发明名称
一种以合成酯为主的食品级高温链条油组合物及其制备方法

摘要
本发明提供了一种以合成酯为主的食品级高温链条油组合物，其包括如下重量百分含量的组分：食品级高温抗氧剂0.1～4.0%，食品级极压抗磨剂0.05～4.0%，食品级高温清净分散剂0.05～5.0%，食品级防腐蚀抑制剂0.01～2.0%，食品级增稠剂0～25%，食品级基础油酯类油40～95%，聚醚基础油余量；所述酯类油为饱和多元醇酯，复合酯中一种或几种的混合。所述的食品级酯类油优选多元醇酯或适宜粘度的复合酯。本发明所述的该食品级高温链条油组合物满足美国全国卫生基金会（National Sanitation Foundation, NSF）H1的批准要求，且具有良好的极压抗磨性、热稳定性和抗氧化性，尤其具有较低的蒸发损失和焦碳量，此外，还具有较好的低温流动性，可用于食品加工行业高温或低温环境下的链条设备润滑。
1. 一种以合成酯为主的食品级高温链条油组合物，其包括如下重量百分含量的组分：
 食品级高温抗氧化剂 0.1 ~ 4.0%,
 食品级极压抗磨剂 0.05 ~ 4.0%,
 食品级高温清净分散剂 0.05 ~ 5.0%,
 食品级防腐蚀抑制剂 0.01 ~ 2.0%,
 食品级增稠剂 0 ~ 25%,
 食品级基础油酯类油 40 ~ 95%,
 聚醚基础油 余额。

所述酯类油为饱和多元醇酯、复合酯中一种或几种的混合。

2. 根据权利要求1所述的组合物，其特征在于，包括如下重量百分含量的组分：
 食品级高温抗氧化剂 0.2 ~ 2.0%,
 食品级极压抗磨剂 0.1 ~ 3.0%,
 食品级高温清净分散剂 0.1 ~ 3.0%,
 食品级防腐蚀抑制剂 0.03 ~ 1.5%,
 食品级增稠剂 5 ~ 20%,
 食品级基础油酯类油 60 ~ 90%,
 聚醚基础油 余额。

3. 根据权利要求1或2所述的组合物，其特征在于，还包含至少一种食品级金属减活剂。

4. 根据权利要求1-3任意一项所述的组合物，其特征在于，包括如下重量百分含量的组分：
 食品级高温抗氧化剂 0.5 ~ 1.0%,
 食品级高温清净分散剂 0.2 ~ 2.0%,
 食品级极压抗磨剂 0.2 ~ 1.0%,
 食品级防腐蚀抑制剂 0.05 ~ 0.1%,
 食品级金属减活剂 0.01 ~ 0.1%,
 食品级增稠剂 5 ~ 10%,
 食品级基础油酯类油 70 ~ 85%,
 聚醚基础油 余额。

5. 根据权利要求1-4任意一项所述的组合物，其特征在于，所述聚醚基础油为非水溶性聚醚基础油。

6. 根据权利要求1-4任意一项所述的组合物，其特征在于，所述食品级高温抗氧化剂选自酚型抗氧化剂、胺型抗氧化剂、或酚型抗氧化剂和胺型抗氧化剂混合物中一种或多种任意组合物。

7. 根据权利要求1-4任意一项所述的组合物，其特征在于，所述食品级高温清净分散剂选自磺酸盐、烷基水杨酸盐、硫磷化聚异丁烯盐、丁二酸酯、无灰磷酸酯、苄胺中的一种或任意几种的组合物。

8. 根据权利要求1-4任意一项所述的组合物，其特征在于，所述食品级极压抗磨剂选自磷酸酯胺盐、硫代烷基磷酸酯、硫代氨基甲酸酯中的一种或几种。

9. 根据权利要求1-4任意一项所述的组合物，其特征在于，所述食品级防腐蚀抑制剂
选自咪唑啉衍生物、正油烯基肌氨酸中的一种或任意几种的组合物。

10. 根据权利要求 1-4 任意一项所述的组合物，其特征在于，所述食品级金属减活剂选自苯并三唑及其衍生物中的一种或任意几种的组合物。

11. 根据权利要求 1-4 任意一项所述的组合物，其特征在于，所述食品级增稠剂选自聚甲基丙烯酸酯、聚异丁烯中的一种或几种的任意组合物。
一种以合成酯为主的食品级高温链条油组合物及其制备方法

