US011334503B2

a2 United States Patent

Raisch et al.

US 11,334,503 B2
May 17, 2022

(10) Patent No.:
45) Date of Patent:

(54) HANDLING AN INPUT/OUTPUT STORE

INSTRUCTION
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(72) Inventors: Christoph Raisch, Gerlingen (DE);
Marco Kraemer, Sindelfingen (DE);
Frank Siegfried Lehnert, Weil im
Schoenbuch (DE); Matthias Klein,
Poughkeepsie, NY (US); Jonathan D.
Bradbury, Poughkeepsie, NY (US);
Christian Jacobi, West Park, NY (US);
Brenton Belmar, New Paltz, NY (US);
Peter Dana Driever, Poughkeepsie, NY
(US)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 16/775,716
(22) Filed: Jan. 29, 2020
(65) Prior Publication Data
US 2020/0250112 Al Aug. 6, 2020
(30) Foreign Application Priority Data
Jan. 31, 2019 (EP) cceceoenvervenirceccence 19154737
(51) Imt.CL
GO6F 13/16 (2006.01)
GO6F 13/42 (2006.01)
GO6F 9/30 (2018.01)
(52) US. CL
CPC GOG6F 13/1668 (2013.01); GOGF 13/4282

(2013.01)

(58) Field of Classification Search
CPC GOG6F 13/1668; GO6F 13/4282; GO6F
9/30087; GOGF 9/30043

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

4,040,028 A
4,947,316 A

8/1977 Pauker et al.
8/1990 Fisk et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 105912489 A 8/2016

0389046 A2 9/1990
(Continued)

OTHER PUBLICATIONS

Raisch, Christoph et al., “Handling An Input/Output Store Instruc-
tion,” U.S. Appl. No. 16/775,663, filed Jan. 29, 2020, pp. 1-33.

(Continued)

Primary Examiner — Idriss N Alrobaye

Assistant Examiner — Henry W Yu

(74) Attorney, Agent, or Firm — Edward Wixted, Esq.;
Kevin P. Radigan, Esq.; Heslin Rothenberg Farley &
Mesiti P.C.

(57) ABSTRACT

An input/output store instruction is handled. A data process-
ing system includes a system nest coupled to at least one
input/output bus by an input/output bus controller. The data
processing system further includes at least a data processing
unit including a core, system firmware and an asynchronous
core-nest interface. The data processing unit is coupled to
the system nest via an aggregation buffer. The system nest is
configured to asynchronously load from and/or store data to
at least one external device which is coupled to the at least
one input/output bus. The data processing unit is configured
to complete the input/output store instruction before an
execution of the input/output store instruction in the system

(Continued)

210

30

VO Store instruction
with async completion

Architecture

Boundary

10 [system Fw -

NP s B
428 om | 32 s | b

oge | i coto

Core e
o

34
216

Async Core-Nest IF =~ 46
VG siats aray 44 36
gt &
N[¥ accose | [Masyne
v
24~} pumer >

138 7

16 Aggregation| saty
Complet
BuﬂErz m;ew for:

System Nest
¥ 48 28
Massage L
i ooy onry Buffer-/O Bus
Controller IF

20

US 11,334,503 B2
Page 2

nest is completed. The asynchronous core-nest interface
includes an input/output status array with multiple input/
output status buffers.

19 Claims, 5 Drawing Sheets

(58) Field of Classification Search
USPC oo 710/5, 15, 20, 33, 52
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,548,735 A 8/1996 Chen
5,548,788 A * 8/1996 McGillis GO6F 3/0601
711/E12.019
5,553,302 A * 9/1996 Morrissey GO6F 13/128
370/471
6,189,088 Bl 2/2001 Gschwind
6,247,097 Bl 6/2001 Sinharoy
6,286,095 Bl 9/2001 Morris et al.
6,490,647 B1 12/2002 Batchleor et al.
6,725,348 B1* 4/2004 Marierco..... GOG6F 3/0674
711/149
7,042,881 B1* 5/2006 Dhar HO4L 12/5601
370/395.2
7,178,019 B2 2/2007 Lam
7,200,626 B1* 4/2007 Hoang GO6F 11/0751
7,631,097 B2 12/2009 Moch et al.
7,827,433 B1 11/2010 Hutton
8,867,334 B2 10/2014 Wang et al.
2005/0138230 Al 6/2005 Raisch
2005/0261850 Al* 11/2005 Goodman G11B 15/68
702/85
2009/0150624 Al* 6/2009 Resnick GOG6F 9/30087
711/155
2009/0198917 Al* 82009 Arimilli GOG6F 9/3834
711/152
2009/0198963 Al* /2009 Arimilli GOG6F 9/30087
712/205

2011/0320643 A1 12/2011 Brice et al.

2011/0320764 A1* 12/2011 Craddock GO6F 9/30043
711/221
2015/0106567 Al* 42015 Godard GO6F 12/0292
711/121
2015/0261529 Al* 9/2015 Gainey, Jr GO6F 9/30029
712/225
2015/0378737 Al* 12/2015 Debbage GO6F 5/14
712/225

2015/0378738 Al
2018/0341410 Al
2019/0108022 Al
2019/0347125 Al
2020/0249943 Al
2020/0249944 Al
2020/0250112 Al
2020/0250115 Al

12/2015 Debbage et al.
11/2018 Benisty
4/2019 Lloyd
11/2019 Sankaran et al.
8/2020 Raisch
8/2020 Raisch
8/2020 Raisch
8/2020 Raisch

FOREIGN PATENT DOCUMENTS

™ 446912 B 2/2001
™ 457426 B 10/2001
™ 201005542 A 2/2010
™ 201826122 A 7/2018

OTHER PUBLICATIONS

Raisch, Christoph et al., “Handling An Input/Output Store Instruc-
tion,” U.S. Appl. No. 16/775,679, filed Jan. 29, 2020, pp. 1-40.
Raisch, Christoph et al., “Handling An Input/Output Store Instruc-
tion,” U.S. Appl. No. 16/775,784, filed Jan. 29, 2020, pp. 1-44.
Mell, Peter and Tim Grance, “The NIST Definition of Cloud
Computing,” National Institute of Standards and Technology, Infor-
mation Technology Laboratory, Special Publication 800-145, Sep.
2011, pp. 1-7.

List of IBM Patents or Patent Applications Treated As Related, Apr.
30, 2020, 2 pages.

Examination Report for AU Application No. 2020213829, dated
Nov. 24, 2021 (3 pages).

Examination Report for AU Application No. 2020214661, dated
Dec. 9, 2021 (3 pages).

