the above mentioned purposes. As a third example, some
information that is present in the SPS in WD7 may be changed or removed in HEVC
extensions.

[0098] To address the potential problems discussed above, this disclosure proposes
several techniques for the design of parameter sets, including the VPS or other
parameter sets. For example, according to the techniques described in this disclosure,
information that is typically the same for the whole coded video sequence may be
present in the VPS, while only syntax elements that might change in the SPS level may
be present in SPS. Other syntax elements may be excluded from the SPS if already
present in VPS.

[0099] As another example of the techniques of this disclosure, information related to
session negotiation may be present in VPS. Examples of information related to session
negotiation include profile information, level information, frame resolution information,

frame rate information, and bit rate information, as well as other information. As

WO 2014/008286 PCT/US2013/049121
26

another example of the techniques of this disclosure, the VPS may be designed in a way
that the parsing of the operation points information that are important for session
negotiation do not require variable length coding, including potentially information for
both the base layer or view and for the enhancement layers or views. The syntax
elements in VPS may be grouped so that for each group, the HEVC extension might
provide zero or more instances, and the operation points in the HEVC extension only
refer to an index.

[0100] Various examples of the syntax and semantics for VPS, SPS, video usability
information (VUI), and HRD parameters and slice header are provided below. Tables
2-6 illustrate a first example. Table 1, set forth above, shows an example of VPS
syntax. The “descriptor” columns in Tables 2-6, as well as in the other tables in this
disclosure, identify the number of bits for each syntax element, with “v” indicating the
number of bits may be variable. Number values in the “descriptor” column indicate the
syntax element is conveyed using a fixed number of bits. For example, “u(8)” signifies
a syntax element with a fixed number of eight bits, whereas “ue(v)” signifies a syntax
element with a variable number of bits. In order to parse syntax elements with the
descriptor ue(v), the parsing device (such as a video decoder or MANE) may need to

implement entropy coding in order to decode and interpret such syntax elements.

WO 2014/008286 - PCT/US2013/049121
Table 2 - Video parameter set RBSP syntax
video_parameter set rbsp() { Descriptor
vps_max_temporal_layers_minusl u(3)
vps_max_layers_minusl u(s)
profile_space u(3)
profile_idc u(s)
for(j=0;j <32;j++)
profile_compatability_flag[1] u(l)
constraint_flags u(l6)
level_idc u(8)
level_lower_temporal_layers_present flag u(l)
if(level lower temporal layers present flag)
for(1=0;1<vps max temporal layers minusl; i++)
level _idc_temporal _subset[1] u(8)
video_parameter_set_id u(s)
vps_temporal_id_nesting_flag u(l)
chroma_format_idc u2)
if(chroma format idc == 3)
separate_colour_plane_flag u(l)
bit_depth_luma_minus8 u(2)
bit_depth_chroma_minus8 u(2)
pic_width_in_luma_samples u(16)
pic_height_in_luma_samples u(16)
for (1=0; 1 <=vps_max_temporal layers minusl;i++) {
bitrate_info_present_flag[1] u(l)
frm_rate_info_present_flag[1] u(l)
if(bitrate_info_present flag[i]) {
avg_bitrate[1] u(l6)
max_bitrate [1] u(16)
§
if(frm_rate_info_present flag[i]) {
constant_frm_rate_idc[1] u(2)
avg_frm_rate[1] u(16)
§
§
next_essential_info_byte offset u(12)
pic_cropping_flag u(l)
if(pic_cropping_flag) {
pic_crop_left_offset ue(v)
pic_crop_right_offset ue(v)
pic_crop_top_offset ue(v)
pic_crop_bottom_offset ue(v)
§
for (1=0, nalHrdPresent = 0, vclHrdPresent = 0;
1<=vps max temporal layers minusl;i++) {
nal_hrd_parameters_present_flag[1] u(l)
if(nal_hrd parameters present flag[1]) {

WO 2014/008286 - PCT/US2013/049121
hrd parameters(nalHrdPresent)
nalHrdPresent++
}
vel_hrd_parameters_present_flag[1] u(l)
if(vel hrd parameters present flag[1]) {
hrd parameters(vclHrdPresent)
vclHrdPresent++
}
if(nalHrdPresent + velHrdPresent == 1) {
low_delay_hrd_flag u(l)
sub_pic_cpb_params_present_flag u(l)
num_units_in_sub_tick u(32)
}
vps_max_dec_pic_buffering] 1] ue(v)
vps_num_reorder_pics|[1] ue(v)
vps_max_latency_increase[1] ue(v)
}
vui_parameters_present_flag u(l)
if (vui_parameters_present_flag)
vui_parameters()
num_vps_short_term_ref pic_sets ue(v)
for(1=0;1<num_vps_short term ref pic_sets; i++)
short term ref pic set(1)
vps_extension_flag u(l)
if(vps_extension_flag)
while(more rbsp_data())
vps_extension_data_flag u(l)
}
rbsp_trailing_bits()
}
Table 3 - Sequence parameter set RBSP syntax
seq_parameter_set rbsp() { Descriptor
seq_parameter_set_id ue(v)
video_parameter_set_id ue(v)
pcm_enabled_flag u(l)
if{ pcm_enabled flag) {
pcem_sample bit_depth_luma_minus1 u(4)
pcem_sample bit_depth_chroma_minusl u(4)
}
log2_max_pic_order_cnt_Isb_minus4 ue(v)
restricted_ref pic_lists_flag u(l)
if(restricted_ref pic lists_flag)
lists_modification_present_flag u(l)
log2_min_coding_block_size minus3 ue(v)
log2_diff max_min_coding_block_size ue(v)

WO 2014/008286 PCT/US2013/049121

29

log2_min_transform_block_size minus2 ue(v)
log2 diff max_min_transform_block_size ue(v)
if(pcm_enabled flag) {

log2_min_pcm_coding_block_size_minus3 ue(v)

log2_diff max_min_pcm_coding_block_size ue(v)
}
max_transform_hierarchy_depth_inter ue(v)
max_transform_hierarchy_depth_intra ue(v)
scaling_list_enable_flag u(l)
if(scaling_list enable flag) {

sps_scaling_list_data_present_flag u(l)

if(sps_scaling_list data present flag)

scaling_list param()

}
chroma_pred_from_luma_enabled_flag u(l)
transform_skip_enabled_flag u(l)
seq_loop_filter_across_slices_enabled_flag u(l)
asymmetric_motion_partitions_enabled_flag u(l)
nsrqt_enabled_flag u(l)
sample_adaptive_offset_enabled_flag u(l)
adaptive_loop_filter_enabled_flag u(l)
if(adaptive loop filter enabled flag)

alf _coef_in_slice flag u(l)
if{ pcm_enabled flag)

pem_loop_filter disable_flag u(l)
if(log2 min coding block size minus3 ==0)

inter_4x4_enabled_flag u(l)
num_short_term_ref pic_sets ue(v)
use_rps_from_vps_{flag u(l)
for(1=0;1<num short term ref pic sets; i++){

idx =use_rps_from vps flag ? num vps short term ref pic sets+1i:1

short term ref pic_set(idx)
}
long_term_ref pics_present_flag u(l)
sps_temporal_mvp_enable_flag u(l)
tiles_fixed_structure_idc u(2)
sps_extension_flag u(l)
if(sps_extension_flag)

while(more rbsp_data())

sps_extension_data_flag u(l)
rbsp_trailing_bits()
}

WO 2014/008286
30

Table 4 - VUI parameters syntax

PCT/US2013/049121

vui_parameters() { Descriptor
aspect_ratio_info_present_flag u(l)
if(aspect ratio info present flag) {
aspect_ratio_idc u(8)
if(aspect ratio idc == Extended SAR) {
sar_width u(16)
sar_height u(16)
}
}
overscan_info_present_flag u(l)
if(overscan_info_present flag)
overscan_appropriate_flag u(l)
video_signal type present_flag u(l)
if(video_signal type present flag) {
video_format u(3)
video_full range flag u(l)
colour_description_present_flag u(l)
if(colour_description_present flag) {
colour_primaries u(8)
transfer_characteristics u(8)
matrix_coefficients u(8)
}
}
chroma_loc_info_present_flag u(l)
if(chroma_loc_info present flag) {
chroma_sample_loc_type_top_field ue(v)
chroma_sample_loc_type_bottom_field ue(v)
}
neutral_chroma_indication_flag u(l)
field_seq_flag u(l)
timing_info_present_flag u(l)
if(timing_info present flag) {
num_units_in_tick u(32)
time_scale u(32)
fixed_pic_rate_flag u(l)
}
bitstream_restriction_flag u(l)
if(bitstream_restriction_flag) {
motion_vectors_over_pic_boundaries_flag u(l)
max_bytes_per_pic_denom ue(v)
max_bits_per_mincu_denom ue(v)
log2_max_mv_length_horizontal ue(v)
log2_max_mv_length_vertical ue(v)
}
}

WO 2014/008286

31

Table S - HRD parameters syntax

PCT/US2013/049121

hrd parameters(1) { Descriptor
ifi ==0){
cpb_cnt_minusl ue(v)
bit_rate scale u(4)
cpb_size scale u(4)
§
for(SchedSelldx = 0; SchedSelldx <= ¢pb_cnt_minusl; SchedSelldx++) {
bit_rate_value_minus1| i][SchedSelldx] ue(v)
cpb_size_value _minus1[i] [SchedSelldx] ue(v)
ifti==0)
cbr_flag[SchedSelldx] u(l)
§
ifli==10){
initial_cpb_removal_delay length_minusl u(s)
cpb_removal_delay_length minusl u(s)
dpb_output_delay_length minusl u(s)
time_offset_length u(s)
H
§
Table 6 - Slice header syntax
slice_header() { Descriptor
first_slice_in_pic_flag u(l)
pic_parameter_set_id ue(v)
if(Mirst_slice in pic flag)
slice_address u(v)
if(dependent slice enabled flag && !first slice in pic flag)
dependent_slice flag u(l)
if('dependent slice flag) {
slice_type ue(v)
if{ output flag present flag)
pic_output_flag u(l)
if(separate_colour_plane_flag == 1)
colour_plane_id u(2)
if{ RapPicFlag) {
rap_pic_id ue(v)
no_output_of prior_pics_flag u(l)
§
if('IdrPicFlag) {
pic_order_cnt_Isb u(v)
short_term_ref pic_set_sps_flag u(l)
if('short_term ref pic set sps flag)
short term ref pic_set(NumShortTermRefPicSets)
else
short_term_ref pic_set_idx u(v)

WO 2014/008286 3 PCT/US2013/049121
if(long_term ref pics present flag) {
num_long_term_pics ue(v)
for(1=0;1<num_long term pics; i++) {
poc_Isb_1t[1] u(v)
delta_poc_msb_present_flag[i] u(l)
if(delta_poc_msb_present flag[i1])
delta_poc_msb_cycle It[1] ue(v)
used_by_curr_pic_It_flag[1] u(l)
}
}
}
if(sample_adaptive offset enabled flag) {
slice_sample_adaptive_offset_flag[O] u(l)
if(slice_sample adaptive offset flag[0]) {
slice_sample_adaptive_offset_flag[1] u(l)
slice_sample_adaptive_offset_flag[2] u(l)
}
}
if(adaptive loop_filter enabled flag)
aps_id ue(v)
if(slice type == P || slice type == B) {
if(sps_temporal mvp enable flag)
pic_temporal_mvp_enable_flag u(l)
num_ref idx_active_override_flag u(l)
if{ num_ref idx_active_override flag) {
num_ref _idx 10 _active_minusl ue(v)
if(slice_type == B)
num_ref _idx 11 _active_minusl ue(v)
}
}
if(lists modification present flag)
ref pic list modification()
if(slice type==B)
mvd_11_zero_flag u(l)
if(cabac_init present flag && slice type '=1)
cabac_init_flag u(l)
slice_qp_delta se(v)
if(deblocking filter control present flag) {
if(deblocking filter override enabled flag)
deblocking_filter override_flag u(l)
if(deblocking filter override flag) {
slice_header_disable_deblocking_filter flag u(l)
if(!slice_header disable deblocking filter flag) {
beta_offset_div2 se(v)
tc_offset_div2 se(v)
}

PCT/US2013/049121

WO 2014/008286
33

}

if(pic_temporal mvp enable flag) {

if(slice type==B)
collocated_from_l10_flag

u(l)

if(slice_type =1 &&
((collocated from 10 flag && num ref idx 10 active minusl >0) ||

(Icollocated from 10 flag && num ref idx 11 active minusl >0))
collocated_ref_idx ue(v)
§
if((weighted pred flag && slice type ==P) ||
(weighted bipred idc == 1 && slice type == B))
pred_weight table()
if(slice type ==P | |slice type==B)
five_minus_max_num_merge_cand ue(v)
if(adaptive loop filter enabled flag) {
slice_adaptive_loop_filter flag u(l)
if(slice_adaptive loop filter flag && alf coef in slice flag)

alf param()
if(slice_adaptive loop filter flag && lalf coef in slice flag)

alf cu control param()

§
if(seq loop_filter across slices enabled flag &&
(‘slice_adaptive loop filter flag || slice sample adaptive offset flag ||
'disable deblocking filter flag))
slice_loop_filter_across_slices_enabled_flag u(l)
§
if(tiles_or entropy coding sync idc == 1 ||
tiles or entropy coding sync idc == 2) {
num_entry_point_offsets ue(v)
if{ num_entry point offsets >0) {
offset_len_minus1 ue(v)
for(1=0;1<num entry point offsets; i++)
entry_point_offset[1] u(v)
§
§
if(slice_header extension present flag) {
slice_header_extension_length ue(v)
for(1=0;1 <slice_header extension length; i++)
slice_header_extension_data_byte u(8)

§
byte alignment()

[0101] Video parameter set RBSP semantics, such as those shown in Table 2 above,

will now be described. The syntax element video parameter set id in Table 2 provides

an identification for the video parameter set. Using the value of

WO 2014/008286 PCT/US2013/049121
34

video parameter set id, another syntax structure, such as an SPS, can activate a
particular VPS. Table 3, for example, which shows an example SPS syntax structure,
also includes a syntax clement video_parameter set id. Based on the value of the
syntax element video_parameter set id in the SPS, a particular VPS with that same
value can be activated for coding video blocks associated with the SPS. Typically,
multiple SPSs will be associated with the same VPS. As an example, video decoder 30
may receive in the video data a first SPS that includes a first value for the syntax
clement video parameter set id, and video decoder 30 may also receive a second SPS
that includes the same value for the syntax element video parameter set id . The first
SPS may be a first syntax structure including a first group of syntax elements that apply
to one or more whole pictures of video data, and the second SPS may be a second
syntax structure that includes a second group of syntax elements that apply to one or
more different whole pictures of video data. Video decoder 30 decodes video blocks
associated with both the first SPS and the second SPS based on parameters from the
same VPS.

