

(86) Date de dépôt PCT/PCT Filing Date: 2017/02/11
(87) Date publication PCT/PCT Publication Date: 2017/08/24
(45) Date de délivrance/Issue Date: 2020/09/22
(85) Entrée phase nationale/National Entry: 2018/08/15
(86) N° demande PCT/PCT Application No.: US 2017/017568
(87) N° publication PCT/PCT Publication No.: 2017/142818
(30) Priorité/Priority: 2016/02/15 (US62/295,268)

(51) Cl.Int./Int.Cl. A61K 39/395 (2006.01),
A61K 38/21 (2006.01), A61K 39/00 (2006.01),
A61P 35/00 (2006.01)
(72) Inventeur/Inventor:
PARKER, NIGEL, GB
(73) Propriétaire/Owner:
TRIZELL LIMITED, GB
(74) Agent: BENOIT & COTE INC.

(54) Titre : THERAPIE AMELIOREE A BASE D'INTERFERON
(54) Title: IMPROVED INTERFERON THERAPY

(57) Abrégé/Abstract:

Interferon therapy is improved by concomitant administration of an agent which minimizes the ability of interferon to up-regulate expression of Programmed Cell Death Protein 1 (also known as CD279).

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2017/142818 A1

(43) International Publication Date
24 August 2017 (24.08.2017)

(51) International Patent Classification:
A61P 35/00 (2006.01) *A61K 35/761* (2015.01)
A61P 35/04 (2006.01) *A61K 39/00* (2006.01)
A61K 35/76 (2015.01) *A61K 48/00* (2006.01)

(71) Applicant: **FKD THERAPIES LIMITED**, [GB/GB];
Sanderum House Oakley Road, Chinnor, Oxfordshire
OX39 4TW (GB).

(21) International Application Number:
PCT/US2017/017568

(71) Applicant (for US only): **PHARMACEUTICAL PATENT ATTORNEYS, LLC** [US/US]; 55 Madison Avenue, 4th Floor, Morristown, NJ 07960-7397 (US).

(22) International Filing Date:
11 February 2017 (11.02.2017)

(72) Inventor: **PARKER, Nigel**; Sanderum House Oakley Road, Chinnor, Oxfordshire OX39 4TW (GB).

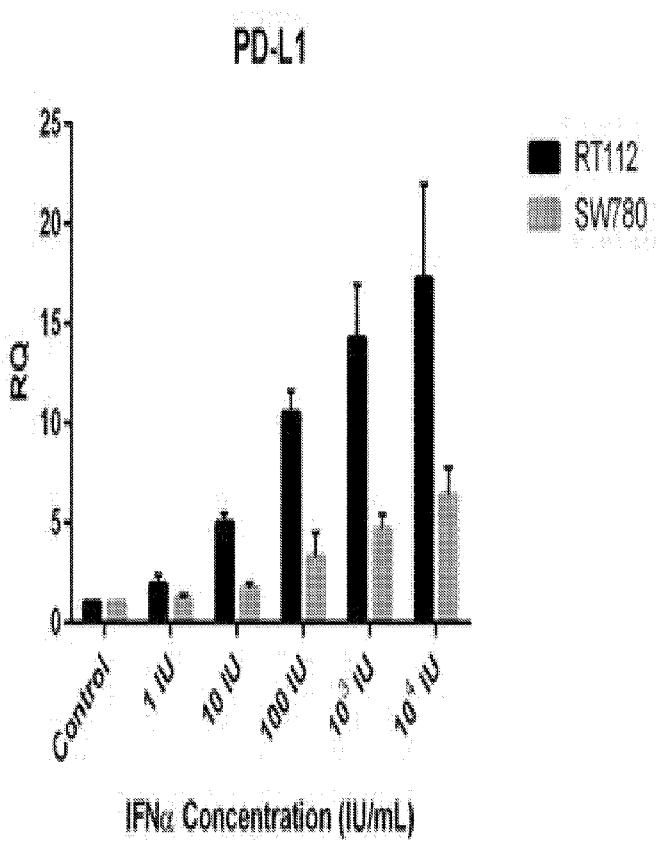
(25) Filing Language:

English (74) Agent: **POHL, Mark**; Pharmaceutical Patent Attorneys, LLC, 55 Madison Avenue, 4th Floor, Morristown, NJ 07960-7397 (US).

(26) Publication Language:

English (74) Agent: **POHL, Mark**; Pharmaceutical Patent Attorneys, LLC, 55 Madison Avenue, 4th Floor, Morristown, NJ 07960-7397 (US).

(30) Priority Data:


62/295,268 15 February 2016 (15.02.2016)

US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

[Continued on next page]

(54) Title: IMPROVED INTERFERON THERAPY

(57) Abstract: Interferon therapy is improved by concomitant administration of an agent which minimizes the ability of interferon to up-regulate expression of Programmed Cell Death Protein 1 (also known as CD279).

WO 2017/142818 A1

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to the identity of the inventor (Rule 4.17(i))
- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- with amended claims and statement (Art. 19(1))

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

Improved Interferon Therapy

2 Applicant: FKD Therapies Limited, Chinnor, Oxfordshire England, citizen of the
3 United Kingdom.

4 Related Applications: This application asserts priority from provisional patent filing
5 serial no US62/295268, filed 15 February 2016.

6 Federally-Sponsored Research & Development: None.

7 Joint Research Agreement: Applicant has research agreements with *inter alia* M.D.
8 Anderson Cancer Center (Houston, Texas) and The Mayo Clinic (Rochester, Minnesota) for
9 work related to this application.

10 Sequence Listing: None.

11 Prior Public Disclosures By The/An Inventor: None.

12 Background:

13 Interferon has many clinical benefits. For example, interferon is known to up-regulate
14 the immune system. It thus is potentially useful for recruiting the patient's innate immune
15 system to identify and attack cancer cells. Interferon's efficacy as an anti-cancer agent,
16 however, has to date proven wanting. This has been puzzling.

17 For example, the most effective bladder cancer treatment currently approved in The
18 United States is intra-urethral *Bacillus Calmette-Guérin* vaccine. The antigenic vaccine is
19 thought to stimulate bladder cells to express interferon, which in turn recruits the patient's
20 innate immune system to better recognize cancer cell surface antigens and attack cancer cells.

21 In over a third of cases, however, the vaccine is ineffective.

22 Similarly, intravesical instillation of exogenously manufactured interferon polypeptide
23 has been tested to treat bladder cancer, but has been found less effective than expected.

24

25

26 I have discovered why, and figured out how to fix it.

27 Brief Description:

28 I have found that interferon (either exogenously administered or expressed in response
29 to a vaccine or other agent which up-regulates endogenous expression), in addition to
30 stimulating interferon expression, also stimulates the expression of Programmed Cell Death
31 Protein 1, also known as CD279. I have thus identified a previously-unrecognized adverse
32 side effect of interferon therapy: interferon advantageously stimulates certain aspects of the
33 patient's immune system, yet also up-regulates expression of Programmed Cell Death Protein
34 1. The resulting increase in Programmed Cell Death Protein 1 in turn down-regulates
35 protective T cell function. This impairs the effectiveness of T cells in identifying and
36 attacking cells bearing cancer cell-surface antigen. Thus, interferon produces two conflicting
37 actions: it both increases immune system activity, yet inhibits the ability of the immune
38 system to identify cancer cell-surface antigens.

39 I thus propose improving interferon therapy by co-administering an agent which
40 inhibits the expression of Programmed Cell Death Protein 1. This will enable interferon to
41 more fully achieve its therapeutic potential.

42 Brief Description of the Figures:

43 Figure 1 is a chart measuring PD-L1 expression in response to interferon exposure,
44 for the RT112 and SW780 human cell lines. Horizontal axis: interferon amount. Vertical
45 axis: polypeptide expressed.

46 Figure 2 is a chart measuring TRAIL expression in response to interferon exposure,
47 for the RT112 and SW780 human cell lines. Horizontal axis: interferon amount. Vertical
48 axis: polypeptide expressed.

49 Figure 3 is a chart measuring IRF1 expression in response to interferon exposure, for
50 the RT112 and SW780 human cell lines. Horizontal axis: interferon amount. Vertical axis:
51 polypeptide expressed.

52 Figure 4 is a photograph of a PAGE gel showing *in vitro* dose response to increasing
53 interferon alpha, in an SW780 human cancer cell line. Horizontal axis: interferon amount.
54 Vertical axis: polypeptide expressed.

55 Figure 5 measures expression in RT112 cells of IRF1, FOXA1 and PD-L1 in response
56 to interferon exposure, *see* Example 2. IRF1 served as an interferon-stimulated gene control.
57 FOXA1 is an example of a type I interferon regulated gene that did not change expression
58 after interferon exposure.

59 Figure 6 measures expression in UC3 cells of IRF1, FOXA1 and PD-L1 in response
60 to interferon exposure, *see* Example 2. IRF1 served as an interferon-stimulated gene control.
61 FOXA1 is an example of a type I interferon regulated gene that did not change expression
62 after interferon exposure.

63 Figure 7 measures expression in T24 cells of IRF1, FOXA1 and PD-L1 in response to
64 interferon exposure, *see* Example 2. IRF1 served as an interferon-stimulated gene control.
65 FOXA1 is an example of a type I interferon regulated gene that did not change expression
66 after interferon exposure.

67 Figure 8 measures expression in UC14 cells of IRF1, FOXA1 and PD-L1 in response
68 to interferon exposure, *see* Example 2. IRF1 served as an interferon-stimulated gene control.
69 FOXA1 is an example of a type I interferon regulated gene that did not change expression
70 after interferon exposure.

71 Figure 9 is a photograph of a 6-lane PAGE gel. It measures the presence of PD-L1
72 polypeptide after exposing BBN972 cells to murine interferon. Lanes are (left to right) 0

73 (zero), 1×10^0 , 1×10^1 , 1×10^2 , 1×10^3 and 1×10^4 international units interferon / mL of
74 culture medium.

75 Figure 10 is a photograph of a 6-lane PAGE gel. It measures the presence of PD-L1
76 polypeptide after exposing MB49 #1 (MB49-*luc*) cells to murine interferon. Lanes are (left
77 to right) 0 (zero), 1×10^0 , 1×10^1 , 1×10^2 , 1×10^3 and 1×10^4 international units interferon /
78 mL of culture medium.

79 Figure 11 is a photograph of a 6-lane PAGE gel. It measures the presence of actin
80 polypeptide after exposing BBN972 cells to murine interferon. Lanes are (left to right) 0
81 (zero), 1×10^0 , 1×10^1 , 1×10^2 , 1×10^3 and 1×10^4 international units interferon / mL of
82 culture medium.

83 Figure 12 is a photograph of a 6-lane PAGE gel. It measures the presence of actin
84 polypeptide after exposing MB49 #1 cells to murine interferon. Lanes are (left to right) 0
85 (zero), 1×10^0 , 1×10^1 , 1×10^2 , 1×10^3 and 1×10^4 international units interferon / mL of
86 culture medium.

87 Figure 13 measures serum interferon α in mice in response to intra-peritoneal injection
88 of Poly I:C.

89 Figure 14 measures serum interferon α in mice in response to intra-tumoral injection
90 of Poly I:C at 6 hours.

91 Figure 15 measures PD-L1 expression intra-tumorally 24 hours after Poly I:C (500
92 mcg) intra-peritoneal injection.

93 Figure 16 shows RNA expression in humans treated with INSTILADRINTM
94 recombinant replication-deficient adenovirus gene therapy vector carrying a human interferon
95 alpha 2B transgene.