技术领域
[0001] 本发明涉及一种食品级链条润滑剂组合物，具体地说，涉及一种食品级合成酯型
链条油组合物，尤其是涉及一种耐高温的食品级链条油组合物及其制备方法。

背景技术
[0002] 食品加工设备主要应用于食品加工如肉制品、奶制品等加工，此外也应用于食品
包装、制药、烟草、动物饲料，以及日化用品等行业。食品加工设备的各组成部件例如液压系
统、轴承、齿轮、链条、压缩机、真空泵等都需要使用专用润滑剂，此类润滑剂除了要确保设
备的有效润滑外，必须符合更加严格的标准，以确保偶尔与食品等接触时仍然能够保证食
品安全性。
[0003] 美国全国卫生基金会（National Sanitation Foundation, NSF）是目前世界上范围
内食品工业安全领域获得公认的权威组织，其延续了美国农业部（USDA）关于润滑油脂的
安全认证工作，并对非食品化合物包括食品级润滑剂的类型进行了扩充，将其分为 H1（偶
尔与食品接触的润滑剂）、H2（不与食品接触的润滑剂）、H3（可溶解的润滑剂）及其各自添
加剂。
[0004] H1—偶尔与食品接触的润滑油脂。合成物允许用于与食品有接触可能的设备部件
的润滑。
[0005] H2—不与食品接触的润滑油脂。用于食品加工厂的设备润滑，润滑油脂或被润滑的
机器部件不会有接触食品的可能。
[0006] H3—可溶解的润滑油脂及其各自添加剂。机器部件在再次使用之前必须清洗和清
除乳状液。
[0007] 其中，最严格的是 H1——偶尔与食品接触的润滑剂，根据规定，其所有成分、原材
料都必须符合美国食品药品监督管理局 FDA21CFR 178.3570 等相关条款的要求，且偶尔和
食品接触到时，仍然可以确保食品的卫生安全。
[0008] 链条传输设备在食品、药品等生产的各个领域应用十分广泛，由于上述行业中链
条传输存在与食品、药品等发生偶然接触的可能性，其所谓的链条润滑剂组合物必须使用
满足 FDA 21CFR 178.3570 等相关条款的规定和要求。在某些食品生产如烘焙行业中，涉及
到高温处理工艺，温度范围在 120°C 到 250°C 甚至更高，因此在该高温工艺流程中涉及到链
条润滑时应使用食品级高温链条油。该食品级链条油在满足 FDA 21CFR 178.3570 等条款
同时，还应满足设备高温使用工况对性能提出的特殊需求，如低蒸发损失和低结焦量。
[0009] 随着食品安全卫生环境的威胁和人们的健康意识逐渐增强，食品级润滑油剂的应用
受到更多的重视。同时，食品加工过程中是否使用食品级润滑剂成为很多国家在控制食品
进出口方面的一道门槛。
[0010] 中国发明专利（申请号 200480014998.5）公开了改良的食品级润滑剂，该润滑剂
含有至少一种植物油、至少一种聚 α 烯烃以及至少一种抗氧剂，根据该发明专利，所制备
食品级润滑油剂的旋转照射氧化 (RBOT) 值大约 200 分钟。该公开技术使用相当量的聚 α 烷烃，与合成酯和聚醚相比，在高温度条件下容易结焦。因此不适用于高温条件下的食品加工链条设备润滑。

【0011】中国发明专利（申请号 200710196148.7）公开了一种食品级润滑油剂组合物，根据该发明专利，该食品级润滑油剂组合物包括至少一种添加剂组合物，其包括一种或多种不促成淤渣的磨损减少剂，该润滑油剂组合物表达出比含有传统磨损减少剂的润滑油剂组合物更低的淤渣形成趋势。该公开技术未对所用的主要量的油料质量指标提出明确要求，虽然能够确保其润滑油剂组合物符合联邦管理机构设定的安全要求，但不能确保其在低温使用条件下的蒸发损失和结焦满足高温链条设备对所用润滑剂的性能需求。

【0012】中国发明专利（申请号 200610047409.4）公开了一种高温链条油及其制备方法，根据该发明专利，该高温链条油包括：高温抗氧剂 1-5％，极压抗磨剂 1-10％，抗腐蚀剂 0.01-0.5％，高温清净分散剂 1-20％，基础油余量。该公开技术采用了高分子酯型清净分散剂，加入清净分散剂后所得高温链条油的高温结焦量明显降低。但该公开技术所选用原料不能确保满足食品级润滑油剂相关要求。