[0102] The syntax elements profile space, profile idc, profile compatability flag[1],
constraint_flags, level idc, bit depth luma minus§, bit _depth _chroma minusS,
chroma format idc, pic_ width in luma samples, pic_height in luma samples,
pic_cropping_flag, pic_crop left offset, pic_crop right offset, pic_crop top offset,
pic_crop_bottom offset, temporal id nesting flag and separate colour plane flag
have the same semantics of those syntax elements with the same syntax element names
in the sequence parameter set as specified in the WD7 but according to the proposed
techniques of this disclosure have been moved from the SPS to the VPS.

[0103] The syntax element profile space identifies a context for interpreting the syntax
element profile idc, and the syntax element profile idc identifies a group of profiles.
The syntax elements profile compatability flag[1] may identify if the video data is
compatible with profile [i]. Video decoder 30 may, for example, receive in the video
data a values for profile_space and profile idc, and based on the value of profile space,
identify a context for interpreting the syntax element profile idc. Based on the
interpreted value of profile idc, video decoder 30 can identify a group of profiles, and
for each profile, video decoder 30 can receive a value for the syntax element

profile _compatability flag[i] to identify if the video data is compatible with profile [i].

The syntax element profile idc may, for example, have 32 associated flags, each flag

WO 2014/008286 PCT/US2013/049121
35

indicating a specific aspect of the profile. For example, a flag may indicate if one
particular coding or process tool is turned on or off, given the same profile.

[0104] The syntax element level idc identifies a maximum level associated with the
video data, and the syntax element level lower temporal layers present flag identifies
if a temporal layer of the video data has a level that is lower than the maximum level.
The syntax element level lower temporal layers present flag set equal to 1 specifies
that level idc temporal subset[i | may be present. The syntax element

level lower temporal layers present flag set equal to 0 specifies that

level idc temporal subset[i] is not present. The syntax element

level idc temporal subset[i | specifies the level to which the bitstream subset
consisting of all NAL units with temporal id less than or equal to 1 conforms.

[0105] Video decoder 30 may, for example, in response to receiving a syntax element
level lower temporal layers present flag set equal to 1 receive syntax elements

level idc temporal subset[i]. The syntax elements level idc temporal subset[i]
may be present to identify a level to which temporal layer [i] complies.

[0106] The syntax elements vps_temporal id nesting flag,
vps_temporal id nesting_flag, vps_max_dec_pic buffering[i],

vps_num_reorder pics[1], and vps_max_latency increase[i1 | have the same semantics
of the following syntax elements respectively in the sequence parameter set of the
HEVC WD 7: sps_temporal _id nesting_flag, sps_temporal id nesting flag,

sps max_dec pic_buffering[i], sps num reorder pics[1i],

sps_max_latency increase[i].

[0107] The syntax element next essential info byte offset is an example of the offset
syntax element introduced in this disclosure. The syntax element

next _essential info byte offset specifies the byte offset of the next set of profile and
level information and other fixed-length coded information in the VPS NAL unit,
starting from the beginning of the NAL unit. MANE 29, for example, may receive the
syntax clement next essential info byte offset and determine a number of bytes
indicated by the syntax element next essential info byte offset, and based on the
determined number of bytes, MANE 29 may skip one or more the variable length coded
syntax elements shown in Table 2, such as the variable length syntax elements
pic_crop left offset, pic_crop right offset, pic crop top offset,

pic_crop_bottom offset, and the other variable length syntax elements shown in Table

2. Video decoder 30, however, upon receiving the syntax element

WO 2014/008286 PCT/US2013/049121
36

next essential info byte offset may ignore the value of the syntax element. Thus, after
parsing the syntax element next _essential info_byte offset, video decoder 30 may
continue parsing the variable length syntax elements pic_crop left offset,
pic_crop right offset, pic_crop top offset, pic_crop bottom offset, and the other
variable length syntax elements shown in Table 2.

[0108] In a future extension of the HEVC specification, for example a scalable coding
extension or a 3DV extension, VPS information for a non-base layer or view may be
included in the VPS NAL unit after the VPS information for the base layer or view.

The VPS information for a non-base layer or view also may start with fixed-length
syntax elements, such as coded profile, level, and other information essential for session
negotiation. Using the bit offset specified by next_essential info byte offset, MANE
29 may locate and access that essential information in the VPS NAL unit without the
need to perform entropy decoding. Some network entities (¢.g. MANE 29) configured
to transport and process video data may not be equipped for entropy decoding. Using
an offset syntax element as described in this disclosure, however, such network entities
can still process some aspects of a parameter set, and use information contained in the
processed syntax element when making routing decision for video data. An example of
information that a network entity may process when making routing decisions includes
information related to session negotiation.

[0109] The syntax elements nal _hrd parameters present flag[i] and

vcl hrd parameters present flag[i] have the similar semantic as

nal_hrd parameters present flag, and vcl hrd parameters present flag that are present
in VUI parameters of WD7, but are applicable to the i-th temporal layer representation.
The syntax element nal_hrd parameters present flag may, for example, signal whether
HRD parameters such as bitrate, coded picture buffer (CPB) size, and initial CPB
removal delay (initial cpb_removal delay length minusl), a CPB removal delay
(cpb_removal delay length minusl), a DPB output delay
(dpb_output delay length minusl), and a time offset length (time offset length). The
syntax elements may, for example, include a syntax element (cbr flag) indicating if the
bit rate for the video date is constant or variable.

[0110] The syntax element low_delay hrd flag may be used to indicate the removal
time of a decoding unit from a DPB. The syntax element

sub_pic_cpb params present flag equal to 1 may specify that sub-picture level CPB

removal delay parameters are present and the CPB may operate at an access unit level or

WO 2014/008286 PCT/US2013/049121
37

sub-picture level. The syntax element sub_pic_cpb_params present flag equal to 0
may specifies that sub-picture level CPB removal delay parameters are not present and
the CPB operates at an access unit level. The syntax element num_units_in_sub_tick
represents the number of time units of a clock operating at the frequency time_scale Hz
that corresponds to one increment (called a sub-picture clock tick) of a sub-picture clock
tick counter . The HRD parameters discussed above may be applicable to all temporal
layer representations.
[0111] The syntax element vui_video parameters present flag set equal to 1 specifies
that the vui_vps() syntax structure is present in the VPS. This flag set equal to 0
specifies that the vui_vps() syntax element is not present. The syntax element
num_vps_short_term ref pic_sets specifies the number of short-term reference picture
sets that are specified in the video parameter set. The syntax element
bitrate_info present flag[i] set equal to 1 specifies that the bit rate information for the
i-th temporal layer is present in the video parameter set. The syntax element
bitrate info present flag[i] set to 0 specifies that the bit rate information for the i-th
temporal layer is not present in the VPS.
[0112] The syntax element frm_rate info present flag[i] set to 1 specifies that frame
rate information for the i-th temporal layer is present in the video parameter set. The
syntax element frm rate info present flag[i] set equal to 0 specifies that frame rate
information for the i-th temporal layer is not present in the video parameter set.
[0113] The syntax element avg_bitrate[1 | indicates the average bit rate of the i-th
temporal layer representation. The average bit rate for the i-th temporal layer
representation in bits per second is given by BitRateBPS(avg_bitrate[1 |) with the
function BitRateBPS() being specified by

BitRateBPS(x) =(x & (2= 1)) * 1002 x>>14))
[0114] The average bit rate may be derived according to the access unit removal time
specified in Annex C of the HEVC standard. In the following, bTotal is the number of
bits in all NAL units of the i-th temporal layer representation, t; is the removal time (in
seconds) of the first access unit to which the VPS applies, and t; is the removal time (in
seconds) of the last access unit (in decoding order) to which the VPS applies.
[0115] With x specifying the value of avg_bitrate[i], the following applies:

- If t; is not equal to t,, the following condition may be true:

(x & (2" =1)) == Round(bTotal + ((t,—t;) * 1027190y

WO 2014/008286 PCT/US2013/049121
38

- Otherwise (t; is equal to t3), the following condition may be true:

(x&(2"-1))==0
[0116] The syntax element max_bitrate layer[1 | indicates an upper bound for the bit
rate of the i-th temporal layer representation in any one-second time window, of access
unit removal time as specified in Annex C. The upper bound for the bit rate of the
current scalable layer in bits per second is given by BitRateBPS(max_bitrate layer[1])
with the function BitRateBPS() being specified in Equation G-369. The bit rate values
are derived according to the access unit removal time specified in Annex C of the
HEVC standard. In the following, t; is any point in time (in seconds), t; is set equal to
t; + max_bitrate calc_window[i] = 100, and bTotal is the number of bits in all NAL
units of the current scalable layer that belong to access units with a removal time greater
than or equal to t; and less than t,. With x specifying the value of
max_bitrate layer[1], the following condition may be obeyed for all values of t;:
(x & (2" =1)) >= bTotal = ((ty—t;)* 102" (x> 1))y,
[0117] The syntax element constant frm rate idc[i] indicates whether the frame rate
of the i-th temporal layer representation is constant. In the following, a temporal
segment tSeg is any set of two or more consecutive access units, in decoding order, of
the current temporal layer representation, fTotal(tSeg) is the number of pictures, in the
temporal segment tSeg, t;(tSeg) is the removal time (in seconds) of the first access unit
(in decoding order) of the temporal segment tSeg, t2(tSeg) is the removal time (in
seconds) of the last access unit (in decoding order) of the temporal segment tSeg, and
avgFR(tSeg) is the average frame rate in the temporal segment tSeg, which is given by:
avgFR(tSeg) == Round(fTotal(tSeg) * 256 + (to(tSeg) — t1(tSeg)))
[0118] If the i-th temporal layer representation does only contain one access unit or the
value of avgFR(tSeg) is constant over all temporal segments of the i-th temporal layer
representation, the frame rate is constant; otherwise, the frame rate is not constant. The
syntax element constant frm rate idc[1] set equal to 0 indicates that the frame rate of
the i-th temporal layer representation is not constant. The syntax element
constant frm rate idc[i] set equal to 1 indicates that the frame rate of the i-th temporal
layer representation is constant.
[0119] The syntax element constant frm rate idc[i] set equal to 2 indicates that the
frame rate of the i-th temporal layer representation may or may not be constant. The

value of constant_frm_rate idc[1] may be in the range of 0 to 2, inclusive.