96 Figure 17 shows MB49 tumor size vs time, for subcutaneous C57BL6/J tumors (n = 5
97 female mice per group). Treatment is 200 mcg q3 days starting on day 10 after tumor
98 implant. Error bars represent SEM.

99 Figure 18 shows a Kaplan-Meyer survival curve for female mice with inoculated
100 tumors, treated with saline (lowermost line), IgG (next higher line), anti-PD1 monoclonal
101 antibody (next higher line), Poly I:C (next higher line) and a combination of Poly I:C and
102 anti-PD1 monoclonal antibody (highest line).

103 Figure 19 compares normalized (mean +/- SD) radiance over time in male mice.
104 Using a log-rank test, these data show combination therapy superior to IgG control ($p = 0.06$),
105 superior to Poly I:C monotherapy ($p = 0.32$), and superior to anti-PD1 monoclonal antibody
106 ($p = 0.14$).

107 Figure 20 shows “survival portions,” *i.e.*, data showing the survival of propensity to
108 survive over time, in male mice treated per Figure 19.

109

110 Detailed Description:

111 Interferon Therapy

112 Interferons are a group of signaling proteins. They are expressed and secreted by
113 human cells in response to the presence of several antigenic pathogens, *e.g.*, viruses, bacteria
114 and parasites, and also tumor cells. Typically, a virus-infected cell releases interferons,
115 signaling nearby bystander cells to heighten their anti-viral defenses. Interferons also
116 activate immune cells such as natural killer cells and macrophages. Interferons increase
117 expression of major histocompatibility complex antigens, which in turn increases
118 presentation of foreign antigens to the immune system.

119 Interferons may be sorted or classified according to the type of receptor through
120 which they signal. For humans, interferons are often thus sorted into three kinds: Type I

121 (interferons which bind to human IFN- α/β receptors), Type II (interferons which binds to the
122 human IFN- γ receptor) and Type III (interferons which bind to human IFN- λ receptors).

123 All interferons share several common effects: they are antiviral agents and they
124 modulate functions of the immune system. Administration of Type I IFN has been shown to
125 inhibit tumor growth in experimental animals, but the beneficial action in human tumors has
126 not been widely documented. A virus-infected cell releases viral particles that can infect
127 nearby cells. However, the infected cell can prepare neighboring cells against a potential
128 infection by the virus by releasing interferons. In response to interferon, cells produce large
129 amounts of an enzyme known as protein kinase R (PKR). This enzyme phosphorylates a
130 protein known as eIF-2 in response to new viral infections; the phosphorylated eIF-2 forms
131 an inactive complex with another protein, called eIF2B, to reduce protein synthesis within the
132 cell. Another cellular enzyme, RNase L—also induced by interferon action—destroys RNA
133 within the cells to further reduce protein synthesis of both viral and host genes. Inhibited
134 protein synthesis destroys both the virus and infected host cells. In addition, interferons
135 induce production of hundreds of other proteins—known collectively as interferon-stimulated
136 genes (ISGs)—that have roles in combating viruses and other actions produced by interferon.
137 They also limit viral spread by increasing p53 activity, which kills virus-infected cells by
138 promoting apoptosis. The effect of IFN on p53 is also linked to its protective role against
139 certain cancers.

140 Another function of interferons is to up-regulate expression of major
141 histocompatibility complex molecules, MHC I and MHC II, and increase immune-
142 proteasome activity. Higher MHC I expression increases presentation of viral peptides to
143 cytotoxic T cells, while the immune-proteasome processes viral peptides for loading onto the
144 MHC I molecule, thereby increasing the recognition and killing of infected cells. Higher
145 MHC II expression increases presentation of viral peptides to helper T cells; these cells

146 release cytokines (such as more interferons and interleukins, among others) that signal to and
147 co-ordinate the activity of other immune cells.

148 Production of interferons occurs mainly in response to microbes, such as viruses and
149 bacteria, and their products. Binding of molecules uniquely found in microbes—viral
150 glycoprotein, viral RNA, bacterial endotoxin (lipopolysaccharide), bacterial flagella, CpG
151 motifs—by pattern recognition receptors, such as membrane bound Toll like receptors or the
152 cytoplasmic receptors RIG-I or MDA5, can trigger release of IFNs. Toll Like Receptor 3
153 (TLR3) is important for inducing interferons in response to the presence of double-stranded
154 RNA viruses; the ligand for this receptor is double-stranded RNA (dsRNA). After binding
155 dsRNA, this receptor activates the transcription factors IRF3 and NF- κ B, which are important
156 for initiating synthesis of many inflammatory proteins. RNA interference technology tools
157 such as siRNA or vector-based reagents can either silence or stimulate interferon pathways.
158 Release of IFN from cells (specifically IFN in lymphoid cells) is also induced by mitogens.
159 Other cytokines, such as interleukin 1, interleukin 2, interleukin-12, tumor necrosis factor and
160 colony-stimulating factor, can also enhance interferon production.

161 Interferon therapy is used (in combination with chemotherapy and radiation) as a
162 treatment for some cancers. This treatment can be used in hematological malignancy;
163 leukemia and lymphomas including hairy cell leukemia, chronic myeloid leukemia, nodular
164 lymphoma, and cutaneous T-cell lymphoma. Patients with recurrent melanomas receive
165 recombinant IFN- α 2b. Both hepatitis B and hepatitis C are treated with IFN- β , often in
166 combination with other antiviral drugs. Some of those treated with interferon have a
167 sustained virological response and can eliminate hepatitis virus. The most harmful strain—
168 hepatitis C genotype I virus—can be treated with a 60-80% success rate with the current
169 standard-of-care treatment of interferon, RIBAVIRINTM and recently approved protease
170 inhibitors such as Telaprevir (IncivekTM) May 2011, Boceprevir (VICTRELISTM) May 2011

171 or the nucleotide analog polymerase inhibitor Sofosbuvir (SOVALDITM) December 2013.
172 Biopsies of patients given the treatment show reductions in liver damage and cirrhosis. Some
173 evidence shows giving interferon immediately following infection can prevent chronic
174 hepatitis C, although diagnosis early in infection is difficult since physical symptoms are
175 sparse in early hepatitis C infection. Control of chronic hepatitis C by IFN is associated with
176 reduced hepato-cellular carcinoma.

177 The art teaches interferon may be administered as an exogenous polypeptide.

178 Alternatively, one may induce endogenous expression of native interferon genes. For
179 example, the art teaches *e.g.*, antigenic *Bacillus Calmette-Guérin* or *Mycobacterium* or
180 *Adenovirus* vaccines. Such antigenic preparations induce the patient's own cells to express
181 interferon.

182 Alternatively, one may induce endogenous expression of a non-native interferon
183 transgene by transfecting a host cell with a vector delivering the interferon transgene. Indeed,
184 even exogenously-administered interferon polypeptide itself acts as a messenger to stimulate
185 interferon production.

186 As used herein, the term "interferon" (abbreviated "IFN") refers collectively to type 1
187 and type 2 interferons including deletion, insertion, or substitution variants thereof,
188 biologically active fragments, and allelic forms. As used herein, the term interferon
189 (abbreviated "IFN") refers collectively to type 1 and type 2 interferons. Type 1 interferon
190 includes interferons- α , - β and - ω and their subtypes. Human interferon- α has at least 14
191 identified subtypes while interferon- β has 3 identified subtypes. Particularly, preferred
192 interferon-alphas include human interferon alpha subtypes including, but not limited to, α -1
193 (GenBank Accession Number NP 076918), α -1b (GenBank Accession Number AAL35223),
194 α -2, α -2a (GenBank Accession Number NP000596), α -2b (GenBank Accession Number
195 AAP20099), α -4 (GenBank Accession Number NP066546), α -4b (GenBank Accession

196 Number CAA26701), α -5 (GenBank Accession Numbers NP 002160 and CAA26702), α -6
197 (GenBank Accession Number CAA26704), α -7 (GenBank Accession Numbers NP 066401 and
198 CAA 26706), α -8 (GenBank Accession Numbers NP002161 and CAA 26903), α -10 (GenBank
199 Accession Number NP 002162), α -13 (GenBank Accession Numbers NP 008831 and CAA
200 53538), α -14 (GenBank Accession Numbers NP 002163 and CAA 26705), α -16 (GenBank
201 Accession Numbers NP 002164 and CAA 26703), α -17 (GenBank Accession Number NP
202 067091), α -21 (GenBank Accession Numbers P01568 and NP002166), and consensus
203 interferons as described in Stabinsky, U.S. Pat. No. 5,541,293, issued Jul. 30, 1996, Stabinsky,
204 U.S. Pat. No. 4,897,471, issued Jan. 30, 1990, and Stabinsky, U.S. Pat. No. 4,695,629, issued
205 Sep. 22, 1987, and hybrid interferons as described in Goeddel et al., U.S. Pat. No. 4,414,150,
206 issued Nov. 8, 1983. Type 2 interferons are referred to as interferon γ (EP 77,670A and EP
207 146,354A) and subtypes. Human interferon gamma has at least 5 identified subtypes, including
208 interferon omega 1 (GenBank Accession Number NP 002168). Construction of DNA
209 sequences encoding interferons for expression may be accomplished by conventional
210 recombinant DNA techniques based on the well-known amino acid sequences referenced above
211 and as described in Goeddel et al., U.S. Pat. No. 6,482,613, issued Nov. 19, 2002.

212 “Biologically active” fragments of interferons may be identified as having any anti-
213 tumor or anti-proliferative activity as measured by techniques well known in the art (see, for
214 example, Openakker et al., *supra*; Mossman, *J. Immunol. Methods*, 65:55 (1983) and activate
215 IFN responsive genes through IFN receptor mediated mechanisms. Soluble IFN- α and IFN- β
216 proteins are generally identified as associating with the Type 1 IFN receptor complex
217 (GenBank Accession Number NP 000865) and activate similar intracellular signaling

218

219

220

221 pathways. IFN- γ is generally identified as associating with the type II IFN receptor. Ligand-
222 induced association of both types of IFN receptors results in the phosphorylation of the
223 receptors by Janus kinases subsequently activating STATs (signal transducers and activators
224 of transcription) proteins and additional phosphorylation events that lead to the formation of
225 IFN-inducible transcription factors that bind to IFN response elements presented in IFN-
226 inducible genes. Polypeptides identified as activating the IFN pathways following association
227 with Type 1 and/or Type 2 IFN receptors are considered interferons for purposes of our
228 invention.

229

230 Programmed Cell Death Protein 1

231 Programmed Cell Death Protein 1 (“PD-1”), also known as CD279, is a protein that in
232 humans is encoded by the PDCD1 gene. PD-1 belongs to the immunoglobulin superfamily
233 and functions as a cell surface receptor, binding to two known ligands, PD-L1 and PD-L2.

234 PD-1 plays an important role in down-regulating the human immune system by
235 preventing the activation of T cells, which in turn reduces autoimmunity and promotes “self-
236 tolerance.” The immune regulatory effect of PD-1 is effected by culling active T cells while
237 protecting suppressor T cells. PD-1 promotes apoptosis of antigen-specific T cells in lymph
238 nodes, yet reduces apoptosis in regulatory (“suppressor”) T cells.

239 PD-L1 can be highly expressed in certain tumors. This leads to reduced proliferation
240 of, or even elimination of, immune cells in the tumor, impairing the ability of the patient’s
241 innate immune system to recognize cancer cell-surface antigen and combat the cancer cells so
242 identified.