【0013】因此，需要一种食品级高温链条润滑剂组合物，其符合 NSF H1 偶尔与食品接触润滑剂要求，即满足 FDA 21CFR 178.3570 及相关法规条款的要求，同时在使用性能方面具有优良的极压抗磨性、热稳定性、氧化安定性，且在高温下具有较低的蒸发损失和结焦量。

【0014】目前在已有的非食品级高温链条油公开技术（中国发明专利，申请号 200610047409.4）表明，高温清净分散剂的加入可以降低其高温条件下的结焦量，但现有食品级润滑剂公开技术（如申请号分别为 200480014998.5 和 200710196148.7 的中国发明专利）中，暂无使用清净分散剂的案例。

发明内容

【0015】本发明的目的是提供一种以合成酯为主的食品级高温链条油组合物，其具有良好的极压抗磨性、热稳定性和抗氧化性，且在高温条件下具有较低的蒸发损失和结焦量，此外，还具有较好的低温流动性，能够在较低的环境温度下使用。

【0016】本发明的另一目的是提供一种以合成酯为主的食品级高温链条油组合物的制备方法。

【0017】为了实现本发明目的，本发明提供一种以合成酯为主的食品级高温链条油组合物，其包括如下重量百分含量的组分：

【0018】食品级高温抗氧剂 0.1 ～ 4.0％，

【0019】食品级极压抗磨剂 0.05 ～ 4.0％，

【0020】食品级高温清净分散剂 0.05 ～ 5.0％，

【0021】食品级防腐抑制剂 0.01 ～ 2.0％，

【0022】食品级增稠剂 0 ～ 25％，

【0023】食品级基础油 酯类油 40 ～ 95％，

【0024】聚醚基础油 余量；

【0025】本发明食品级高温链条油组合物是在连续高温、暴露于空气等环境下工作，对油品的抗氧化性能有较高的要求。所选食品级基础油在各类基础油中相比，具有较好的抗氧
化性能和较低的结焦量，在此基础上，决定油品氧化安定性好与坏，在同剂量下主要取决于抗氧剂的类型和质量。

[0026] 其中，优选的为，以合成酯为主的食品级高温链条油组合物包括如下重量百分含量的组分：
[0027] 食品级高温抗氧剂 0.2 ～ 2.0%，
[0028] 食品级极压抗磨剂 0.1 ～ 3.0%，
[0029] 食品级高温清净分散剂 0.1 ～ 3.0%，
[0030] 食品级防腐抑制剂 0.03 ～ 1.5%，
[0031] 食品级增稠剂 5 ～ 20%，
[0032] 食品级基础油 酯类油 60 ～ 90%，
[0033] 聚醚基础油 余量。
[0034] 本发明组合物还包含至少一种食品级金属活化剂。
[0035] 最优选的为，以合成酯为主的食品级高温链条油组合物由如下重量百分含量的组分组成：
[0036] 食品级高温抗氧剂 0.5 ～ 1.0%，
[0037] 食品级高温清净分散剂 0.2 ～ 2.0%，
[0038] 食品级极压抗磨剂 0.2 ～ 1.0%，
[0039] 食品级防腐抑制剂 0.05 ～ 0.1%，
[0040] 食品级金属活化剂 0.01 ～ 0.1%
[0041] 食品级增稠剂 5 ～ 10%，
[0042] 食品级基础油 酯类油 70 ～ 85%，
[0043] 聚醚基础油 余量。
[0044] 食品级基础油由酯类油和聚醚基础油组成，选择合适调合比例，以获得相应的黏度产品。
[0045] 所述的酯类油为饱和多元酯类、复合酯或其任意组合物。优选采用饱和多元酯类
PRIOLUBE 3970、PRIOLUBE 1960、PRIOLUBE 2500，复合酯如 PRIOLUBE 2088 中一种或两种以上的组合。
[0046] 所述的聚醚基础油为非水溶性聚醚基础油，优选采用美国 CRODA 公司的 Emkarox
VG126、Emkarox VG180、Emkarox VG222、Emkarox VG 380、Emkarox VG 462 等中的一种或两种以上的组合。
[0047] 增稠剂主要用于调整摩擦剂粘度，并能起到改善摩擦剂粘度指数的作用，同时增
强链条和滑轨的粘附性，避免链条油在链条高速运转时的飞溅。所述的食品级增稠剂为聚
甲基丙烯酸酯（如 Lubrizol 4305FG）、聚异丁烯（如 INEOS 公司的 Indopol H-300、Indopol
H-1200）等中一种或几种的任意组合。
[0048] 高温抗氧剂可提高油品在高温下抗氧化变质能力。所述的食品级高温抗氧剂为高
温酯类抗氧剂（如 IRGANOX L101、IRGANOX L115、Vanlube 81）、胺类抗氧剂（如 IRGANOX
L57、IRGANOX L06、Vanlube961）、胺酚混合物（如 IRGANOX L64、IRGANOX L150）等。其加
入量控制在 0.1 ～ 4.0%，优选为 0.2 ～ 2.0%，最优选的加入量控制在 0.5 ～ 1.0%，当加
入量过小时，会影响链条油的抗氧化变质能力；当加入量过大时，高温下分解产生黑色颗粒
沉淀物甚至可能形成结焦，影响链条油的使用，且可能不符合 FDA 21CFR 178. 3570 等条款要求。

