wo 2014/052249 A1 | W00 AT OO0 A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

International Bureau

(43) International Publication Date

3 April 2014 (03.04.2014)

—~

% (10) International Publication Number
= WO 2014/052249 A1l
WIPO I PCT

(51) International Patent Classification:

HO4N 19/51 (2014.01)
HO4N 19/583 (2014.01)
HO4N 19/70 (2014.01)

(21) International Application Number:

(22) International Filing Date:

23 September 2013 (23.09.2013)

(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

PCT/US2013/061241

(72) Inventors: SULLIVAN, Gary J.; ¢/o Microsoft Corpora-

HO4N 19/134 (2014.01) tion, LCA - International Patents, One Microsoft Way,
HO4N 19/109 (2014.01) Redmond, Washington 98052-6399 (US). KANUMURI,
HO4N 19/503 (2014.01) Sandeep; c/o Microsoft Corporation, LCA - International

Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

61/708,042 30 September 2012 (30.09.2012) Us MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/781,710 28 February 2013 (28.02.2013) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(71) Applicant: MICROSOFT CORPORATION [US/US]J; TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
One Microsoft Way, Redmond, Washington 98052-6399 ZW.
(US).

[Continued on next page]

(54) Title: CONDITIONAL SIGNALLING OF REFERENCE PICTURE LIST MODIFICATION INFORMATION

‘ Start ,

y

Evaluate condition.

~~ 1110

y

Conditionally parse [lag that
indicates whether a
reference picture list is
modified according to
syntax clements cxplicitly
signaled in the bitstream.

~ 1120

End

Figure 11

(57) Abstract: Innovations in signaling of reference picture list ("RPL") modific-
ation information. For example, a video encoder evaluates a condition that de-
pends at least in part on a variable indicating a number of total reference pictures.
Depending on the results of the evaluation, the encoder signals in a bitstream a
flag that indicates whether an RPL is modified according to syntax elements ex-
plicitly signaled in the bitstream. A video decoder evaluates the condition and,
depending on results of the evaluation, parses from a bitstream a flag that indic-
ates whether an RPL is modified according to syntax elements explicitly signaled
in the bitstream. The condition can be evaluated as part of processing for an RPL
modification structure that includes the flag, or as part of processing for a slice
header. The encoder and decoder can also evaluate other conditions that affect
syntax elements for list entries of the RPL modification information.

WO 2014/052249 A1 |IIWAT 00N 000K ERE YA A AR

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

CONDITIONAL SIGNALLING OF REFERENCE PICTURE LIST
MODIFICATION INFORMATION

BACKGROUND

[001] Engineers use compression (also called source coding or source encoding) to
reduce the bit rate of digital video. Compression decreases the cost of storing and
transmitting video information by converting the information into a lower bit rate form.
Decompression (also called decoding) reconstructs a version of the original information
from the compressed form. A “codec” is an encoder/decoder system.

[002] Over the last two decades, various video codec standards have been adopted,
including the H.261, H.262 (MPEG-2 or ISO/IEC 13818-2), H.263 and H.264 (AVC or
ISO/TIEC 14496-10) standards and the MPEG-1 (ISO/IEC 11172-2), MPEG-4 Visual
(ISO/IEC 14496-2) and SMPTE 421M standards. More recently, the HEVC standard is
under development. A video codec standard typically defines options for the syntax of an
encoded video bitstream, detailing parameters in the bitstream when particular features are
used in encoding and decoding. In many cases, a video codec standard also provides
details about the decoding operations a decoder should perform to achieve correct results
in decoding. Aside from codec standards, various proprictary codec formats define other
options for the syntax of an encoded video bitstream and corresponding decoding
operations.

[003] Some types of parameters in a bitstream indicate information about reference
pictures used during video encoding and decoding. A reference picture is, in general, a
picture that contains samples that may be used for inter-picture prediction in the decoding
process of other pictures. Typically, the other pictures follow the reference picture in
decoding order and use the reference picture for motion-compensated prediction. In some
video codec standards and formats, multiple reference pictures are available at a given
time for use for motion-compensated prediction. Such video codec standards / formats
specify how to manage the multiple reference pictures.

[004] In general, a reference picture list (“RPL”) is a list of reference pictures used for
motion-compensated prediction. In some video codec standards and formats, a reference
picture set (“RPS”) is a set of reference pictures available for use in motion-compensated
prediction at a given time, and an RPL is some of the reference pictures in the RPS.
Reference pictures in an RPL are addressed with reference indices. A reference index

identifies a reference picture in the RPL. During encoding and decoding, an RPS can be

1

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

updated to account for newly decoded pictures and older pictures that are no longer used
as reference pictures. Also, reference pictures within an RPL may be reordered such that
more commonly used reference pictures are identified with reference indices that are more
efficient to signal. In some recent codec standards, an RPL is constructed during encoding
and decoding based upon available information about the RPS, modifications according to
rules and/or modifications signaled in the bitstream. Signaling of modifications for an
RPL can consume a significant amount of bits.

SUMMARY
[005] In summary, the detailed description presents innovations in signaling of
reference picture list (“RPL”) modification information. More generally, the innovations
relate to different ways to avoid signaling of RPL modification information when it would
be unused or when values of such information can be inferred.
[006] According to one aspect of the innovations described herein, a video encoder
evaluates a condition. Depending on results of the evaluation, the encoder conditionally
signals in a bitstream a flag that indicates whether an RPL is modified according to syntax
elements explicitly signaled in the bitstream. A corresponding video decoder evaluates a
condition. Depending on results of the evaluation, the decoder conditionally parses from a
bitstream a flag that indicates whether an RPL is modified according to syntax elements
explicitly signaled in the bitstream. In some example implementations, the RPL can be for
a predictive (“P”) slice or a bi-predictive (“B”) slice. Alternatively, a higher level syntax
structure is conditionally signaled / parsed based on evaluation of the condition.
[007] In some example implementations, if the RPL is not modified, a default RPL is
constructed based on rules about RPL construction from an RPS. If the RPL is modified,
a replacement RPL is constructed based on signaled RPL modification information that
indicates selections of reference pictures from the RPS. Alternatively, modifications to
reorder a default RPL, add a reference picture to the default RPL or remove a reference
picture from the default RPL are signaled in a more fine-grained way to adjust the default
RPL.
[008] For example, the condition that is evaluated depends at least in part on a variable
that indicates a number of total reference pictures. In some example implementations, the
condition is whether value of the variable is greater than 1.
[009] The condition can be evaluated as part of processing for an RPL modification

structure that includes the flag. Or, the condition can be evaluated as part of processing

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

for a slice header, in which case the RPL modification structure (including the flag) is
conditionally signaled or parsed depending on results of the evaluation

[010] According to another aspect of the innovations described herein, a video encoder
evaluates another condition. Depending on results of the evaluation, the encoder
conditionally signals in a bitstream one or more syntax clements for list entries that
indicate how to modify an RPL (e.g., replace the RPL, adjust the RPL). A corresponding
video decoder evaluates the condition. Depending on results of the evaluation, the
decoder conditionally parses from a bitstream one or more syntax elements for list entries
that indicate how to modify an RPL (e.g., replace the RPL, adjust the RPL). In some
example implementations, the RPL can be for a P slice or a B slice (with the condition
evaluation and conditional signaling / parsing repeated for each of multiple RPLs for a B
slice). For example, the other condition depends at least in part on a variable that indicates
a number of total reference pictures, a number of active reference pictures for the RPL
and/or whether weighted prediction is disabled. Different logic can be used to check
whether weighted prediction is disabled depending on whether a current slice is a P slice
or B slice and/or depending on which RPL is being signaled / parsed. In some example
implementations, if (a) the number of total reference pictures is equal to 2 and (b) the
number of active reference pictures for the RPL is equal to 1, then the one or more syntax
clements for list entries are absent from the bitstream, and a value is inferred for one of the
list entries. Further, in some example implementations, if (¢) the number of total reference
pictures is equal to 2, (d) the number of active reference pictures for the RPL is equal to 2
and (e) weighted prediction is disabled, then the one or more syntax elements for list
entries are absent from the bitstream, and values are inferred for two of the list entries.
[011] According to another aspect of the innovations described herein, a video encoder
evaluates another condition. Depending on results of the evaluation, the encoder adjusts
signaling in a bitstream of one or more syntax elements for list entries that indicate how to
modify an RPL (e.g., replace the RPL, adjust the RPL). In particular, length (in bits) of at
least one of the one or more syntax elements is adjusted. A corresponding video decoder
evaluates the condition. Depending on results of the evaluation, the decoder adjusts
parsing from a bitstream of one or more syntax elements for list entries that indicate how
to modify an RPL (again, where length (in bits) of at least one of the one or more syntax
clements is adjusted). For example, the condition depends at least in part on whether
weighted prediction is disabled. Different logic can be used to check whether weighted

prediction is disabled depending on whether a current slice is a P slice or B slice and/or

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

depending on which RPL is being signaled / parsed. In some example implementations,
for an index i for the list entries, if weighted prediction is disabled, the length (in bits) of
the at least one of the syntax elements decreases as i increases. For example, in some
example implementations, if weighted prediction is disabled, the length of a given syntax
element for list entry[7] is Ceil(Log2(NumPocTotalCurr-7)) bits. On the other hand, if
weighted prediction is enabled, the length of the given syntax element for list entry[i] is
Ceil(Log2(NumPocTotalCurr)) bits.

[012] The encoding or decoding can be implemented as part of a method, as part of a
computing device adapted to perform the method or as part of a tangible computer-
readable media storing computer-executable instructions for causing a computing device
to perform the method.

[013] The foregoing and other objects, features, and advantages of the invention will
become more apparent from the following detailed description, which proceeds with
reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[014] Figure 1 is a diagram of an example computing system in which some described
embodiments can be implemented.

[015] Figures 2a and 2b are diagrams of example network environments in which some
described embodiments can be implemented.

[016] Figure 3 is a diagram of an example encoder system in conjunction with which
some described embodiments can be implemented.

[017] Figure 4 is a diagram of an example decoder system in conjunction with which
some described embodiments can be implemented.

[018] Figure 5 is a diagram illustrating an example video encoder in conjunction with
which some described embodiments can be implemented.

[019] Figure 6 is a diagram illustrating an example video decoder in conjunction with
which some described embodiments can be implemented.

[020] Figure 7a is a table illustrating conditional signaling of a flag that indicates
whether an RPL is modified, according to some example implementations.

[021] Figures 7b and 7c are tables illustrating conditional signaling of one or more
flags that indicate whether an RPL is modified, according to other example

implementations.

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

[022] Figures 8 and 9 are tables illustrating conditional signaling of syntax elements for
list entries that indicate how to modify an RPL, according to some example
implementations.
[023] Figures 10 and 11 are flowcharts illustrating generalized techniques for
conditional signaling and parsing, respectively, of a flag that indicates whether an RPL is
modified.
[024] Figures 12 and 13 are flowcharts illustrating generalized techniques for
conditional signaling and parsing, respectively, of syntax elements for list entries that
indicate how to modify an RPL.
[025] Figures 14 and 15 are flowcharts illustrating generalized techniques for adjusting
signaling and parsing, respectively, of syntax elements for list entries that indicate how to
modify an RPL.

DETAILED DESCRIPTION

[026] The detailed description presents innovations in signaling of reference picture list
(“RPL”) modification information. These innovations can help avoid the signaling of RPL
modification information when it would be unused or when values of such information can
be inferred.

[027] In some recent codec standards, a reference picture set (“RPS”) is a set of
reference pictures available for use in motion-compensated prediction, and an RPL is
constructed from the RPS. For the decoding process of a predictive (“P”) slice, there is
one RPL, which is called RPL 0. For the decoding process of a bi-predictive (“B”) slice,
there are two RPLs, which are called RPL 0 and RPL 1. At the beginning of the decoding
process for a P slice, RPL 0 is derived from available information about RPL 0 (such as
the set of reference pictures available at the decoder for decoding of the current picture),
modifications according to rules and/or modifications signaled in the bitstream. Similarly,
at the beginning of the decoding process for a B slice, RPL 0 and RPL 1 are derived from
available information about RPL 0 and available information about RPL 1 (such as the set
of reference pictures available at the decoder for decoding of the current picture),
modifications according to rules and/or modifications signaled in the bitstream. More
generally, an RPL is constructed during encoding and decoding based upon available
information about the RPL, modifications according to rules and/or modifications signaled
in the bitstream. Signaling of modifications for an RPL can consume a significant amount
of bits. For some recent codec standards, there are inefficiencies in how RPL modification

information is signaled.