243 PD-1 is expressed on T cells and pro-B cells. PD-1, functioning as an immune
244 checkpoint, plays an important role in down regulating the immune system by preventing the
245 activation of T-cells, which in turn reduces autoimmunity and promotes self-tolerance. The

246 inhibitory effect of PD-1 is accomplished through a dual mechanism of promoting apoptosis
247 (programmed cell death) in antigen specific T-cells in lymph nodes while simultaneously
248 reducing apoptosis in regulatory T cells (suppressor T cells).

249 Programmed death 1 is a type I membrane protein of 268 amino acids. PD-1 is a
250 member of the extended CD28/CTLA-4 family of T cell regulators. The protein's structure
251 includes an extracellular IgV domain followed by a trans-membrane region and an
252 intracellular tail. The intracellular tail contains two phosphorylation sites located in an
253 immune-receptor tyrosine-based inhibitory motif and an immune-receptor tyrosine-based
254 switch motif, which suggests that PD-1 negatively regulates TCR signals. This is consistent
255 with binding of SHP-1 and SHP-2 phosphatases to the cytoplasmic tail of PD-1 upon ligand
256 binding. In addition, PD-1 ligation up-regulates E3-ubiquitin ligases CBL-b and c-CBL that
257 trigger T cell receptor down-modulation. PD-1 is expressed on the surface of activated T
258 cells, B cells, and macrophages, suggesting that compared to CTLA-4, PD-1 more broadly
259 negatively regulates immune responses.

260 PD-1 has two ligands, PD-L1 and PD-L2, which are members of the B7 family. PD-
261 L1 protein is upregulated on macrophages and dendritic cells (DC) in response to LPS and
262 GM-CSF treatment, and on T cells and B cells upon TCR and B cell receptor signaling,
263 whereas in resting mice, PD-L1 mRNA can be detected in the heart, lung, thymus, spleen,
264 and kidney.

265 Monoclonal antibodies targeting PD-1 that boost the immune system are being
266 developed for the treatment of cancer. Many tumor cells express PD-L1, an
267 immunosuppressive PD-1 ligand; inhibition of the interaction between PD-1 and PD-L1 can
268 enhance T-cell responses in vitro and mediate preclinical antitumor activity. This is known as
269 immune checkpoint blockade.

270 One such anti-PD-1 antibody drug, nivolumab, (OPDIVO™, commercially available
271 from Bristol Myers Squibb Co., Princeton, NJ), produced complete or partial responses in
272 non-small-cell lung cancer, melanoma, and renal-cell cancer, in a clinical trial with a total of
273 296 patients. Colon and pancreatic cancer patients did not have a response. Nivolumab
274 (OPDIVO™, Bristol-Myers Squibb), which also targets PD-1 receptors, was approved in
275 Japan in July 2014 and by the US FDA in December 2014 to treat metastatic melanoma.

276 Pembrolizumab (KEYTRUDA™ or MK-3475, commercially available from Merck &
277 Co., Rahway, NJ), which also targets PD-1 receptors, was approved by the FDA in Sept 2014
278 to treat metastatic melanoma. Pembrolizumab has been made accessible to advanced
279 melanoma patients in the UK via UK Early Access to Medicines Scheme (EAMS) in March
280 2015. It is being used in clinical trials in the US for lung cancer, lymphoma, and
281 mesothelioma. It has had measured success, with little side effects. On October 2, 2015
282 Pembrolizumab was approved by FDA for advanced (metastatic) non-small cell lung cancer
283 (NSCLC) patients whose disease has progressed after other treatments.

284 Other drugs in early stage development targeting PD-1 receptors (often referred to as
285 “checkpoint inhibitors”): Pidilizumab (CT-011, Cure Tech), BMS 936559 (Bristol Myers
286 Squibb), MPDL3280A (Roche), and atezolizumab (Amgen).

287

288 Combination Therapy

289 I have found that treatment of cancer with interferon - either by administering
290 interferon polypeptide, or by administering an agent which induces cells to express interferon
291 - concomitantly induces expression of PD-1.

292 I thus propose improving the efficacy of interferon-based cancer therapy by co-
293 administering interferon with a compound which inhibits the activity of PD-1.

294 This entails, for example, administering interferon polypeptide intravenously in an
295 amount effective as cancer therapy, and administering a monoclonal antibody checkpoint
296 blockade inhibitor intravenously in an amount effective to prevent an interferon-caused
297 increase in PD-1 expression, and preferably in an amount to reduce the effect of PD-1.

298 Alternatively, this entails instilling intravesically an agent which induces interferon
299 expression, in an amount effective as cancer therapy, and prophylactically administering a
300 checkpoint blockade inhibitor intravenously in an amount effective to prevent an interferon-
301 caused increase in PD-1 expression, and preferably in an amount to reduce the effect of PD-1.
302 The agent can be an antigenic vaccine (such as a virus, or BCG vaccine or *Mycobacterium*
303 vaccine) which induces interferon expression. Alternatively, the agent can be a transgene
304 vector which transforms a host cell with an expressible interferon transgene. Alternatively,
305 this can be an antigenic virus or bacteria which also delivers an interferon transgene.

306

307 EXAMPLE 1 - *IFN α induces PD-L1 and TRAIL expression.*

308 Interferon-alpha (IFNa) has not been notably effective clinically. I posited that this
309 might be more effective in the setting of vector-mediated IFNa gene therapy. Several years
310 ago, I began a phase II human clinical trial of INSTILADRINTM brand adenovirus vector-
311 mediated interferon alpha 2b. In this experiment, I had measured the expression of PD-L1,
312 TRAIL, IRF1 and Lamin A in response to exposure to interferon.

313 Materials & Methods: RT112 and SW780 cells were cultured in media and then
314 exposed to media containing interferon alpha polypeptide. The amount of interferon ranged
315 from zero (control) to 10^4 international units / mL. Gene expression was evaluated by
316 Western blot and quantitative real-time PCR using commercially available antibodies and
317 primers. RNA was isolated from cells in culture with the MIRVANATM kit (Thermo Fisher).
318 miRs were profiled in RT112 using TAQMANTM Array Cards (A and B) (Thermo Fisher).

319 Whole genome mRNA expression profiling was performed in RT112 and UC3 with Illumina
320 HumanHT_12_v4 BEADCHIP™ arrays (47323 probes).

321 Results: Results are provided in Figure 1 to 4. In response to exposure to interferon,
322 both cell lines up-regulated PD-L1, TRAIL and IRF1 expression, and had no measurable
323 effect on Lamin A expression. For PD-L1, TRAIL and IRF1 expression, the effect was of
324 different magnitude in the different cell lines. See Figure 1, 2 3, 4.

325 Conclusions: In a panel of cancer cell lines, interferon exposure lead to significant
326 increases in PD-L1 immune checkpoint expression. I found this finding surprising because it
327 implied the reason for the failure to-date of the art to use interferon as an effective cancer
328 therapy. While interferon should theoretically be an effective anti-cancer agent, interferon
329 may also up-regulate expression of PD-L1, thus frustrating interferon's therapeutic effect.

330

331 *EXAMPLE 2 - IFN α induces PD-L1 expression in a dose-dependent manner.*

332 Here I had measured the expression of immune checkpoint PD-L1, micro-RNA (miR)
333 and mRNA expression profiles after treatment with interferon alpha.

334 Materials & Methods: RT112, T24, UC3, and UC14 cells were cultured in media and
335 then exposed for 6 hours to either control media, or media containing 1000 IU/ml of
336 interferon alpha polypeptide. Expression of PD-L1 was evaluated by Western blot and
337 quantitative real-time PCR using commercially available antibodies and primers. RNA was
338 isolated from cells in culture with the MIRVANA™ kit (Thermo Fisher). miRs were profiled
339 in RT112 using TAQMAN™ Array Cards (A and B) (Thermo Fisher). Whole genome
340 mRNA expression profiling was performed in RT112 and UC3 with Illumina
341 HumanHT_12_v4 BEADCHIP™ arrays (47323 probes). All experiments were performed in
342 triplicate to increase statistical reliability.

343 Results: All cell lines up-regulated the expression PD-L1 in response to exposure to
344 IFNa. This effect was most pronounced in RT112 cells, *see* Figure 5, than in UC3 cells,
345 Figure 6, . In contrast, the expression of three potential *oncomIR* regions was significantly
346 down-regulated after exposure to IFNa in RT112:1233 cells ($p = 0.0036$), 19b-1# ($p =$
347 0.0157), and 222# ($p = 0.0061$). Analyzing differentially-expressed genes with at least 2-fold
348 differences in log (expression) (false discovery rate <0.001) after IFNa exposure, there were
349 302 and 181 differentially expressed genes in the RT112 and UC3 cell lines, respectively.
350 Top-ranked IFNa-induced genes in both cell lines included several that had not been
351 previously described in bladder cancer, including IFIT2 (negative regulator of metastasis) and
352 IFI27 (associated with sensitivity to TRAIL). IFNa-induced PD-L1 expression was also
353 demonstrable on the mRNA gene chip with fold-changes paralleling real-time PCR data.

354 Conclusions: In a panel of cancer cell lines, IFNa exposure lead to significant
355 increases in PD-L1 immune checkpoint expression. Array-based microRNA and mRNA
356 profiling revealed novel potential mediators of IFNa response in bladder cancer. This bladder
357 IFNa profile may be useful as an intermediate endpoint to measure response to adenoviral
358 IFNa gene therapy. Future prediction of PD-L1 expression with IFNa therapy may lead to
359 rational combination treatments utilizing immune checkpoint inhibitors.

360

361 **EXAMPLE 3 - *Murine interferon induces PD-L1 expression***

362 Materials and Methods: BBN972 and MB49 #1 (MB49-*luc*) cells were cultured, and
363 then exposed to media containing from 0 (zero) to 1×10^4 international units of murine
364 interferon. Subsequent expression of PD-L1 and (as a control) actin were measured.

365 Results: Murine interferon had no effect on the expression of actin in either cell line.
366 *See* Figures 11, 12. In contrast, Murine interferon had a marked, dose-dependent effect on
367 PD-L1 expression. *See* Figures 9, 10.

368 Conclusions: These data show that the effect of interferon on PD-L1 expression is not
369 limited to human interferon alpha 2a, nor indeed to human interferon. Rather, the effect of
370 interferon on expression of PD-L1 appears to be generic to interferon generally.

371

372 **EXAMPLE 4 - *Polyinosinic:polycytidylic acid (Poly I:C) induces PD-L1***

373 Materials & Methods: The foregoing data indicate that interferon induces PD-L1
374 expression, does so in a dose-dependent manner, does so quickly, and does so apparently in
375 response to interferon from different species. Given the effect regardless of the animal
376 species from which the interferon was taken, Ihypothesized that the effect might not be
377 limited to interferon, and might be more generally provoked by immune stimulants of other
378 types. To test the concept, Ihad evaluated Polyinosinic:polycytidylic acid (often abbreviated
379 “poly I:C”). Poly I:C is an immunostimulant. It is used in the form of its sodium salt to
380 simulate viral infections. Poly I:C is structurally similar to double-stranded RNA. dsRNA is
381 present in some viruses. Ihad Poly I:C administered via intra-peritoneal injection to
382 laboratory mice with implanted *plc* or *ulc* tumors.