* cited by examiner

US 11,334,503 B2

Sheet 1 of 5

May 17, 2022

U.S. Patent

I Old
901A8(] [eusxg
1474
27|
M
Jojonuop sng o1 | 0C
w:u__ ._m__w.wcmo uogeouuSpl —
ORI A et o] OC
4 8y A/v uoneidwos 8yng J
8¢ 1S8N WBIsAg . Aem luoneboibby 91
(/e
8l
Buipiemioy 4 Jelng
4/l 1s9U-0400 snjejs
\ ouAsy -
9¢ feuy b
- o <. di11seN-0100 duhsy
Pl
09
\ apoo 8poo
d JeAup
9l¢ N_‘\ < "o ol J
Ve | v J o109 WY | g wersAs oL
Atepunog
8INJP8UYIY
Lo Id WD DUASE UpMm
KA \ uonoNIsul 81013 O/ 0%
0¢
0lLc

US 11,334,503 B2

Sheet 2 of 5

May 17, 2022

U.S. Patent

¢ Old
L
7 €CLS
7 (445
.\\l 81LS 0cks
| 9L1S
pLis [—o , f
\ , “ |
ZLLS \ < 1£AR) 9¢lLS
0LLS S
801LS @O_\m
) (
y0LS No_\m
~ \ j n
00LS €0LS 'LOLS
‘_mw_q_gnm_;mvn\v_o 1SON co_“MwMMm< mec-m‘_w_w_ JUASY M4 weishs
0¢ 8l 9l 142 Ol

US 11,334,503 B2

Sheet 3 of 5

May 17, 2022

U.S. Patent

sah

uopouny 4oy
3|pl-uou |38
S1015 92U} jo Auy

pug
M WdsAs dD

T

uolnIsul
Jalueq
st

A

aepdn

Bup|oeI} 10| 40§ HEM

saA

0vZs™

éapt
SJ944Nq sniels
4/13s9u-3.103

[ANA S

U0INJISU] JallIeY

uopPUNy Jad anEIBY

04¢S
\

pu3
Md Waishs NdD

i

U0INISU|
Ja1leq
ysiuy

&%Nw

0€ZsS
\

€ Old

~—8¢¢ZS

UNV@mNm

pu3
Md waishs Ndd .
i 022S
UOoIIONAsU)
Aze8a) y
ysiuy 81¢S
k

asuodsal Aredal

~—91¢S

*

Hem

el AT4AS

pasn se oS sJew

~— ¥2CCS

1

puss
/i Aseds| 14/1158U-0407

A YA

A

pu3l
M walsAs ndd

va
8¥CS
$95U0053J JUAse

wc_bcmuwuzo JI0W ou sey
4/1353uU-8.00 |13UN Jiepm

h

0[5 994} e sey

4/1 3159U-210D [UN HEM

A 4

sah

*

SupiaeJl 93835 0[S ANepdn

*

{
9¢¢s
~—8¢¢S

—

éslaeliene
105 SN1EYS 994

sasuodsal suAse
JupueIsino aJow ou sey
4/1153U-2102 |13UN HEM

ommm _
sah

¢ecs

¢asuodsal suAsy
o/m 40 yum Suipueisine
UOIONIISU] Mman

80¢S

uonarisul
Uo[INJISU] JBLIIEG LING uopsidwos cw_vn_u””w“c_ ~ .VONm 0/ Aoesda| ~ NONw
BAI1938Y |jndexa oc>w< e @ONm 31808y EYNEREN
pres : : ,
Hes

M WSISAS Ndd

~00¢S

US 11,334,503 B2

Sheet 4 of 5

May 17, 2022

U.S. Patent

¥ Old

pug

Md weishs NdD ~ 0Z€S
YyeS ¥
_ “ uolonsul
asuodal H00[q2I0)S Usiuld
Jayng uonebaifbe - e ¥l /1 3seu-8i00 ybnoay 'y 8LES
) il - biemio
puss /| T T Tl > asuodsai Jayng
yum Jayng uonebaibbe v
A WwioJ} Bjep plemio} ~— N._Vm.um I_ ~— @ _\mm
) 1
puss QJ| e e e — - Jayng uonebaibbe Jem
anleo8l 0} puss Off plemiol . Nmumm [~ 1 —\mwm
(1)
O._wmm paAIR08l puss Q/
pues Q| ouAsy - OUASY 4/l 1SEU-8I00 — 7 _\mm
K
9eeS (
_ 0ces _
Jayng uonebaibbe uops|dulod [eao] Y —
ul ejep ojeBe.bbe g pues + D uopsiduioo eool -
3 92eS 0 X -0LES
Jayng uopebaibite
Eiep aAlaoal “tr---""-- O} BlEP PIEMIO) Hem N 80€S
. Vees h 4
.vmmw s81Ag 91 0} dn yim
uogeidwios Jsyng A «t-|---- Jeyng uonebsibbe
[omognomms | uoneba.bbe oneos. w:seue0 [S-90€S
oio] Jeyng uonebeibbe % P
ﬂ NNmm Jpuas 0}
wmmm PUNOING LBIS s9)Ad g < |Ijs
71 21601 4/] 189U-2400 SUASE “ .VOmUw

G 9Old

saolne(
jeusayxg - b1z

A

US 11,334,503 B2

Sheet 5 of 5

May 17, 2022

U.S. Patent

\ seydepy somiaN mmo%_ﬁ:_ «—| Aeidsig
0¢ce 4 7y f /
777 véc
ez | N
8l¢
m@:mqm ~ ‘
\opz [°uoed Ndo
yun Buisseosoly
wa)sAg
abelo)g o N
g oLz
144 Aowa|y S
gec
S
Qe Janleg/wialsAg Jendwo) A/
A%4
0L

US 11,334,503 B2

1
HANDLING AN INPUT/OUTPUT STORE
INSTRUCTION

This application claims priority from European patent
application number EP19154737.1, filed Jan. 31, 2019,
which is hereby incorporated herein by reference in its
entirety.

BACKGROUND

One or more aspects of the present invention relate, in
general, to data processing systems, and in particular, to
handling an input/output store instruction to multiple exter-
nal devices.

A computing environment may include one or more types
of input/output devices, including various types of adapters.
One type of adapter is a Peripheral Component Interconnect
(PCI) or Peripheral Component Interconnect Express (PCle)
adapter. This adapter includes one or more address spaces
used in communicating data between the adapter and the
system to which the adapter is attached.

In some systems, a portion of an address space of the
central processing unit (CPU) coupled to the adapter is
mapped to an address space of the adapter enabling CPU
instructions that access storage to directly manipulate the
data in the adapter’s address space.

Communication with adapters, such as PCI or PCle
adapters, can be facilitated by control instructions specifi-
cally designed for communicating data to and from adapters
and used for communication.

In the state of the art, a store instruction for storing data
in an adapter includes, for instance, obtaining a machine
instruction for execution. The machine instruction is defined
for computer execution according to a computer architec-
ture. The machine instruction includes, for instance, an
opcode field identifying a store to adapter instruction. A first
field identifies a first location that includes data to be stored
in an adapter. A second field identifies a second location, the
contents of which include a function handle identifying the
adapter, a designation of an address space within the adapter
in which data is to be stored, and an offset within the address
space. The machine instruction is executed. The executing
includes using the function handle to obtain a function table
entry associated with the adapter. A data address of the
adapter is obtained using at least one of information in the
function table entry and the offset. Data is stored from the
first location in a specific location in the address space
identified by the designation of the address space. The
specific location is identified by the data address of the
adapter.

An existing feature in a large multi-processor system is
the ability to quiesce all processors within a target zone.
Quiesce functions operate to temporarily pause or alter the
state of a processor or group of processors to performs, e.g.,
system updates or backups. In some instances, a quiesce
interruption is applicable to only a subset of the system
resources. In such instances, the system can be divided into
different zones. For a quiesce operation applicable to one
zone (atarget zone), processors outside of the target zone are
permitted to continue running, although new translations
may be blocked. Typically, at least one system controller or
other mechanism broadcasts the quiesce to all physical
processors in the system, handles collecting quiesce state
information and indicates to a requesting processor when all
processors have started, or are ignoring (filtering) the qui-
esce request.

10

15

20

25

30

35

40

45

50

55

60

65

2

A quiesce controller can be communicatively coupled to
a processor in a multi-processor system and to a quiesce
state machine configured to receive a quiesce request. The
computer system is configured to perform a method that
includes receiving a quiesce request at the quiesce controller
from a requesting processor, which is one of a plurality of
processors in a multi-processor system. A determination is
made that the quiesce request is not accepted based on a state
of the quiesce state machine. Based on the request not being
accepted, a reject message configured to indicate that the
quiesce request has been rejected is generated, holding the
reject message until a quiesce command is broadcast to the
multi-processor system. The quiesce command is based on
a different quiesce request, and the reject message is sent to
the requesting processor based on the broadcast of the
quiesce command being detected by the quiesce controller.