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

[028] The detailed description presents various innovations in the area of signaling of
RPL modification information. In some situations, these innovations result in more
efficient signaling of syntax elements for RPL modification information. For example, the
detailed description describes conditional signaling of syntax elements for list entries that
indicate how to modify an RPL. The detailed description also describes ways to use fewer
bits to signal such syntax elements. As another example, the detailed description describes
conditional signaling of a flag that indicates whether an RPL is modified.

[029] In some example implementations, if the RPL is not modified, a default RPL is
constructed according to an “implicit” approach using rules about RPL construction from
an RPS. If the RPL is modified, a replacement RPL is constructed according to an
“explicit” signaling approach using signaled RPL modification information that indicates
selections of reference pictures from the RPS. Alternatively, modifications to reorder, add
a reference picture or remove a reference picture from a default RPL can be signaled in a
more fine-grained way as specific changes relative to the default RPL.

[030] Some of the innovations described herein are illustrated with reference to syntax
elements and operations specific to the HEVC standard. For example, reference is made
to the draft version JCTVC-11003 of the HEVC standard — “High efficiency video coding
(HEVC) text specification draft 7, JCTVC-11003_d5, 9" meeting of the Joint
Collaborative Team on Video Coding (“JCT-VC”), Geneva, April 2012. See also the draft
version entitled, “High Efficiency Video Coding (HEVC) text specification draft 9,”
JCTVC-K1003 d11, 11" meeting of the JCT-VC, Shanghai, October 2012. The
innovations described herein can also be implemented for other standards or formats.

[031] More generally, various alternatives to the examples described herein are
possible. For example, some of the methods described herein can be altered by changing
the ordering of the method acts described, by splitting, repeating, or omitting certain
method acts, etc. The various aspects of the disclosed technology can be used in
combination or separately. Different embodiments use one or more of the described
innovations. Some of the innovations described herein address one or more of the
problems noted in the background. Typically, a given technique/tool does not solve all

such problems.

I Example Computing Systems.
[032] Figure 1 illustrates a generalized example of a suitable computing system (100)

in which several of the described innovations may be implemented. The computing system

6

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

(100) is not intended to suggest any limitation as to scope of use or functionality, as the
innovations may be implemented in diverse general-purpose or special-purpose computing
Systems.

[033] With reference to Figure 1, the computing system (100) includes one or more
processing units (110, 115) and memory (120, 125). In Figure 1, this most basic
configuration (130) is included within a dashed line. The processing units (110, 115)
execute computer-executable instructions. A processing unit can be a general-purpose
central processing unit (“CPU”), processor in an application-specific integrated circuit
(“ASIC”) or any other type of processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to increase processing power.
For example, Figure 1 shows a central processing unit (110) as well as a graphics
processing unit or co-processing unit (115). The tangible memory (120, 125) may be
volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the two, accessible by the
processing unit(s). The memory (120, 125) stores software (180) implementing one or
more innovations for signaling of RPL modification information, in the form of computer-
executable instructions suitable for execution by the processing unit(s).

[034] A computing system may have additional features. For example, the computing
system (100) includes storage (140), one or more input devices (150), one or more output
devices (160), and one or more communication connections (170). An interconnection
mechanism (not shown) such as a bus, controller, or network interconnects the
components of the computing system (100). Typically, operating system software (not
shown) provides an operating environment for other software executing in the computing
system (100), and coordinates activities of the components of the computing system (100).
[035] The tangible storage (140) may be removable or non-removable, and includes
magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium
which can be used to store information and which can be accessed within the computing
system (100). The storage (140) stores instructions for the software (180) implementing
one or more innovations for signaling of RPL modification information.

[036] The input device(s) (150) may be a touch input device such as a keyboard,
mouse, pen, or trackball, a voice input device, a scanning device, or another device that
provides input to the computing system (100). For video encoding, the input device(s)
(150) may be a camera, video card, TV tuner card, or similar device that accepts video

input in analog or digital form, or a CD-ROM or CD-RW that reads video samples into the

7

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

computing system (100). The output device(s) (160) may be a display, printer, speaker,
CD-writer, or another device that provides output from the computing system (100).
[037] The communication connection(s) (170) enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, audio or video input or
output, or other data in a modulated data signal. A modulated data signal is a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
can use an electrical, optical, RF, or other carrier.

[038] The innovations can be described in the general context of computer-readable
media. Computer-readable media are any available tangible media that can be accessed
within a computing environment. By way of example, and not limitation, with the
computing system (100), computer-readable media include memory (120, 125), storage
(140), and combinations of any of the above.

[039] The innovations can be described in the general context of computer-executable
instructions, such as those included in program modules, being executed in a computing
system on a target real or virtual processor. Generally, program modules include routines,
programs, libraries, objects, classes, components, data structures, etc. that perform
particular tasks or implement particular abstract data types. The functionality of the
program modules may be combined or split between program modules as desired in
various embodiments. Computer-executable instructions for program modules may be
executed within a local or distributed computing system.

[040] The terms “system” and “device” are used interchangeably herein. Unless the
context clearly indicates otherwise, neither term implies any limitation on a type of
computing system or computing device. In general, a computing system or computing
device can be local or distributed, and can include any combination of special-purpose
hardware and/or general-purpose hardware with software implementing the functionality
described herein.

[041] The disclosed methods can also be implemented using specialized computing
hardware configured to perform any of the disclosed methods. For example, the disclosed
methods can be implemented by an integrated circuit (e.g., an application specific
integrated circuit (“ASIC”) (such as an ASIC digital signal process unit (“DSP”), a

graphics processing unit (“GPU”), or a programmable logic device (“PLD”), such as a

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

field programmable gate array (“FPGA”)) specially designed or configured to implement
any of the disclosed methods.

[042] For the sake of presentation, the detailed description uses terms like “determine”
and “use” to describe computer operations in a computing system. These terms are high-
level abstractions for operations performed by a computer, and should not be confused
with acts performed by a human being. The actual computer operations corresponding to

these terms vary depending on implementation.

11. Example Network Environments.

[043] Figures 2a and 2b show example network environments (201, 202) that include
video encoders (220) and video decoders (270). The encoders (220) and decoders (270)
are connected over a network (250) using an appropriate communication protocol. The
network (250) can include the Internet or another computer network.

[044] In the network environment (201) shown in Figure 2a, each real-time
communication (“RTC”) tool (210) includes both an encoder (220) and a decoder (270)
for bidirectional communication. A given encoder (220) can produce output compliant
with the SMPTE 421M standard, ISO-IEC 14496-10 standard (also known as H.264 or
AVC), HEVC standard, another standard, or a proprietary format, with a corresponding
decoder (270) accepting encoded data from the encoder (220). The bidirectional
communication can be part of a video conference, video telephone call, or other two-party
communication scenario. Although the network environment (201) in Figure 2a includes
two real-time communication tools (210), the network environment (201) can instead
include three or more real-time communication tools (210) that participate in multi-party
communication.

[045] A real-time communication tool (210) manages encoding by an encoder (220).
Figure 3 shows an example encoder system (300) that can be included in the real-time
communication tool (210). Alternatively, the real-time communication tool (210) uses
another encoder system. A real-time communication tool (210) also manages decoding by
a decoder (270). Figure 4 shows an example decoder system (400), which can be included
in the real-time communication tool (210). Alternatively, the real-time communication
tool (210) uses another decoder system.

[046] In the network environment (202) shown in Figure 2b, an encoding tool (212)
includes an encoder (220) that encodes video for delivery to multiple playback tools (214),

which include decoders (270). The unidirectional communication can be provided for a

9

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

video surveillance system, web camera monitoring system, remote desktop conferencing
presentation or other scenario in which video is encoded and sent from one location to one
or more other locations. Although the network environment (202) in Figure 2b includes
two playback tools (214), the network environment (202) can include more or fewer
playback tools (214). In general, a playback tool (214) communicates with the encoding
tool (212) to determine a stream of video for the playback tool (214) to receive. The
playback tool (214) receives the stream, buffers the received encoded data for an
appropriate period, and begins decoding and playback.

[047] Figure 3 shows an example encoder system (300) that can be included in the
encoding tool (212). Alternatively, the encoding tool (212) uses another encoder system.
The encoding tool (212) can also include server-side controller logic for managing
connections with one or more playback tools (214). Figure 4 shows an example decoder
system (400), which can be included in the playback tool (214). Alternatively, the
playback tool (214) uses another decoder system. A playback tool (214) can also include

client-side controller logic for managing connections with the encoding tool (212).

I11. Example Encoder Systems.

[048] Figure 3 is a block diagram of an example encoder system (300) in conjunction
with which some described embodiments may be implemented. The encoder system (300)
can be a general-purpose encoding tool capable of operating in any of multiple encoding
modes such as a low-latency encoding mode for real-time communication, transcoding
mode, and regular encoding mode for media playback from a file or stream, or it can be a
special-purpose encoding tool adapted for one such encoding mode. The encoder system
(300) can be implemented as an operating system module, as part of an application library
or as a standalone application. Overall, the encoder system (300) receives a sequence of
source video frames (311) from a video source (310) and produces encoded data as output
to a channel (390). The encoded data output to the channel can include syntax elements
that indicate RPL modification information.

[049] The video source (310) can be a camera, tuner card, storage media, or other
digital video source. The video source (310) produces a sequence of video frames at a
frame rate of, for example, 30 frames per second. As used herein, the term “frame”
generally refers to source, coded or reconstructed image data. For progressive video, a
frame is a progressive video frame. For interlaced video, in example embodiments, an

interlaced video frame is de-interlaced prior to encoding. Alternatively, two

10

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

complementary interlaced video fields are encoded as an interlaced video frame or
separate fields. Aside from indicating a progressive video frame, the term “frame” or
“picture” can indicate a single non-paired video field, a complementary pair of video
fields, a video object plane that represents a video object at a given time, or a region of
interest in a larger image. The video object plane or region can be part of a larger image
that includes multiple objects or regions of a scene.

[050] An arriving source frame (311) is stored in a source frame temporary memory
storage arca (320) that includes multiple frame buffer storage areas (321, 322, ..., 32#n).
A frame buffer (321, 322, etc.) holds one source frame in the source frame storage arca
(320). After one or more of the source frames (311) have been stored in frame buffers
(321, 322, etc.), a frame selector (330) periodically selects an individual source frame
from the source frame storage areca (320). The order in which frames are selected by the
frame selector (330) for input to the encoder (340) may differ from the order in which the
frames are produced by the video source (310), e.g., a frame may be ahead in order, to
facilitate temporally backward prediction. Before the encoder (340), the encoder system
(300) can include a pre-processor (not shown) that performs pre-processing (e.g., filtering)
of the frames before encoding. The pre-processing can also include color space
conversion into primary and secondary components for encoding.

[051] The encoder (340) encodes the selected frame (331) to produce a coded frame
(341) and also produces memory management control operation (“MMCQO”) signals (342)
or reference picture set (“RPS”) information. Ifthe current frame is not the first frame that
has been encoded, when performing its encoding process, the encoder (340) may use one
or more previously encoded/decoded frames (369) that have been stored in a decoded
frame temporary memory storage area (360). Such stored decoded frames (369) are used
as reference pictures for inter-frame prediction of the content of the current source frame
(331). Generally, the encoder (340) includes multiple encoding modules that perform
encoding tasks such as motion estimation and compensation, frequency transforms,
quantization and entropy coding. The exact operations performed by the encoder (340)
can vary depending on compression format. The format of the output encoded data can be
a Windows Media Video format, VC-1 format, MPEG-x format (e.g., MPEG-1, MPEG-2,
or MPEG-4), H.26x format (e.g., H.261, H.262, H.263, H.264), HEVC format or other
format.