383 Results. Figure 13 shows that control mice (n = 3) showed a de minimus baseline
384 measure of serum interferon a. In contrast, intra-peritoneal injection of Poly I:C produces a
385 time-dependent increase in serum interferon a. Figure 14 shows results of intra-tumoral
386 injection of Poly I:C at 6 hours. The data (n = 1 for each series) show that intra-tumor
387 interferon a increases significantly in *plc* tumors, increases somewhat in *ulc* tumors, and does
388 not measurably increase in control tumors. Figure 15 shows that Poly I:C (500 mcg) also
389 induces (at 24 hours) PD-L1 expression intra-tumorally (Mann Whitney p = 0.0495).

390 Conclusions: These data indicate that PD-L1 expression is induced not merely by
391 interferon, but by Poly I:C, a compound which mimics dsRNA and which induces interferon
392 expression.

393

394 **EXAMPLE 5 - *Interferon Viral Gene Therapy Induces PD-L1 In Humans***

395 **Materials & Methods:** These data are taken from a human Phase II human clinical trial
396 for INSTILADRINTM replication-deficient adenoviral gene therapy vector carrying a human
397 interferon alpha 2b transgene in patients unresponsive to or refractory after BCG therapy. That
398 study plan has been published.

399 **Results:** Figure 16 shows RNA expression in eight (8) treatment cycles in humans
400 treated with INSTILADRINTM recombinant replication-deficient adenovirus gene therapy
401 vector carrying a human interferon alpha 2B transgene. Odd (white color coded) columns
402 measure RNA transcription before treatment; even (light blue color coded) columns measure
403 after. RNA amounts are shown quantitatively, light green showing the least and light red the
404 most. Columns 1 and 2 show PD-L1 RNA increasing from -2 before treatment to +2 after.
405 Columns 3 and 4 similarly show PD-L1 RNA increasing from -2 before treatment to +3 after.
406 In all, one third of the treatment pair show a significant increase in PD-L1 expression after
407 treatment. Treatment also up-regulated other immune checkpoint markers.

408 **Conclusions:** These data show that one third of patients demonstrate induction of T-
409 cell and immune checkpoint markers (including PD-L1) after treatment with interferon gene
410 therapy.

411

412 **EXAMPLE 6 - *Combination Therapy Increases Survival***

413 **Materials & Methods:** Female laboratory rats were inoculated with tumor cells, and the
414 cells allowed to deveop into measurable tumors. The rats were then treated with saline
415 (control), IgG (as a control), anti-PD1 monoclonal antibody (monotherapy), Poly I:C
416 (monotherapy to induce interferon expression) and a combination of Poly I:C and anti-PD1
417 monoclonal antibody (combination therapy).

418 Results: Figure 17 shows MB49 tumor size vs time, for subcutaneous C57BL6/J
419 tumors (n = 5 female mice per group). Treatment is 200 mcg q3 days starting on day 10 after
420 tumor implant. Error bars represent SEM. The highest (yellow) line, showing the largest
421 tumor volume at day 40, is control group (all groups n = 5, female-only). The next lowest
422 (blue) line is the IgG control. The next lowest (red) line is Poly I:C. The next lowest (green)
423 line is anti-PD1 Monoclonal antibody. The lowest (black) line, laying on the X axis itself, is
424 combination therapy.

425 Figure 18 shows a Kaplan-Meyer survival curve for female mice with inoculated
426 tumors, treated with saline (lowermost line), IgG (next higher line), anti-PD1 monoclonal
427 antibody (next higher line), Poly I:C (next higher line) and a combination of Poly I:C and
428 anti-PD1 monoclonal antibody (highest line). These data show that combining an interferon-
429 inducing agent (Poly I:C) and a PD1 inhibitor (an anti-PD1 monoclonal antibody) increases
430 survival significantly: at 50 days, ~20% of control animals remain alive, 50% of Poly I:C
431 animals remain alive, and 100% of combination treated animals remain alive.

432 Figure 19 compares normalized (mean +/- SD) radiance over time in male mice.
433 Using a log-rank test, these data show combination therapy superior to IgG control ($p = 0.06$),
434 superior to Poly I:C monotherapy ($p = 0.32$), and superior to anti-PD1 monoclonal antibody
435 ($p = 0.14$).

436 Figure 20 shows “survival portions,” i.e., data showing the survival of propensity to
437 survive, over time.

438 Conclusions: These data show combination therapy synergistically effective,
439 imparting a more than merely additive effect.

440

441 EXAMPLE 7 - *Superficial Spreading Melanoma*

442 Materials & Methods: A human patient diagnosed with superficial spreading
443 melanoma is treated by wide local excision and sentinel node biopsy to confirm lack of
444 spread of the disease to the lymph system or distal organs. The patient is then treated with a
445 combination of INSTILADRINTM and KEYTRUDA™. Treatment is initiated as soon as
446 practical after surgical resection.

447 INSTILADRINTM brand adenovirus is a replication-deficient, recombinant adenoviral
448 gene therapy vector bearing an interferon alpha 2b transgene. The manufacture of such gene
449 therapy vectors is described in, e.g., Muralidhara Ramachandra *et al.*, *Selectively Replicating*
450 *Viral Vector*, United States Letters Patent No. 7691370. The isolation of interferon
451 transgenes is described in e.g., Charles Weissmann, *DNA Sequences, Recombinant DNA*
452 *Molecules and Processes for Producing Human Interferon-Like Polypeptides*, United States
453 Letters Patent No. 6835557.

454 KEYTRUDA™ brand pembrolizumab is a humanized monoclonal anti-programmed
455 cell death-1 (PD-1) antibody (IgG4/kappa isotype with a stabilising sequence alteration in the
456 Fc region).

457 INSTILADRINTM is provided in single-dose vials. One dose of INSTILADRINTM is
458 reconstituted in sterile saline for injection and administered subcutaneously locally to the
459 excision site. Administration is repeated once every four weeks. One vial of KEYTRUDA™
460 powder contains 50 mg of pembrolizumab. KEYTRUDA™ is administered as an
461 intravenous infusion over 30 minutes, repeated every 3 weeks, and patients are treated until
462 disease progression or unacceptable toxicity. Atypical responses (i.e., an initial transient
463 increase in tumour size or small new lesions within the first few months followed by tumour
464 shrinkage) may be observed. It is preferred to continue treatment for clinically-stable patients
465 with initial evidence of disease progression until disease progression is confirmed.

466 Test subjects are enrolled and then assigned to a treatment group: excision followed
467 by KEYTRUDA™ only, excision followed by INSTILADRINTM only, excision followed by
468 KEYTRUDA™ and INSTILADRINTM concomitantly, excision followed by
469 INSTILADRINTM and NSAID (a COX-2 inhibitor), and excision followed by
470 KEYTRUDA™ and INSTILADRINTM and NSAID concomitantly.

471 Results: The primary efficacy outcome measures are progression free survival (as
472 assessed by e.g., an Integrated Radiology and Oncology Assessment review using Response
473 Evaluation Criteria in Solid Tumours [RECIST]), overall survival, and sentinel node biopsy.
474 Other efficacy outcome measures may be overall response rate and response duration.
475 Subsequent sentinel node biopsy is expected to show no spread of the disease.

476 Iexpect that administration of INSTILADRINTM with COX-2 inhibitor will
477 demonstrate superior efficacy to INSTILADRINTM only. Iexpect that administration of
478 KEYTRUDA™ and INSTILADRINTM concomitantly will demonstrate superior efficacy
479 outcome measures as compared to administration of either agent alone, and Iexpect this
480 benefit to be more than merely additive. Iexpect that administration of KEYTRUDA™ and
481 INSTILADRINTM and NSAID concomitantly will demonstrate superior efficacy outcome
482 measures as compared to administration of of KEYTRUDA™ alone or INSTILADRINTM
483 and NSAID alone, and Iexpect this benefit to be more than merely additive.

484

485 EXAMPLE 8 - *Superficial Spreading Melanoma*

486 Materials & Methods: KEYTRUDATM as in the foregoing example.

487 As a source of interferon, SYLATRON™ PEG-ylated interferon alpha 2b,
488 administered subcutaneously at 6 mcg/kg once weekly for 8 doses (induction), followed by 3
489 mcg/kg once weekly for up to 5 years (maintenance). If SYLATRON™ dosage modification
490 is required during weeks 1–8 of treatment (induction) because of adverse reactions, a 3-step

491 decrease from original dosage (6 mcg/kg once weekly) is preferred (i.e., decrease dosage to 3
492 mcg/kg once weekly; if needed, decrease to 2 mcg/kg once weekly; then, if needed, further
493 decrease to 1 mcg/kg once weekly). If dosage modification required during weeks 9–260 of
494 treatment (maintenance) because of adverse reactions, a 2-step decrease from original dosage
495 (3 mcg/kg once weekly) recommended (i.e., decrease dosage to 2 mcg/kg once weekly; if
496 needed, decrease to 1 mcg/kg once weekly).

497 Test subjects are enrolled and then assigned to a treatment group: excision followed
498 by KEYTRUDA™ only, excision followed by SYLATRON™ only, excision followed by
499 KEYTRUDA™ and SYLATRON™ concomitantly, excision followed by SYLATRON™
500 and NSAID (a COX-2 inhibitor), and excision followed by KEYTRUDA™ and
501 SYLATRON™ and NSAID concomitantly.

502 Results: The primary efficacy outcome measures are progression free survival (as
503 assessed by *e.g.*, an Integrated Radiology and Oncology Assessment review using Response
504 Evaluation Criteria in Solid Tumours [RECIST]), overall survival, and sentinel node biopsy.
505 Other efficacy outcome measures may be overall response rate and response duration.
506 Subsequent sentinel node biopsy is expected to show no spread of the disease.

507 Iexpect that administration of SYLATRON™ with COX-2 inhibitor will demonstrate
508 superior efficacy to SYLATRON™ only. Iexpect that administration of KEYTRUDA™ and
509 SYLATRON™ concomitantly will demonstrate superior efficacy outcome measures as
510 compared to administration of either agent alone, and Iexpect this benefit to be more than
511 merely additive. Iexpect that administration of KEYTRUDA™ and SYLATRON™ and
512 NSAID concomitantly will demonstrate superior efficacy outcome measures as compared to
513 administration of of KEYTRUDA™ alone or SYLATRON™ and NSAID alone, and Iexpect
514 this benefit to be more than merely additive.

515

516 EXAMPLE 9 - *Non-Small Cell Lung Cancer*

517 Materials & Methods: Pharmaceutical Agents as per Example 7 above. Human test
518 subjects are diagnosed as having Non-Small-Cell Lung Carcinoma. Patients are screened
519 according to Greene, Frederick L., *Cancer Staging Manual* (American Joint Committee on
520 Cancer, publ., 6th edition) to assure that comparable test subjects have comparable disease.
521 Test subjects are screened for treatment based on the tumor expression of PD-L1, expression
522 confirmed by a validated test.

523 The recommended dose of KEYTRUDA is: 200 mg for NSCLC that has not been
524 previously treated with chemotherapy, and 2 mg/kg for NSCLC that has been previously
525 treated with chemotherapy or for melanoma.

526 INSTILADRIN™ is administered by intra-pleaural infusion. This method is
527 illustrated in United States Patent publication US2014/17202 at Figure 2.

528 Test subjects are enrolled and then assigned to a treatment group: KEYTRUDA™
529 only, INSTILADRIN™ only, KEYTRUDA™ and INSTILADRIN™ concomitantly,
530 INSTILADRIN™ and NSAID (a COX-2 inhibitor), and KEYTRUDA™ and
531 INSTILADRIN™ and NSAID concomitantly.

532 Results: The primary efficacy outcome measures are progression free survival, overall
533 survival, and sentinel node biopsy. Other efficacy outcome measures may be overall
534 response rate and response duration. Subsequent sentinel node biopsy is expected to show no
535 spread of the disease.