[0049] 高温清净分散剂，能够中和链条油在高温条件下氧化生成的酸性物质，可防止或抑制链条油在高温条件下氧化生成胶质和积炭沉积物。所述的食品级高温清净分散剂为高碱值磺酸钙盐（如 AmorCal™ 100FG）、丁二酸酯、无灰磷酸酯、苯胺中的一种或几种的组合物，或符合 NSF HX1 批准要求的其它类型高温清净分散剂。

[0050] 极压抗磨剂可以改善润滑剂的极压和抗磨损性能。所述的食品级极压抗磨剂为磷酸酯胺（如 Vanlube 9123、IRGALUBE 349）、硫化烷基磷酸酯（如 IRGALUBE 232、IRGALUBE 211）、或硫代氨基甲酸酯（如 Vanlube 7723）等中的一种或几种，或符合 NSF HX1 批准要求的其它类型极压抗磨剂。

[0051] 防腐蚀抑制剂，可以减少润滑剂对金属表面的腐蚀作用。所述的食品级防腐抑制剂为咪唑啉衍生物（如 AMINE O）、正油烯基肌氨酸（如 SARKOSYL 0）中的一种或几种，或符合 NSF HX1 批准要求的其它类型防腐抑制剂。

[0052] 金属减活剂，作用于金属表面，与金属离子形成螯合物或保护膜，能够抑制金属或金属离子对氧化过程的催化作用，同时兼具防腐蚀抑制剂、防锈剂等作用。所述的食品级金属减活剂选自苯三唑及其衍生物（如 Cuvan 303、IRGAMET 39）中的一种或任意几种的组合物，或符合 NSF HX1 批准要求的其它类型金属减活剂。

[0053] 本发明所述的食品级高温链条油组合物中食品级基础油和添加剂的用量均符合 NSF H1 批准标准。

[0054] 本发明的一种以合成酯为主的食品级高温链条油组合物的制备过程如下：先将食品级酯类油和聚醚基础油以合适比例混合并加热到 60–80°C，然后加入食品级抗氧剂搅拌至均匀透明，再加入食品级高温清净分散剂，食品级极压抗磨剂，食品级防腐蚀抑制剂，食品级金属减活剂搅拌均匀，最后加入食品级增稠剂进行复配而成。

[0055] 本发明复配所得食品级高温链条油采用孔径不大于 10 μm 过滤袋进行过滤。

[0056] 本发明所述的食品级高温链条油组合物的制备环境和设备满足良好作业规范 GMP（GOOD MANUFACTURING PRACTICE）的相关要求。

[0057] 本发明选择适宜黏度的食品级酯类油和聚醚基础油，加入食品级高温抗氧剂、食品级高温清净分散剂，食品级极压抗磨剂，食品级防腐蚀抑制剂，食品级金属减活剂，食品级增稠剂等复配而成，对添加剂种类及配比进行选择，各组分合理配比，达成协同作用，得到耐高温的食品级链条油，其产品满足 NSF H1 要求，且具有良好的极压抗磨性、热稳定性和抗氧化性，且在高温条件下具有较低的蒸发损失和焦炭量等特点，尤其适合于高温条件下食品加工链条设备使用（最低使用温度达到 –30°C，最高使用温度达到 250°C）。