WO 2014/008286 PCT/US2013/049121
39

[0120] The syntax element avg frm_rate[i | indicates the average frame rate, in units of
frames per 256 seconds, of the i-th temporal layer representation. With fTotal being the
number of pictures in the i-th temporal layer representation, t; being the removal time
(in seconds) of the first access unit to which the VPS applies, and t; being the removal
time (in seconds) of the last access unit (in decoding order) to which the VPS applies,
the following applies:
[0121] Ift; is not equal to ty, the following condition may be true:

avg_frm rate[1] == Round(fTotal * 256 + (t—t;))
Otherwise (t; is equal to t,), the following condition may be true:

avg frm rate[i] ==
[0122] VUI parameters semantics will now be described. Each syntax element in the
VUI parameters has the same semantics as the syntax element with the same name in
the VUI parameters syntax as specified in WD7.
[0123] Sequence parameter set RBSP semantics will now be described. The syntax
element use rps_from_vps_flag set equal to 1 specifies that the short-term reference
pictures sets included in the sequence parameter set are additive to the short-term
reference pictures sets included in the referred video parameter set. The syntax element
use rps_from vps flag set equal to 0 specifies that the short-term reference pictures
sets included in the sequence parameter set override the short-term reference pictures
sets included in the referred video parameter set.
[0124] Alternatively, the syntax element num_short term_ref pic sets may not be
present in the SPS and may always be inferred to be set equal to 0. Alternatively, the
syntax element use rps_from_vps_flag may not be present and may always be inferred
to be set equal to 1. Alternatively, the syntax element use rps_from vps_flag may not
be present and may always be inferred to be set equal to 0.
[0125] The variable NumShortTermRefPicSets can be derived as follows.
NumShortTermRefPicSets = num_short term_ref pic_sets
if(use rps_from_vps_flag)

NumShortTermRefPicSets += num_vps short term ref pic sets
[0126] Slice header semantics will now be described. The syntax element
short_term_ref pic_set idx specifies the index to the list of the short-term reference
picture sets specified in the active sequence parameter set that may be used for creation
of the reference picture set of the current picture. The syntax element

short_term_ref pic_set idx may be represented by

WO 2014/008286 PCT/US2013/049121
40

Ceil(Log2(NumShortTermRefPicSets)) bits. The value of short term_ref pic set idx
may be in the range of 0 to num_short term_ref pic_sets — 1, inclusive, where
num_short term_ref pic_sets is the syntax element from the active sequence parameter
sct.
[0127] The variable StRpsldx may be derived as follows.
if(short_term_ref pic set sps flag)

StRpsldx = short _term ref pic_set idx
else

StRpsldx = NumShortTermRefPicSets
[0128] The syntax element tiles fixed structure idc set equal to 0 indicates that each
picture parameter set referred to by any picture in the coded video sequence has
tiles_or entropy coding sync_idc set equal to 0. The syntax element
tiles_fixed_structure idc set equal to 1 indicates that each picture parameter set that is
referred to by any picture in the coded video sequence has the same value of the syntax
elements num_tile columns minusl, num_tile rows minusl, uniform spacing flag,
column_width[1], row_height[i] and loop_filter across tiles enabled flag, when
present. The syntax element tiles fixed structure idcg set equal to 2 indicates that tiles
syntax elements in different picture parameter sets that are referred to by pictures in the
coded video sequence may or may not have the same value. The value of
tiles_fixed structure idc may be in the range of 0 to 2, inclusive. When the syntax
clement tiles fixed structure flag is not present, it is inferred to be equal to 2.
[0129] The signaling of the syntax element tiles fixed structure flag set equal to 1 may
be a guarantee to a decoder that each picture in the coded video sequence has the same
number of tiles distributed in the same way which might be useful for workload
allocation in the case of multi-threaded decoding.
[0130] A second example, similar to the first example described above, will now be
described. In this second example, the syntax elements remaining in the SPS may be
present in the VPS and conditionally present in the SPS. The syntax and semantics of
the VPS and SPS according to this example are changed and described below in Tables
7-9.

Table 7 - Video parameter set RBSP syntax

video parameter set rbsp() { Descriptor

vps_max_temporal_layers_minusl u3)

vps_max_layers_minusl u(s)

WO 2014/008286 4l PCT/US2013/049121
profile_space u(3)
profile_idc u(s)
for(j=0;) <32;j++)

profile_compatability flag[1] u(l)
constraint_flags u(16)
level_idc u(8)
level lower_temporal_layers_present flag u(l)
if(level lower temporal layers present flag)

for (1=0; 1<vps max_temporal layers minusl; i++)

level _idc_temporal _subset[1] u(8)
video_parameter_set_id u(s)
vps_temporal_id_nesting_flag u(l)
chroma_format_idc u(2)
if(chroma_format idc == 3)

separate_colour_plane_flag u(l)
bit_depth_luma_minus8 u(2)
bit_depth_chroma_minus8 u(2)
pic_width_in_luma_samples u(16)
pic_height_in_luma_samples u(16)
for (1=0; 1<=vps_max_temporal layers minusl; i++) {

bitrate_info_present_flag[i] u(l)

frm_rate_info_present flag[i] u(l)

if(bitrate_info_present flag[i]) {
avg_bitrate[1] u(16)
max_bitrate [1] u(16)
}
if(frm_rate_info_present flag[i]) {
constant_frm_rate_idc[1] u(2)
avg_frm_rate[i] u(16)
}
}
next_essential_info_byte_offset u(12)
pic_cropping_flag u(l)
if(pic_cropping flag) {
pic_crop_left offset ue(v)
pic_crop_right_offset ue(v)
pic_crop_top_offset ue(v)
pic_crop_bottom_offset ue(v)
}
for (1 =0, nalHrdPresent = 0, vclHrdPresent = 0;
1<=vps max temporal layers minusl;i++) {
nal_hrd_parameters_present_flag[1] u(l)
if(nal hrd parameters present flag[1]) {
hrd parameters(nalHrdPresent)
nalHrdPresent++
}
vel_hrd_parameters_present_flag[i] u(l)

WO 2014/008286 ” PCT/US2013/049121
if(vel hrd parameters present flag[1]) {
hrd parameters(vclHrdPresent)
vclHrdPresent++
}
if(nalHrdPresent + velHrdPresent ==1) {
low_delay_hrd_flag u(l)
sub_pic_cpb_params_present_flag u(l)
num_units_in_sub_tick u(32)
}
vps_max_dec_pic_buffering] 1] ue(v)
vps_num_reorder_pics|[1] ue(v)
vps_max_latency_increase[1] ue(v)
}
vui_parameters_present_flag u(l)
if (vui_ parameters_present flag)
vui_parameters()
num_vps_short_term_ref pic_sets ue(v)
for(1=0;1<num_vps_short term ref pic_sets; i++)
short term ref pic set(1)
optional sps parameters()
vps_extension_flag u(l)
if(vps_extension_flag)
while(more rbsp_data())
vps_extension_data_flag u(l)
}
rbsp_trailing_bits()
}

WO 2014/008286 PCT/US2013/049121
43

Table 8 - Sequence parameter set RBSP syntax

seq_parameter_set rbsp() { Descriptor
seq_parameter_set_id ue(v)
video_parameter_set_id ue(v)
num_short_term_ref pic_sets ue(v)
use_rps_from_vps_{flag u(l)

for(1=0;1<num short term ref pic sets; i++){

idx =use rps_from vps flag ? num vps short term ref pic sets+1i:1

short term ref pic_set(idx)

}

sps_parameters_override_flag u(l)

if(sps_parameters_override flag) {

optional sps parameters()

sps_extension_flag u(l)

if(sps_extension flag)

while(more rbsp data())

sps_extension_data_flag u(l)

rbsp_trailing bits()

Table 9 - Optional SPS parameters

optional sps parameters() {

pcm_enabled_flag u(l)
if(pcm_enabled flag) {

pcem_sample bit_depth_luma_minus1 u4)

pcem_sample bit_depth_chroma_minusl u4)
§
log2 _max_pic_order_cnt_Isb_minus4 ue(v)
restricted_ref pic_lists flag u(l)
if(restricted _ref pic lists flag)

lists_modification_present_flag ul)
log2_min_coding_block_size_minus3 ue(v)
log2_diff max_min_coding_block_size ue(v)
log2 min_transform_block_size_minus2 ue(v)
log2 diff max_min_transform_block_size ue(v)
if{ pcm_enabled flag) {

log2_min_pcm_coding_block_size_minus3 ue(v)

log2 diff max_min_pcm_coding_block_size ue(v)
§
max_transform_hierarchy_depth_inter ue(v)
max_transform_hierarchy_depth_intra ue(v)
scaling list_enable_flag u(l)

if(scaling list enable flag) {

sps_scaling_list_data_present_flag u(l)

if(sps_scaling list data present flag)

WO 2014/008286 PCT/US2013/049121

44
scaling_list param()

i
chroma_pred_from_luma_enabled_flag u(l)
transform_skip_enabled_flag u(l)
seq_loop_filter_across_slices_enabled_flag u(l)
asymmetric_motion_partitions_enabled_flag u(l)
nsrqt_enabled_flag u(l)
sample_adaptive_offset_enabled_flag u(l)
adaptive_loop_filter_enabled_flag u(l)
if(adaptive loop filter enabled flag)

alf _coef_in_slice flag u(l)
if{ pcm_enabled flag)

pem_loop_filter disable_flag u(l)
if(log2 min coding block size minus3 ==0)

inter_4x4_enabled_flag u(l)
long_term_ref pics_present_flag u(l)
sps_temporal_mvp_enable_flag u(l)
tiles_fixed_structure_idc u(2)

i

[0131] The optional SPS parameters semantics will now be described. The semantics
of the syntax elements and syntax structures in this syntax structure have the same
semantics as those syntax elements in the SPS with the same syntax element names as
specified in the first example.

[0132] Sequence parameter set RBSP semantics will now be described. The syntax
element sps_parameters override flag set equal to 1 specifies that the values of the
syntax elements and syntax structures from pcm_enabled_flag through

tiles_fixed structure idc as specified in the sequence parameter set override the values
of the same syntax elements and syntax structures as specified in the referred video
parameter set. The syntax element sps_parameters _override flag set equal to 0 the
values of the syntax elements and syntax structures from pcm_enabled flag through
tiles_fixed_structure idc as specified in the referred video parameter set are in use.
[0133] The syntax element next essential byte offset shown in Table 7 may be
processed and parsed by MANE 29 and/or video decoder 30 in the manner described
above with reference to Table 2. Similarly, the syntax elements,

video parameter set id ,profile idc, and profile space may also be generated by video
encoder 20 and processed and parsed by video decoder 30 in the manner described

above.

WO 2014/008286
45

PCT/US2013/049121

[0134] A third example is a superset of the first example. In this third example, the

syntax may be designed in a manner that makes extensions easier to implement. In

addition, an extension of the VPS may be supported in this example. The syntax design

or semantics design of a syntax table which is exactly the same as the counterpart in the

first example is not present. The third example is described below with reference to

Tables 10-19.

Table 10 - Video parameter set RBSP syntax (base specification only)

video_parameter set rbsp() { Descriptor
vps_max_temporal_layers_minusl u3)
vps_max_layers_minusl u(s)
profile level info(0, vps max_temporal layers minusl)
video_parameter_set_id u(s)
vps_temporal_id_nesting_flag u(l)
rep_format info(0,0)
bitrate framerate info(0, vps max_temporal layers minusl)
next_essential_info_byte offset u(12)
rep_format info(0, 1)
for(1=0; 1 <=vps max_temporal layers minusl;i++) {
vps_max_dec_pic_buffering[i] ue(v)
vps_num_reorder_pics[1] ue(v)
vps_max_latency_increase[1] ue(v)
§
hrd info(0, vps_max_temporal layers minusl)
vui_vps set(0)
num_vps_short_term_ref pic_sets ue(v)
for(1=0;1<num vps short term ref pic sets; i++)
short term ref pic set(1)
vps_extension_flag u(l)
if(vps_extension flag)
while(more rbsp data())
vps_extension_data_flag u(l)
rbsp_trailing_bits()
§

WO 2014/008286 PCT/US2013/049121
46

Table 11 - Video parameter set RBSP syntax (including extension)

video parameter set rbsp() { Descriptor
vps_max_temporal_layers_minusl u3)
vps_max_layers_minusl u(s)

profile level info(0, vps max_temporal layers minusl)

video_parameter_set_id u(s)

vps_temporal_id_nesting_flag u(l)

rep_format info(0,0)

bitrate framerate info(0, vps max_temporal layers minusl)

next_essential_info_byte_offset u(12)

rep_format info(0, 1)

for(1=0; 1 <=vps max_temporal layers minusl;i++) {

vps_max_dec_pic_buffering[i] ue(v)
vps_num_reorder_pics[1] ue(v)
vps_max_latency_increase[1] ue(v)

}

hrd info(0, vps_max_temporal layers minusl)

vui_vps_set (0)

num_vps_short_term_ref pic_sets ue(v)

for(1=0;1<num vps short term ref pic sets; i++)

short term ref pic set(1)
—vps—extension—flag wh

bit_equal_to_one u(l)

vps_extension()

vps_extension_flag u(l)

if(vps_extension flag)

while(more rbsp data())

vps_extension_data_flag u(l)

i
rbsp_trailing bits()

WO 2014/008286 PCT/US2013/049121
47

Table 12 - Profile and level information table syntax
profile level info(index, NumTempLevelMinusl) {

profile_space u(3)
profile_ide u(s)
for(j=0;j<32;j++)

profile_compatability flag[I] u(l)
constraint_flags u(16)
level_idc u(8)
level_lower_temporal_layers_present flag u(l)

if(level lower temporal layers present flag)
for (1=0; 1 <NumTempLevelMinusl; i++)
level idc[1] u(8)

profileLevellnfoldx = index

Table 13 - Representation format information table syntax
rep_format info(index, partldx) {

if(!partldx){

chroma_format_idc u(2)
if(chroma format ide == 3)
separate_colour_plane_flag u(l)
bit_depth_luma_minus8 u(2)
bit_depth_chroma_minus8 u(2)
pic_width_in_luma_samples u(1e)
pic_height_in_luma_samples u(1e)
3
else {
pic_cropping_flag u(l)
if(pic_cropping_flag) {
pic_crop_left offset ue(v)
pic_crop_right_offset ue(v)
pic_crop_top_offset ue(v)
pic_crop_bottom_offset ue(v)
§
3

repFormatInfoldx = index

WO 2014/008286 PCT/US2013/049121
48

Table 14 - Bitrate and frame rate information table syntax
bitrate framerate info(TempLevelLow, TempLevelHigh){

for(i=TempLevelLow; i <= TempLevelHigh; i++) {

bitrate_info_present_flag[i] u(l)
frm_rate_info_present_flag[i] u(l)
if(bitrate_info_present flag[i]) {
avg_bitrate[1] u(1e)
max_bitrate [1] u(1e)
§
if(frm_rate_info_present flag[i]) {
constant_frm_rate_idc[1] u(2)
avg_frm_rate[1] u(1e)