536 I expect that administration of INSTILADRIN™ with COX-2 inhibitor will
537 demonstrate superior efficacy to INSTILADRIN™ only. I expect that administration of
538 KEYTRUDA™ and INSTILADRIN™ concomitantly will demonstrate superior efficacy
539 outcome measures as compared to administration of either agent alone, and I expect this
540 benefit to be more than merely additive. I expect that administration of KEYTRUDA™ and

541 INSTILADRINT™ and NSAID concomitantly will demonstrate superior efficacy outcome
542 measures as compared to administration of of KEYTRUDA™ alone or INSTILADRINT™
543 and NSAID alone, and I expect this benefit to be more than merely additive.

544

545 Summary

546 The above Examples discuss treating certain cancers. Our discovery, however, may
547 be more generally used to treat any condition which benefits from interferon signaling, and
548 which suffers from over-expression of CD279.

549 In the appended claims, I use the term “treat” not to require complete cure, but to
550 ameliorate. For example, “treating” cancer may be achieved by completely eliminating the
551 cancer, and also by, for example, slowing tumor growth, reducing the risk of mortality or
552 slowing disease progression when compared to patients who do not have such treatment.

553 Given our disclosure here, the artisan can readily see specific applications or variants
554 of it. For example, while the above discussion mentions specific species of human interferon,
555 other species and interferon derivatives or analogs which function similarly will provide the
556 same benefit. Thus, I intend the legal coverage of our patent to be determined not by the
557 Examples I discuss, but by the appended legal claims and permissible equivalents thereof.

558 When the appended legal claims refer to treating at about “the same time,” *see e.g.*,
559 original claim 3, this requires the two compounds work in the patient at the same time. It
560 does not require contemporaneous administration. Thus, one could administer the first agent
561 a week after administering the second agent, if the effect of the second agent persists for at
562 least a week.

563

CLAIMS:

1. Use of a monoclonal antibody against programmed cell death protein 1 in the treatment of a human patient having a cancer treated with interferon or an agent which induces interferon, wherein the monoclonal antibody against programmed cell death protein 1 is used in an amount effective to ameliorate a decrease in T cell function which interferon would cause.
2. The use of claim 1, wherein the interferon and the monoclonal antibody against programmed cell death protein 1 are used at about the same time.
3. The use of claim 1, wherein the interferon comprises exogenously-produced interferon polypeptide.
4. The use of claim 1, wherein the agent which induces interferon induces the patient to endogenously express interferon.
5. The use of claim 4, where the agent which induces interferon is a vector carrying an expressible interferon transgene.
6. The use of claim 4, wherein the agent which induces interferon is selected from the group consisting of: microbial antigen, viral antigen, microbial antigen analog and viral antigen analog.
7. The use of claim 6, wherein the agent which induces interferon comprises viral antigen analog comprising Poly I:C.
8. The method of claim 6, wherein the agent which induces interferon comprises bacterial antigen.

9. The method of claim 6, wherein the agent which induces interferon comprises viral antigen.
10. The method of claim 9, wherein the agent which induces interferon comprises antigenic virus.
11. The method of claim 1, wherein the interferon is Type I interferon.
12. The method of claim 11, wherein the Type I interferon comprises interferon alpha.
13. The method of claim 11, wherein the Type I interferon comprises interferon beta.
14. Use of interferon or an agent which induces interferon and a monoclonal antibody against programmed cell death protein 1 in a human patient, wherein interferon up-regulates programmed death protein ligand (PD-L1), and the monoclonal antibody against programmed cell death protein 1 is used in an amount effective to ameliorate the T cell suppressing effect of interferon.
15. The use of claim 14, wherein the agent which induces interferon induces the patient to endogenously express interferon.