具体实施方式

[0058] 以下实施例用于说明本发明，但不用来限制本发明的范围。

[0059] 实施例 1～5

[0060] 实施例中的一种以合成酯为主的食品级高温链条油组合物的组分见表 1，其制备过程如下：先将食品级基础油加热到 80°C，随后加入食品级高温抗氧剂搅拌至均匀透明，再分别加入食品级高温清净分散剂，食品级极压抗磨剂，食品级防腐蚀抑制剂，食品级金属减
活剂搅拌均匀，最后按配比加入食品级增稠剂搅拌均匀而成。

【0061】表1 实施例 1 各组分含量

<table>
<thead>
<tr>
<th>原料</th>
<th>实施例1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIOLUBE 1960</td>
<td>10</td>
</tr>
<tr>
<td>PRIOLUBE 2500</td>
<td>余量</td>
</tr>
<tr>
<td>PRIOLUBE 2088</td>
<td>30</td>
</tr>
<tr>
<td>Emkarox VG126</td>
<td>5</td>
</tr>
<tr>
<td>Emkarox VG180</td>
<td>8</td>
</tr>
<tr>
<td>Indopol H-300</td>
<td>8</td>
</tr>
<tr>
<td>IRGANOX L06</td>
<td>0.5</td>
</tr>
<tr>
<td>IRGANOX L101</td>
<td>0.5</td>
</tr>
<tr>
<td>AmorCal™400FG</td>
<td>2.0</td>
</tr>
<tr>
<td>VANLUBE 9123</td>
<td>0.5</td>
</tr>
<tr>
<td>VANLUBE 7723</td>
<td>0.5</td>
</tr>
<tr>
<td>SARKOSYL 0</td>
<td>0.05</td>
</tr>
<tr>
<td>CUVAN 303</td>
<td>0.1</td>
</tr>
</tbody>
</table>

【0063】

【0064】表2 实施例 2 各组分含量

<table>
<thead>
<tr>
<th>原料</th>
<th>实施例2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIOLUBE 1960</td>
<td>5</td>
</tr>
<tr>
<td>PRIOLUBE 2500</td>
<td>余量</td>
</tr>
<tr>
<td>PRIOLUBE 2088</td>
<td>25</td>
</tr>
<tr>
<td>Emkarox VG126</td>
<td>5</td>
</tr>
<tr>
<td>Emkarox VG180</td>
<td>10</td>
</tr>
</tbody>
</table>
表 3 实施例 3 各组分含量

<table>
<thead>
<tr>
<th>原料</th>
<th>实施例 3 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIOLUBE 2500</td>
<td>10</td>
</tr>
<tr>
<td>PRIOLUBE 2088</td>
<td>余量</td>
</tr>
<tr>
<td>Emkarox VG180</td>
<td>5</td>
</tr>
<tr>
<td>Emkarox VG 222</td>
<td>5</td>
</tr>
<tr>
<td>Indopol H-300</td>
<td>22</td>
</tr>
<tr>
<td>IRGANOX L06</td>
<td>0.1</td>
</tr>
<tr>
<td>IRGANOX L101</td>
<td>0.1</td>
</tr>
<tr>
<td>AmorCat™400FG</td>
<td>4.0</td>
</tr>
<tr>
<td>VANLUBE 9123</td>
<td>0.2</td>
</tr>
<tr>
<td>Amine 0</td>
<td>0.05</td>
</tr>
<tr>
<td>CUVAN 303</td>
<td>0.01</td>
</tr>
</tbody>
</table>