[052] For example, within the encoder (340), an inter-coded, predicted frame is

represented in terms of prediction from reference frames, which are examples of reference

11

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

pictures. A motion estimator estimates motion of blocks or other sets of samples of a
source frame (341) with respect to one or more reference frames (369). When multiple
reference frames are used, the multiple reference frames can be from different temporal
directions or the same temporal direction. The reference frames (reference pictures) can
be part of one or more RPLs, with reference indices addressing the reference pictures in
the RPL(s). RPL(s) are constructed during encoding so that new reference pictures are
added when appropriate, older reference pictures that are no longer used for motion
compensation are removed when appropriate, and reference pictures are reordered when
appropriate. In some implementations, for example, when encoding a current picture, the
encoder (340) determines an RPS that includes reference pictures in the decoded frame
storage area (360), then creates one or more RPLs for encoding of a given slice of the
current picture. An RPL can be created by applying rules about the selection of reference
pictures available from the RPS (implicit approach), in which case RPL modification
information is not explicitly signaled in the bitstream. Or, the RPL can be created by
selecting specific reference pictures available from the RPS, where the reference pictures
that are selected will be indicated in RPL modification information that is signaled in the
bitstream. Compared to an RPL that would be constructed by rules of the implicit
approach, the RPL modification information can specify a replacement RPL as a list of
reference pictures in the RPS. Alternatively, the RPL modification information can, in a
more fine-grained way, specify removal of one or more reference pictures, addition of one
or more reference pictures and/or reordering of reference pictures in the RPL constructed
by rules of the implicit approach.

[053] When encoding an inter-coded frame, the encoder (340) can evaluate the results
of motion compensation for which an RPL is not modified according to syntax elements
explicitly signaled in the bitstream, and also evaluate the results of motion compensation
for which the RPL is modified according to syntax elements explicitly signaled in the
bitstream (or results of multiple different ways of modifying the RPL). The encoder (340)
can decide to use the default RPL (no RPL modification information signaled in the
bitstream) or a modified RPL (with RPL modification information signaled in the
bitstream). When the RPL is modified (e.g., replaced, adjusted), compared to the default
RPL, the encoder (340) can perform one or more of (a) reordering reference pictures for
more efficient addressing with reference indices, (b) removing reference pictures based at
least in part on frequency of use during encoding, and (c) adding reference pictures based

at least in part on frequency of use during encoding. For example, the encoder (340) can

12

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

decide to remove a given reference picture from the RPL after utilization of the reference
picture for motion compensation falls below a threshold amount and/or according to other
criteria. As another example, the encoder (340) can decide to add a given reference
picture to the RPL if utilization of the reference picture for motion compensation is above
a threshold amount and/or according to other criteria. As another example, the encoder
(340) can decide how to reorder reference pictures in the RPL based on frequency of
utilization of the respective reference pictures and/or according to other criteria.

[054] The motion estimator outputs motion information such as motion vector
information, which is entropy coded. A motion compensator applies motion vectors to
reference pictures to determine motion-compensated prediction values. The encoder
determines the differences (if any) between a block’s motion-compensated prediction
values and corresponding original values. These prediction residual values are further
encoded using a frequency transform, quantization and entropy encoding. Similarly, for
intra prediction, the encoder (340) can determine intra-prediction values for a block,
determine prediction residual values, and encode the prediction residual values (with a
frequency transform, quantization and entropy encoding). In particular, the entropy coder
of the encoder (340) compresses quantized transform coefficient values as well as certain
side information (e.g., motion vector information, QP values, mode decisions, parameter
choices, reference indices, RPL modification information). Typical entropy coding
techniques include Exp-Golomb coding, arithmetic coding, differential coding, Huffman
coding, run length coding, variable-length-to-variable-length (“V2V”) coding, variable-
length-to-fixed-length (“V2F”) coding, LZ coding, dictionary coding, probability interval
partitioning entropy coding (“PIPE”), and combinations of the above. The entropy coder
can use different coding techniques for different kinds of information, and can choose
from among multiple code tables within a particular coding technique.

[055] The coded frames (341) and MMCO/RPS information (342) are processed by a
decoding process emulator (350). The decoding process emulator (350) implements some
of the functionality of a decoder, for example, decoding tasks to reconstruct reference
pictures that are used by the encoder (340) in motion compensation. The decoding process
emulator (350) uses the MMCO/RPS information (342) to determine whether a given
coded frame (341) needs to be reconstructed and stored for use as a reference picture in
inter-frame prediction of subsequent frames to be encoded. If the MMCO/RPS
information (342) indicates that a coded frame (341) needs to be stored, the decoding

process emulator (350) models the decoding process that would be conducted by a decoder

13

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

that receives the coded frame (341) and produces a corresponding decoded frame (351). In
doing so, when the encoder (340) has used decoded frame(s) (369) that have been stored
in the decoded frame storage area (360), the decoding process emulator (350) also uses the
decoded frame(s) (369) from the storage area (360) as part of the decoding process.

[056] The decoded frame temporary memory storage area (360) includes multiple
frame buffer storage areas (361, 362, ..., 36n). The decoding process emulator (350) uses
the MMCO/RPS information (342) to manage the contents of the storage area (360) in
order to identify any frame buffers (361, 362, etc.) with frames that are no longer needed
by the encoder (340) for use as reference pictures. After modeling the decoding process,
the decoding process emulator (350) stores a newly decoded frame (351) in a frame buffer
(361, 362, etc.) that has been identified in this manner.

[057] The coded frames (341) and MMCO/RPS information (342) are also buffered in
a temporary coded data area (370). The coded data that is aggregated in the coded data
area (370) can contain, as part of the syntax of an elementary coded video bitstream,
syntax elements that indicate RPL modification information. The coded data that is
aggregated in the coded data area (370) can also include media metadata relating to the
coded video data (e.g., as one or more parameters in one or more supplemental
enhancement information (“SEI”’) messages or video usability information (“VUI”)
messages).

[058] The aggregated data (371) from the temporary coded data area (370) are
processed by a channel encoder (380). The channel encoder (380) can packetize the
aggregated data for transmission as a media stream (e.g., according to a media container
format such as ISO/IEC 14496-12), in which case the channel encoder (380) can add
syntax elements as part of the syntax of the media transmission stream. Or, the channel
encoder (380) can organize the aggregated data for storage as a file (e.g., according to a
media container format such as ISO/IEC 14496-12), in which case the channel encoder
(380) can add syntax elements as part of the syntax of the media storage file. Or, more
generally, the channel encoder (380) can implement one or more media system
multiplexing protocols or transport protocols, in which case the channel encoder (380) can
add syntax elements as part of the syntax of the protocol(s). The channel encoder (380)
provides output to a channel (390), which represents storage, a communications

connection, or another channel for the output.

14

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

Iv. Example Decoder Systems.

[059] Figure 4 is a block diagram of an example decoder system (400) in conjunction
with which some described embodiments may be implemented. The decoder system (400)
can be a general-purpose decoding tool capable of operating in any of multiple decoding
modes such as a low-latency decoding mode for real-time communication and regular
decoding mode for media playback from a file or stream, or it can be a special-purpose
decoding tool adapted for one such decoding mode. The decoder system (400) can be
implemented as an operating system module, as part of an application library or as a
standalone application. Overall, the decoder system (400) receives coded data from a
channel (410) and produces reconstructed frames as output for an output destination (490).
The coded data can include syntax elements that indicate RPL modification information.
[060] The decoder system (400) includes a channel (410), which can represent storage,
a communications connection, or another channel for coded data as input. The channel
(410) produces coded data that has been channel coded. A channel decoder (420) can
process the coded data. For example, the channel decoder (420) de-packetizes data that
has been aggregated for transmission as a media stream (e.g., according to a media
container format such as ISO/IEC 14496-12), in which case the channel decoder (420) can
parse syntax elements added as part of the syntax of the media transmission stream. Or,
the channel decoder (420) separates coded video data that has been aggregated for storage
as a file (e.g., according to a media container format such as ISO/IEC 14496-12), in which
case the channel decoder (420) can parse syntax elements added as part of the syntax of
the media storage file. Or, more generally, the channel decoder (420) can implement one
or more media system demultiplexing protocols or transport protocols, in which case the
channel decoder (420) can parse syntax elements added as part of the syntax of the
protocol(s).

[061] The coded data (421) that is output from the channel decoder (420) is stored in a
temporary coded data area (430) until a sufficient quantity of such data has been received.
The coded data (421) includes coded frames (431) and MMCO/RPS information (432).
The coded data (421) in the coded data area (430) can contain, as part of the syntax of an
elementary coded video bitstream, syntax elements that indicate RPL modification
information. The coded data (421) in the coded data area (430) can also include media
metadata relating to the encoded video data (e.g., as one or more parameters in one or
more SEI messages or VUI messages). In general, the coded data area (430) temporarily

stores coded data (421) until such coded data (421) is used by the decoder (450). At that

15

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

point, coded data for a coded frame (431) and MMCO/RPS information (432) are
transferred from the coded data area (430) to the decoder (450). As decoding continues,
new coded data is added to the coded data areca (430) and the oldest coded data remaining
in the coded data area (430) is transferred to the decoder (450).

[062] The decoder (450) periodically decodes a coded frame (431) to produce a
corresponding decoded frame (451). As appropriate, when performing its decoding
process, the decoder (450) may use one or more previously decoded frames (469) as
reference frames (reference pictures) for inter-frame prediction. The decoder (450) reads
such previously decoded frames (469) from a decoded frame temporary memory storage
area (460). Generally, the decoder (450) includes multiple decoding modules that perform
decoding tasks such as entropy decoding, inverse quantization, inverse frequency
transforms and motion compensation (which can create RPL(s) using RPL modification
information). The exact operations performed by the decoder (450) can vary depending
on compression format.

[063] For example, the decoder (450) receives encoded data for a compressed frame or
sequence of frames and produces output including decoded frame (451). In the decoder
(450), a buffer receives encoded data for a compressed frame and makes the received
encoded data available to an entropy decoder. The entropy decoder entropy decodes
entropy-coded quantized data as well as entropy-coded side information (including
reference indices, RPL modification information, etc.), typically applying the inverse of
entropy encoding performed in the encoder. The decoder constructs one or more RPLs for
reference pictures, with reference indices addressing the reference pictures in the RPL(s).
The RPL(s) are constructed so that new reference pictures are added when appropriate,
older reference pictures that are no longer used for motion compensation are removed
when appropriate, and reference pictures are reordered when appropriate. In some
implementations, for example, when decoding a current picture, the decoder (450)
determines an RPS that includes reference pictures in the decoded frame storage arca
(460), then creates one or more RPLs for decoding of a given slice of the current picture.
An RPL can be created by applying rules about the selection of reference pictures
available from the RPS, in which case RPL modification information is not parsed from
the bitstream. Or, the RPL can be created by selecting specific reference pictures
available from the RPS, where the reference pictures that are selected are indicated in RPL
modification information that is parsed from the bitstream. Compared to an RPL that

would be constructed by rules of the implicit approach, the RPL modification information

16

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

can specify a replacement RPL as a list of reference pictures in the RPS. Alternatively,
the RPL modification information can, in a more fine-grained way, specify removal of one
or more reference pictures, addition of one or more reference pictures and/or reordering of
reference pictures in the RPL constructed by rules of the implicit approach.

[064] A motion compensator applies motion information to one or more reference
pictures to form motion-compensated predictions of sub-blocks and/or blocks (generally,
blocks) of the frame being reconstructed. An intra prediction module can spatially predict
sample values of a current block from neighboring, previously reconstructed sample
values. The decoder (450) also reconstructs prediction residuals. An inverse quantizer
inverse quantizes entropy-decoded data. An inverse frequency transformer converts the
reconstructed frequency domain data into spatial domain information. For a predicted
frame, the decoder (450) combines reconstructed prediction residuals with motion-
compensated predictions to form a reconstructed frame. The decoder (450) can similarly
combine prediction residuals with spatial predictions from intra prediction. A motion
compensation loop in the video decoder (450) includes an adaptive de-blocking filter to
smooth discontinuities across block boundary rows and/or columns in the decoded frame
(451).