SUMMARY

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a data
processing system for handling an input/output store instruc-
tion. The data processing system includes a data processing
unit configured to perform a method. The method includes
identifying an input/output function by an address specified
using the input/output store instruction. The input/output
store instruction specifies at least the input/output function
with an offset through the address, at least one of data to be
transferred and a pointer to data to be transferred, and a
length of the data. It is verified whether access to the
input/output function is allowed on an address space and on
a guest instance level. The input/output store instruction is
completed before an execution of the input/output store
instruction in a selected component of the data processing
system different from the data processing unit is completed.
The selected component is configured to asynchronously
load from and store data to at least one external device.
Notification is provided through an interrupt, based on
detecting an error during an asynchronous execution of the
input/output store instruction. Using a barrier instruction,
processing of at least the input/output store instruction is
delayed, until previous input/output store instructions have
been completed.

Computer-implemented methods and computing program
products relating to one or more aspects are also described
and claimed herein.

Additional features and advantages are realized through
the techniques described herein. Other embodiments and
aspects are described in detail herein and are considered a
part of the claimed aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present invention together with objects and
advantages may best be understood from the following
detailed description of the embodiments, but not restricted to
the embodiments, taken in conjunction with the accompa-
nying drawings in which:

FIG. 1 depicts one example of a block diagram of a data
processing system for handling an input/output store instruc-
tion to an external device according to an embodiment of the
invention;

FIG. 2 depicts one example of a message sequence chart
of'a method for handling an input/output store instruction to
an external device according to an embodiment of the
invention;

US 11,334,503 B2

3

FIG. 3 depicts one example of a first part of a flow chart
for handling an input/output store instruction to an external
device according to an embodiment of the invention;

FIG. 4 depicts one example of a second part of a flow
chart for handling an input/output store instruction to an
external device according to an embodiment of the inven-
tion; and

FIG. 5 depicts an example embodiment of a data process-
ing system for executing a method according to an embodi-
ment of the invention.

DETAILED DESCRIPTION

In the drawings, like elements are referred to with equal
reference numerals. The drawings are merely schematic
representations, not intended to portray specific parameters
of aspects of the invention. Moreover, the drawings are
intended to depict only typical embodiments of the inven-
tion, and therefore, should not be considered as limiting the
scope of aspects of the invention.

The illustrative embodiments described herein provide,
for instance, a data processing system, a computer program
product and a method for handling an input/output store
instruction. In one aspect, a data processing system includes
a system nest communicatively coupled to at least one
input/output bus by an input/output bus controller. The data
processing system further includes at least a data processing
unit including a core, a system firmware and an asynchro-
nous core-nest interface. The data processing unit is com-
municatively coupled to the system nest via an aggregation
buffer. The system nest is configured to asynchronously load
from and/or store data to an external device which is
communicatively coupled to the input/output bus. The asyn-
chronous core-nest interface includes an input/output status
array with multiple input/output status buffers, as well as an
array management and access logic.

The illustrative embodiments may be used for a method,
in which, in one example: an operating system running on
the data processing system issues the input/output store
instruction specifying at least an input/output function with
an offset through an address, data to be transferred and/or a
pointer to data to be transferred, and a length of the data; the
data processing unit is configured to identify the input/
output function by the address specified in the input/output
store instruction; the data processing unit is configured to
verify if access to the input/output function is allowed on an
address space and on a guest instance level, the guest
running on the data processing system; the data processing
unit is configured to complete the input/output store instruc-
tion before an execution of the input/output store instruction
in the system nest is completed; the system firmware is
configured to notify the operating system through an inter-
rupt, if during the asynchronous execution of the input/
output store instruction an error is detected by the data
processing unit, transmitting the data of the failed asynchro-
nous execution; and a barrier instruction delaying a process-
ing of a store instruction, until (e.g., all) previous store
instructions have been completed.

Alternatively or additionally of data to be transferred, the
store instruction according to an embodiment of the inven-
tion may also specify a pointer to main memory which is to
be used to fetch data from, instead of containing the data
directly.

A guest instance level may also mean that a single guest
or host may be running on the data processing system.

The address of the offset of the input/output function itself
can be a virtual, physical, or logical address. Virtual and

10

20

25

30

40

45

55

4

logical addresses typically get translated through a memory
management unit (MMU) into a physical address, and the
physical address then allows to identify which function and
offset is meant.

Physical address in this context means, for instance, a
“lowest address in the address translation hierarchy acces-
sible from within a guest/operating system.”

FIG. 1 depicts one example of a block diagram of a data
processing system 210 for handling an input/output store
instruction 30 to at least one external device 214 according
to an embodiment of the invention. The data processing
system 210 includes, for instance, a system nest 18 com-
municatively coupled to an input/output bus 22 by an
input/output bus controller 20; and a data processing unit
216 including a core 12, a system firmware 10 and an
asynchronous core-nest interface 14. The input/output bus
controller 20 may also be coupled via multiple input/output
buses 22 to multiple external devices 214.

The data processing unit 216 is communicatively coupled
to the system nest 18 via an aggregation buffer 16. The
system nest 18 is configured to asynchronously load from
and/or store data to the external device 214 which is com-
municatively coupled to the input/output bus 22 via a
buffer-input/output bus controller interface 28 as part of the
system nest 18 and the input/output bus controller 20.

The aggregation buffer 16 is communicatively coupled to
the asynchronous core-nest interface 14. The system firm-
ware 10 includes, for instance, an asynchronous input/output
driver code 32 for handling the input/output store instruction
30. The core 12 includes asynchronous setup code 34 for
handling memory requirements for status information of the
asynchronous input/output driver code 32. The asynchro-
nous core-nest interface 14 includes an asynchronous core-
nest interface forwarding component 36 for forwarding the
data with local completion. The aggregation buffer 16
includes an early completion logic 26 for delivering a free
for reuse message after sending a request. The aggregation
buffer 16 is coupled to the asynchronous core-nest interface
14 via an asynchronous bus 38. The asynchronous core-nest
interface 14 includes, for instance, an input/output status
array 44 with multiple input/output status butfers 24, as well
as an array management and access logic 46. The input/
output status buffers 24 collect returned states from the
system nest 18 and/or from the input/output bus controller
20, in particular a completion message from the system nest
18. The input/output status buffers 24 are integrated directly
in the asynchronous core-nest interface 14, in one example.
A message 48 with an identification of an array entry, e.g.,
a completion message to one of the input/output status
buffers 24, may be received by the system nest 18.

The system firmware 10 includes, in one example, an
array management logic 42, which allocates/deallocates
input/output status buffers 24 in the input/output status array
44 and/or initiates a start of a new store instruction 30.

According to an embodiment of the method, an operating
system running on the data processing system 210 issues the
input/output store instruction 30 specitying at least an input/
output function with an offset through an address, data to be
transferred and/or a pointer to data to be transferred, and a
length of the data. The data processing unit 216 is hereby
configured to identify the input/output function by the
address specified in the input/output store instruction 30.
The data processing unit 216 is configured to verify if access
to the input/output function is allowed on an address space
and on a guest instance level, the guest running on the data
processing system 210. The data processing unit 216 is
configured to complete the input/output store instruction 30

US 11,334,503 B2

5

before an execution of the input/output store instruction 30
in the system nest 18 is completed. The system firmware 10
is configured to notify the operating system through an
interrupt, if during the asynchronous execution of the input/
output store instruction 30 an error is detected by the data
processing unit 216, transmitting the data of the failed
asynchronous execution. A barrier instruction delays a pro-
cessing of a store instruction 30, until, e.g., all previous store
instructions 30 have been completed.