Table 15- HRD temporal operation points information table syntax
hrd info(TempLevelLow, TempLevelHigh) {

for (1 =TempLevelLow, nalHrdPresent = 0, velHrdPresent = 0;
1<=NumTempLevelMinusl; i++) {
nal_hrd_parameters_present_flag[1] u(l)

if(nal hrd parameters present flag[1]) {

hrd parameters(nalHrdPresent)
nalHrdPresent++

i
vel_hrd_parameters_present_flag[i] u(l)

if(vel hrd parameters present flag[1]) {

hrd parameters(vclHrdPresent)

vclHrdPresent++
}
if(nalHrdPresent + velHrdPresent ==1) {
low_delay_hrd_flag u(l)
sub_pic_cpb_params_present_flag u(l)
num_units_in_sub_tick u(32)
}

WO 2014/008286

PCT/US2013/049121
49
Table 16 - VUI VPS set table syntax
vui_vps_set(index) {
vui_video_parameters_present_flag u(l)
if(vui_video parameters present flag)
vui_parameters()
vuiVpsSetlndex = index
}
Table 17 - VPS extension syntax
vps_extension() {
byte_alligned_bits uv)
num_additional_profile_level_info u(4)
num_additional_rep_fromat_info u(3)
num_additional_dependency_operation_points u(8)
extension_type u(3)
for(1=0; i< num_additional profile level info; i++)
profile level info(i+ 1, vps max temporal layers minusl)
for(1=0;1<num_additional rep fromat info; i++)
rep_format info(i+1,0)
for (k=0; k< num_additional dependency_ operation points ;k++) {
if(num_additional profile level info)
profile_level index| k] u(4)
if(num_additional rep fromat info)
ref_format_index| k | u(3)
applicable_lowest_temporal _id[k] u(3)
applicable_highest_temporal_id[k] u(3)
}
for (k=0; k< num_additional dependency operation points; k++) {
bitrate framerate info(applicable lowest temporal id[k],
applicable highest temporal id[k])
}
// layer dependency
for (k=0; k< num_additional dependency operation points; k++) {
if(extension_type == 0) { /* Condition always true for 3DV */
depth_included_flag| k | u(l)
num_target_output_views_minus1[k] u(s)
num_depedent_layers| k | u(s)
for(j=0;j <num_target output views_minusl[k]; j++)
layer_id[k][j] u(s)
for(j=0;j <num_depedent layers[k]; j++)
dependent_layer_id[k][]] u(s)
}
else if(extension type == 1)
layer_id[k] u(s)
}
for(1=0;1<num_additional rep fromat info; i++) {
rep_format info(1+1,1)

WO 2014/008286 PCT/US2013/049121
50

// boundary of the fixed-length and ue(v)

/ivui

num_additional_vui_vps_set_info ue(v)

for(1=0; 1 <num_ additional vui_vps_set info;i++)

vui_vps_set(i+1)

for (k=0; k< num_additional dependency operation points; k++) {

if (num_additional vui vps_set info)

vui_vps_set_idx ue(v)

hrd info(applicable lowest temporal id[k],
applicable highest temporal id[k1)

i
i

[0135] Video parameter set RBSP semantics will now be described. The syntax

clement byte alligned bits specifies the possible bits that make the bits in the VPS
NAL unit prior to num_additional profile level info byte aligned. The syntax element
byte alligned bits is in the range of 0 to 7, inclusive. The syntax element
num_additional profile level info specifies the number of additional profile and level
information table present in the VPS. The syntax element
num_additional rep fromat info specifies the number of additional Representation
format information tables present in the VPS. The syntax element

num_additional dependency operation points specifies the number of dependency
operation points further present in the bitstream, regardless of temporal scalability.
Each dependency operation point may include temporal sub operation points, each have
the same layer structure. The syntax element extension type specifies the type of the
extension of the current bitstream, with 0 corresponding to 3DV and 1 corresponding to
SVC. The syntax element profile level index[k] indicates the index to the level
information table signaled in the VPS for the current k-th dependency operation point.
The syntax element ref format index indicates the index to the representation format
information table signaled in the VPS for the current k-th dependency operation point.
[0136] The syntax clement applicable lowest temporal id[k] and
applicable highest temporal id[k] specify respectively the lowest temporal _id value
and the highest temporal id value corresponding to the signaled temporal sub operation
points of the k-th dependency operation point. Alternatively, the syntax elements
applicable lowest temporal id[k] and applicable highest temporal id[k] are both
not signaled and inferred to be equal to 0 and vps_max_temporal layers minusl
respectively. Alternatively, the syntax element applicable lowest temporal id[k] is

not signaled and inferred to be equal to 0. Alternatively, the syntax element

WO 2014/008286 PCT/US2013/049121
51

applicable highest temporal id[k] is not signaled and inferred to be equal to
vps_max_temporal layers minusl.

[0137] The syntax element depth_included flag[k Jequal to 1 indicates that the current
3DV dependency operation point contains depth. This flag equal to 0 indicates that the
current 3DV operation point does not contain depth. Alternatively, the syntax element
depth_included flag[k] is not signaled, thus indicating a depth VCL NAL unit relies
on the layer id plustl.

[0138] The syntax element num_target output views minusl[k] plus 1 specifies the
number of target output views in the k-th dependency operation point. The syntax
element num_depedent layers[k] indicates the number of dependent layers for
decoding the current k-th dependency operation point. The syntax element

layer id[k][j] indicates the layer id of the j-th target output view of the k-th
dependency operation point. The syntax element dependent layer id[k][j] indicates
the layer id of the j-th dependent view of the k-the dependency operation point. In one
alternative, a flag is signaled, right after dependent layer id[k][]], as

direct _dependent flag[k][]].

[0139] The syntax element direct dependent flag[k][j] indicates whether the j-th
dependent view is a directly dependent view, to be used to derive inter-vie RPS. The
syntax element layer id[k] indicates the highest layer id of the current k-th (SVC)
dependency operation point. Alternately, num_target output views minusl[k |,
num_depedent layers[k], layer id[k][j] and dependent layer id[k][j] can be
signaled as ue(v).

[0140] The syntax element num_additional vui vps_set info may specify the number
of additional VUI VPS set table present in the VPS.

[0141] For profile and level information table semantics, the syntax element
profileLevellnfoldx indicates the index of the profile and level information table. For
representation format information table semantics, the syntax element repFormatInfoldx
indicates the index of the representation format information table.

[0142] The syntax element next essential byte offset shown in Table 7 may be
processed and parsed by MANE 29 and/or video decoder 30 in the manner described
above with reference to Table 2.

[0143] For VUI VPS set table semantics, the syntax element vuiVpsSetIindex indicates
the index of the VUI VPS set table.

WO 2014/008286 PCT/US2013/049121
52

[0144] Alternatively, the view dependency of each view can be signaled in the SPS, as

follows:
Table 18
seq_parameter_set rbsp() { Descriptor
seq_parameter_set_id ue(v)
video_parameter_set_id ue(v)
num_short_term_ref pic_sets ue(v)
use_rps_from_vps_flag u(l)

for(1=0;1<num short term ref pic sets; i++){

idx =use_rps_from vps flag ? num vps short term ref pic sets+1i:1

short term ref pic_set(idx)

}

sps_parameters_override_flag u(l)

if(sps_parameters_override flag) {

optional sps parameters()

—sps—extension—flag wh
bit_equal_to_one u(l)
num_reference_views ue(v)

for(1=0;1<num reference views ;i++)

ref view_layer id[1i] ue(v)

sps_extension_flag u(l)

if(sps_extension flag)

while(more rbsp data())

sps_extension_data_flag u(l)

rbsp_trailing bits()

[0145] The syntax element num_reference views indicates the maximum number of
texture or depth views used to construct the inter-view RPS subset. The syntax element
ref view layer id[i] identifies the layer id of the i-th texture/depth view used to
indicate the i-th inter-view (only) reference picture in the inter-view RPS subset.

[0146] Alternatively, the VPS extension can be signaled as follows. When the syntax
element extension_type indicates SVC, the syntax element

num_additional dependency operation points is not signaled but derived to be equal to
vps_max_layers minusl. A constraint is given that the VCL NAL units within an
access unit are in a non-descending order of the layer id. In MVC, the syntax element
layer id is equivalent to view_idx. In 3DV, the syntax element view_idx may be

calculated as follows by layer id: view_idx = (layer_idx>>1).

WO 2014/008286 53 PCT/US2013/049121
Table 19
vps_extension() {
byte_alligned_bits uv)
num_additional_profile_level_info u(4)
num_additional_rep_fromat_info u(3)
extension_type u(3)
if(extension type !=1) {
num_additional_dependency_operation_points u(8)
depth_present_flag u(l)
for(1=0; i< num_additional profile level info; i++)
profile level info(i+ 1, vps max temporal layers minusl)
for(1=0;1<num_additional rep fromat info; i++)
rep_format info(i+1,0)
for (k=0; k< num_additional dependency_ operation points ;k++) {
if(num_additional profile level info)
profile_level index| k] u(4)
if(num_additional rep fromat info)
ref_format_index| k | u(3)
applicable_lowest_temporal _id[k] u(3)
applicable_highest_temporal_id[k] u(3)
}
for (k=0; k< num_additional dependency operation points; k++) {
bitrate framerate info(applicable lowest temporal id[k],
applicable highest temporal id[k])
}
// layer dependency
for (k=0; k< num_additional dependency operation points; k++) {
if(extension_type == 0) { /* Condition always true for 3DV */
if(depth_present flag)
depth_included_flag[k | u(l)
num_target_output_views_minus1[k] u(s)
num_dependent_layers| k | u(s)
for(j=0;j <num_target output views_minusl[k]; j++)
layer_id[k][j] u(s)
for(j =0;j <num_dependent layers[k |; j++)
dependent_layer_id[k][]] u(s)
}
else if(extension_type == 1)
layer_id[k] u(s)
}
for(1=0;1<num_additional rep fromat info; i++) {
rep_format info(1+1,1)
// boundary of the fixed-length and ue(v)
/vui
num_additional_vui_vps_set_info ue(v)
for(1=0; 1 <num_ additional vui_vps_set info;i++)

WO 2014/008286 PCT/US2013/049121
54

vui_vps_set(i+1)

for (k=0; k< num_additional dependency operation points; k++) {

if (num_additional vui vps_set info)

vui_vps_set_idx ue(v)

hrd info(applicable lowest temporal id[k],
applicable highest temporal id[k1)

[0147] The syntax element depth_present flag set equal to 1 indicates that there may be
operation points containing depth. The syntax element depth present flag set equal to
0 indicates that no operation point contains depth.

[0148] The syntax element num_target output views minusl[k] plus 1 may be used
to specify the number of target output views in the k-th dependency operation point.
The syntax element num_dependent layers[k | may be used to indicate the number of
dependent layers for decoding the current k-th dependency operation point. When
depth_present flag is set equal to 1, a dependent layer may be either both a depth view
or a texture view. The syntax element layer id[k][j] indicates the layer id of the j-th
target output texture view of the k-th dependency operation point. The layer id of the
depth view, associated with the texture view, if present, is layer id[k][j]+1.

[0149] Alternatively, the syntax element view idx[k][j] instead of layer id[k][j]
may be signaled for each target output view. For each view idx[k][j], the layer id of
the corresponding texture view is (view_idx[k][j]<<depth_present flag). If
depth_included flag[k] is equal to 1, the layer id of the corresponding depth view is
(view_idx[k][j]<<depth_present flag)+1, which is (view_idx[k][j]<<1)+1 since
depth_present flag must be 1 in this case. Alternatively, the syntax element

layer id[k][j] may be changed to view_idx[k][j] and is u(v) coded, with the length
being 5 - depth_present flag. Alternatively, the syntax element layer id[k][j] may be
changed to view_idx[k][j] and is u(v) coded, with the length being 5 -
depth_included[k].

[0150] A fourth example, is a superset of the second example. The syntax is designed
in an extension friendly way. In addition, the extension of VPS is provided in this
example. The syntax design or semantics design of a syntax table which is exactly the

same as the counterpart in the second example is not present.