[065] The decoded frame temporary memory storage area (460) includes multiple
frame buffer storage areas (461, 462, ..., 46n). The decoded frame storage area (460) is
an example of a DPB. The decoder (450) uses the MMCO/RPS information (432) to
identify a frame buffer (461, 462, etc.) in which it can store a decoded frame (451). The
decoder (450) stores the decoded frame (451) in that frame buffer.

[066] An output sequencer (480) uses the MMCO/RPS information (432) to identify
when the next frame to be produced in output order is available in the decoded frame
storage area (460). When the next frame (481) to be produced in output order is available
in the decoded frame storage area (460), it is read by the output sequencer (480) and
output to the output destination (490) (e.g., display). In general, the order in which frames
are output from the decoded frame storage area (460) by the output sequencer (480) may
differ from the order in which the frames are decoded by the decoder (450).

V. Example Video Encoders.

[067] Figure 5 is a block diagram of a generalized video encoder (500) in conjunction

with which some described embodiments may be implemented. The encoder (500)

17

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

receives a sequence of video frames including a current frame (505) and produces encoded
data (595) as output.

[068] The encoder (500) is block-based and uses a block format that depends on
implementation. Blocks may be further sub-divided at different stages, e.g., at the
frequency transform and entropy encoding stages. For example, a frame can be divided
into 64x64 blocks, 32x32 blocks or 16x16 blocks, which can in turn be divided into
smaller blocks and sub-blocks of pixel values for coding and decoding.

[069] The encoder system (500) compresses predicted frames and intra-coded frames.
For the sake of presentation, Figure 5 shows an “intra path” through the encoder (500) for
intra-frame coding and an “inter path” for inter-frame coding. Many of the components of
the encoder (500) are used for both intra-frame coding and inter-frame coding. The exact
operations performed by those components can vary depending on the type of information
being compressed.

[070] If the current frame (505) is a predicted frame, a motion estimator (510)
estimates motion of blocks, sub-blocks or other sets of pixel values of the current frame
(505) with respect to one or more reference frames (reference pictures). The frame store
(520) buffers one or more reconstructed previous frames (525) for use as reference frames
(reference pictures). When multiple reference pictures are used, the multiple reference
pictures can be from different temporal directions or the same temporal direction. The
multiple reference pictures can be represented in one or more RPLs, which are addressed
with reference indices. The motion estimator (510) outputs as side information motion
information (515) such as differential motion vector information, reference indices and
RPL modification information. During encoding, the encoder (500) constructs RPL(s) so
that new reference pictures are added when appropriate, older reference pictures that are
no longer used for motion compensation are removed when appropriate, and reference
pictures are reordered in the RPL(s) when appropriate.

[071] In some implementations, when encoding a current frame, the encoder (500)
determines an RPS that includes reference frames in the frame store (520). The encoder
(500) typically determines the RPS for the first slice of the frame. On a slice-by-slice
basis, the encoder (500) creates one or more RPLs for encoding of a given slice of the
current frame. To create an RPL, the encoder (500) can apply rules about the selection of
reference frames available from the RPS, in which case RPL modification information is
not explicitly signaled in the encoded data (595). Or, to create the RPL, the encoder (500)

can select specific reference frames available from the RPS, where the reference frames

18

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

that are selected will be indicated in RPL modification information that is signaled in the
encoded data (595). Compared to an RPL that would be constructed by rules of the
implicit approach, the RPL modification information can specify a replacement RPL as a
list of reference pictures in the RPS. Alternatively, the RPL modification information can,
in a more fine-grained way, specify removal of one or more reference frames, addition of
one or more reference frames and/or reordering of reference frames in the RPL implicitly
constructed by rules.

[072] The motion compensator (530) applies reconstructed motion vectors to the
reconstructed reference frame(s) (525) when forming a motion-compensated current frame
(535). The difference (if any) between a sub-block, block, etc. of the motion-compensated
current frame (535) and corresponding part of the original current frame (505) is the
prediction residual (545) for the sub-block, block, etc. During later reconstruction of the
current frame, reconstructed prediction residuals are added to the motion-compensated
current frame (535) to obtain a reconstructed frame that is closer to the original current
frame (505). In lossy compression, however, some information is still lost from the
original current frame (505). The intra path can include an intra prediction module (not
shown) that spatially predicts pixel values of a current block or sub-block from
neighboring, previously reconstructed pixel values.

[073] A frequency transformer (560) converts spatial domain video information into
frequency domain (i.e., spectral, transform) data. For block-based video frames, the
frequency transformer (560) applies a discrete cosine transform, an integer approximation
thereof, or another type of forward block transform to blocks or sub-blocks of pixel value
data or prediction residual data, producing blocks/sub-blocks of frequency transform
coefficients. A quantizer (570) then quantizes the transform coefficients. For example,
the quantizer (570) applies non-uniform, scalar quantization to the frequency domain data
with a step size that varies on a frame-by-frame basis, slice-by-slice basis, block-by-block
basis or other basis.

[074] When a reconstructed version of the current frame is needed for subsequent
motion estimation/compensation, an inverse quantizer (576) performs inverse quantization
on the quantized frequency coefficient data. An inverse frequency transformer (566)
performs an inverse frequency transform, producing blocks/sub-blocks of reconstructed
prediction residuals or pixel values. For a predicted frame, the encoder (500) combines
reconstructed prediction residuals (545) with motion-compensated predictions (535) to

form the reconstructed frame (505), which may be used as a reference picture. (Although

19

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

not shown in Figure 5, in the intra path, the encoder (500) can combine prediction
residuals with spatial predictions from intra prediction to reconstruct a frame that is used
as a reference picture.) The frame store (520) buffers the reconstructed current frame for
use as a reference picture in subsequent motion-compensated prediction.

[075] A motion compensation loop in the encoder (500) includes an adaptive in-loop
deblock filter (510) before or after the frame store (520). The decoder (500) applies in-
loop filtering to reconstructed frames to adaptively smooth discontinuities across
boundaries in the frames.

[076] The entropy coder (580) compresses the output of the quantizer (570) as well as
motion information (515) and certain side information (e.g., QP values, reference indices,
RPL modification information). The entropy coder (580) provides encoded data (595) to
the buffer (590), which multiplexes the encoded data into an output bitstream. The
encoded data (595) can include syntax elements that indicate RPL modification
information. Section VII describes examples of such syntax elements.

[077] A controller (not shown) receives inputs from various modules of the encoder.
The controller evaluates intermediate results during encoding, for example, setting QP
values and performing rate-distortion analysis. The controller works with other modules
to set and change coding parameters during encoding. In particular, when deciding
whether and how to modify (e.g., replace, adjust) RPL(s), the controller can control which
reference pictures are added to RPL(s), control which picture are removed from RPL(s),
and reorder reference pictures in RPL(s) for more efficient addressing with reference
indices. The controller can decide to remove reference pictures from the RPS (and hence
RPLs), for example, by removing all reference pictures after a scene change, removing all
reference pictures after encoding of a special kind of picture such as an IDR picture,
removing a given reference picture after utilization of the reference picture for motion
compensation falls below a threshold amount and/or removing reference pictures
according to other criteria. The controller can decide to add reference pictures to the RPS,
for example, by adding pictures according to picture type / slice types in the pictures,
temporal layer for the pictures and/or other criteria. For an RPL, the controller can
evaluate the results of motion compensation for which an RPL is not modified according
to syntax elements explicitly signaled in the bitstream, and also evaluate the results of
motion compensation for which the RPL is modified according to syntax elements
explicitly signaled in the bitstream (or results of multiple different ways of modifying the

RPL). The controller can evaluate results in terms of bitrate and/or quality. The controller

20

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

can select the RPL implicitly constructed by rules (no RPL modification information) or
select an RPL that has been modified (as specified with RPL modification information).
To modify (e.g., replace, adjust) an RPL, compared to the implicitly constructed RPL, the
controller can (a) reorder reference pictures for more efficient addressing with reference
indices, (b) remove reference pictures based at least in part on frequency of use during
encoding, and/or (c) add reference pictures based at least in part on frequency of use
during encoding. For example, the controller can decide to remove a given reference
picture from the RPL after utilization of the reference picture for motion compensation
falls below a threshold amount and/or according to other criteria. Or, the controller can
decide to add a given reference picture to the RPL if utilization of the reference picture for
motion compensation is above a threshold amount and/or according to other criteria. Or,
the controller can decide how to reorder reference pictures in the RPL based on frequency
of utilization of the respective reference pictures and/or according to other criteria. The
controller can construct the RPL(s) on a picture-by-picture basis, slice-by-slice basis, or
some other basis.

[078] Depending on implementation and the type of compression desired, modules of
the encoder can be added, omitted, split into multiple modules, combined with other
modules, and/or replaced with like modules. In alternative embodiments, encoders with
different modules and/or other configurations of modules perform one or more of the
described techniques. Specific embodiments of encoders typically use a variation or
supplemented version of the encoder (500). The relationships shown between modules
within the encoder (500) indicate general flows of information in the encoder; other

relationships are not shown for the sake of simplicity.

VL Example Video Decoders.

[079] Figure 6 is a block diagram of a generalized decoder (600) in conjunction with
which several described embodiments may be implemented. The decoder (600) receives
encoded data (695) for a compressed frame or sequence of frames and produces output
including a reconstructed frame (605), which may be used as a reference picture. For the
sake of presentation, Figure 6 shows an “intra path” through the decoder (600) for intra-
frame decoding and an “inter path” for inter-frame decoding. Many of the components of
the decoder (600) are used for both intra-frame decoding and inter-frame decoding. The
exact operations performed by those components can vary depending on the type of

information being decompressed.

21

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

[080] A buffer (690) receives encoded data (695) for a compressed frame and makes
the received encoded data available to the parser / entropy decoder (680). The encoded
data (695) can include syntax elements that indicate RPL modification information.
Section VII describes examples of such syntax elements. The parser / entropy decoder
(680) entropy decodes entropy-coded quantized data as well as entropy-coded side
information (including reference indices, RPL modification information, etc.), typically
applying the inverse of entropy encoding performed in the encoder.

[081] During decoding, the decoder (600) constructs RPL(s) so that new reference
pictures are added when appropriate, older reference pictures that are no longer used for
motion compensation are removed when appropriate, and reference pictures are reordered
when appropriate. The decoder (600) can construct the RPL(s) based upon available
information about the RPL(s) (e.g., available reference pictures in the RPS), modifications
according to rules and/or according to modifications signaled as part of the encoded data
(695). In some implementations, for example, when decoding a current frame, the decoder
(600) determines an RPS that includes reference frames in the frame store (620). The
decoder (600) typically determines the RPS for the first slice of the frame. On a slice-by-
slice basis, the decoder (600) creates one or more RPLs for decoding of a given slice of
the current frame. To create an RPL, in some cases (as indicated in the encoded data
(695)), the decoder (600) applies rules about the selection of reference frames available
from the RPS, in which case RPL modification information is not parsed from the encoded
data (695). In other cases, to create the RPL, the decoder (600) selects specific reference
frames available from the RPS, where the reference frames that are selected are indicated
in RPL modification information that is parsed from the encoded data (695). The RPL
modification information can specify a replacement RPL as a list of reference pictures in
the RPS. Alternatively, the RPL modification information can, in a more fine-grained
way, specify removal of one or more reference frames, addition of one or more reference
frames and/or reordering of reference frames in the RPL implicitly constructed by rules.
[082] A motion compensator (630) applies motion information (615) to one or more
reference pictures (625) to form motion-compensated predictions (635) of sub-blocks
and/or blocks of the frame (605) being reconstructed. The frame store (620) stores one or
more previously reconstructed frames for use as reference pictures.