The barrier instruction restricts a serial processing of store
instructions 30 to a single input/output bus controller 20.
The barrier instruction may further restrict a serial process-
ing of store instructions 30 to a single input/output function,
in particular a single external input/output device 214. A
summary query capability for, e.g., all, input/output status
buffers 24 of the input/output status array 44 is provided by
array management and access logic 46, returning aggregated
information of a status of the input/output status buffers 24.

The input/output status buffers 24 collect message states
from the system nest 18 and/or from the input/output bus
controller 20, in particular, a completion status from the
system nest 18. The message states and/or the completion
status may be numbered by an input/output status buffer
index.

The input/output store instruction 30 is located in the data
processing system 210 on the side of the user interface 40
across the architecture boundary which separates the system
hardware/firmware 50 from the user side 40.

Thus, the data is transferred by the input/output store
instruction 30 through an asynchronous transmit mechanism
with an early completion message in multiple data packets
to the aggregation buffer 16, if the length of the source data
exceeds a defined length, e.g., eight bytes, else the data is
transferred in one data packet.

A system message according to an embodiment of the
data processing system includes, for instance, one of a
hierarchical physical target address, sourcing an SMT (si-
multaneous multithreading) thread or an aggregate buffer
identifier, a length of data, an input/output bus address, or an
input/output status buffer index.

The queueing and ordering semantics for handling store
instructions 30 to multiple external devices 214 may be
performed, in one example, as described in the following.
For an individual SMT thread versus input/output function
relation, e.g., all, legacy input/output load/store operations
may be ordered in respect to a single thread of the processor
unit 216. The new input/output store instructions are com-
pletely unordered amongst each other. New input/output
store instructions are ordered against legacy input/output
instructions. Input/output instructions (e.g., all I/O instruc-
tions) for different input/output functions are not ordered
against each other.

In one embodiment, two types of additional ordering
instructions are added to the ruleset of the system firmware
10. First, a function barrier separating (e.g., all) previous
input/output store instructions from (e.g., all) following
input/output store instructions from an individual SMT
thread perspective, when the barrier instruction completes
(e.g., all) previous input/output store instructions have been
sent to the input/output bus 22 where this function resides.
Secondly, an input/output SMT thread barrier instruction,
which completes when (e.g., all) previous input/output store
instructions have been sent to the input/output bus 22 for that
SMT thread. For example, a lightweight exit/entry of a z
Systems® Start Interpretive Execution (SIE) instruction has
no effect on ordering, a full SIE exit/entry, where a virtual
data processing unit is changed, is handled by an input/

5

10

15

20

25

30

35

40

45

50

55

60

65

6

output SMT thread barrier. z Systems is a trademark or
registered trademark of International Business Machines
Corporation in at least one jurisdiction.

FIG. 2 depicts one example of a message sequence chart
of one or more aspects of a method for handling an input/
output store instruction 30 to an external device 214 accord-
ing to an embodiment of the invention.

In one example, the method starts with the operating
system issuing an input/output store instruction 30. Next, as
indicated in step S101 of FIG. 2, the system firmware 10
allocates a free input/output status buffer index. If there is no
free input/output status buffer index available, the system
firmware 10 waits. In step S103, the system firmware 10
checks if the store instruction can be injected into an
asynchronous send engine. If this is possible, the process
continues. If this is not possible, the store instruction is
delayed until the store instructions causing the delay have
been completed.

Next, as is indicated by the steps S100 and S104, the
system firmware 10 issues repeatedly, if a length of the data
exceeds a defined length, e.g., eight bytes, a system message
to send a data packet to the aggregation buffer 16 until the
data (e.g., all the data) of a store block has been forwarded
to the aggregation buffer 16, while the system firmware 10
is waiting until the data has been sent by the system
message. In steps S102 and S106, a local completion mes-
sage is sent back to the system firmware 10.

In step S108, the system firmware 10 issues a system
message to the aggregation buffer 16 to forward the data
asynchronously as a single nest message to the input/output
bus controller 20, while waiting for the aggregation buffer
16 to send a completion message.

In step S110, the aggregation buffer 16 injects the nest
message into the system nest 18, wherein in step S124 the
aggregation buffer 16 is free for reuse right after the send
operation, signaling back to the system firmware 10 in step
S126. Then, the aggregation buffer 16 sends a free for reuse
message.

In step S112, the system nest 18 forwards the message to
the target location, followed by step S114, the input/output
bus controller 20 receiving the message and forwarding data
in a data frame to the input/output bus, followed by the
input/output bus controller 20 sending a completion mes-
sage to the system nest 18 in step S116.

In step S118, the system nest 18 forwards the completion
message to the originating aggregation buffer 16, followed
by the aggregation buffer 16 forwarding completion to the
asynchronous core-nest interface 14 in step S120. Then, in
step S122 the asynchronous core-nest interface 14 stores the
status in the input/output buffer 24 for the respective input/
output status buffer index and signals completion of opera-
tion to the system firmware 10. Finally, in step S123, the
system firmware 10 updates the input/output status butfer 24
tracking by the input/output status buffer index. The input/
output status buffer 24 is now free again.

In case of an error occurring during transfer of data, the
system firmware 10 signals asynchronously defects to the
operating system.

In case the data to be transferred is less than the defined
length, e.g., eight bytes, the repeatedly filling of the aggre-
gation buffer 16 is skipped.

FIG. 3 depicts one example of a first part of a flow chart
for handling an input/output store instruction 30 to an
external device 214 according to an embodiment of the
invention, whereas FIG. 4 depicts one example of a second
part of the flow chart.

US 11,334,503 B2

7

Referring to FIG. 3, the system firmware of the data
processing unit starts in step S200. In step S202, the system
firmware receives via a message a legacy input/output store
block instruction. In step S208, it is checked if there is a new
store instruction 30 outstanding with or without an asyn-
chronous response. If this is the case, is step S210, there is
a wait until the core-nest interface 14 has no more outstand-
ing asynchronous responses. It this is not the case, the
process continues, e.g., immediately with step S212 by the
core-nest interface 14 sending the legacy input/output store
instruction 30 as a message. Then, the system is waiting, step
S214, until it receives a legacy response message in step
S216. Then, the legacy store instruction 30 is finished in step
S218 with a message and the system firmware 10 is ending
the process in step S220.

In parallel, in one example, the system firmware 10
receives the new input/output store instruction 30 by a
message in step S204. In step S222, it is checked if a free
status slot, namely an input/output status buffer 24, is
available. If this is the case, the slot is marked in step S224
as used and the store process continues with connection
point A, depicted in the second part of the flow chart
depicted in FIG. 4. If this is not the case, then there is a wait
until the core-nest interface 14 has a free slot available in
step S226.

An asynchronous execution complete message may be
received in step S206, followed by an update the slot
tracking in step S228 with the respective input/output status
buffer index. Then, the system firmware 10 is ending the
process in step S230.

In a parallel path, in one example, the system firmware 10
receives a message with a barrier instruction per store
function in step S232. Next, it is checked in step S234 if the
core-nest interface status buffers 24 are idle. If this is the
case, the barrier instruction is finished in step S236 and the
system firmware 10 is ending the process in step S238. If this
is not the case, the system firmware 10 waits for a tracking
update of a status buffer 24 in step S240. If any of the status
buffers 24 in step S242 is still non-idle for the function, the
loop continues by waiting in step S240. If any of the status
buffers 24 is idle, the process continues with step S236 by
finishing the barrier instruction.