WO 2014/008286 PCT/US2013/049121
55

Table 20 - Video parameter set RBSP syntax (base spec. only)

video parameter set rbsp() { Descriptor
vps_max_temporal_layers_minusl u3)
vps_max_layers_minusl u(s)

profile level info(0, vps max_temporal layers minusl)

video_parameter_set_id u(s)

vps_temporal_id_nesting_flag u(l)

rep_format info(0,0)

bitrate framerate info(0, vps max_temporal layers minusl)

next_essential_info_byte offset u(12)

rep_format info(0, 1)

for(1=0; 1 <=vps max_temporal layers minusl;i++) {

vps_max_dec_pic_buffering[i] ue(v)
vps_num_reorder_pics[1] ue(v)
vps_max_latency_increase[1] ue(v)

}

hrd info(0, vps_max_temporal layers minusl)

vui_vps_set (0)

num_vps_short_term_ref pic_sets ue(v)

for(1=0;1<num vps short term ref pic sets; i++)

short term ref pic set(1)

optional sps parameters()

vps_extension_flag u(l)

if(vps_extension flag)

while(more rbsp data())

vps_extension_data_flag u(l)
}
}
rbsp_trailing_bits()
}
Table 21 - Video parameter set RBSP syntax (including extension)
video_parameter set rbsp() { Descriptor
vps_max_temporal_layers_minusl u3)
vps_max_layers_minusl u(s)

profile level info(0, vps max_temporal layers minusl)

video_parameter_set_id u(s)

vps_temporal_id_nesting_flag u(l)

rep_format info(0,0)

bitrate framerate info(0, vps max_temporal layers minusl)

next_essential_info_byte offset u(12)

rep_format info(0, 1)

for(1=0; 1 <=vps max_temporal layers minusl; i++) {

vps_max_dec_pic_buffering[i] ue(v)

vps_num_reorder_pics[1] ue(v)

vps_max_latency_increase[1] ue(v)

WO 2014/008286 PCT/US2013/049121
56

}

hrd info(0, vps_max_temporal layers minusl)

vui_vps_set (0)

num_vps_short_term_ref pic_sets ue(v)

for(1=0;1<num vps short term ref pic sets; i++)

short term ref pic set(1)

optional sps parameters()
—vps—extension_flag ASE

bit_equal_to_one u(l)

vps_extension()

vps_extension_flag u(l)

if(vps_extension flag)

while(more rbsp data())

vps_extension_data_flag u(l)

i
rbsp_trailing bits()

§
[0151] The syntax element next essential byte offset shown in Table 21 may be

processed and parsed by MANE 29 and/or video decoder 30 in the manner described
above with reference to Table 2.

[0152] FIG. 4 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. Video encoder 20 may, for
example, generate the syntax structures described above with respect to Tables 1-21.
Video encoder 20 may perform intra- and inter-coding of video blocks within video
slices. Intra-coding relies on spatial prediction to reduce or remove spatial redundancy
in video within a given video frame or picture. Inter-coding relies on temporal
prediction to reduce or remove temporal redundancy in video within adjacent frames or
pictures of a video sequence. Intra-mode (I mode) may refer to any of several spatial
based compression modes. Inter-modes, such as uni-directional prediction (P mode) or
bi-prediction (B mode), may refer to any of several temporal-based compression modes.
[0153] In the example of FIG. 4, video encoder 20 includes a partitioning unit 35,
prediction processing unit 41, filter unit 63, picture memory 64, summer 50, transform
processing unit 52, quantization unit 54, and entropy encoding unit 56. Prediction
processing unit 41 includes motion estimation unit 42, motion compensation unit 44,
and intra prediction processing unit 46. For video block reconstruction, video encoder
20 also includes inverse quantization unit 58, inverse transform processing unit 60, and
summer 62. Filter unit 63 is intended to represent one or more loop filters such as a

deblocking filter, an adaptive loop filter (ALF), and a sample adaptive offset (SAO)

WO 2014/008286 PCT/US2013/049121
57

filter. Although filter unit 63 is shown in FIG. 4 as being an in loop filter, in other
configurations, filter unit 63 may be implemented as a post loop filter. FIG. 4 also
shows post processing device 57 which may perform additional processing on encoded
video data generated by video encoder 20. The techniques of this disclosure, which
include generating a parameter set with an offset syntax element, may in some instances
be implemented by video encoder 20. In other instances, however, the techniques of
this disclosure may be implemented by post processing device 57.

[0154] As shown in FIG. 4, video encoder 20 receives video data, and partitioning unit
35 partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as wells as video block partitioning, e.g.,
according to a quadtree structure of LCUs and CUs. Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction processing unit 41 may select one of a plurality
of possible coding modes, such as one of a plurality of intra coding modes or one of a
plurality of inter coding modes, for the current video block based on error results (e.g.,
coding rate and the level of distortion). Prediction processing unit 41 may provide the
resulting intra- or inter-coded block to summer 50 to generate residual block data and to
summer 62 to reconstruct the encoded block for use as a reference picture.

[0155] Intra prediction processing unit 46 within prediction processing unit 41 may
perform intra-predictive coding of the current video block relative to one or more
neighboring blocks in the same frame or slice as the current block to be coded to
provide spatial compression. Motion estimation unit 42 and motion compensation unit
44 within prediction processing unit 41 perform inter-predictive coding of the current
video block relative to one or more predictive blocks in one or more reference pictures
to provide temporal compression.

[0156] Motion estimation unit 42 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices, B slices or
GPB slices. Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,

which estimate motion for video blocks. A motion vector, for example, may indicate

WO 2014/008286 PCT/US2013/049121
58

the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference picture.

[0157] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in picture memory 64. For example, video encoder 20 may
interpolate values of one-quarter pixel positions, one-eighth pixel positions, or other
fractional pixel positions of the reference picture. Therefore, motion estimation unit 42
may perform a motion search relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel precision.

[0158] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in picture memory 64. Motion
estimation unit 42 sends the calculated motion vector to entropy encoding unit 56 and
motion compensation unit 44.

[0159] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion vector points in one of the
reference picture lists. Video encoder 20 forms a residual video block by subtracting
pixel values of the predictive block from the pixel values of the current video block
being coded, forming pixel difference values. The pixel difference values form residual
data for the block, and may include both luma and chroma difference components.
Summer 50 represents the component or components that perform this subtraction
operation. Motion compensation unit 44 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0160] Intra-prediction processing unit 46 may intra-predict a current block, as an
alternative to the inter-prediction performed by motion estimation unit 42 and motion

compensation unit 44, as described above. In particular, intra-prediction processing unit

WO 2014/008286 PCT/US2013/049121
59

46 may determine an intra-prediction mode to use to encode a current block. In some
examples, intra-prediction processing unit 46 may encode a current block using various
intra-prediction modes, e.g., during separate encoding passes, and intra-prediction unit
processing 46 (or mode select unit 40, in some examples) may select an appropriate
intra-prediction mode to use from the tested modes. For example, intra-prediction
processing unit 46 may calculate rate-distortion values using a rate-distortion analysis
for the various tested intra-prediction modes, and select the intra-prediction mode
having the best rate-distortion characteristics among the tested modes. Rate-distortion
analysis generally determines an amount of distortion (or error) between an encoded
block and an original, unencoded block that was encoded to produce the encoded block,
as well as a bit rate (that is, a number of bits) used to produce the encoded block. Intra-
prediction processing unit 46 may calculate ratios from the distortions and rates for the
various encoded blocks to determine which intra-prediction mode exhibits the best rate-
distortion value for the block.

[0161] In any case, after selecting an intra-prediction mode for a block, intra-prediction
processing unit 46 may provide information indicative of the selected intra-prediction
mode for the block to entropy encoding unit 56. Entropy encoding unit 56 may encode
the information indicating the selected intra-prediction mode in accordance with the
techniques of this disclosure. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality of intra-prediction mode
index tables and a plurality of modified intra-prediction mode index tables (also referred
to as codeword mapping tables), definitions of encoding contexts for various blocks,
and indications of a most probable intra-prediction mode, an intra-prediction mode
index table, and a modified intra-prediction mode index table to use for each of the
contexts.

[0162] After prediction processing unit 41 generates the predictive block for the current
video block via either inter-prediction or intra-prediction, video encoder 20 forms a
residual video block by subtracting the predictive block from the current video block.
The residual video data in the residual block may be included in one or more TUs and
applied to transform processing unit 52. Transform processing unit 52 transforms the
residual video data into residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar transform. Transform
processing unit 52 may convert the residual video data from a pixel domain to a

transform domain, such as a frequency domain.

WO 2014/008286 PCT/US2013/049121
60

[0163] Transform processing unit 52 may send the resulting transform coefficients to
quantization unit 54. Quantization unit 54 quantizes the transform coefficients to
further reduce bit rate. The quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quantization may be modified by
adjusting a quantization parameter. In some examples, quantization unit 54 may then
perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

[0164] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0165] Inverse quantization unit 58 and inverse transform processing unit 60 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain for later use as a reference block of a reference picture.
Motion compensation unit 44 may calculate a reference block by adding the residual
block to a predictive block of one of the reference pictures within one of the reference
picture lists. Motion compensation unit 44 may also apply one or more interpolation
filters to the reconstructed residual block to calculate sub-integer pixel values for use in
motion estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 44 to produce a
reference block for storage in picture memory 64. The reference block may be used by
motion estimation unit 42 and motion compensation unit 44 as a reference block to
inter-predict a block in a subsequent video frame or picture.

[0166] In this manner, video encoder 20 of FIG. 4 represents an example of a video
encoder configured to generate the syntax described above in Tables 1-21. Video
encoder 20 may, for example, generate VPS, SPS, PPS, and APS parameter sets as
described above. In one example, video encoder 20 may generate a parameter set for
coded video data that includes one or more initial fixed-length syntax elements followed

by an offset syntax element. The one or more initial fixed-length syntax elements may,

WO 2014/008286 PCT/US2013/049121
61

for example, include information related to session negotiation. The offset syntax
element may indicate a number of bytes to be skipped when the parameter set is
processed by a MANE. The number of bytes to be skipped may, for example, include
one or more variable length syntax elements. Video encoder 20 may include in the
parameter set, following the skipped bytes, additional fixed length syntax elements. The
additional fixed-length syntax elements may, for example, include information related to
another layer of video data. In one example, the initial fixed length syntax elements
may include information related to session negotiation for a base layer, while the
additional fixed-length syntax elements may include information related to session
negotiation for a non-base layer.

[0167] Video encoder 20 may determine the value for the offset syntax element based
on the number of bits used to code one or more variable length syntax elements. For
example, assume for a first VPS that the syntax elements to be skipped include three
fixed-length syntax elements of 2 bits, 3 bits, and 5 bits as well as four variable length
syntax elements of 2 bits, 4, bits, 5 bits, and 3 bits. In this example, the fixed length
syntax elements include a total of 10 bits while the variable length syntax elements
include a total of 14 bits. Thus, for the first VPS, the video encoder 20 may set the
value of the offset syntax element to 24 including 24 bits (e.g. 3 bytes) are to be
skipped. For a second VPS, the number of bits for the fixed syntax elements will again
be 10, but the number of bits used for the variable length syntax elements may be
different. Thus, for a second VPS, video encoder 20 may set the value for the offset
syntax element to a different value.

[0168] The techniques of this disclosure have generally been described with respect to
video encoder 20, but as mentioned above, some of the techniques of this disclosure
may also be implemented by post processing device 57. For example, post processing
device 57 may generate a VPS for multiple layers of video data generated by video
encoder 20.

[0169] FIG. 5 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. Video decoder 30 may, for
example, be configured to process and parse the syntax structures described above with
respect to Tables 1-21. In the example of FIG. 5, video decoder 30 includes an entropy
decoding unit 80, prediction processing unit 81, inverse quantization unit 86, inverse
transform processing unit 88, summer 90, filter unit 91, and picture memory 92.

Prediction processing unit 81 includes motion compensation unit 82 and intra prediction

WO 2014/008286 PCT/US2013/049121
62

processing unit 84. Video decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with respect to video encoder 20
from FIG. 4.

[0170] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Video decoder 30 may receive the encoded video
bitstream from a network entity 79. Network entity 79 may, for example, be a server, a
MANE, a video editor/splicer, or other such device configured to implement one or
more of the techniques described above. Network entity 79 may or may not include
video encoder 20. As described above, some of the techniques described in this
disclosure may be implemented by network entity 79 prior to network entity 79
transmitting the encoded video bitstream to video decoder 30. In some video decoding
systems, network entity 79 and video decoder 30 may be parts of separate devices,
while in other instances, the functionality described with respect to network entity 79
may be performed by the same device that comprises video decoder 30.

[0171] Network entity 79 represents an example of a video processing device
configured to process one or more initial syntax elements for a parameter set associated
with a video bitstream; receive in the parameter set an offset syntax element for the
parameter set that identifies syntax elements to be skipped within the parameter set, and
based on the offset syntax element, skip the syntax elements within the parameter set.
Network entity 79 may also process one or more additional syntax elements in the
parameter set. The one or more additional syntax elements are after the skipped syntax
clements in the parameter set.

[0172] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. The video blocks may, for example, be routed from
video encoder 20 to video decoder 30 via one or more MANES, such as MANE 29 in
FIG. 1 or network entity 79 in FIG. 5. Entropy decoding unit 80 of video decoder 30
entropy decodes the bitstream to generate quantized coefficients, motion vectors, and
other syntax elements. Entropy decoding unit 80 forwards the motion vectors and other
syntax elements to prediction processing unit 81. Video decoder 30 may receive the
syntax elements at the video slice level and/or the video block level.