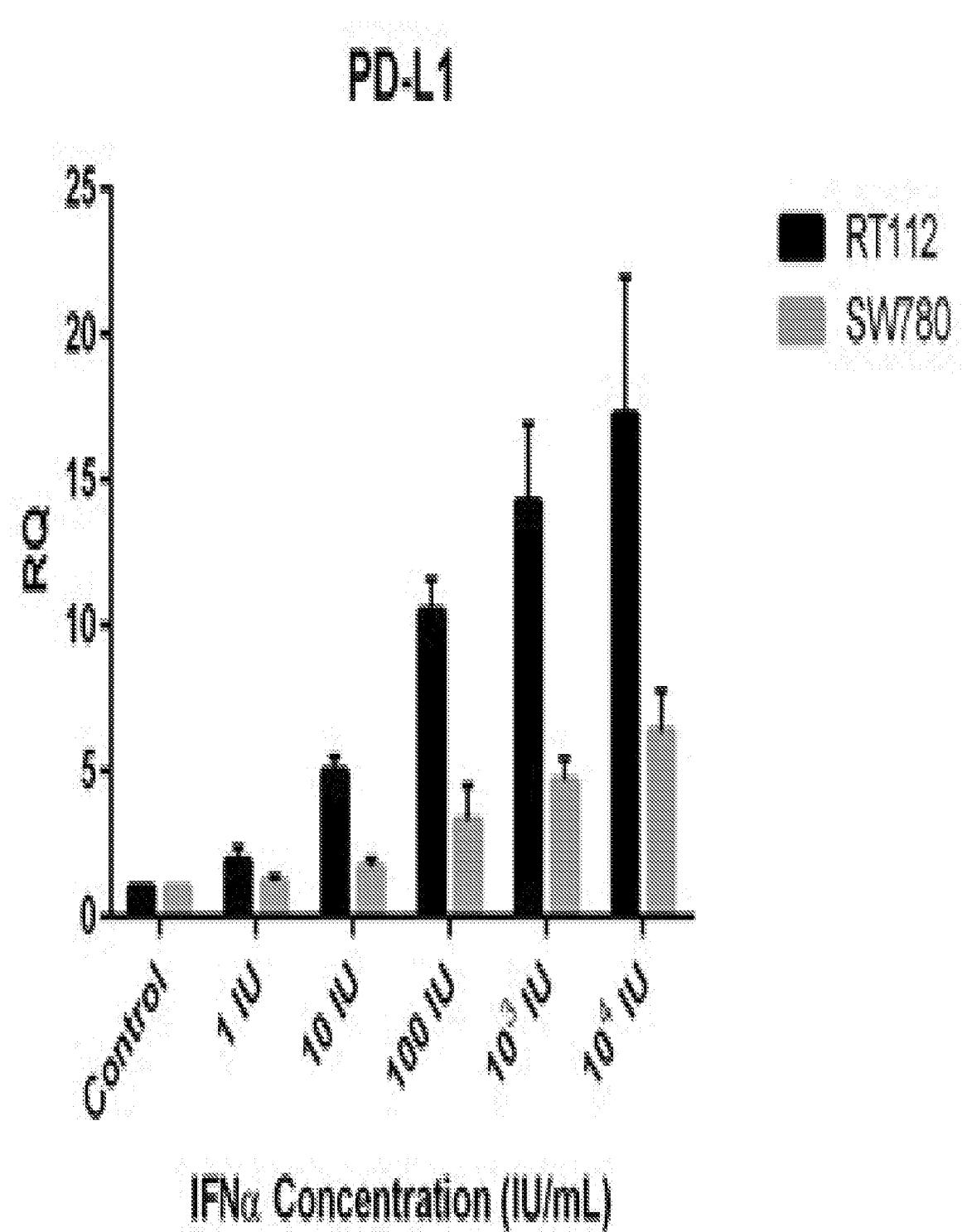


Figure 1

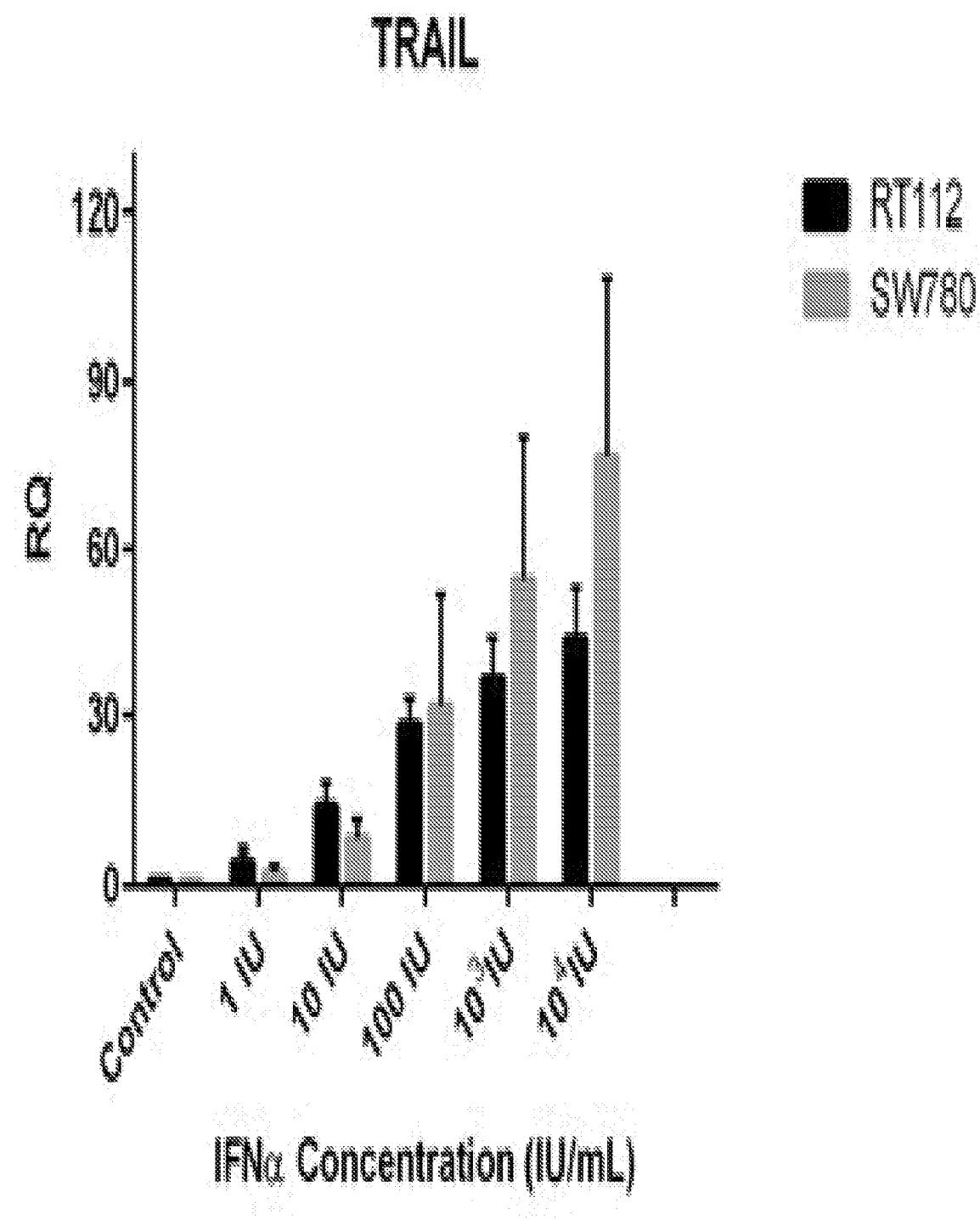


Figure 2

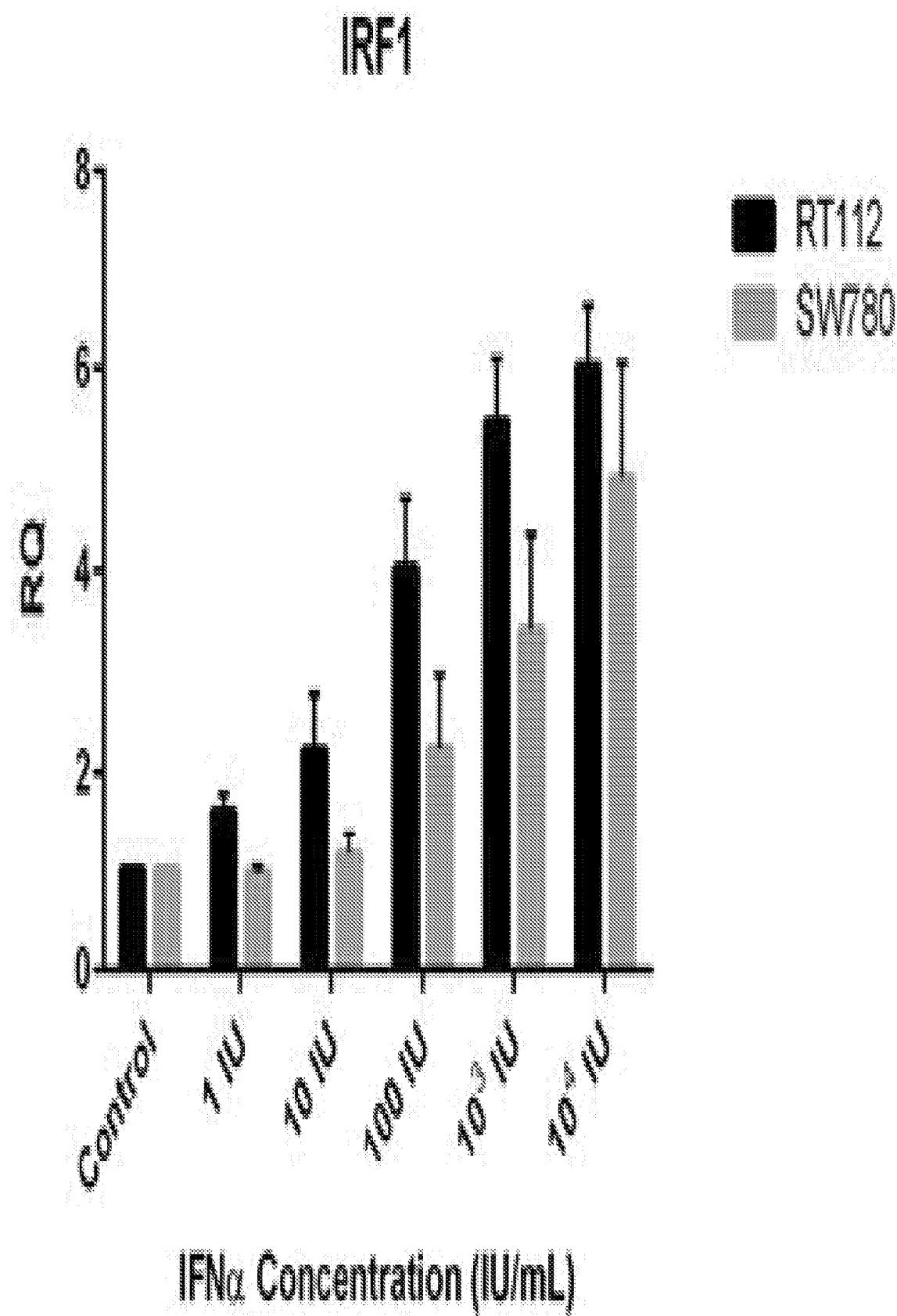