A barrier instruction is received in step S244, followed by
waiting until the core-nest interface 14 has no more out-
standing asynchronous responses in step S246, using the
summary query capability provided in the core-nest inter-
face 14 by the array management and access logic 46. Then,
the barrier instruction is finished in step S248 and the system
firmware 10 is ending the process in step S250.

One example of a second part of the flow chart, beginning
with connection point A, is depicted in FIG. 4. In step S304,
it is checked if the more than the defined number of bytes,
e.g., 8 bytes, are to be transferred. If this is the case the
core-nest interface fills the aggregation buffer with an up to,
e.g., 16 bytes message in step S306. The system firmware is
waiting, step S308, until a message of local completion is
sent in step S310, returning to step S304. If there are less
than, e.g., 8 bytes left in the check of step S304, the flow
continues in step S312 with the core-nest interface sending
an asynchronous input/output message, followed by waiting
in step S314 for a buffer response in step S316. Then, in step
S318, a finish store block instruction is executed and the
flow ends in step S320 with an ending in the system
firmware.

In step S328, the asynchronous core-nest interface logic
starts an outbound process loop, followed by receiving an
aggregation buffer completion message in step S322 and a

10

15

20

25

30

35

40

45

50

55

60

65

8

forward data message to the aggregation buffer in step S324,
followed by a send completion message back to the system
firmware in step S326. In step S330, an asynchronous
input/output send message is received followed by a forward
of'the input/output send message to the aggregation buffer in
step S332.

In step S338, the aggregation buffer logic starts an out-
bound process loop followed by a receive data in step S334
and aggregating data in the aggregation buffer in step S336.
The aggregation buffer is also receiving an input/output send
message in step S340, followed by forwarding data from the
aggregation buffer with an input/output send message in step
S342. In step S344, a response message from the aggrega-
tion buffer is sent via the core-nest interface to the system
firmware.

Referring now to FIG. 5, a schematic of an example of a
data processing system 210 is shown. Data processing
system 210 is only one example of a suitable data processing
system and is not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the inven-
tion described herein. Regardless, data processing system
210 is capable of being implemented and/or performing any
of the functionality set forth herein above.

In data processing system 210, there is a computer sys-
tem/server 212, which is operational with numerous other
general-purpose or special-purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 212
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing envi-
ronments that include any of the above systems or devices,
and the like.

Computer system/server 212 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 212 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 5, computer system/server 212 in data
processing system 210 is shown in the form of a general-
purpose computing device. The components of computer
system/server 212 may include, but are not limited to, one or
more processors or processing units 216, a system memory
228, and a bus 218 that couples various system components
including system memory 228 to processor 216.

Bus 218 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

US 11,334,503 B2

9

Computer system/server 212 typically includes a variety
of computer system readable media. Such media may be any
available media that is accessible by computer system/server
212, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 228 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 230 and/or cache memory 232.
Computer system/server 212 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 234 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 218 by one
or more data media interfaces. As will be further depicted
and described below, memory 228 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 240, having a set (at least one) of program
modules 242, may be stored in memory 228 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
242 generally carry out the functions and/or methodologies
of embodiments of the invention as described herein.

Computer system/server 212 may also communicate with
one or more external devices 214 such as a keyboard, a
pointing device, a display 224, etc.; one or more devices that
enable a user to interact with computer system/server 212;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 212 to communicate with
one or more other computing devices. Such communication
can occur via Input/Output (I/O) interfaces 222. Still yet,
computer system/server 212 can communicate with one or
more networks such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 220. As depicted,
network adapter 220 communicates with the other compo-
nents of computer system/server 212 via bus 218. It should
be understood that although not shown, other hardware
and/or software components could be used in conjunction
with computer system/server 212. Examples, include, but
are not limited to: microcode, device drivers, redundant
processing units, external disk drive arrays, RAID systems,
tape drives, and data archival storage systems, etc.

In one aspect, a data processing system is provided for
handling an input/output store instruction, comprising a
system nest communicatively coupled to at least one input/
output bus by an input/output bus controller. The data
processing system further comprises at least a data process-
ing unit comprising a core, a system firmware and an
asynchronous core-nest interface. The data processing unit
is communicatively coupled to the system nest via an
aggregation buffer. The system nest is configured to asyn-
chronously load from and/or store data to at least one
external device which is communicatively coupled to the
input/output bus. The asynchronous core-nest interface com-

10

15

20

25

30

35

40

45

50

55

60

65

10

prises an input/output status array with multiple input/output
status buffers, as well as an array management and access
logic.

The data processing system is configured to perform: an
operating system running on the data processing system
issues the input/output store instruction specifying at least an
input/output function with an offset through an address, data
to be transferred and/or a pointer to data to be transferred,
and a length of the data; the data processing unit is config-
ured to identify the input/output function by the address
specified in the input/output store instruction; the data
processing unit is configured to verify if access to the
input/output function is allowed on an address space and on
a guest instance level, the guest running on the data pro-
cessing system; the data processing unit is configured to
complete the input/output store instruction before an execu-
tion of the input/output store instruction in the system nest
is completed; the system firmware is configured to notify the
operating system through an interrupt, if during the asyn-
chronous execution of the input/output store instruction an
error is detected by the data processing unit, transmitting the
data of the failed asynchronous execution; and a barrier
instruction delaying a processing of a store instruction, until
all previous store instructions have been completed.

In one embodiment, a barrier instruction is introduced for
ordering of asynchronous store instructions. The barrier
instruction may be a PCI SMT thread barrier instruction,
which completes when all previous PCI store instructions
have been sent to a PCle bus for that SMT thread.

The data processing system according to one embodiment
of the invention comprises instructions loading from and
storing to at least one external device of the data processing
system via an input/output bus. Asynchronous instructions
complete before data has been stored to the external device
while synchronous instructions complete after data has been
stored to the external device. Within the embodiments
described herein, PCI will be used interchangeably for any
other input/output technology, thus not restricting the
embodiment of the invention to PCI.

Embodiments of the invention describe an input/output
store instruction execution in a strictly ordered way as
observable from above the architecture boundary, while the
actual execution may be out-of-order within the hardware of
the data processing unit (e.g., CPU).

According to embodiments of the invention, a PCI store
instruction may be executed with an asynchronous execution
of'the PCle store effect and an asynchronous status handling.
Asynchronous reliable execution is based on reliable for-
warding mechanisms in the microarchitecture of the inven-
tive data processing system, in accordance with an aspect of
the present invention.

An existing PCI store and store block instruction is
usually synchronous up to the point where the PCI store data
has been delivered to the PCle interface and completion
returned to a processing unit.

A PCI standard only requires an asynchronous send
command of PCI information, which is typically imple-
mented through a store queue in the processor aggregating
data with an asynchronous send-out.

According to embodiments of the invention, an improve-
ment concerning cycles per instruction may be achieved by
replacing a synchronous PCI instruction by a reliable asyn-
chronous send process of an input/output store instruction.

Alternatively or additionally of data to be transferred, the
store instruction according to an embodiment of the inven-

US 11,334,503 B2

11

tion may also specify a pointer to a main memory which is
to be used to fetch data from, instead of containing the data
directly.

A guest instance level may also mean that a single guest
or host may be running on the data processing system.

An address of the offset of the input/output function itself
can be a virtual, physical, or logical address. Virtual and
logical addresses typically get translated through a memory
management unit (MMU) into a physical address, and the
physical address then allows to identify which function and
offset is meant.

Physical address in this context means, in one example,
“lowest address in the address translation hierarchy acces-
sible from within a guest/operating system.”