[0173] As introduced above, entropy decoding unit 80 may process and parse both

fixed-length syntax elements and variable-length syntax elements in or more parameter

WO 2014/008286 PCT/US2013/049121
63

sets, such as a VPS, SPS, PPS, and APS. In one or more of the parameter sets, for
example a VPS, video decoder 30 may receive an offset syntax element as described in
this disclosure. In response to receiving an offset syntax element, video decoder 30 can
essentially ignore the value of the offset syntax element. For example, video decoder 30
may receive an offset syntax element but may continue to decode syntax elements,
including variable-length syntax elements, that follow the offset syntax element without
skipping any syntax elements.

[0174] When the video slice is coded as an intra-coded (1) slice, intra prediction
processing unit 84 of prediction processing unit 81 may generate prediction data for a
video block of the current video slice based on a signaled intra prediction mode and data
from previously decoded blocks of the current frame or picture. When the video frame
is coded as an inter-coded (i.c., B, P or GPB) slice, motion compensation unit 82 of
prediction processing unit 81 produces predictive blocks for a video block of the current
video slice based on the motion vectors and other syntax elements received from
entropy decoding unit 80. The predictive blocks may be produced from one of the
reference pictures within one of the reference picture lists. Video decoder 30 may
construct the reference frame lists, List 0 and List 1, using default construction
techniques based on reference pictures stored in picture memory 92.

[0175] Motion compensation unit 82 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 82 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice, P slice, or GPB slice), construction information for one or more of
the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0176] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 82
may determine the interpolation filters used by video encoder 20 from the received

syntax elements and use the interpolation filters to produce predictive blocks.

WO 2014/008286 PCT/US2013/049121
64

[0177] Inverse quantization unit 86 inverse quantizes, i.¢., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an
inverse DCT, an inverse integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce residual blocks in the pixel
domain.

[0178] After motion compensation unit 82 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
processing unit 88 with the corresponding predictive blocks generated by motion
compensation unit 82. Summer 90 represents the component or components that
perform this summation operation. If desired, loop filters (either in the coding loop or
after the coding loop) may also be used to smooth pixel transitions, or otherwise
improve the video quality. Filter unit 91 is intended to represent one or more loop
filters such as a deblocking filter, an adaptive loop filter (ALF), and a sample adaptive
offset (SAO) filter. Although filter unit 91 is shown in FIG. 5 as being an in loop filter,
in other configurations, filter unit 91 may be implemented as a post loop filter. The
decoded video blocks in a given frame or picture are then stored in picture memory 92,
which stores reference pictures used for subsequent motion compensation. Picture
memory 92 also stores decoded video for later presentation on a display device, such as
display device 32 of FIG. 1.

[0179] In this manner, video decoder 30 of FIG. 5 represents an example of a video
decoder configured to parse the syntax described above in Tables 1-21. Video decoder
30 may, for example, parse VPS, SPS, PPS, and APS parameter sets as described above.
[0180] FIG. 6 is a block diagram illustrating an example set of devices that form part of
network 150. In this example, network 150 includes routing devices 154A, 154B
(routing devices 154) and transcoding device 156. Routing devices 154 and transcoding
device 156 are intended to represent a small number of devices that may form part of
network 150. Other network devices, such as switches, hubs, gateways, firewalls,
bridges, and other such devices may also be included within network 150. Moreover,

additional network devices may be provided along a network path between server

WO 2014/008286 PCT/US2013/049121
65

device 152 and client device 158. Server device 152 may correspond to source device
12 (FIG. 1), while client device 158 may correspond to destination device 14 (FIG. 1),
in some examples. Routing devices 154 may, for example, be MANEs configured to
rout media data.

[0181] In general, routing devices 154 implement one or more routing protocols to
exchange network data through network 150. In general, routing devices 154 execute
routing protocols to discover routes through network 150. By executing such routing
protocols, routing device 154B may discover a network route from itself to server
device 152 via routing device 154A. The various devices of FIG. 6 represent examples
of devices that may implement the techniques of this disclosure. Routing devices 154
may, for example, be media aware network elements that are configured to parse the
syntax elements of a parameter set, such as a VPS, in accordance with this disclosure.
For example, routing devices 154 may receive in a VPS one or more initial fixed length
syntax elements and parse and process the fixed length syntax elements. The initial
fixed length syntax elements may, for example, be syntax elements related to session
negotiation. Routing devices 154 may also receive, in the VPS, an offset syntax
clement. The offset syntax element may identify a number of bytes to be skipped.
Routing devices 154 can skip the specified number of bytes, and after skipping the
specified number of bytes, can resume parsing and processing fixed length syntax
elements within the VPS. The skipped bytes may include one or more variable length
syntax elements that routing devices 154 cannot parse because routing devices 154
cannot perform entropy decoding operations.

[0182] FIG. 7 is a flowchart illustrating an example of how to process an offset syntax
element according to the techniques of this disclosure. The techniques of FIG. 7 will be
described with reference to a network device such as MANE 29 of FIG. 1 or one of
routing devices 154 in FIG. 6. The network entity processes one or more initial syntax
clements for a parameter set associated with a video bitstream (171). The one or more
initial syntax elements may additionally include fixed-length syntax elements and
precede the offset syntax element. The one or more initial syntax elements may include
syntax elements that include information related to session negotiation. Furthermore,
the one or more initial syntax elements comprise syntax elements for a base layer of
video data and the one or more additional syntax elements comprises syntax elements

for a non-base layer of video data.

WO 2014/008286 PCT/US2013/049121
66

[0183] The network entity receives in the video bitstream an offset syntax element for
the parameter set (172). The offset syntax element identifies a number of bits to be
skipped within the parameter set. The offset syntax element may, for example, be part
of a video parameter set. The number of bits to be skipped may, for example,
correspond to one or more syntax elements coded using variable length coding. Based
on the offset syntax element, the network entity skips a number of bits within the
parameter set (173). The network entity processes one or more additional syntax
clements in the parameter set (174). The one or more additional syntax elements are
after the number of bits skipped in the parameter set. The one or more additional syntax
elements may be additional fixed-length syntax elements, and the one or more
additional syntax elements may follow the offset syntax element and follow the bits to
be skipped.

[0184] FIG. 8 is a flowchart illustrating an example of how to process an offset syntax
element according to the techniques of this disclosure. The techniques of FIG. 8 will be
described with reference to a video processing device configured to encode video data
or process encoded video data. Examples of video processing devices configured to
process encoded video data in include video encoder 20 of FIGS. 1 and 4 and post
processing device 57 of FIG. 4. The video processing devices generates one or more
initial syntax elements for a parameter set associated with a video bitstream (181). The
one or more initial syntax elements may include fixed-length syntax elements, and the
one or more initial syntax elements may precede the offset syntax element. The one or
more initial syntax elements may include syntax elements including information related
to session negotiation. The one or more initial syntax elements may include syntax
elements for a base layer of video data, and the one or more additional syntax elements
may include syntax elements for a non-base layer of video data.

[0185] The video processing devices generates an offset syntax element for the
parameter set (182). The offset syntax element may identify a number of bits to be
skipped within the parameter set. The offset syntax element may be part of a video
parameter set. The video processing device generates one or more syntax elements to
be skipped (183). The bits to be skipped include the one or more syntax elements to be
skipped. The one or more syntax elements to be skipped may include one or more
syntax elements coded using variable length coding. The video processing device
generates one or more additional syntax elements in the parameter set (184). The one or

more additional syntax elements are after the number of bits to be skipped in the

WO 2014/008286 PCT/US2013/049121
67

parameter set. The one or more additional syntax elements may include additional
fixed-length syntax elements, the one or more additional syntax elements may follow
the offset syntax element and follow the bits to be skipped.

[0186] FIG. 9 is a flowchart illustrating an example of how to decode an offset syntax
element according to the techniques of this disclosure. The techniques of FIG. 9 will be
described with reference to a video decoder, such as video decoder 30 of FIGS. 1 and 5.
The video decoder decodes one or more initial syntax elements for a parameter set
associated with a video bitstream (191). The video decoder receives in the video
bitstream an offset syntax element for the parameter set (192). The offset syntax
element identifies a number of bits to be skipped within the parameter set. The video
decoder decodes the bits to be skipped (193). In some examples, the video decoder
decodes the bits to be skipped by performing entropy decoding to decode variable
length syntax elements included in the bits to be skipped. The video decoder may, for
example, decode the bits to be skipped because the bits are to be skipped when the video
data is being processed by a video processing device such as a MANE, but the bits may
be necessary for decoding the video data. A MANE, in contrast to a video decoder, may
skip the bits in order to perform certain processing on the video data without having to
fully decoded the video data. In some instances, a MANE may not even possess all
capabilities necessary to decode the video data.

[0187] FIG. 10 is a flowchart illustrating an example of how to process a VPS
according to the techniques of this disclosure. The techniques of FIG. 10 will be
described with reference to a generic video processing device. The video processing
device may correspond to a network device such as MANE 29 of FIG. 1 or one of
routing devices 154 in FIG. 6. The video processing device may additionally
correspond to a video decoder such as video decoder 30 of FIGS. 1 and 4. The video
processing device receives in a video parameter set, one or more syntax elements that
include information related to session negotiation (201). The video processing device
receives in the video data a first sequence parameter set comprising a first syntax
clement identifying the video parameter set (202). The first sequence parameter set
comprises a first syntax structure that includes a first group of syntax elements that
apply to one or more whole pictures of the video data. The video processing device
receives in the video data a second sequence parameter set comprising a second syntax
element identifying the video parameter set (203). The second sequence parameter set

comprises a second syntax structure that includes a second group of syntax elements

WO 2014/008286 PCT/US2013/049121
68

that apply to one or more different whole pictures of the video data. The video
processing device processes, based on the one or more syntax elements, a first set of
video blocks associated with the first parameter set and a second set of video blocks
associated with the second parameter set (204).

[0188] The one or more syntax elements may, for example, be fixed length syntax
elements and may precede, in the video parameter set, any variable length coded syntax
clements. The one or more syntax elements may include a syntax element identifying a
profile of a video coding standard. The one or more syntax elements may further or
alternatively includes a syntax element identifying a level of a video coding standard.
The level may, for example, correspond to one of multiple levels associated with the
profile of the video coding standard.

[0189] The one or more syntax elements may include a first syntax element and a
second syntax element. The first syntax element may identify a context for interpreting
the second syntax element, and the second syntax element may identify a group of
profiles. The video processing device may receive, in the video parameter set, one or
more compatibility flags, each of which is associated with a profile from the group of
profiles. A value for each of the one or more compatibility flags may identify if the
video data is compatible with an associated profile from the group of profiles.

[0190] The one or more syntax elements may also include a first syntax element that
identifies a maximum temporal level associated with the video data and a second syntax
clement that identifies if a temporal layer of the video data has a level that is lower than
the maximum temporal level. In response to the second syntax element indicating a
temporal layer of the video data has a level that is lower than the maximum temporal
level, the video processing device may receive additional syntax elements that identify
levels for one or more temporal layers of the vide data.

[0191] In instances when the video processing device is a video decoder, the video
decoder may decode the first set of video blocks and the second set of video blocks. In
instances when the video processing device is a MANE, the MANE may forward the
first set of video blocks and the second set of video blocks to a client device.

[0192] FIG. 11 is a flowchart illustrating an example of how to generate syntax
elements for inclusion in a VPS according to the techniques of this disclosure. The
techniques of FIG. 8 will be described with reference to a video processing device
configured to encode video data or process encoded video data. Examples of video

processing devices configured to process encoded video data in include video encoder

WO 2014/008286 PCT/US2013/049121
69

20 of FIGS. 1 and 4 and post processing device 57 of FIG. 4. The video processing
device generates for inclusion in a video parameter set, one or more syntax elements
that include information related to session negotiation (211). The video processing
device generates for inclusion in the video data a first sequence parameter set
comprising a first syntax element identifying the video parameter set (212). The first
sequence parameter set comprises a first syntax structure that includes a first group of
syntax elements that apply to one or more whole pictures of the video data. The video
processing device generates for inclusion in the video data a second sequence parameter
set comprising a second syntax element identifying the video parameter set (213). The
second sequence parameter set comprises a second syntax structure that includes a
second group of syntax elements that apply to one or more different whole pictures of
the video data. The video processing device encodes, based on the one or more syntax
clements, a first set of video blocks associated with the first parameter set and a second
set of video blocks associated with the second parameter set (214).

[0193] The one or more syntax elements may, for example, be fixed length syntax
elements and may precede, in the video parameter set, any variable length coded syntax
elements. The one or more syntax elements may include a syntax element identifying a
profile of a video coding standard. The one or more syntax elements may further or
alternatively includes a syntax element identifying a level of a video coding standard.
The level may, for example, correspond to one of multiple levels associated with the
profile of the video coding standard.

[0194] The one or more syntax elements may include a first syntax element and a
second syntax element. The first syntax element may identify a context for interpreting
the second syntax element, and the second syntax element may identify a group of
profiles. The video processing device may receive, in the video parameter set, one or
more compatibility flags, each of which is associated with a profile from the group of
profiles. A value for each of the one or more compatibility flags may identify if the
video data is compatible with an associated profile from the group of profiles.