[083] The intra path can include an intra prediction module (not shown) that spatially
predicts pixel values of a current block or sub-block from neighboring, previously

reconstructed pixel values. In the inter path, the decoder (600) reconstructs prediction

22

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

residuals. An inverse quantizer (670) inverse quantizes entropy-decoded data. An inverse
frequency transformer (660) converts the reconstructed frequency domain data into spatial
domain information. For example, the inverse frequency transformer (660) applies an
inverse block transform to frequency transform coefficients, producing pixel value data or
prediction residual data. The inverse frequency transform can be an inverse discrete
cosine transform, an integer approximation thereof, or another type of inverse frequency
transform.

[084] For a predicted frame, the decoder (600) combines reconstructed prediction
residuals (645) with motion-compensated predictions (635) to form the reconstructed
frame (605), which may be used as a reference picture. (Although not shown in Figure 6,
in the intra path, the decoder (600) can combine prediction residuals with spatial
predictions from intra prediction to reconstruct a frame, which may be used as a reference
picture.) A motion compensation loop in the decoder (600) includes an adaptive in-loop
deblock filter (610) before or after the frame store (620). The decoder (600) applies in-
loop filtering to reconstructed frames to adaptively smooth discontinuities across
boundaries in the frames.

[085] In Figure 6, the decoder (600) also includes a post-processing deblock filter
(608). The post-processing deblock filter (608) optionally smoothes discontinuities in
reconstructed frames. Other filtering (such as de-ring filtering) can also be applied as part
of the post-processing filtering.

[086] Depending on implementation and the type of decompression desired, modules
of the decoder can be added, omitted, split into multiple modules, combined with other
modules, and/or replaced with like modules. In alternative embodiments, decoders with
different modules and/or other configurations of modules perform one or more of the
described techniques. Specific embodiments of decoders typically use a variation or
supplemented version of the decoder (600). The relationships shown between modules
within the decoder (600) indicate general flows of information in the decoder; other

relationships are not shown for the sake of simplicity.

VIIL. Signaling of Reference Picture List Modification Information.
[087] This section presents various innovations in the area of signaling of RPL
modification information. In some situations, these innovations result in more efficient

signaling of syntax elements for RPL modification information.

23

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

A. Reference Pictures and RPLs.
[088] A reference picture is, in general, a picture that contains samples that may be
used for inter-picture prediction in the decoding process of other pictures, which typically
follow the reference picture in decoding order. Multiple reference pictures may be
available at a given time for use for motion-compensated prediction.
[089] In general, a reference picture list (“RPL”) is a list of reference pictures used for
motion-compensated prediction. Reference pictures in the RPL are addressed with
reference indices. A reference index identifies a reference picture in the RPL. During
encoding and decoding, when an RPL is constructed, reference pictures in the RPL can
change from time to time to add newly decoded pictures, drop older pictures that are no
longer used as reference pictures and/or reorder reference pictures within the RPL to make
signaling of the more commonly used reference indices more efficient. An encoder and
decoder can follow the same rules to construct, modify, etc. their RPL(s). In addition to
such rules (or instead of such rules), an encoder can signal information to a decoder that
indicates how the decoder should construct, modify, etc. its RPL(s) to match the RPL(s)
used by the encoder. Typically, an RPL is constructed during encoding and decoding
based upon available information about the RPL (e.g., available pictures in the RPS),
modifications according to rules and/or modifications signaled in the bitstream.
[090] In some implementations, for a current picture, an encoder or decoder determines
a reference picture set (“RPS”) that includes reference pictures in a decoded frame storage
arca such as a decoded picture buffer (“DPB”). The RPS is a description of the reference
pictures used in the decoding process of the current and future coded pictures. Reference
pictures included in the RPS are listed explicitly in the bitstream.
[091] The encoder or decoder determines the RPS once per picture. For example, the
decoder determines the RPS after decoding a slice header for a slice of the picture, using
syntax elements signaled in the slice header. Reference pictures are identified with picture
order count (“POC”) values, parts therecof and/or other information signaled in the
bitstream. The encoder or decoder determines groups of short-term reference pictures and
long-term reference pictures that may be used in inter-picture prediction of the current
picture (and that may be used in inter-picture prediction of one or more of the pictures
following the current picture in decoding order). (The encoder or decoder also determines
groups of reference pictures that may be used in inter-picture prediction of one or more of

the pictures following the current picture in decoding order, but are not used for the

24

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

current picture.) Collectively, the groups of reference pictures are the RPS for the current
picture.

[092] For a given slice of the current picture, the encoder or decoder creates one or
more RPLs. The encoder or decoder creates a temporary version of an RPL (e.g., RPL 0
or RPL 1) by combining the groups of short-term reference pictures and long-term
reference pictures that may be used in inter-picture prediction of the current picture. To
construct the RPL according to rules of an “implicit” approach, the encoder or decoder can
use the reference pictures in the temporary version of the RPL, or use only some of the
reference pictures in the temporary version of the RPL (e.g., the first x pictures in the
temporary version of the RPL). For the “implicit” approach, RPL modification
information will not be signaled in the bitstream, and is not parsed from the bitstream. In
an “explicit” approach, to construct the RPL, the encoder or decoder uses RPL
modification information signaled in / parsed from the bitstream to select specific
reference pictures from the temporary version of the RPL. Compared to the RPL that
would be constructed by rules of the “implicit” approach, the RPL modification
information can specify removal of one or more reference pictures, addition of one or
more reference pictures and/or reordering of reference pictures in the RPL.

[093] Alternatively, an encoder or decoder uses another approach to creating an RPL

from reference pictures.

B. Conditional Signaling of RPL Modification Flags.
[094] According to one aspect of the innovations described herein, an encoder
conditionally signals a flag that indicates whether an RPL is modified according to syntax
elements explicitly signaled in the bitstream. A corresponding decoder conditionally
parses such a flag.
[095] In some example implementations, the flag is ref pic list modification flag 10
or ref pic_list modification flag 11 (generally, the flag is
ref pic_list modification flag 1X, where X can be 0 or 1). If the value of the flag
ref pic_list modification flag 1X is equal to 1, the RPL X is specified explicitly as a list
of list entry IX[1] values (again, with X being 0 or 1). If the value of the flag
ref pic_list modification flag 1X is equal to 0, the RPL X is determined implicitly.
When ref pic_list modification flag 1X is not present, it is inferred to be equal to 0.
[096] Figure 7a shows example syntax (700) for a ref pic_lists_modification() syntax

structure in example implementations. The structure may be signaled as part of a slice

25

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

header. In the example syntax (700), ref pic list modification flag 1X is only sent when
NumPocTotalCurr is greater than 1. NumPocTotalCurr is a variable that indicates a total
number of reference pictures applicable for current encoding or decoding. In example
implementations of encoding or decoding, when the variable NumPocTotalCurr is derived
for a slice of a current picture, the variable indicates the count of short-term reference
pictures and long-term reference pictures used as reference pictures for encoding or
decoding of the current picture.

[097] As shown in Figure 7a, the conditional signaling of

ref pic_list modification flag 1X depends on the value of the variable NumPocTotalCurr.
When NumPocTotalCurr is less than or equal to 1, there is no possibility for modification
of the RPL, and hence no need to send the flag ref pic_list modification flag IX. This
conditional signaling can save one or two flags for every slice, when the condition is
fulfilled. The modification in Figure 7a includes the condition “if(NumPocTotalCurr >
1)” for whether the flag ref pic_list modification flag 1X is signaled. The condition can
be checked for list 0 (for a P slice or B slice) and/or for list 1 (for a B slice).

[098] Alternatively, the signaling and parsing of an RPL modification structure
including one or more RPL modification flags (e.g., a ref pic_lists modification()
structure) can be controlled by evaluating a condition as part of slice header processing or
otherwise. Figure 7b illustrates an approach to conditional signaling and parsing of flags
ref pic_list modification flag 10 and ref pic_list modification flag 11 based on this
condition. Specifically, Figure 7b shows example syntax (750) for a slice header syntax
structure that may include a ref pic_lists modification() syntax structure, which is
depicted in the syntax (760) of Figure 7c. For the example syntax (750) of the slice
header, the flag lists modification_present flag is signaled in a picture parameter set that
applies for the slice. When lists_modification present flag equals 0, the structure

ref pic_lists modification() is not present in the slice header. When

lists modification present flag equals 1, the structure ref pic lists modification() may be
present in the slice header, depending on the value of the variable NumPocTotalCurr. If
the variable NumPocTotalCurr is greater than 1, then the ref pic_lists modification()
structure is signaled, as shown in the syntax (760) of Figure 7c. Otherwise (the variable
NumPocTotalCurr is not greater than 1), the ref pic_lists modification() structure is not
signaled, and the values of list entries are inferred.

[099] In Figures 7a-7c, 8 and 9, the term “u(n)” represents an unsigned integer using n

bits. When n is “v” (as in “u(v)”’), the number of bits varies in a manner dependent on the

26

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

value of other syntax elements. The parsing process for u(n) can be specified by the return
value of a function that reads n bits as a binary representation of an unsigned integer, with

most significant bit written first.

C. Signaling of Syntax Elements for List Entries.
[0100] According to another aspect of the innovations described herein, an encoder
conditionally signals syntax elements for list entries that indicate how to modify an RPL.
A corresponding decoder conditionally parses such syntax elements.
[0101] In some example implementations, the syntax elements are for list_entry 10[i]
syntax elements for RPL 0 or list_entry 11[i] syntax elements for RPL 1 (generally, the
syntax element is list_entry 1X, where X can be 0 or 1). Figure 8 shows example syntax
(800) for aref pic_lists modification() syntax structure, which may be signaled as part of
a slice header. In the example syntax (800), the syntax element list entry 1X[0] is
conditionally signaled in the bitstream. In particular, when NumPocTotalCurr is equal to
2 and num_ref idx 1X active minusl is equal to 0, the syntax element list_entry 1X[0] is
not signaled in the bitstream. The variable num_ref idx IX active minusl indicates the
maximum reference index for the RPL X that may be used to decode a slice. The
num_ref idx 1X active minus] variable can have a default value (e.g., a value from O ...
15, as specified in the applicable picture parameter set), or
num_ref idx 1X active minusl can have a value signaled in a slice header for the current
slice.
[0102] As shown in Figure 8, even when ref pic list modification flag 1X indicates
RPL modification information is signaled in the bitstream, the signaling of
list_entry 1X[0] depends on NumPocTotalCurr and num_ref idx 1X active minusl.
When NumPocTotalCurr is equal to 2 and num_ref idx 1X active minus] is equal to 1,
the value of list_entry 1X[0] can be inferred based on ref pic_list modification flag 1X,
since there are only two choices possible (default value of 0 or the non-default value of 1).
[0103] Thus, Figure 8 includes a condition for whether syntax elements for list entries
are signaled. For RPL 0, the condition is “if (ref pic_list modification flag 10 &&
!(NumPocTotalCurr == 2 && num_ref idx 10 active minusl == 0)).” For RPL 1,
the condition is “if (ref pic_list modification flag 11 && !(NumPocTotalCurr == 2
&& num_ref idx 11 active minusl == 0)).”
[0104] In the example of Figure 8, list_entry 10[1] specifies the index of the reference
picture in RefPicListTemp0 (a temporary version of RPL) to be placed at the current

27

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

position of RPL 0. The length of the list_entry 10[i] syntax element is

Ceil(Log2(NumPocTotalCurr)) bits. The value of list_entry 10[i] is in the range of 0 to
NumPocTotalCurr — 1, inclusive. If NumPocTotalCurr is equal to 2 and
num_ref idx 10 active minus] is equal to 0, the syntax element list_entry 10[0] is
inferred to be equal to ref pic list modification flag 10. Otherwise, when the syntax
element list_entry 10[1] is not present, it is inferred to be equal to 0.

[0105] In the example of Figure 8, list_entry l1[1] specifies the index of the reference
picture in RefPicListTemp1 (a temporary version of RPL) to be placed at the current
position of RPL 1. The length of the list_entry 11] i] syntax element is

Ceil(Log2(NumPocTotalCurr)) bits. The value of list_entry 11] 1] is in the range of 0 to
NumPocTotalCurr — 1, inclusive. If NumPocTotalCurr is equal to 2 and
num_ref idx 11 _active minusl is equal to 0, the syntax element list_entry 11[0] is
inferred to be equal to ref pic list modification flag 11. Otherwise, when the syntax
element list_entry 11[1] is not present, it is inferred to be equal to 0.