The input/output status buffers may collect returned states
from the system nest and/or from the input/output bus
controller, in particular a completion message from the
system nest. These input/output status buffers may collect
the returned states acting as an asynchronous system mes-
sage buffer supporting the asynchronous transmit process.
The input/output status buffers may be integrated directly in
the asynchronous core-nest interface for quick response.

According to one embodiment of the data processing
system, the barrier instruction may restrict a serial process-
ing of store instructions to a single input/output bus con-
troller. Thus, an efficient ordering of the store instructions
aiming at this input/output bus controller is possible in order
to guarantee that a message will reach a specific external
device.

According to one embodiment of the data processing
system, the barrier instruction may restrict a serial process-
ing of store instructions to a single input/output function, in
particular a single external input/output device. Thus, an
efficient ordering of the store instructions aiming at this
input/output bus controller is possible in order to guarantee
that a message will reach a specific external device.

According to one embodiment of the data processing
system, a summary query capability for all input/output
status buffers of the input/output status array may be pro-
vided by an array management and access logic, returning
aggregated information of a status of the input/output status
buffers. By this way, information may gathered in an effi-
cient manner from the input/output status buffers.

According to one embodiment of the data processing
system, the system firmware may comprise an array man-
agement logic, which allocates/deallocates input/output sta-
tus buffers in the input/output status array and/or initiates a
start of a new store instruction. Thus, idle status buffers may
be attributed to further store instructions. An ordered pro-
cessing of store instructions may be handled in an efficient
and time saving way.

According to one embodiment of the data processing
system, the aggregation buffer may be communicatively
coupled to the asynchronous core-nest interface via an
asynchronous bus. Thus, the aggregation buffer can handle
data directly sent by the asynchronous core-nest interface
consecutively until all data to be transferred to the external
device is stored in the aggregation buffer. By this way, the
asynchronous transmit mechanism for data transfer from the
asynchronous core-nest interface may be supported.

According to one embodiment of the data processing
system, the data may be transferred by the input/output store
instruction through an asynchronous transmit mechanism
with an early completion message in multiple data packets
to the aggregation buffer, if the length of the source data
exceeds a defined length, e.g., eight bytes, else the data may

15

20

30

35

40

45

55

12

be transferred in one data packet. With the asynchronous
transmit mechanism, the sending device is free for reuse at
an earlier state.

According to one embodiment of the data processing
system, the system firmware may comprise an asynchronous
input/output driver code for handling the input/output store
instruction. Thus, an asynchronous transmit mechanism may
be used for transferring data from the data processing unit to
the external device. Further, the core may comprise an
asynchronous setup code for handling memory requirements
for status information of the asynchronous input/output
driver code. This asynchronous setup code may further
facilitate the asynchronous transmit mechanism through the
aggregation buffer to the system nest and the input/output
bus controller.

According to one embodiment of the data processing
system, the asynchronous core-nest interface may comprise
an asynchronous core-nest interface forwarding component
for forwarding the data with local completion. This compo-
nent may be implemented in hardware in the asynchronous
core-nest interface. Thus, an asynchronous transmit mode
for sending the data in data packets to the aggregation buffer
may be supported.

According to one embodiment of the data processing
system, the aggregation buffer may comprise an early
completion logic for delivering a free for reuse message
after sending a request. This enables an early continuation of
the transmit process of the data via the aggregation buffer to
the system nest and the input/output bus controller.

The system firmware may comprise an array management
logic, which allocates/deallocates input/output status buffers
in the input/output status array and/or initiates a start of a
new store instruction. Thus, idle status buffers may be
attributed to further store instructions. An ordered process-
ing of store instructions may be handled in an efficient and
time saving way.

According to one embodiment of the data processing
system, a system message may comprise one of a hierar-
chical physical target address, sourcing an SMT (simulta-
neous multithreading) thread or an aggregate buffer identi-
fier, a length of data, an input/output bus address, or an
input/output status buffer index. Thus, a passing of relevant
information through the data processing system can be
guaranteed.

Further, a method for handling an input/output store
instruction to at least one external device of a data process-
ing system is provided. The data processing system com-
prises a system nest communicatively coupled to at least one
input/output bus by an input/output bus controller. The data
processing system further comprises at least a data process-
ing unit comprising a core, a system firmware and an
asynchronous core-nest interface. The data processing unit
is communicatively coupled to the system nest via an
aggregation buffer. The external device is communicatively
coupled to the input/output bus. The asynchronous core-nest
interface comprises an input/output status array with mul-
tiple input/output status buffers, as well as an array man-
agement and access logic.

The method comprises: an operating system running on
the data processing system issuing the input/output store
instruction specifying at least an input/output function with
an offset through an address, data to be transferred and/or a
pointer to data to be transferred, and a length of the data; the
data processing unit being configured to identify the input/
output function by the address specified in the input/output
store instruction; the data processing unit being configured
to verify if access to the input/output function is allowed on

US 11,334,503 B2

13

an address space and on a guest instance level, the guest
running on the data processing system; the data processing
unit being configured to complete the input/output store
instruction before an execution of the input/output store
instruction in the system nest is completed; the system
firmware being configured to notify the operating system
through an interrupt, if during the asynchronous execution
of the input/output store instruction an error is detected by
the data processing unit, transmitting the data of the failed
asynchronous execution; and a barrier instruction delaying a
processing of a store instruction, until all previous store
instructions have been completed.

A barrier instruction may be introduced for ordering of
asynchronous store instructions. The barrier instruction may
be a PCI SMT thread barrier instruction, which completes
when all previous PCI store instructions have been sent to a
PCle bus for that SMT thread.

The method according to a further embodiment of the
invention comprises instructions loading from and storing to
at least one external device of the data processing system via
an input/output bus. Asynchronous instructions complete
before data has been stored to the external device while
synchronous instructions complete after data has been stored
to the external device. Within the embodiments described
herein, PCI will be used interchangeably for any other
input/output technology, thus not restricting the embodiment
of the invention to PCIL.

Embodiments of the method describe an input/output
store instruction execution in a strictly ordered way as
observable from above the architecture boundary, while the
actual execution may be out-of-order within the hardware of
the data processing unit (CPU).

According to embodiments of the method, a PCI store
instruction may be executed with an asynchronous execution
of'the PCle store effect and an asynchronous status handling.
Asynchronous reliable execution is based on reliable for-
warding the mechanisms in the microarchitecture of the data
processing system, in accordance with an aspect of the
present invention.

An existing PCI store and store block instruction is
usually synchronous up to the point where the PCI store data
has been delivered to the PCle interface and completion
returned to a processing unit.

A PCI standard only requires an asynchronous send
command of PCI information, which is typically imple-
mented through a store queue in the processor aggregating
data with an asynchronous send-out.

According to embodiments of the method, an improve-
ment concerning cycles per instruction may be achieved by
replacing a synchronous PCI instruction by a reliable asyn-
chronous send process of an input/output store instruction.

Alternatively or additionally of data to be transferred, the
store instruction according to an embodiment of the inven-
tion may also specify a pointer to a main memory which is
to be used to fetch data from, instead of containing the data
directly.

A guest instance level may also mean that a single guest
or host may be running on the data processing system.

An address of the offset of the input/output function itself
can be a virtual, physical, or logical address. Virtual and
logical addresses typically get translated through a memory
management unit (MMU) into a physical address, and the
physical address then allows to identify which function and
offset is meant.

Physical address in this context means, for instance,
“lowest address in the address translation hierarchy acces-
sible from within a guest/operating system.”

25

40

45

14

According to one embodiment of the method, the barrier
instruction may restrict a serial processing of store instruc-
tions to a single input/output bus controller. Thus, an effi-
cient ordering of the store instructions aiming at this input/
output bus controller is possible in order to guarantee that a
message will reach a specific external device.