Figure 3

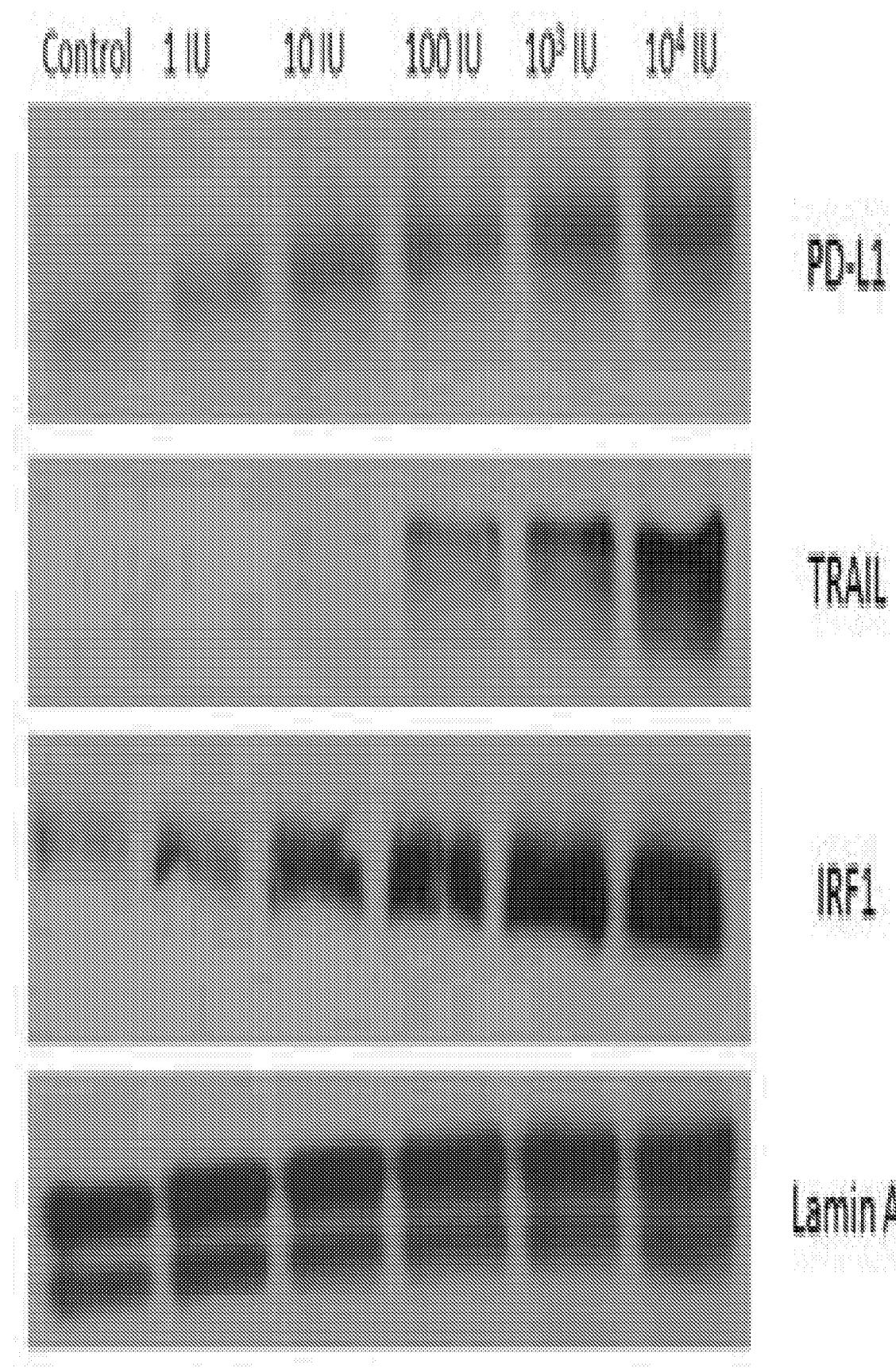


Figure 4

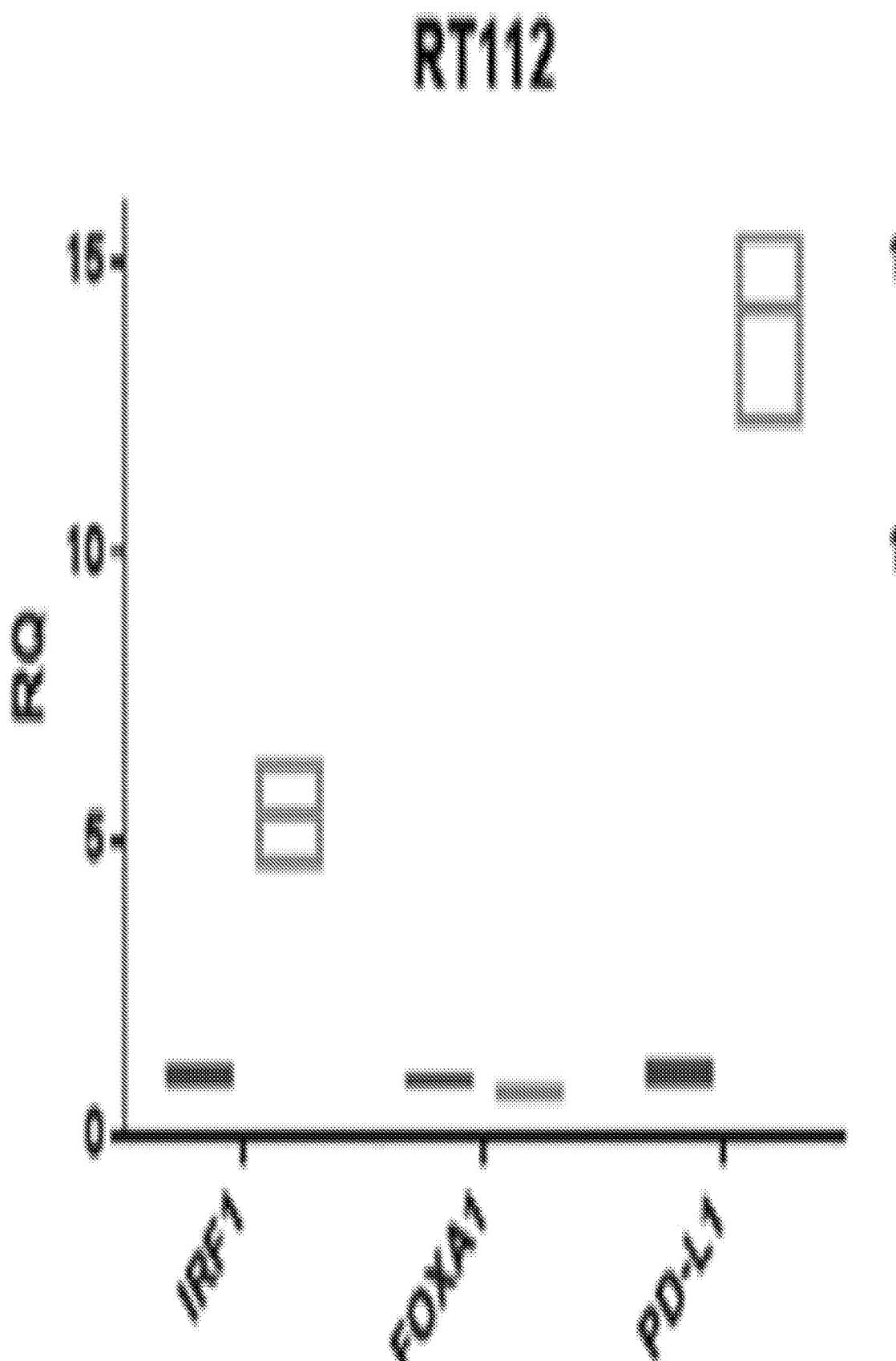
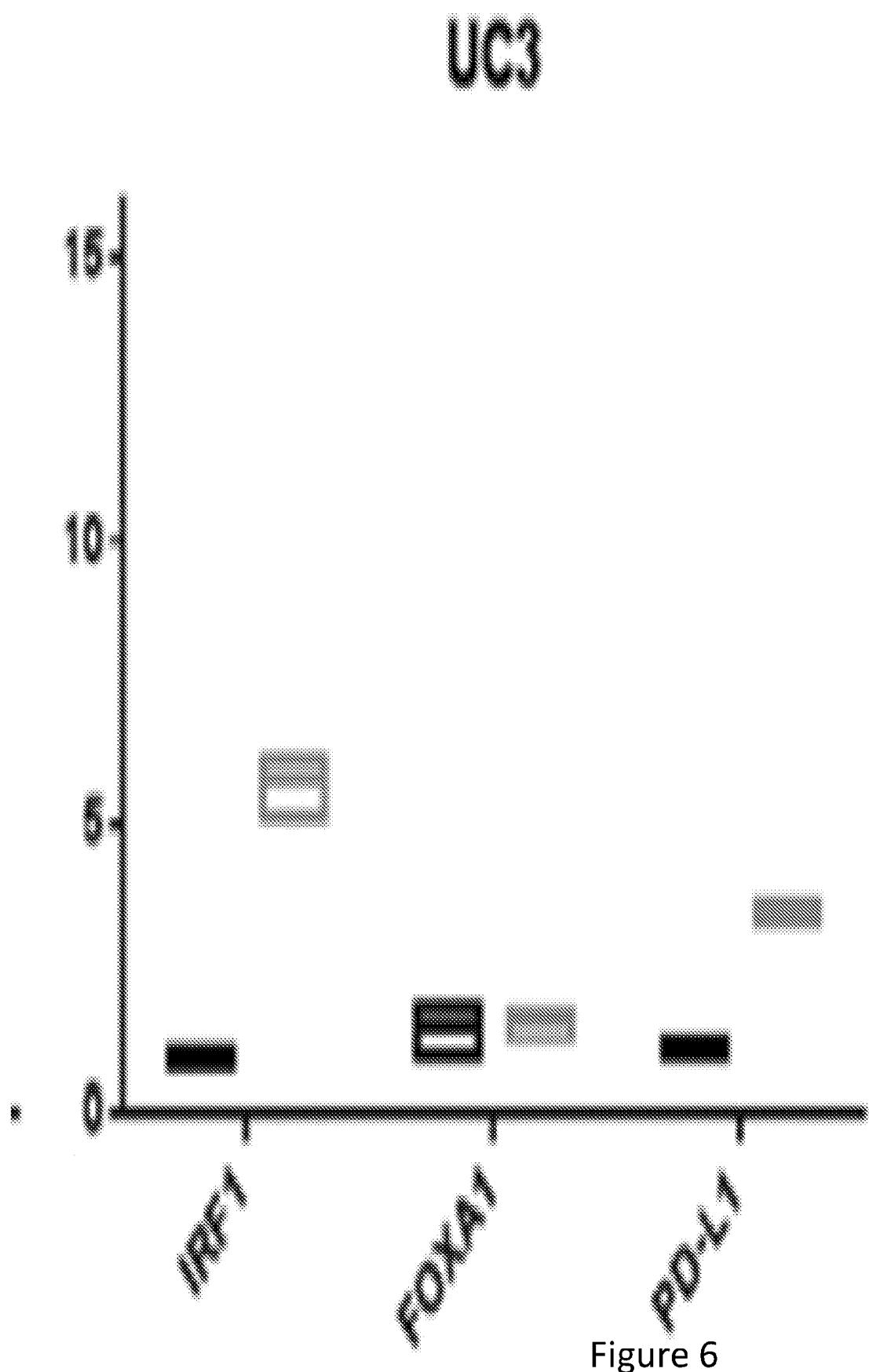