表 4 实施例 4 各组分含量

<table>
<thead>
<tr>
<th>原料</th>
<th>实施例 4 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priolube D300</td>
<td>15</td>
</tr>
<tr>
<td>IRGANOX L06</td>
<td>0.5</td>
</tr>
<tr>
<td>IRGANOX L101</td>
<td>0.5</td>
</tr>
<tr>
<td>AmorCat™400FG</td>
<td>1.0</td>
</tr>
<tr>
<td>VANLUBE 9123</td>
<td>0.5</td>
</tr>
<tr>
<td>VANLUBE 7723</td>
<td>0.3</td>
</tr>
<tr>
<td>SARKOSYL 0</td>
<td>0.05</td>
</tr>
<tr>
<td>Amine 0</td>
<td>0.05</td>
</tr>
<tr>
<td>CUVAN 303</td>
<td>0.01</td>
</tr>
<tr>
<td>原料</td>
<td>实施例 4（%）</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PRIOLUBE 2500</td>
<td>10</td>
</tr>
<tr>
<td>PRIOLUBE 2088</td>
<td>余量</td>
</tr>
<tr>
<td>Emkarox VG 222</td>
<td>5</td>
</tr>
<tr>
<td>Emkarox VG 380</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>原料</th>
<th>实施例 5（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indopol H-300</td>
<td>10</td>
</tr>
<tr>
<td>IRGANOX L06</td>
<td>0.5</td>
</tr>
<tr>
<td>IRGANOX L101</td>
<td>0.3</td>
</tr>
<tr>
<td>AmorCal™400FG</td>
<td>3.5</td>
</tr>
<tr>
<td>VANLUBE 9123</td>
<td>0.3</td>
</tr>
<tr>
<td>VANLUBE 7723</td>
<td>0.3</td>
</tr>
<tr>
<td>SARKOSYL 0</td>
<td>0.03</td>
</tr>
<tr>
<td>CUVAN 303</td>
<td>0.05</td>
</tr>
</tbody>
</table>

表5 实施例5 各组分含量
Vanlube 7723 | 0.3
Sarkosyl 0 | 0.05
Amine 0 | 0.05
Cuvan 303 | 0.01

[0073] 其中，上述实施例合成酯基础油 PRIOLUBE 1960、PRIOLUBE 2500、PRIOLUBE 2088（购自CrodA公司）在40℃典型运动粘度分别为50mm²/s、90mm²/s、320mm²/s，聚醚基础油 Emkarox VG126、Emkarox VG180、Emkarox VG222、Emkarox VG 380（购自CrodA）在40℃典型运动粘度分别为125mm²/s、180mm²/s、221mm²/s、380mm²/s。

[0074] IRGANOX L06、IRGANOX L101、Sarkosyl 0、Amine 0 均购自 BASF 公司，VANLUBE 9123、VANLUBE 7723、CUVAN 303 均购自 Vanderbilt 公司，AmorCal™400FG 购自 Soltex 公司，Indopol H-300 购自 INEOS 公司。

[0075] 将实施例 1-5 进行各项性能评定，结果如下：

[0076] 表 2 食品级高温链条油组合物分析数据

<table>
<thead>
<tr>
<th>性质</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>黏度指数</td>
<td>168</td>
<td>172</td>
<td>179</td>
<td>175</td>
<td>178</td>
</tr>
<tr>
<td>闪点(开口)℃</td>
<td>265</td>
<td>262</td>
<td>261</td>
<td>263</td>
<td>260</td>
</tr>
<tr>
<td>钢片腐蚀（100℃，3h）/级</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
</tr>
<tr>
<td>液相锈蚀试验（合成海水）</td>
<td>无锈</td>
<td>无锈</td>
<td>无锈</td>
<td>无锈</td>
<td>无锈</td>
</tr>
<tr>
<td>蒸发损失(250℃，1h)%</td>
<td>2.0</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>结焦量(280℃，3h)/mg</td>
<td>1.6</td>
<td>2.5</td>
<td>3.1</td>
<td>2.9</td>
<td>3.7</td>
</tr>
<tr>
<td>老化性能：黏度变化%</td>
<td>4.5</td>
<td>4.8</td>
<td>5.8</td>
<td>5.1</td>
<td>5.5</td>
</tr>
<tr>
<td>磨斑直径(196N, 60min, 54℃)</td>
<td>0.36</td>
<td>0.39</td>
<td>0.56</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>(1800r/min), mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0078] 以上数据表明，本发明的一种以合成酯为主的食品级高温链条油产品在满足 NSF H1 食品级润滑油产品要求基础上（即符合 FDA21CFR 178.3570 等相关条款），具有优良的极压抗磨性、热稳定性、氧化安定性，低的蒸发损失和结焦量等优点，同时具有较低的倾点和较窄的黏度指数，可用于最高速度达 250℃，最低使用温度可低至 -30℃的食品加工等领域的链条设备的润滑。虽然，上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述，但在本发明基础上，可以对之作一些修改或改进，这对本领域技术人员而言是显而易见的。因此，在不偏离本发明精神的基础上所做的这些修改或改进，均属于本发明要求保护的范围。