According to one embodiment of the method, the barrier
instruction may restrict a serial processing of store instruc-
tions to a single input/output function, in particular a single
external input/output device. Thus, an efficient ordering of
the store instructions aiming at this input/output bus con-
troller is possible in order to guarantee that a message will
reach a specific external device.

According to one embodiment of the method, a summary
query capability for all input/output status buffers of the
input/output status array may be provided by an array
management and access logic, returning aggregated infor-
mation of a status of the input/output status buffers. By this
way, information may gathered in an efficient manner from
the input/output status buffers.

According to one embodiment of the method, the system
firmware may comprise an array management logic, which
allocates/deallocates input/output status buffers in the input/
output status array and/or initiates a start of a new store
instruction. Thus, idle status buffers may be attributed to
further store instructions. An ordered processing of store
instructions may be handled in an efficient and time saving
way.

The input/output status buffers may collect message states
from the system nest and/or from the input/output bus
controller, in particular a completion status from the system
nest, wherein the message states and/or the completion
status are numbered by an input/output status buffer index.
By this way, information about the completion status of
different store instructions may be handled in an ordered and
efficient manner. The numbering enables the possibility of
handling messages, and particularly completion states, in an
ordered and efficient way for further processing other store
instructions.

According to one embodiment, the method may further
comprise: the operating system issuing the input/output
store instruction; the system firmware allocating a free
input/output status buffer index; if there is no free input/
output status buffer index available, then waiting for a free
input/output status buffer index; the system firmware inject-
ing the store instruction into the asynchronous send engine;
if blocked by another store instruction waiting until the store
instruction has been completed; depending on the length of
the data: if a length of the data exceeds a defined length, e.g.,
eight bytes, the system firmware issuing repeatedly a system
message to send a data packet to the aggregation buffer until
all data of a store block has been forwarded to the aggre-
gation buffer, while the system firmware waiting until the
data has been sent by the system message; else the system
firmware issuing a system message to send the data to the
aggregation buffer; further independent of the length of the
data; the system firmware issuing a system message to the
aggregation buffer to forward the data asynchronously as a
single nest message to the input/output bus controller, while
waiting for the aggregation buffer to send a completion
message; the aggregation buffer injecting the nest message
into the system nest, wherein the aggregation buffer is free
for reuse right after the send operation, signaling back to the
system firmware; then the aggregation buffer sending a free
for reuse message; the system nest forwarding the message
to the target location; the input/output bus controller receiv-
ing the message and forwarding data in a data frame to the

US 11,334,503 B2

15

input/output bus; the input/output bus controller sending a
completion message to the system nest; the system nest
forwarding the completion message to the originating aggre-
gation buffer; the aggregation buffer forwarding completion
to the asynchronous core-nest interface; the asynchronous
core-nest interface storing the completion status in the
input/output status buffer for the input/output status buffer
index and signaling completion of operation to the system
firmware; the system firmware updating an input/output
status buffer tracking by the input/output status buffer index;
and the system firmware signaling asynchronously defects to
the operating system in case of an error.

In one embodiment, only the step reciting “depending on
the length of the data: . . . ; else . . . data to the aggregation
buffer;” is dependent on the length of the data and is different
for the length of the data exceeding, e.g., eight bytes from
the length of the data not exceeding, e.g., eight bytes.

According to one embodiment of the method, the data is
transmitted in slices to the aggregation buffer until all data
of a store block are forwarded to the aggregation buffer,
wherein the system firmware is waiting until the data has
been sent by the asynchronous core-nest interface.

Thus, if data is less than, e.g., eight bytes, the filling
process of the aggregation buffer in slices with data packets
may be skipped and the transmit process of the data to the
external device can be completed in a single step.

According to one embodiment of the method, the data
may be transferred by the input/output store instruction
through an asynchronous transmit mechanism with an early
completion message in multiple data packets to the aggre-
gation buffer, if the length of the data exceeds, e.g., eight
bytes. With the asynchronous transmit mechanism, the send-
ing device is free for reuse at an earlier state.

According to one embodiment of the method, the system
firmware may use an asynchronous input/output driver code
for handling the input/output store instruction. Thus an
asynchronous transmit mechanism may be used for trans-
ferring data from the data processing unit to the external
device.

According to one embodiment of the method, the core
may use an asynchronous setup code for handling memory
requirements for status information of the asynchronous
input/output driver code. This asynchronous setup code may
further facilitate the asynchronous transmit mechanism
through the aggregation buffer to the system nest and the
input/output bus controller.

According to one embodiment of the method, the asyn-
chronous core-nest interface may use an asynchronous core-
nest interface forwarding component for forwarding the data
with local completion. Thus, an asynchronous transmit
mode for sending the data in data packets to the aggregation
buffer may be supported.

According to one embodiment of the method, the aggre-
gation buffer may use an early completion logic for deliv-
ering a free for reuse message after sending a request. This
enables an early continuation of the transmit process of the
data via the aggregation buffer to the system nest and the
input/output bus controller.

The input/output status buffers may collect returned states
from the system nest and/or from the input/output bus
controller, in particular a completion message from the
system nest. These input/output status buffers may collect
the returned states acting as an asynchronous system mes-
sage buffer supporting the asynchronous transmit process.

According to one embodiment of the method, a system
message may comprise one of a hierarchical physical target
address, sourcing an SMT thread or an aggregate buffer

10

15

20

25

30

35

40

45

50

55

60

65

16

identifier, a length of data, an input/output bus address, or an
input/output status buffer index. Thus, a passing of relevant
information through the data processing system can be
guaranteed.

Further, a computer program product is provided for
handling an input/output store instruction to at least one
external device of a data processing system, the data pro-
cessing system comprising a system nest communicatively
coupled to at least one input/output bus by an input/output
bus controller. The data processing system further comprises
at least a data processing unit comprising a core, a system
firmware and an asynchronous core-nest interface. The data
processing unit is communicatively coupled to the system
nest via an aggregation buffer. The external device is com-
municatively coupled to the input/output bus. The asynchro-
nous core-nest interface comprises an input/output status
array with multiple input/output status buffers, as well as an
array management and access logic.

The computer program product comprises a computer
readable storage medium having program instructions
embodied therewith, the program instructions executable by
the computer system to cause the computer system to
perform a method comprising: an operating system running
on the data processing system issuing the input/output store
instruction specifying at least an input/output function with
an offset through an address, data to be transferred and/or a
pointer to data to be transferred, and a length of the data; the
data processing unit being configured to identify the input/
output function by the address specified in the input/output
store instruction; the data processing unit being configured
to verify if access to the input/output function is allowed on
an address space and on a guest instance level, the guest
running on the data processing system; the data processing
unit being configured to complete the input/output store
instruction before an execution of the input/output store
instruction in the system nest is completed; the system
firmware being configured to notify the operating system
through an interrupt, if during the asynchronous execution
of the input/output store instruction an error is detected by
the data processing unit, transmitting the data of the failed
asynchronous execution; and a barrier instruction delaying a
processing of a store instruction, until all previous store
instructions have been completed.

Further, a data processing system for execution of a data
processing program is provided, comprising computer read-
able program instructions for performing the method
described above.