[0106] Figure 9 shows another example syntax (900) for a ref pic lists modification()
syntax structure, which may be signaled as part of a slice header. In the example syntax
(900), the syntax element list_entry 1X[0] is conditionally signaled in the bitstream.
Compared to the example syntax of Figure 8, however, the condition that is checked is
different. Also, the signaling of syntax elements for list_entry IX[] may be adjusted
depending on whether weighted prediction is used.

[0107] According to Figure 9, whether weighted prediction is enabled or disabled affects
how syntax elements for list entries are signaled in the bitstream. For P slices with
weighted pred flag equal to 0 or for B slices with weighted bipred flag equal to 0,
weighted prediction is disabled. According to the example syntax (900) of Figure 9, when
weighted prediction is disabled, list_entry 1X[0] and list_entry IX[1] are not be sent
when NumPocTotalCurr is equal to 2 and num_ref idx 1X active minusl is equal to 1.
In such a case, list_entry 1X[0] and list_entry 1X[1] are inferred to be 1 and 0,
respectively, since RPL modification would not have been needed for the only other
possibility (that is, list_entry 1X[0] and list_entry 1X[1] being equal to 0 and 1,
respectively).

[0108] Thus, Figure 9 includes a condition for whether syntax elements for list entries
are signaled. For RPL 0, the condition is “if (ref pic_list modification flag 10 &&
!(NumPocTotalCurr == 2 && num_ref idx 10 active minusl == 0) &&
!(NumPocTotalCurr == 2 && num _ref idx 10 active minusl == 1 && ((

28

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

weighted pred flag !=1 && slice type==P) || (weighted bipred flag!=1 &&

slice type==B)))).” For RPL 1, the condition is “if (ref pic_list modification_ flag 11
&& '(NumPocTotalCurr == 2 && num_ref idx 11 _active minusl == 0) &&
!(NumPocTotalCurr == 2 && num_ref idx 11 active minusl == 1 &&

weighted bipred flag!=1)).”

[0109] Furthermore, even in cases in which NumPocTotalCurr is not equal to 2 or
num_ref idx 1X active minus] is not equal to 1, when weighted prediction is disabled
(for P slices, weighted pred flag equal to 0; for B slices, weighted bipred flag equal to
0), the length of list_entry 1X[i] syntax element is limited to

Ceil(Log2(NumPocTotalCurr —1)) bits. In this case, it is only useful to place each
reference picture once in the list, and thus the number of useful possibilities decreases as
the index 1 increases.

[0110] In the example of Figure 9, list_entry 10[1] specifies the index of the reference
picture in RefPicListTemp0 (a temporary version of RPL) to be placed at the current
position of RPL 0. When weighted prediction is disabled (for P slices,

weighted pred flag equal to 0; for B slices, weighted bipred flag equal to 0), the length
of list_entry 10[1] syntax element is Ceil(Log2(NumPocTotalCurr — 1)) bits.
Otherwise, the length of the list_entry 10[1 | syntax element is

Ceil(Log2(NumPocTotalCurr)) bits. If NumPocTotalCurr is equal to 2 and
num_ref idx 10 active minusl is equal to 0, the syntax element list_entry 10[0]is
inferred to be equal to ref pic_list modification flag 10 (as in the example of Figure 8).
Otherwise, if NumPocTotalCurr is equal to 2, num_ref idx 10 active minusl is equal to 1
and weighted prediction is disabled (when weighted pred flag is equal to 0 and the
current slice is a P slice, or weighted bipred flag is equal to 0 and the current slice is a B
slice), the syntax elements list_entry 10[0] and list_entry 10[1] are inferred to be equal
to 1 and 0 respectively. Otherwise, when the syntax element list_entry 10[1] is not
present, it is inferred to be equal to 0.

[0111] If weighted prediction is disabled (when weighted pred flag is equal to 0 and the
current slice is a P slice, or weighted bipred flag is equal to 0 and the current slice is a B
slice) the value of list_entry 10[1] is in the range of 0 to NumPocTotalCurr — (i + 1),
inclusive, and the list RefPicListTemp0 is shortened by removal of each entry
list_entry 10[i] from the list RefPicListTempO after the entry value is parsed. Otherwise,
the value of list_entry 10[1] is in the range of 0 to NumPocTotalCurr — 1, inclusive.

29

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

[0112] In the example of Figure 9, list_entry 1] 1] specifies the index of the reference
picture in RefPicListTemp1 (a temporary version of RPL) to be placed at the current
position of RPL 1. If weighted prediction is disabled (weighted bipred flag is equal to 0,
since only a B slice uses list 1), the length of list_entry 11[1] syntax element is

Ceil(Log2(NumPocTotalCurr — 1)) bits. Otherwise, the length of the list_entry 111]
syntax element is Ceil(Log2(NumPocTotalCurr)) bits. If NumPocTotalCurr is equal to
2 and num_ref idx 11 active minus] is equal to 0, the syntax element list_entry 11[0] is
inferred to be equal to ref pic_list modification flag 11 (as in the example of Figure 8).
Otherwise, if NumPocTotalCurr is equal to 2, num_ref idx 11 _active minusl is equal to 1
and weighted prediction is disabled (weighted bipred flag is equal to 0 — the current slice
is a B slice), the syntax elements list_entry 11[0] and list_entry 11 1] are inferred to be
equal to 1 and 0 respectively. Otherwise, when the syntax element list entry 111] is not
present, it is inferred to be equal to 0.

[0113] If weighted prediction is disabled (weighted bipred flag is equal to 0 — the
current slice is a B slice), the value of list_entry 11 1] is in the range of 0 to
NumPocTotalCurr — (i +1), inclusive, and the list RefPicListTempl is shortened by
removal of each entry list_entry l1[1] from the list RefPicListTemp] after the entry value
is parsed. Otherwise, the value of list_entry 10[1] is in the range of 0 to

NumPocTotalCurr — 1, inclusive.

D. Generalized Techniques for Conditional Signaling and Parsing of RPL
Modification Flags.
[0114] Figure 10 shows a generalized technique (1000) for conditional signaling of an
RPL modification flag. A computing device that implements a video encoder, for example
as described with reference to Figure 3, can perform the technique (1000).
[0115] The device evaluates (1010) a condition. For example, the condition depends at
least in part on a variable that indicates a number of total reference pictures. In some
example implementations, the variable is NumPocTotalCurr, and the encoder checks
whether the variable is greater than 1. Alternatively, the encoder evaluates other and/or
additional conditions. The condition that is evaluated (1010) can include a single factor
(e.g., value of variable that indicates a number of total reference pictures), or the condition
that is evaluated (1010) can include multiple factors (e.g., value of variable that indicates a

number of total reference pictures as well as one or more other factors). The condition can

30

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

be evaluated (1010) as part of processing for an RPL modification structure. Or, the
condition can be evaluated (1010) as part of processing for a slice header.

[0116] Depending on results of the evaluation, the device conditionally signals (1020) in
a bitstream a flag that indicates whether an RPL is modified (e.g., replaced, adjusted)
according to syntax elements explicitly signaled in the bitstream. For example, the flag is
one of ref pic_list modification flag 10 or ref pic list modification flag 11, and can be
conditionally signaled as part of an RPL modification structure of a slice header. Or, after
the condition is evaluated (1010), depending on the results of the evaluation, the RPL
modification structure (including one or more flags that indicate whether an RPL is
modified according to syntax elements explicitly signaled in the bitstream) is conditionally
signaled in the bitstream.

[0117] The device can repeat the technique (1000) on a slice-by-slice basis when RPL
modification structure is signaled, or on some other basis.

[0118] Figure 11 shows a generalized technique (1100) for conditional parsing of an
RPL modification flag. A computing device that implements a video decoder, for example
as described with reference to Figure 4, can perform the technique (1100).

[0119] The decoder evaluates (1110) a condition. For example, the condition depends at
least in part on a variable that indicates a number of total reference pictures. In some
example implementations, the variable is NumPocTotalCurr, and the decoder checks
whether the variable is greater than 1. Alternatively, the decoder evaluates other and/or
additional conditions. The condition that is evaluated (1110) can include a single factor
(e.g., value of variable that indicates a number of total reference pictures), or the condition
that is evaluated (1110) can include multiple factors (e.g., value of variable that indicates a
number of total reference pictures as well as one or more other factors). The condition can
be evaluated (1110) as part of processing for an RPL modification structure. Or, the
condition can be evaluated (1110) as part of processing for a slice header.

[0120] Depending on results of the evaluation, the device conditionally parses (1120)
from a bitstream a flag that indicates whether an RPL is modified (e.g., replaced, adjusted)
according to syntax elements explicitly signaled in the bitstream. For example, the flag is
one of ref pic_list modification flag 10 or ref pic list modification flag 11, and can be
conditionally signaled as part of an RPL modification structure of a slice header. Or, after
the condition is evaluated (1110), depending on the results of the evaluation, the RPL

modification structure (including one or more flags that indicate whether an RPL is

31

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

modified according to syntax elements explicitly signaled in the bitstream) is conditionally
parsed from the bitstream.
[0121] The device can repeat the technique (1100) on a slice-by-slice basis when RPL

modification structure is signaled, or on some other basis.

E. Generalized Techniques for Conditional Signaling and Parsing of List
Entries.
[0122] Figure 12 shows a generalized technique (1200) for conditional signaling of list
entries for RPL modification. A computing device that implements a video encoder, for
example as described with reference to Figure 3, can perform the technique (1200).
[0123] The device evaluates (1210) a condition. For example, the condition depends at
least in part on a variable that indicates a number of total reference pictures (e.g.,
NumPocTotalCurr in some example implementations). Or, the condition depends at least
in part on a number of active reference pictures for the RPL. Or, the condition depends at
least in part on whether weighted prediction is disabled. Different logic can be used to
check whether weighted prediction is disabled depending on whether a current slice is a P
slice or B slice and/or depending on which RPL is being signaled / parsed. For example,
the logic for checking the condition for a first RPL (which might be used by a P slice or B
slice) is different than the logic for checking the condition for a second RPL (which can be
used only by a B slice). Alternatively, the encoder evaluates other and/or additional
conditions.
[0124] Depending on results of the evaluation, the device conditionally signals (1220) in
a bitstream one or more syntax elements for list entries that indicate how to modify (e.g.,
replace, adjust) an RPL. For example, the syntax element(s) for list entries are
conditionally signaled as part of an RPL modification structure of a slice header.
[0125] In some example implementations, if (a) the number of total reference pictures is
equal to 2 and (b) the number of active reference pictures for the RPL is equal to 1, then
the syntax element(s) for list entries are absent from the bitstream, and a value is inferred
for one of the list entries. In other example implementations, in addition to this condition,
if (c) the number of total reference pictures is equal to 2, (d) the number of active
reference pictures for the RPL is equal to 2 and (e¢) weighted prediction is disabled, then
the one or more syntax elements for list entries are absent from the bitstream, and values

are inferred for two of the list entries.

32

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

[0126] The device can repeat the technique (1200) on a slice-by-slice basis when RPL
modification structure is signaled, or on some other basis.

[0127] Figure 13 shows a generalized technique (1300) for conditional parsing of list
entries for RPL modification. A computing device that implements a video decoder, for
example as described with reference to Figure 4, can perform the technique (1300).

[0128] The decoder evaluates (1310) a condition. For example, the condition depends at
least in part on a variable that indicates a number of total reference pictures (e.g.,
NumPocTotalCurr in some example implementations). Or, the condition depends at least
in part on a number of active reference pictures for the RPL. Or, the condition depends at
least in part on whether weighted prediction is disabled. Different logic can be used to
check whether weighted prediction is disabled depending on whether a current slice is a P
slice or B slice and/or depending on which RPL is being signaled / parsed. Alternatively,
the decoder evaluates other and/or additional conditions.