[0195] The one or more syntax elements may also include a first syntax element that
identifies a maximum temporal level associated with the video data and a second syntax
clement that identifies if a temporal layer of the video data has a level that is lower than
the maximum temporal level. In response to the second syntax element indicating a

temporal layer of the video data has a level that is lower than the maximum temporal

WO 2014/008286 PCT/US2013/049121
70

level, the video processing device may receive additional syntax elements that identify
levels for one or more temporal layers of the vide data.

[0196] FIG. 12 is a flowchart illustrating an example of how to process a VPS
according to the techniques of this disclosure. The techniques of FIG. 12 will be
described with reference to a generic video processing device. The video processing
device may correspond to a network device such as MANE 29 of FIG. 1 or one of
routing devices 154 in FIG. 6. The video processing device may additionally
correspond to a video decoder such as video decoder 30 of FIGS. 1 and 4. The video
processing device receives in a video parameter set, one or more syntax elements that
include information related to HRD parameters (221). The video processing device
receives in the video data a first sequence parameter set comprising a first syntax
clement identifying the video parameter set (222). The first sequence parameter set
comprises a first syntax structure that includes a first group of syntax elements that
apply to one or more whole pictures of the video data. The video processing device
receives in the video data a second sequence parameter set comprising a second syntax
element identifying the video parameter set (223). The second sequence parameter set
comprises a second syntax structure that includes a second group of syntax elements
that apply to one or more different whole pictures of the video data. The video
processing device processes, based on the one or more syntax elements, a first set of
video blocks associated with the first parameter set and a second set of video blocks
associated with the second parameter set (224).

[0197] FIG. 13 is a flowchart illustrating an example of how to generate syntax
elements for inclusion in a VPS according to the techniques of this disclosure. The
techniques of FIG. 13 will be described with reference to a video processing device
configured to encode video data or process encoded video data. Examples of video
processing devices configured to process encoded video data in include video encoder
20 of FIGS. 1 and 4 and post processing device 57 of FIG. 4. The video processing
device generates for inclusion in a video parameter set, one or more syntax elements
that include information related to HRD parameters (231). The video processing device
generates for inclusion in the video data a first sequence parameter set comprising a first
syntax element identifying the video parameter set (232). The first sequence parameter
set comprises a first syntax structure that includes a first group of syntax elements that
apply to one or more whole pictures of the video data. The video processing device

generates for inclusion in the video data a second sequence parameter set comprising a

WO 2014/008286 PCT/US2013/049121
71

second syntax element identifying the video parameter set (233). The second sequence
parameter set comprises a second syntax structure that includes a second group of
syntax elements that apply to one or more different whole pictures of the video data.
The video processing device encodes, based on the one or more syntax elements, a first
set of video blocks associated with the first parameter set and a second set of video
blocks associated with the second parameter set (234).

[0198] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0199] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wircless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

WO 2014/008286 PCT/US2013/049121
72

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0200] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
clements.

[0201] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0202] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2014/008286 PCT/US2013/049121
73

WHAT IS CLAIMED IS:
1. A method of processing video data, the method comprising:
processing one or more initial syntax elements for a parameter set associated
with a video bitstream,;
receiving in the parameter set an offset syntax element for the parameter set,
wherein the offset syntax element identifies syntax elements to be
skipped within the parameter set;
based on the offset syntax element, skipping the syntax elements within the
parameter set;
processing one or more additional syntax elements in the parameter set, wherein
the one or more additional syntax elements are after the skipped syntax

elements in the parameter set.

2. The method of claim 1, wherein the syntax elements to be skipped comprise one

or more syntax elements coded using variable length coding.

3. The method of claim 1, wherein the offset syntax element identifies the syntax
elements to be skipped by identifying a number of bytes in the parameter set that are to

be skipped.

4. The method of claim 1, wherein the one or more initial syntax elements
comprise fixed-length syntax elements and wherein the one or more initial syntax

elements precede the offset syntax element.

5. The method of claim 4, wherein the one or more additional syntax elements
comprise additional fixed-length syntax elements and wherein the one or more
additional syntax elements follow the offset syntax element and follow the skipped

syntax elements.

6. The method of claim 1, wherein the one or more initial syntax elements

comprise syntax elements including information related to session negotiation.

WO 2014/008286 PCT/US2013/049121
74

7. The method of claim 1, wherein the one or more initial syntax elements
comprise syntax elements for a base layer of video data and the one or more additional

syntax elements comprises syntax elements for a non-base layer of video data.

8. The method of claim 1, wherein the offset syntax element is part of a video

parameter set.

9. The method of claim 1, wherein the processing is performed by a media aware
network element (MANE), and wherein the method further comprises forwarding the

video data to a client device.

10. A method of processing video data, the method comprising:

generating one or more initial syntax elements for a parameter set associated
with a video bitstream;

generating an offset syntax element for the parameter set, wherein the offset
syntax element identifies a number of syntax elements to be skipped
within the parameter set;

generating the syntax elements to be skipped;

generating one or more additional syntax elements in the parameter set, wherein
the one or more additional syntax elements are after the syntax elements

to be skipped in the parameter set.

I1. The method of claim 10, wherein the syntax elements to be skipped comprise

one or more syntax elements coded using variable length coding.

12. The method of claim 10, wherein the offset syntax element identifies the syntax
elements to be skipped by identifying a number of bytes in the parameter set that are to

be skipped.

13. The method of claim 10, wherein the one or more initial syntax elements
comprise fixed-length syntax elements and wherein the one or more initial syntax

elements precede the offset syntax element.

WO 2014/008286 PCT/US2013/049121
75

14. The method of claim 13, wherein the one or more additional syntax elements
comprise additional fixed-length syntax elements and wherein the one or more
additional syntax elements follow the offset syntax element and follow the syntax

elements to be skipped.

15. The method of claim 10, wherein the one or more initial syntax elements

comprise syntax elements including information related to session negotiation.

16. The method of claim 10, wherein the one or more initial syntax elements
comprise syntax elements for a base layer of video data and the one or more additional

syntax elements comprises syntax elements for a non-base layer of video data.

17. The method of claim 10, wherein the offset syntax element is part of a video

parameter set.

18. The method of claim 10, wherein the method is performed by a video encoder.

19. The method of claim 10, wherein the method is performed by a post processing

device configured to process encoded video data.

20. A method of decoding video data, the method comprising:
decoding one or more initial syntax elements for a parameter set associated with
a video bitstream,;
receiving in the video bitstream an offset syntax element for the parameter set,
wherein the offset syntax element identifies syntax elements to be
skipped within the parameter set;

decoding the syntax elements to be skipped.

21. The method of claim 20, wherein the syntax elements to be skipped comprise
one or more variable length syntax elements, and wherein decoding the syntax elements

to be skipped comprises performing an entropy decoding process.

WO 2014/008286 PCT/US2013/049121
76

22. Avideo processing device comprising:

a video processing element configured to process one or more initial syntax
elements for a parameter set associated with a video bitstream; receive in the parameter
set an offset syntax element for the parameter set, wherein the offset syntax element
identifies syntax elements to be skipped within the parameter set; based on the offset
syntax element, skip the syntax elements within the parameter set; and process one or
more additional syntax elements in the parameter set, wherein the one or more

additional syntax elements are after the skipped syntax elements in the parameter set.

23. The video processing device of claim 22, wherein the syntax elements to be

skipped comprise one or more syntax elements coded using variable length coding.

24. The video processing device of claim 22, wherein the offset syntax element
identifies the syntax elements to be skipped by identifying a number of bytes in the

parameter set that are to be skipped.

25. The video processing device of claim 22, wherein the one or more initial syntax
elements comprise fixed-length syntax elements and wherein the one or more initial

syntax elements precede the offset syntax element.

26. The video processing device of claim 25, wherein the one or more additional
syntax elements comprise additional fixed-length syntax elements and wherein the one
or more additional syntax elements follow the offset syntax element and follow the

skipped syntax elements.

27. The video processing device of claim 22, wherein the one or more initial syntax

elements comprise syntax elements including information related to session negotiation.

28. The video processing device of claim 22, wherein the one or more initial syntax
clements comprise syntax elements for a base layer of video data and the one or more
additional syntax elements comprises syntax elements for a non-base layer of video

data.

WO 2014/008286 PCT/US2013/049121

77
29. The video processing device of claim 22, wherein the offset syntax element is
part of a video parameter set.
30. The device of claim 22, wherein the device comprises at least one of:

an integrated circuit;
a microprocessor; and,

a wireless communication device that comprises a video decoder.

31. Avideo processing device comprising:

a video processing element configured to generate one or more initial syntax
elements for a parameter set associated with a video bitstream; generate an offset syntax
element for the parameter set, wherein the offset syntax element identifies a number of
syntax elements to be skipped within the parameter set; generate the syntax elements to
be skipped; generate one or more additional syntax elements in the parameter set,
wherein the one or more additional syntax elements are after the syntax elements to be

skipped in the parameter set.

32. The video processing device of claim 31, wherein the syntax elements to be

skipped comprise one or more syntax elements coded using variable length coding.

33. The video processing device of claim 31, wherein the offset syntax element
identifies the syntax elements to be skipped by identifying a number of bytes in the

parameter set that are to be skipped.

34. The method of claim 31, wherein the one or more initial syntax elements
comprise fixed-length syntax elements and wherein the one or more initial syntax

elements precede the offset syntax element.

35. The video processing device of claim 34, wherein the one or more additional
syntax elements comprise additional fixed-length syntax elements and wherein the one
or more additional syntax elements follow the offset syntax element and follow the

syntax elements to be skipped.

WO 2014/008286 PCT/US2013/049121
78

36. The video processing device of claim 31, wherein the one or more initial syntax

elements comprise syntax elements including information related to session negotiation.

37. The video processing device of claim 31, wherein the one or more initial syntax
clements comprise syntax elements for a base layer of video data and the one or more
additional syntax elements comprises syntax elements for a non-base layer of video

data.

38. The video processing device of claim 31, wherein the offset syntax element is

part of a video parameter set.

39. The video processing device of claim 31, wherein the video processing element

comprises a video encoder.

40. The video processing device of claim 31, wherein the video processing device

comprises a post processing device configured to process encoded video data.

41. The device of claim 31, wherein the device comprises at least one of:
an integrated circuit;
a microprocessor; and,

a wireless communication device that comprises a video decoder.

42. Avideo processing device comprising:

a video processing element configured to decode one or more initial syntax
elements for a parameter set associated with a video bitstream; receive in
the video bitstream an offset syntax element for the parameter set,
wherein the offset syntax element identifies syntax elements to be
skipped within the parameter set; and decode the syntax elements to be

skipped.

43. The video processing device of claim 42, wherein the syntax elements to be
skipped comprise one or more variable length syntax elements, and wherein decoding

the syntax elements to be skipped comprises performing an entropy decoding process.

WO 2014/008286 PCT/US2013/049121
79

44. The device of claim 42, wherein the device comprises at least one of:
an integrated circuit;
a microprocessor; and,

a wireless communication device that comprises a video decoder.

45. Avideo processing device comprising:

means for processing one or more initial syntax elements for a parameter set
associated with a video bitstream;

means for receiving in the parameter set an offset syntax element for the
parameter set, wherein the offset syntax element identifies syntax
elements to be skipped within the parameter set;

means for skipping the syntax elements within the parameter set based on the
offset syntax element;

means for processing one or more additional syntax elements in the parameter
set, wherein the one or more additional syntax elements are after the

skipped syntax elements in the parameter set.

46. A computer readable storage medium storing instructions that when executed
cause one or more processors to:
process one or more initial syntax elements for a parameter set associated with a
video bitstream;
receive in the parameter set an offset syntax element for the parameter set,
wherein the offset syntax element identifies syntax elements to be
skipped within the parameter set;
skip the syntax elements within the parameter set based on the offset syntax
clement;
process one or more additional syntax elements in the parameter set, wherein the
one or more additional syntax elements are after the skipped syntax

elements in the parameter set.

47. The computer-readable storage medium of claim 46, wherein the syntax
elements to be skipped comprise one or more syntax elements coded using variable

length coding.

WO 2014/008286 PCT/US2013/049121
80

48. The computer-readable storage medium of claim 46, wherein the offset syntax
clement identifies the syntax elements to be skipped by identifying a number of bytes in

the parameter set that are to be skipped.

49. The computer-readable storage medium of claim 46, wherein the one or more
initial syntax elements comprise fixed-length syntax elements and wherein the one or

more initial syntax elements precede the offset syntax element.

50. The computer-readable storage medium of claim 49, wherein the one or more
additional syntax elements comprise additional fixed-length syntax elements and
wherein the one or more additional syntax elements follow the offset syntax element

and follow the skipped syntax elements.

51. The computer-readable storage medium of claim 46, wherein the one or more
initial syntax elements comprise syntax elements including information related to

session negotiation.

52. The computer-readable storage medium of claim 46, wherein the one or more
initial syntax elements comprise syntax elements for a base layer of video data and the
one or more additional syntax elements comprises syntax elements for a non-base layer

of video data.

53. The computer-readable storage medium of claim 46, wherein the offset syntax

element is part of a video parameter set.