Aspects of the present invention may be a system, a
method, and/or a computer program product at any possible
technical detail level of integration. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory

US 11,334,503 B2

17

(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,

10

15

20

25

30

35

40

45

50

55

65

18

create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, in a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A data processing system for handling an input/output
store instruction, the data processing system comprising:

a data processing unit including a core and system firm-
ware, the data processing unit configured to perform a
method, the method comprising:
identifying an input/output function by an address

specified using the input/output store instruction, the
input/output store instruction specifying at least the
input/output function with an offset through the
address, at least one of data to be transferred and a
pointer to data to be transferred, and a length of the
data;

US 11,334,503 B2

19

verifying whether access to the input/output function is
allowed on an address space and on a guest instance
level,
completing the input/output store instruction before an
execution of the input/output store instruction in a
selected component of the data processing system
different from the data processing unit is completed,
the selected component configured to asynchro-
nously load from and store data to at least one
external device, the selected component being a
system nest communicatively coupled to the data
processing unit via an aggregation buffer, and com-
municatively coupled to asynchronously load data
from and store data to the at least one external device
via an input/output bus controller, the completing
including:
issuing a system message to the aggregation buffer to
forward the data to be transferred via the system
nest as a single nest message to the input/output
bus controller; and
receiving a free for reuse message after the nest
message has been injected into the system nest to
enable an early continuation of a transfer of data
before a completion message is issued by the
system nest;
providing notification through an interrupt, based on
detecting an error during an asynchronous execution
of the input/output store instruction in the data
processing unit;
obtaining a barrier instruction which when executed
assists in ordering of asynchronous store instruc-
tions; and
delaying, using the barrier instruction, processing of at
least the input/output store instruction, until previous
input/output store instructions have been completed,
the barrier instruction completing execution after the
previous input/output store instructions have been
completed.

2. The data processing system of claim 1, wherein execu-
tion of the barrier instruction restricts a serial processing of
input/output store instructions to a single input/output bus
controller.

3. The data processing system of claim 1, wherein execu-
tion of the barrier instruction restricts a serial processing of
input/output store instructions to a single input/output func-
tion, wherein the single input/output function comprises a
single external input/output device.

4. The data processing system of claim 1, wherein the
method further comprises providing a summary query for
one or more input/output status buffers of an input/output
status array of the data processing unit, returning aggregated
information of a status of the one or more input/output status
buffers, the one or more input/output status buffers to collect
returned states from the selected component.

5. The data processing system of claim 1, wherein the data
is transferred by the input/output store instruction through an
asynchronous transmit mechanism with an early completion
message in multiple data packets to the aggregation buffer,
based on the length of the data exceeding a defined size.

6. The data processing system of claim 5, wherein the data
is transferred in one data packet, based on the length of the
data not exceeding the defined size.

7. The data processing system of claim 1, wherein the data
processing unit comprises an asynchronous core-nest inter-
face, the asynchronous core-nest interface comprising an
input/output status array including a plurality of input/output
status buffers to collect returned states from the selected

20

25

40

45

55

65

20

component, the aggregation buffer being further communi-
catively coupled to the asynchronous core-nest interface.

8. The data processing system of claim 7, wherein the
system firmware comprises an asynchronous input/output
driver code to handle the input/output store instruction.

9. The data processing system of claim 8, wherein the core
comprises an asynchronous setup code to handle memory
requirements for status information of the asynchronous
input/output driver code.

10. The data processing system of claim 7, wherein the
asynchronous core-nest interface comprises an asynchro-
nous core-nest interface forwarding component to forward
data with local completion.

11. The data processing system of claim 7, wherein the
aggregation buffer comprises an early completion logic to
deliver the free for reuse message after sending a request.

12. A computer program product for handling an input/
output store instruction, the computer program product
comprising:

at least one computer readable storage medium readable

by at least one processing circuit and storing instruc-
tions for performing a method comprising:
identifying an input/output function by an address
specified using the input/output store instruction, the
input/output store instruction specifying at least the
input/output function with an offset through the
address, at least one of data to be transferred and a
pointer to data to be transferred, and a length of the
data;
verifying whether access to the input/output function is
allowed on an address space and on a guest instance
level,
completing, by a data processing unit of a data pro-
cessing system, the input/output store instruction
before an execution of the input/output store instruc-
tion in a selected component of the data processing
system different from the data processing unit is
completed, the selected component configured to
asynchronously load from and store data to at least
one external device, the data processing unit includ-
ing a core and system firmware, the selected com-
ponent being a system nest communicatively
coupled to the data processing unit via an aggrega-
tion buffer, and communicatively coupled to asyn-
chronously load data from and store data to the at
least one external device via an input/output bus
controller, the completing including:
issuing a system message to the aggregation buffer to
forward the data to be transferred via the system
nest as a single nest message to the input/output
bus controller; and
receiving a free for reuse message after the nest
message has been injected into the system nest to
enable an early continuation of a transfer of data
before a completion message is issued by the
system nest;
providing notification through an interrupt, based on
detecting an error during an asynchronous execution
of the input/output store instruction in the data
processing unit;
obtaining a barrier instruction which when executed
assists in ordering of asynchronous store instruc-
tions; and
delaying, using the barrier instruction, processing of at
least the input/output store instruction, until previous
input/output store instructions have been completed,

US 11,334,503 B2

21

the barrier instruction completing execution after the
previous input/output store instructions have been
completed.

13. The computer program product of claim 12, wherein
execution of the barrier instruction restricts a serial process-
ing of input/output store instructions to a single input/output
bus controller.

14. The computer program product of claim 12, wherein
execution of the barrier instruction restricts a serial process-
ing of input/output store instructions to a single input/output
function, wherein the single input/output function comprises
a single external input/output device.

15. The computer program product of claim 12, wherein
the method further comprises providing a summary query
for one or more input/output status buffers of an input/output
status array of the data processing unit, returning aggregated
information of a status of the one or more input/output status
buffers, the one or more input/output status buffers to collect
returned states from the selected component.

16. A computer-implemented method of handling an
input/output store instruction, the computer-implemented
method comprising:

identifying an input/output function by an address speci-

fied using the input/output store instruction, the input/
output store instruction specifying at least the input/
output function with an offset through the address, at
least one of data to be transferred and a pointer to data
to be transferred, and a length of the data;

verifying whether access to the input/output function is

allowed on an address space and on a guest instance
level,

completing, by a data processing unit of a data processing

system, the input/output store instruction before an
execution of the input/output store instruction in a
selected component of the data processing system
different from the data processing unit is completed, the
selected component configured to asynchronously load
from and store data to at least one external device, and
the data processing unit including a core and system
firmware, the selected component being a system nest
communicatively coupled to the data processing unit
via an aggregation buffer, and communicatively

10

15

20

25

30

35

40

22

coupled to asynchronously load data from and store
data to the at least one external device via an input/
output bus controller, the completing including:
issuing a system message to the aggregation buffer to
forward the data to be transferred via the system nest
as a single nest message to the input/output bus
controller; and
receiving a free for reuse message after the nest mes-
sage has been injected into the system nest to enable
an early continuation of a transfer of data before a
completion message is issued by the system nest;
providing notification through an interrupt, based on
detecting an error during an asynchronous execution of
the input/output store instruction in the data processing
unit;
obtaining a barrier instruction which when executed
assists in ordering of asynchronous store instructions;
and

delaying, using the barrier instruction, processing of at

least the input/output store instruction, until previous
input/output store instructions have been completed,
the barrier instruction completing execution after the
previous input/output store instructions have been com-
pleted.

17. The computer-implemented method of claim 16,
wherein execution of the barrier instruction restricts a serial
processing of input/output store instructions to a single
input/output bus controller.

18. The computer-implemented method of claim 16,
wherein execution of the barrier instruction restricts a serial
processing of input/output store instructions to a single
input/output function, wherein the single input/output func-
tion comprises a single external input/output device.

19. The computer-implemented method of claim 16, fur-
ther comprising providing a summary query for one or more
input/output status buffers of an input/output status array of
the data processing unit, returning aggregated information of
a status of the one or more input/output status buffers, the
one or more input/output status buffers to collect returned
states from the selected component.

#* #* #* #* #*