[0129] Depending on results of the evaluation, the device conditionally parses (1320)
from a bitstream one or more syntax elements for list entries that indicate how to modify
(e.g., replace, adjust) an RPL. For example, the syntax element(s) for list entries are
conditionally parsed from an RPL modification structure of a slice header.

[0130] In some example implementations, if (a) the number of total reference pictures is
equal to 2 and (b) the number of active reference pictures for the RPL is equal to 1, then
the syntax element(s) for list entries are absent from the bitstream, and a value is inferred
for one of the list entries. In other example implementations, in addition to this condition,
if (c) the number of total reference pictures is equal to 2, (d) the number of active
reference pictures for the RPL is equal to 2 and (e¢) weighted prediction is disabled, then
the one or more syntax elements for list entries are absent from the bitstream, and values
are inferred for two of the list entries.

[0131] The device can repeat the technique (1300) on a slice-by-slice basis when RPL

modification structure is signaled, or on some other basis.

F. Generalized Techniques for Adjusting Signaling and Parsing of List
Entries.
[0132] Figure 14 shows a generalized technique (1400) for adjusting signaling of list
entries for RPL modification. A computing device that implements a video encoder, for

example as described with reference to Figure 3, can perform the technique (1400).

33

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

[0133] The device evaluates (1410) a condition. For example, the condition depends at
least in part on whether weighted prediction is disabled. Different logic can be used to
check whether weighted prediction is disabled depending on whether a current slice is a P
slice or B slice and/or depending on which RPL is being signaled / parsed. For example,
the logic for checking the condition for a first RPL (which might be used by a P slice or B
slice) is different than the logic for checking the condition for a second RPL (which can be
used only by a B slice). Alternatively, the encoder evaluates other and/or additional
conditions.

[0134] Depending on results of the evaluation, the device adjusts (1420) signaling in a
bitstream of one or more syntax elements for list entries that indicate how to modify (e.g.,
replace, adjust) an RPL. In particular, length (in bits) of at least one of the syntax
element(s) is adjusted. For example, for an index i for the list entries, if weighted
prediction is disabled, the length (in bits) of the at least one of the syntax elements
decreases as i increases. In some example implementations, if weighted prediction is
disabled, the length of a given syntax element for list entry[i] is
Ceil(Log2(NumPocTotalCurr-i)). Otherwise (weighted prediction is enabled), the length
of the given syntax element for list entry[i] is Ceil(Log2(NumPocTotalCurr)) bits.

[0135] The device can repeat the technique (1400) on a slice-by-slice basis when RPL
modification structure is signaled, or on some other basis.

[0136] Figure 15 shows a generalized technique (1500) for adjusting parsing of list
entries for RPL modification. A computing device that implements a video decoder, for
example as described with reference to Figure 4, can perform the technique (1500).
[0137] The decoder evaluates (1510) a condition. For example, the condition depends at
least in part on whether weighted prediction is disabled. Different logic can be used to
check whether weighted prediction is disabled depending on whether a current slice is a P
slice or B slice and/or depending on which RPL is being signaled / parsed. Alternatively,
the decoder evaluates other and/or additional conditions.

[0138] Depending on results of the evaluation, the device adjusts (1520) parsing from a
bitstream of one or more syntax elements for list entries that indicate how to modify (e.g.,
replace, adjust) an RPL. In particular, length (in bits) of at least one of the syntax
element(s) is adjusted. For example, for an index i for the list entries, if weighted
prediction is disabled, the length (in bits) of the at least one of the syntax elements
decreases as i increases. In some example implementations, if weighted prediction is

disabled, the length of a given syntax element for list entry[i] is

34

10

15

20

25

30

WO 2014/052249 PCT/US2013/061241

Ceil(Log2(NumPocTotalCurr-i)). Otherwise (weighted prediction is enabled), the length
of the given syntax element for list entry[i] is Ceil(Log2(NumPocTotalCurr)) bits.
[0139] The device can repeat the technique (1500) on a slice-by-slice basis when RPL

modification structure is signaled, or on some other basis.

G. Alternatives.
[0140] Figures 7a, 7b, 10 and 11 illustrate conditional signaling and parsing of a flag
such as ref pic_list modification_flag 10 or ref pic_list modification flag 11 based on a
condition. In this way, the signaling of additional RPL modification information (such as
syntax elements for list entries) is controlled. As explained with reference to Figure 7a,
the signaling and parsing of an RPL modification flag can be controlled by evaluating the
condition as part of a ref pic_lists_modification() structure. Alternatively, as explained
with reference to Figure 7b, the signaling and parsing of the RPL modification structure
(e.g., ref pic_lists modification() structure) can be controlled by evaluating the same
condition as part of slice header processing or otherwise. For example, if the variable
NumPocTotalCurr is greater than 1, then the ref pic_lists modification() structure is
signaled. Otherwise (the variable NumPocTotalCurr is not greater than 1), the
ref pic lists modification() structure is not signaled, and the values of list entries are
inferred as described above with reference to Figure 7a. Extending Figure 10, after the
condition is evaluated, depending on results of the evaluation, the RPL modification
syntax structure is conditionally signaled. Extending Figure 11, after the condition is
evaluated, depending on results of the evaluation, the RPL modification syntax structure is
conditionally parsed.
[0141] For the sake of illustration, the detailed description includes various examples
with specific names for some parameters and variables. The innovations described herein
are not limited to implementations with parameters or variables having such names.
Instead, the innovations described herein can be implemented with various types of

parameters and variables.
H. Additional Innovative Features.

[0142] In addition to the claims, innovative features described herein include, but are

not limited to, the features shown in the following table.

35

WO 2014/052249 PCT/US2013/061241

#

Feature

A. Conditional Signaling of Syntax Elements for List Entries of an RPL

Al

A method performed by a video encoder, comprising:

evaluating a condition; and

depending on results of the evaluating, conditionally signaling in a
bitstream one or more syntax elements for list entries that indicate how to

modify an RPL.

A2

A method performed by a video decoder, comprising:

evaluating a condition; and

depending on results of the evaluating, conditionally parsing from a
bitstream one or more syntax elements for list entries that indicate how to

modify an RPL.

A3

The method of feature A1 or A2 wherein the condition depends at

least in part on a variable that indicates a number of total reference pictures.

A4

The method of feature A3 wherein the variable is NumPocTotalCurr.

AS

The method of any one of features A1-A4 wherein the condition

depends at least in part on a number of active reference pictures for the RPL.

A6

The method of any one of features A1-A5 wherein the condition

depends at least in part on whether weighted prediction is disabled.

A7

The method of feature A6 wherein different logic is used to check
whether weighted prediction is disabled depending on whether a current slice is

a P slice or B slice and/or depending on which RPL is being signaled / parsed.

A8

The method of feature A1 or A2 wherein the condition depends at
least in part on whether (a) a number of total reference pictures is equal to 2

and (b) a number of active reference pictures for the RPL is equal to 1.

36

WO 2014/052249 PCT/US2013/061241

A9

The method of feature A8 wherein, if (a) the number of total reference
pictures is equal to 2 and (b) the number of active reference pictures for the
RPL is equal to 1, then the one or more syntax elements for list entries are

absent from the bitstream, and a value is inferred for one of the list entries.

Al10

The method of feature A1 or A2 wherein the condition depends at
least in part on whether (c) the number of total reference pictures is equal to 2,
(d) the number of active reference pictures for the RPL is equal to 2 and (¢)

weighted prediction is disabled.

All

The method of feature A10 wherein if (c) the number of total
reference pictures is equal to 2, (d) the number of active reference pictures for
the RPL is equal to 2 and (¢) weighted prediction is disabled, then the one or
more syntax elements for list entries are absent from the bitstream, and values

are inferred for two of the list entries.

Al2

The method of any one of features A1- A11 wherein the one or more
syntax elements for list entries are conditionally signaled as part of an RPL

modification structure of a slice header.

Al3

The method of any one of features A1- A12 wherein the RPL is an
RPL 0 associated with a P slice.

Al4

The method of any one of features A1-A12 further comprising
repeating the evaluating and the conditional signaling or parsing for each of
multiple RPLs, wherein the multiple RPLs include an RPL 0 and RPL 1

associated with a B slice.

Al5

A computing device adapted to perform the method of any one of

features A1-A14.

Al6

A tangible computer-readable media storing computer-executable

instructions for causing a computing device to perform the method of any one

37

WO 2014/052249 PCT/US2013/061241

of features A1-14.

B. Adjusting Length of Syntax Elements for List Entries of an RPL

Bl

A method performed by a video encoder, comprising:

evaluating a condition; and

depending on results of the evaluating, adjusting signaling in a bitstream of
one or more syntax elements for list entries that indicate how to modify an
RPL, wherein length of at least one of the one or more syntax elements is

adjusted.

B2

A method performed by a video decoder, comprising:

evaluating a condition; and

depending on results of the evaluating, adjusting parsing from a bitstream of
one or more syntax elements for list entries that indicate how to modify an
RPL, wherein length of at least one of the one or more syntax elements is

adjusted.

B3

The method of feature B1 or B2 wherein the condition depends at least in part

on whether weighted prediction is disabled.

B4

The method of feature B3 wherein different logic is used to check whether
weighted prediction is disabled depending on whether a current slice is a P

slice or B slice and/or depending on which RPL is being signaled / parsed.

B5

The method of feature B3 wherein for an index i for the list entries, if
weighted prediction is disabled, the length of the at least one of the syntax

clements decreases as 7 increases.

B6

The method of feature B3 wherein, for an index 7 for the list entries:

if weighted prediction is disabled, the length of a given syntax element for list
entry[7] is Ceil(Log2(NumPocTotalCurr-7)) bits; and

if weighted prediction is enabled, the length of the given syntax element for

list entry[i] is Ceil(Log2(NumPocTotalCurr)) bits.

38

WO 2014/052249 PCT/US2013/061241

B7

A computing device adapted to perform the method of any one of features B1-

B6.

B8

A tangible computer-readable media storing computer-executable instructions
for causing a computing device to perform the method of any one of features

B1-Bé6.

C. General

C1

A method performed by an encoder, comprising:

encoding video; and

outputting at least part of a bitstream including the encoded video, including
signaling RPL information according to one of the innovations described

herein.

C2

A method performed by a decoder, comprising;:

receiving at least part of a bitstream including encoded video, including
parsing RPL information signaled according to one of the innovations
described herein; and

decoding the encoded video.

C3

A computing device adapted to perform the method of feature C1 or C2.

C4

A tangible computer-readable media storing computer-executable instructions

for causing a computing device to perform the method of feature C1 or C2.

[0143]

In view of the many possible embodiments to which the principles of the

disclosed invention may be applied, it should be recognized that the illustrated

embodiments are only preferred examples of the invention and should not be taken as

limiting the scope of the invention. Rather, the scope of the invention is defined by the

following claims. We therefore claim as our invention all that comes within the scope and

spirit of these claims.

39

WO 2014/052249 PCT/US2013/061241

CLAIMS

1. A computing device that implements a video encoder, wherein the computing
device is adapted to perform a method comprising:

evaluating a condition, wherein the condition depends at least in part on a variable
that indicates a number of total reference pictures; and

depending on results of the evaluating, conditionally signaling in a bitstream a flag
that indicates whether a reference picture list (“RPL”) is modified according to syntax

elements explicitly signaled in the bitstream.

2. The computing device of claim 1 wherein the condition depends on whether

value of the variable is greater than 1.

3. The computing device of claim 1 wherein the flag is conditionally signaled as
part of an RPL modification structure of a slice header, and wherein the condition is

evaluated as part of processing for the RPL modification structure that includes the flag.

4. The computing device of claim 1 wherein the condition is evaluated as part of
processing for a slice header, and wherein an RPL modification structure including the

flag is conditionally signaled depending on results of the evaluation.

5. The computing device of claim 1 wherein, during encoding, the video encoder
evaluates (a) results of motion compensation for which the RPL is modified according to
syntax elements explicitly signaled in the bitstream and (b) results of motion
compensation for which the RPL is not modified according to syntax elements explicitly
signaled in the bitstream, and modifies the RPL so as to (1) reorder one or more reference
pictures for more efficient addressing with reference indices, (2) remove one or more
reference pictures based at least in part on frequency of use during encoding, and/or (3)
add one or more reference pictures based at least in part on frequency of use during

encoding.