54, The computer-readable storage medium of claim 46 storing further instructions
that when executed cause the one or more processors to forward the video data to a

client device.

PCT/US2013/049121

WO 2014/008286

1/13

[:x4
JOV4H3LNI LNdNI

} "Old

0¢
¥33d0923d
O3dIA

(43
30IA3A AV1dSIaA

v
30IA3d NOILVNILS3A

B {

2
a
=

1=~~~
|
Al_L J0IA3q

_
| 39vy0LS

T

0l

(44
JOV4H3LNI
1Nnd1no

A

[1}4
J3dOON3
O3dIA

8t
3JO™UNOS O3dIA

(43
30I1A3Ad 32UNOS

WO 2014/008286 PCT/US2013/049121

2/13

RlI P8P8 RS
A

|

Fl@ e3P erac™e e
N

|

ClEPe8M eS8 3 P8
N

|
FlSPIIPSPISPIITISPTISTS
N

|
FISPSPIPSPSe S>3
A

|
FlaPe IS IPITars
N

|
FleplEPePePRIPaP SR
N

|

ElopPlo S PPl I e
N

|

2l o P~ P> > o B < > > © [~
7 ») » % 7] 7] »

FIG. 2

11

T10

T9

T8

T7

T6

T5

T4

T3

T2

T1

WO 2014/008286

3/13

PCT/US2013/049121

S0

S1

S2

S3

S4

S5

S6
S7

FIG. 3

PCT/US2013/049121

4/13

WO 2014/008286

76 .
30IA3d v Ol
ONISSIO0Ud
1S0d 0z
¥30O0ON3 03AIA
e ___ T -
29 I
9% =1 — S)20714 03AIA — _
1INN 1INN 09 - a31oNYLSNODIIY . €9 _
ONIGOONI [A" |NOILVZILNVNOD | ._w_num_won_m__ m_hm__u.ﬂ 4 |1
AdOYLINT 3SYIANI Ry o _
A "NOD3YH 1INN _
ONISSIO0Nd « _
"a3¥d VLN — _
9 I
== AHOWAW | |
LINA JUNLOd | |
NOILVSN3dINOD |
NOILOW |
) - |
hd _
6 ¢ 47 _
SLNIWNITI XVLINAS 1INN |
< NOILVIILS3 _
NOILOW _
57 I
1INN "90¥d "a3¥d "
0§ |
“WeodSNVNL Vs % N 5e |
vNaIS3y 1INN <€4— LINN '00¥dd . S¥0018 03aIA 1INN Aﬂ
Q3ZILNYNO NOILVZILNVNO INO4SNVAL | gyo018 ONINOLLLLYVd | | o3am

‘ais3y

PCT/US2013/049121

WO 2014/008286

/9 —-_— T T 1
| 5] 9% |
_ 1INN 1INN
- - —
P ety ONISSIO0Nd NOILVZILNVNO "
aaqooaa ! 06 S¥0019 | "SNVYL “ANI 3SUIANI
_ Ivnais3y 7y "
I
_ ﬁ |
_ |
_ _ 78 |
o _ 43 1INN _
= _ AYOW3NW ONISSIO0¥d ‘43309 _
10 _ FANLIId "a3yd VHINI "ZILNVND "
I
I ¢8 08 "
_ 1INN § 1INA
_ NOILVSN3dINOD SINIWITI XVLNAS 9NIQ023a _
“ NOILOW AdO¥LNI |
_ T8 _
_ 1INN "00¥d "a3¥d 0% "
I

¥3a023d O3dIA

G 'Old

6
ALlILN3
MHYOMLAN

-
WvIyLsLIg

O3daiA
a3aooNd

PCT/US2013/049121

WO 2014/008286

6/13

9 'Old

8S1
JOIA3A LN3ITO

arsl
30IA3A
ONILNOY

<>

9G1
30IA3A
ONIJOOSNVYL

>

oSt
MUOMLAN

vvS§l
30IA3A
ONILNOY

¢Sl
JOIA3A b3IAY3S

WO 2014/008286

7/13

171
4

PROCESS ONE OR MORE INITIAL SYNTAX
ELEMENTS FOR A PARAMETER SET
ASSOCIATED WITH A VIDEO BITSTREAM

/ 172
RECEIVE IN THE VIDEO BITSTREAM AN
OFFSET SYNTAX ELEMENT FOR THE
PARAMETER SET
(173

SKIP A NUMBER OF BITS WITHIN THE
PARAMETER SET BASED ON THE OFFSET
SYNTAX ELEMENT

174
'

PROCESS ONE OR MORE ADDITIONAL
SYNTAX ELEMENTS IN THE PARAMETER SET

FIG. 7

PCT/US2013/049121

WO 2014/008286 PCT/US2013/049121

8/13

181
C

GENERATE ONE OR MORE INITIAL SYNTAX
ELEMENTS FOR A PARAMETER SET
ASSOCIATED WITH A VIDEO BITSTREAM

182
C

GENERATE AN OFFSET SYNTAX ELEMENT
FOR THE PARAMETER SET

183
C

GENERATE ONE OR MORE SYNTAX
ELEMENTS TO BE SKIPPED

184
C

GENERATE ONE OR MORE ADDITIONAL
SYNTAX ELEMENTS IN THE PARAMETER SET

FIG. 8

WO 2014/008286 PCT/US2013/049121

9/13

191
C

DECODE ONE OR MORE INITIAL SYNTAX
ELEMENTS FOR A PARAMETER SET
ASSOCIATED WITH A VIDEO BITSTREAM

192
C

RECEIVE IN THE VIDEO BITSTREAM AN
OFFSET SYNTAX ELEMENT FOR THE
PARAMETER SET

193
C

DECODE THE BITS TO BE SKIPPED

FIG.9

WO 2014/008286 PCT/US2013/049121

10/13

201
C

RECEIVE IN A VIDEO PARAMETER SET, ONE
OR MORE SYNTAX ELEMENTS THAT
INCLUDE INFORMATION RELATED TO
SESSION NEGOTIATION

K 202
RECEIVE IN THE VIDEO DATA A FIRST
SEQUENCE PARAMETER SET COMPRISING A
FIRST SYNTAX ELEMENT IDENTIFYING THE
VIDEO PARAMETER SET

(203
RECEIVE IN THE VIDEO DATA A SECOND
SEQUENCE PARAMETER SET COMPRISING A
SECOND SYNTAX ELEMENT IDENTIFYING
THE VIDEO PARAMETER SET

(204
PROCESS, BASED ON THE ONE OR MORE
SYNTAX ELEMENTS, A FIRST SET OF VIDEO
BLOCKS ASSOCIATED WITH THE FIRST
PARAMETER SET AND A SECOND SET OF
VIDEO BLOCKS ASSOCIATED WITH THE
SECOND PARAMETER SET

FIG. 10

WO 2014/008286 PCT/US2013/049121

11/13

21
C

GENERATE FOR INCLUSION IN A VIDEO
PARAMETER SET, ONE OR MORE SYNTAX
ELEMENTS THAT INCLUDE INFORMATION
RELATED TO SESSION NEGOTIATION

212
C

GENERATE FOR INCLUSION IN THE VIDEO
DATA A FIRST SEQUENCE PARAMETER SET
COMPRISING A FIRST SYNTAX ELEMENT
IDENTIFYING THE VIDEO PARAMETER SET

213
C

GENERATE FOR INCLUSION IN THE VIDEO
DATA A SECOND SEQUENCE PARAMETER
SET COMPRISING A SECOND SYNTAX
ELEMENT IDENTIFYING THE VIDEO
PARAMETER SET

l (214

ENCODE, BASED ON THE ONE OR MORE
SYNTAX ELEMENTS, A FIRST SET OF VIDEO
BLOCKS ASSOCIATED WITH THE FIRST
PARAMETER SET AND A SECOND SET OF
VIDEO BLOCKS ASSOCIATED WITH THE
SECOND PARAMETER SET

FIG. 11

WO 2014/008286 PCT/US2013/049121

12/13

221
C

RECEIVE IN A VIDEO PARAMETER SET, ONE
OR MORE SYNTAX ELEMENTS RELATED TO
HRD PARAMETERS

r 222
RECEIVE IN THE VIDEO DATA A FIRST
SEQUENCE PARAMETER SET COMPRISING A
FIRST SYNTAX ELEMENT IDENTIFYING THE
VIDEO PARAMETER SET

(223
RECEIVE IN THE VIDEO DATA A SECOND
SEQUENCE PARAMETER SET COMPRISING A
SECOND SYNTAX ELEMENT IDENTIFYING
THE VIDEO PARAMETER SET

224
. 4

PROCESS, BASED ON THE ONE OR MORE
SYNTAX ELEMENTS, A FIRST SET OF VIDEO
BLOCKS ASSOCIATED WITH THE FIRST
PARAMETER SET AND A SECOND SET OF
VIDEO BLOCKS ASSOCIATED WITH THE
SECOND PARAMETER SET

FIG. 12

WO 2014/008286 PCT/US2013/049121

13/13

231
C

GENERATE FOR INCLUSION IN A VIDEO
PARAMETER SET, ONE OR MORE SYNTAX
ELEMENTS THAT INCLUDE INFORMATION
RELATED TO HRD PARAMETERS

232
C

GENERATE FOR INCLUSION IN THE VIDEO
DATA A FIRST SEQUENCE PARAMETER SET
COMPRISING A FIRST SYNTAX ELEMENT
IDENTIFYING THE VIDEO PARAMETER SET

233
C

GENERATE FOR INCLUSION IN THE VIDEO
DATA A SECOND SEQUENCE PARAMETER
SET COMPRISING A SECOND SYNTAX
ELEMENT IDENTIFYING THE VIDEO
PARAMETER SET

(234
ENCODE, BASED ON THE ONE OR MORE
SYNTAX ELEMENTS, A FIRST SET OF VIDEO
BLOCKS ASSOCIATED WITH THE FIRST
PARAMETER SET AND A SECOND SET OF
VIDEO BLOCKS ASSOCIATED WITH THE
SECOND PARAMETER SET

FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/049121

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N7/26
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

HOAN

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WENGER S ET AL:
(APS)",

ISO/1EC JTC1/SC29/WG11),,
XP030049948,

"Adaptation Parameter Set

97. MPEG MEETING; 18-7-2011 - 22-7-2011;
TORINO; (MOTION PICTURE EXPERT GROUP OR

no. m21385, 7 June 2012 (2012-06-07),

Y sections 4.1.3, 4.2.1 and 4.2.2

1,3-5,
10,
12-14,
18'209
22,
24'269
30,31,
33'355
39-42,
44'465
48-50
2,6-9,
11,
15-17,
21,23,
27'299
32,
36'389
43,47,
_/__

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 September 2013

Date of mailing of the international search report

11/09/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Regidor Arenales, R

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/049121
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
51-54
Y C-Y TSAI ET AL: "Non-CE8: Pure VLC for 2,11,21,
SAO and ALF", 23,32,
7. JCT-VC MEETING; 98. MPEG MEETING; 43,47
21-11-2011 - 30-11-2011; GENEVA; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
1SO/1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-G220,
8 November 2011 (2011-11-08), XP030110204,
A section 1 1,3-10,
12'209
22,
24'319
33-42,
44'469
48-54
Y BOYCE J ET AL: "SEI message for 6,7,9,
sub-bitstream profile & Tevel indicators", 15,16,
9. JCT-VC MEETING; 100. MPEG MEETING; 27,28,
27-4-2012 - 7-5-2012; GENEVA; (JOINT 36,37,
COLLABORATIVE TEAM ON VIDEO CODING OF 51,52,54
1SO/I1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-10231,
16 April 2012 (2012-04-16), XP030111994,
A section 2.2 1-5,8,
10-14,
17-26,
29'359
38-50,53
Y CHEN Y ET AL: "AHG12: Video parameter set 8,17,29,
and its use in 3D-HEVC", 38,53
9. JCT-VC MEETING; 100. MPEG MEETING;
27-4-2012 - 7-5-2012; GENEVA; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
1SO/1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-I0571,
28 April 2012 (2012-04-28), XP030112334,
A sections 1.2.1 and 1.2.2 1-7,
9-16,
18-28,
30-37,
39-52,54
- / -

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/049121

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,P

X,P

Y-K WANG (QUALCOMM) ET AL: "HRD
parameters in VPS",

10. JCT-VC MEETING; 101. MPEG MEETING;
11-7-2012 - 20-7-2012; STOCKHOLM; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
1SO/1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-J0562, 14 July 2012 (2012-07-14)
, XP030112924,

the whole document

CHEN Y ET AL: "3D-HLS: Video parameter
set for 3D-HEVC",

1. JCT-3V MEETING; 101. MPEG MEETING;
16-7-2012 - 20-7-2012; STOCKHOLM; (THE
JOINT COLLABORATIVE TEAM ON 3D VIDEO
CODING EXTENSION DEVELOPMENT OF ISO/IEC
JTC1/SC29/WG11 AND ITU-T SG.16); URL:
HTTP://PHENIX.INT-EVRY.FR/JCT2/,,

no. JCT3V-A0099, 11 July 2012 (2012-07-11)
, XP030130098,

the whole document

1-54

1-54

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - wo-search-report
	Page 97 - wo-search-report
	Page 98 - wo-search-report