6. A method performed by a video decoder, comprising:
evaluating a condition, wherein the condition depends at least in part on a variable

that indicates a number of total reference pictures; and

40

WO 2014/052249 PCT/US2013/061241

depending on results of the evaluating, conditionally parsing from a bitstream a
flag that indicates whether a reference picture list (“RPL”) is modified according to syntax

elements explicitly signaled in the bitstream.

7. The method of claim 6 wherein the condition depends on whether value of the

variable is greater than 1.

8. The method of claim 6 wherein the flag is conditionally parsed from an RPL
modification structure of a slice header, and wherein the condition is evaluated as part of

processing for the RPL modification structure that includes the flag.

9. The method of claim 6 wherein the condition is evaluated as part of processing
for a slice header, and wherein an RPL modification structure including the flag is

conditionally parsed depending on results of the evaluation.

10. One or more computer-readable media having stored thereon computer-
executable instructions for causing a processing unit programmed thereby to perform a
method comprising:

evaluating a condition as part of processing for a slice header, wherein the
condition depends at least in part on a variable that indicates a number of total reference
pictures; and

depending on results of the evaluating, conditionally signaling in or parsing from a
bitstream a reference picture list (“RPL”) modification structure of the slice header,
wherein the RPL modification structure includes a flag that indicates whether an RPL is

modified according to syntax elements explicitly signaled in the bitstream.

41

WO 2014/052249 PCT/US2013/061241
1/11
r-— - - - — = = = = = = = = = I
| computing environment 100 o
| — _130_ ______] connection(s) 170 |
I
| — |
| | centrgl graphics or | | input device(s) 150 |
| processing co-processing |
	L unit 110 JAS unit 115	
	(N\ 7 ~N	output device(s) 160
memory 120 memory 125		
I l-----------. l-----------.
I E H E H I | I H
\"""" R)\) : 1 storage 140 |
A= |G |
e e e e e e, e e e e e e, e e, —— —

software 180 implementing one or more innovations for signaling
of reference picture list modification information

Figure 1

201
RTC tool 210 RTC tool 210
encoder 220 <_> . <_> encoder 220
decoder 270 decoder 270
Figure 2a
202 playback tool 214
@ decoder 270
encoding tool 212
playback tool 214
encoder 220
decoder 270

Figure 2b

PCT/US2013/061241

WO 2014/052249

211

€ 3an31q

0L€ BaIe BIRp Zb¢ UOnBULIOJUI
popod Areiodwoy Sd 10 OOWI €€ (s)owexy
e e— A llllllllllll 92IN0s 0€€
UH 4 4". Ope FOpOots < 10799[2S
_ I€ (s)owey
_ popoo
N
1L ©1ep _ 69€ (s)owey @wmwm
popod /_\ /_\ (Jo1) popoddp OINOS
Hmwwo 0§ € Jopniud —s A1
$$2001d Surpodap
[ouueyd [s€ uoc | | eo¢
oweyy

~——— 06t
~—— JouuEyd

ol
S
N

papoasp | A
\

9¢

v

Z

19¢

v

09¢ BaIE 938I0IS
Arowow Areodwa)
owIBl] POPOIIP

0Z€ BaIR 938I01S AIOWIAW
A1erodwd) dwely 90IN0S

[1€ (8)owey
0JNO0S

Surarue

0re
00IN0S

09pIA

PCT/US2013/061241

WO 2014/052249

311

0€t BAIR BIRp
popoo Arerodwoy

| I I I
IR I I
—

[Ty e1ep
popoo

0cy
IOpooop
[ouueyo

S— T

p 9an3gIyq

7€ uonewIojUl
Sdd 10 OOININ

Iey
(s)owely

popoo

69t (s)owey
(Jo1) popooop

[

!

_

_

_

LT
v

01 10pOIP

0Ty

~~——" [ouuByd

ol
=)
- F

AN
AN

—>

894
oweyy

PIpOOIp

u9y

AR\
ANEEANN

(4514

-

09¢ BoIR 03BIO)S
Arowrowu Arerodwd

13%%

owrelj papoodp

Joouanbas

v

mdino

8% dino
2q 01
Jwelj 1XoU

06t
uonBUNSIP
mdino

PCT/US2013/061241

WO 2014/052249

4/11

S 3an3gIy

c0¢ swely
JUAIIND
615 0€¢ 107es 01s
—~—toneuLojut -wadwod |eag 107 WSO
uonow uonjow uonow
f Sy¢ [enpisal * >
08¢ 19p0od 0LS 095 ot
< - ——~ C¢¢
< m 065 13319 g Adonua < Iozruenb \%8 mﬂmb Gzs (s)oweyy
c6¢ Tep ouenbayy Q0UINJAI ~
papooud
9LS 99¢ ten TS PNy 0cs
10znuenb g Aouonboiy N00[qp =Pl (5)21018
osIoAUL OSIOAUL doo[-ut oy
Ured 1opug
a L J L J L J L J L J L J
yed enup
1 9LS 99¢ uen
10Znuenb ffp] Aouonboij
osI0AUL OSIOAUL
€66 elep G0S sweyy
popooud JUAIIND
< w 08¢ 19p0od 0LS < 095 ot f
065 13319 |« Adonua Joznuenb ~ojsuen - g
’ Kouonbog

PCT/US2013/061241

WO 2014/052249

511

9 2an31

089 0L9 099 ‘uen
069 10NQ jppr] IOPOOD] 10ZNUEND |l AOUONDOIJ
Adonud OSIOAUL OSIOAUL
$69 ©rep
PoOpooud 59 SIENPpISaL S09 dweyy
POIONIISU0DAT
POIONIISU0AT
0€9 10188
-todwod fp——] ——
uonouw ¢
$£9 owey _
pororpaxd _
$T9 (s)ouwey 029 019 Ny 809 1Y
Q0UdIdJAI (s)o101s | J00[qop le Y001qp
owey door-ur *001d-1s0d
A
yred Joru|
% L] L J L J L J
yred enu|
089 0L9 099 ‘uen
069 10NQ jmppp] IOPOOD] 10ZNUEND | AOUONDOIJ
Adonud OSIOAUL OSIOAUL w
G(9 Qwey
569 E1Ep POIONIISU0AT

PIpooud

WO 2014/052249 PCT/US2013/061241

6/11
700
ref pic_lists modification() { Descriptor
ifl NumPocTotalCurr > 1)
ref pic_list modification_flag 10 u(l)

if(ref pic list modification flag 10)

for(i=0;1<=num ref idx 10 active minusl; i++)

list_entry_10[i | u(v)

if(slice type == B) {
if(NumPocTotalCurr > 1)
ref pic_list modification_flag 11 u(l)

if(ref pic list modification flag 11)

for(i=0;1<=num ref idx Il active minusl; i++)

list_entry_11] 1] u(v)

Figure 7a

WO 2014/052249

711

~J
A4l
[e=

PCT/US2013/061241

slice_segment header() { Descriptor
if(slice type == P || slice type == B) {
num_ref idx_active_override flag u(l)
if{l num_ref idx_active override flag) {
num_ref_idx_l0_active_minusl ue(v)
if(slice_type == B)
num_ref_idx_l1_active_minusl ue(v)
}
if(list_modification_present flag && NumPocTotalCurr > 1)
ref pic_lists modification()
}
®
Figure 7b
760
ref pic_lists modification() { Descriptor
ref_pic_list modification_flag 10 u(l)
if(ref pic list modification flag 10)
for(1=0;1<=num ref idx 10 active minusl;i++)
list_entry 10[i] u(v)
if(slice type == B) {
ref pic_list modification_flag 11 u(l)
if(ref pic list modification flag 11)
for(i=0;1<=num ref idx 11 active minusl;i++)
list_entry 111] u(v)
}
}

Figure 7c¢

WO 2014/052249 PCT/US2013/061241

8/11

o0
[

ref pic lists modification() { Descriptor

ref_pic_list modification_flag 10 u(l)

if(ref pic list modification flag 10 &&
!(NumPocTotalCurr == 2 &&
num _ref idx 10 active minusl == 0))
for(1i=0;1<=num ref idx 10 active minusl;i++)
list_entry_10[1] u(v)
if(slice type == B) {
ref pic_list modification_flag 11 u(l)

if(ref pic list modification flag 11 &&
!(NumPocTotalCurr == 2 &&
num ref idx 11 active minusl == 0))
for(1i=0;1<=num ref idx 11 active minusl;i++)

list_entry 111] u(v)

Figure 8

00

ref pic_lists modification() { Descriptor

ref pic_list modification_flag 10 u(l)

if(ref pic list modification flag 10 &&
!(NumPocTotalCurr == 2 && num_ref idx 10_active minusl == 0) &&
!(NumPocTotalCurr == 2 && num_ref idx 10 active minusl == 1
((weighted pred flag !=1 && slice type==P) ||
(weighted bipred flag !=1 && slice type==B))))

for(i=0;1<=num ref idx 10 active minusl; i++)

list_entry_10] i | u(v)
if(slice type == B) {
ref pic list modification_flag 11 u(l)

if(ref pic list modification flag 11 &&
I(NumPocTotalCurr == 2 && num_ref idx_11_active minusl == 0) &&
!(NumPocTotalCurr == 2 && num_ref idx 11 active minusl == 1 &&
weighted bipred flag!=1))

for(i=0;1<=num ref idx Il active minusl; i++)

list_entry_11] 1] u(v)

Figure 9

WO 2014/052249

Evaluate condition.

~ 1010

l

Conditionally signal flag
that indicates whether a
reference picture list is

modified according to
syntax elements explicitly
signaled in the bitstream.

~ 1020

End

Figure 10

PCT/US2013/061241

9/11

Evaluate condition.

~ 1110

l

Conditionally parse flag that
indicates whether a
reference picture list is
modified according to
syntax elements explicitly
signaled in the bitstream.

~ 1120

End

Figure 11

WO 2014/052249

Start

A

Evaluate condition.

~ 1210

l

Conditionally signal syntax
element(s) for list entries
that indicate how to modify
a reference picture list.

~ 1220

End

Figure 12

PCT/US2013/061241

10/11

Start

]

Evaluate condition.

~ 1310

l

Conditionally parse syntax
element(s) for list entries
that indicate how to modify
a reference picture list.

~ 1320

End

Figure 13

WO 2014/052249

—
AN
o

Evaluate condition.

~ 1410

l

Adjust signaling of syntax
element(s) for list entries
that indicate how to modify
a reference picture list,
where length of syntax
element(s) is adjusted.

~ 1420

End

Figure 14

PCT/US2013/061241

11/11

Evaluate condition.

~ 1510

l

Adjust parsing of syntax
element(s) for list entries
that indicate how to modify
a reference picture list,
where length of syntax
element(s) is adjusted.

~ 1520

End

Figure 15

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/061241

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N19/51 HO4N19/583
HO4N19/503

HO4N19/70
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

HO4N19/134

HO4N19/109

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X BROSS B ET AL: "High Efficiency Video
Coding (HEVC) text specification draft 8",
10. JCT-VC MEETING; 101. MPEG MEETING;
11-7-2012 - 20-7-2012; STOCKHOLM; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-J1003, 23 July 2012 (2012-07-23)
, XP030112947,

page 41, paragraph 7.3.3.3

page 82, paragraph 7.4.3.2 - page 84,
paragraph 7.4.3.3

page 69, paragraph 7.4.2.3

_/__

1-10

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 January 2014

Date of mailing of the international search report

05/02/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moschetti, Fulvio

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/061241
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X SUGIO T ET AL: "AHG15: Modification on 1-10

picture marking process",

9. JCT-VC MEETING; 100. MPEG MEETING;
27-4-2012 - 7-5-2012; GENEVA; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-10135,

16 April 2012 (2012-04-16), XP030111898,
page 6, paragraph 2.2 - page 7

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - wo-search-report
	Page 56 - wo-search-report