Figure 5

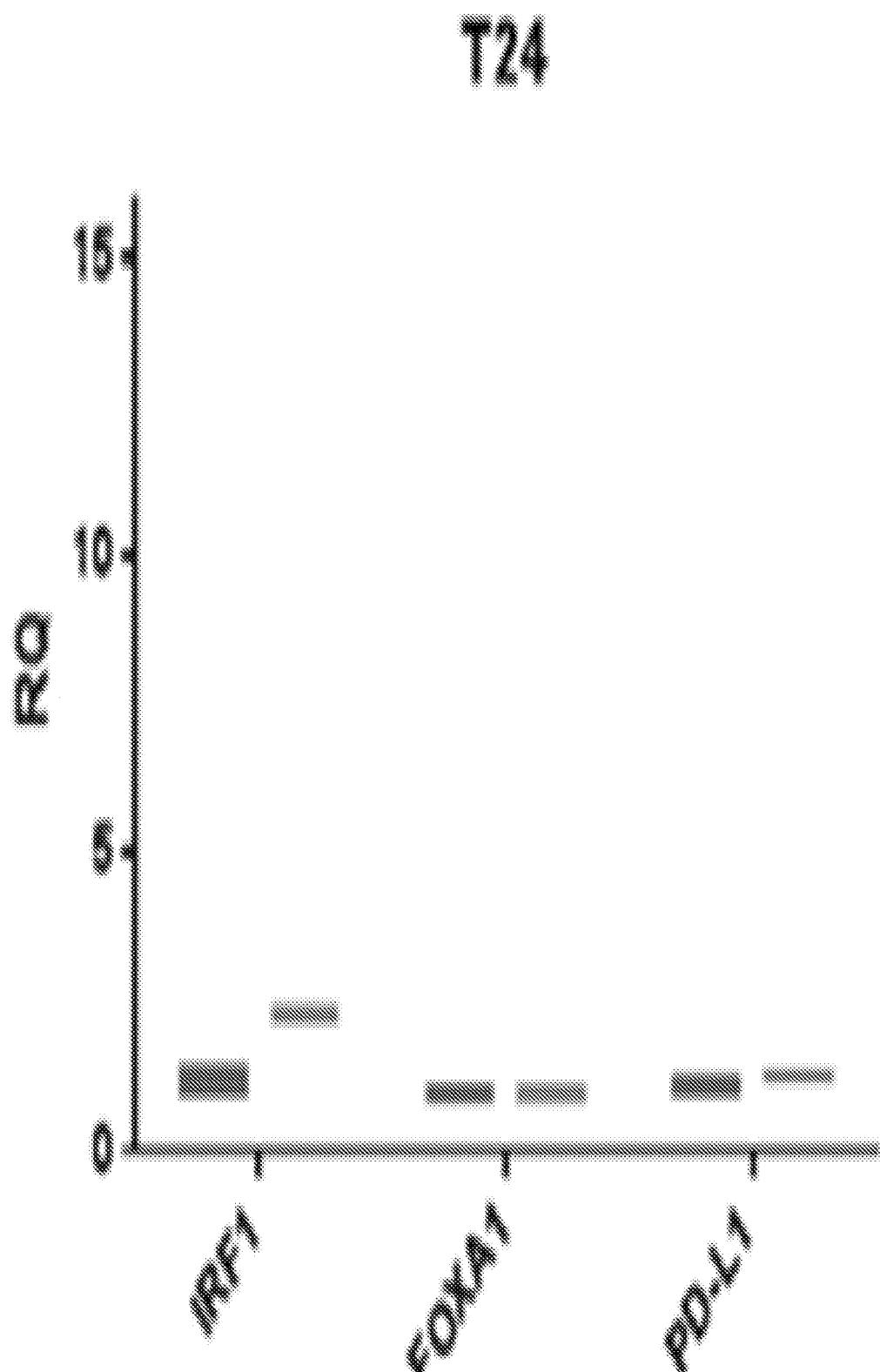


Figure 7

UC14

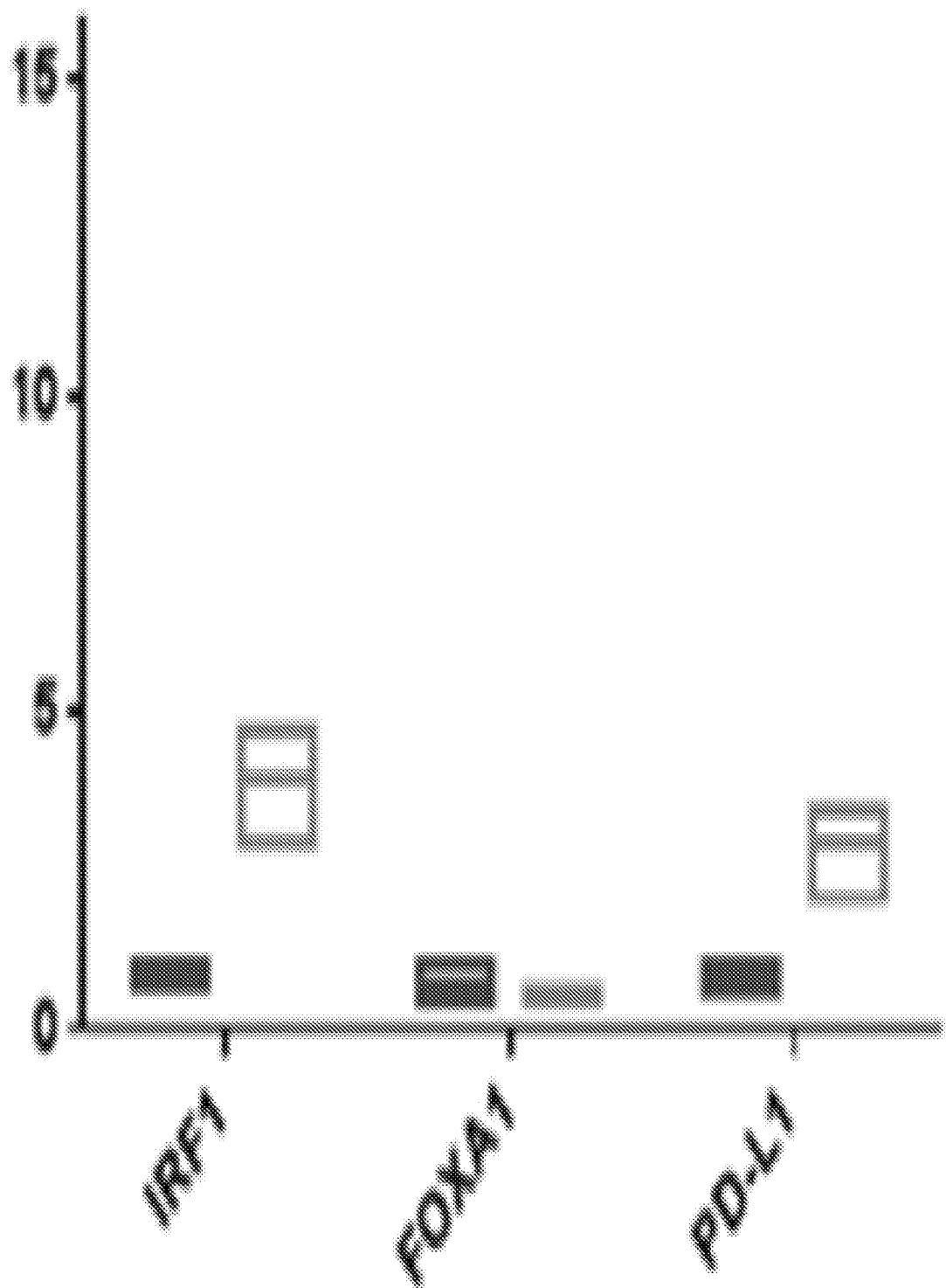


Figure 8

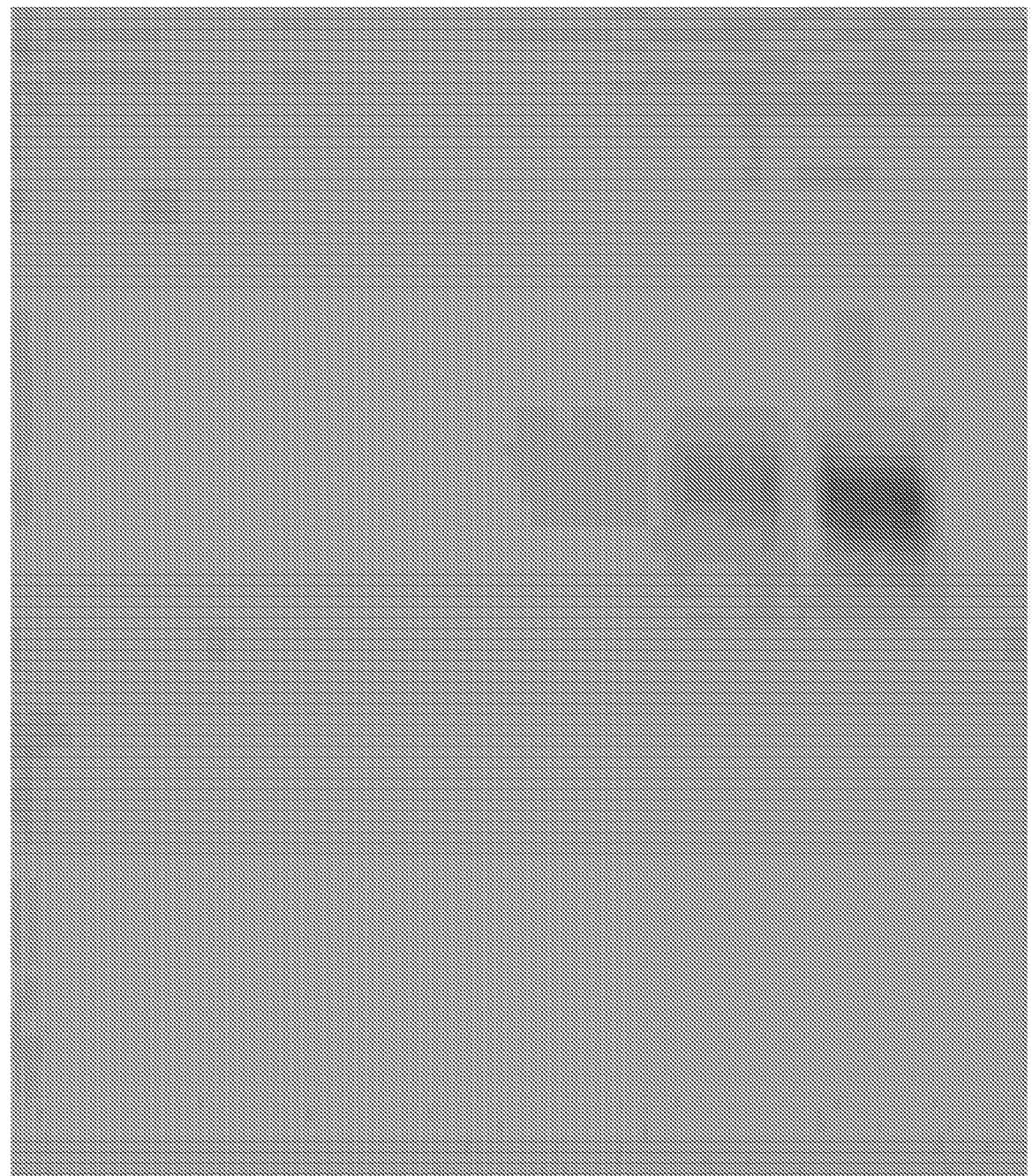


Figure 9

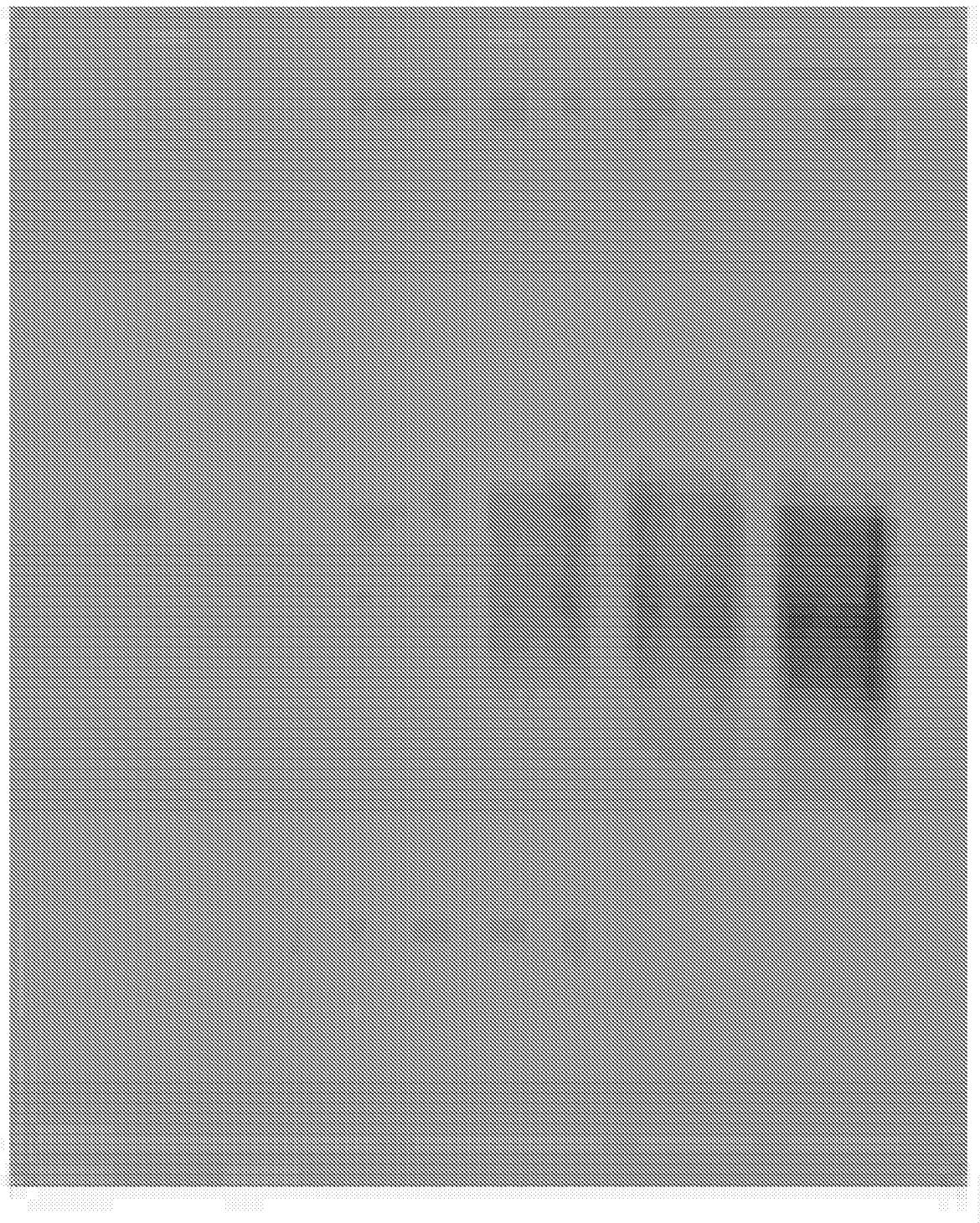


Figure 10

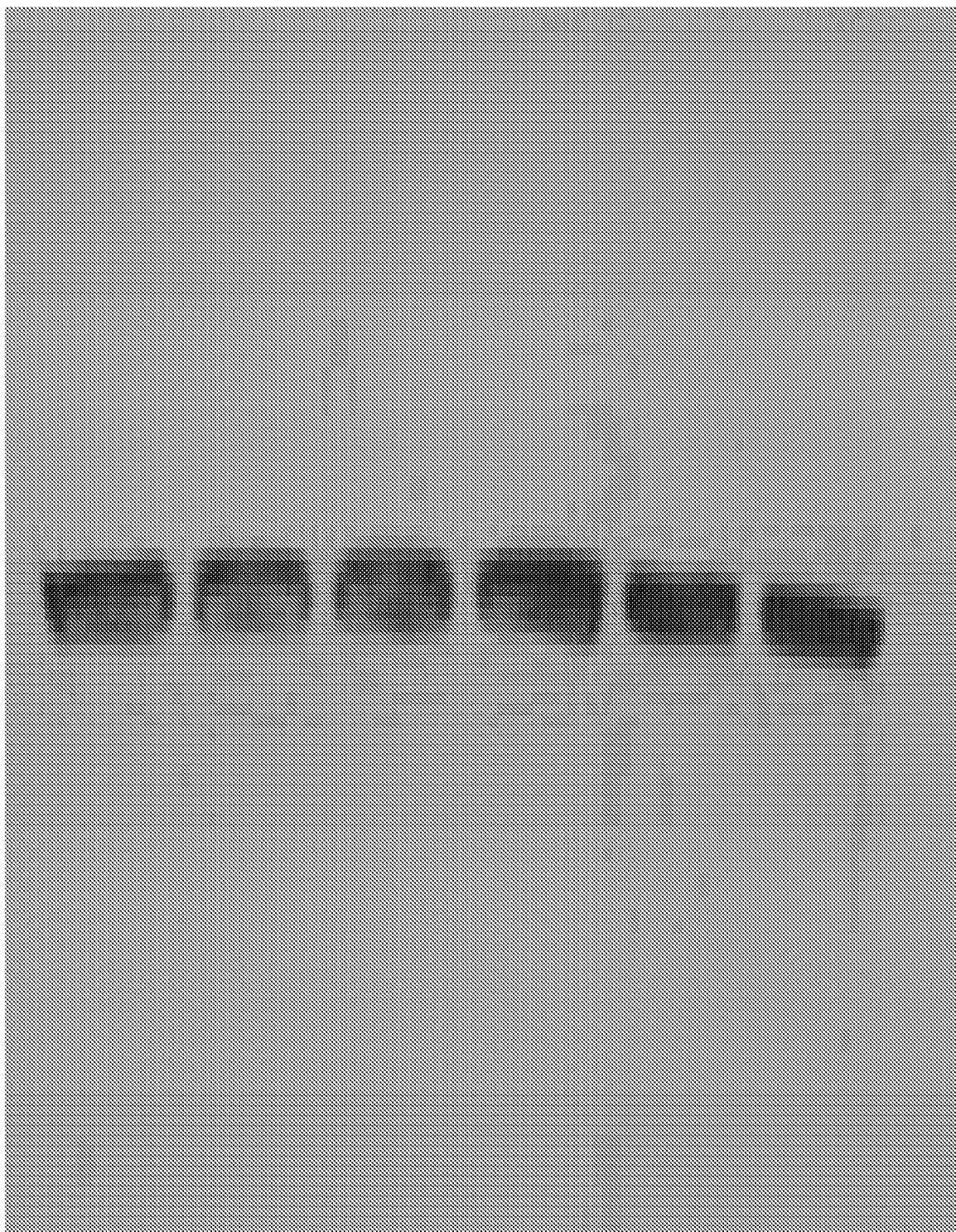


Figure 11

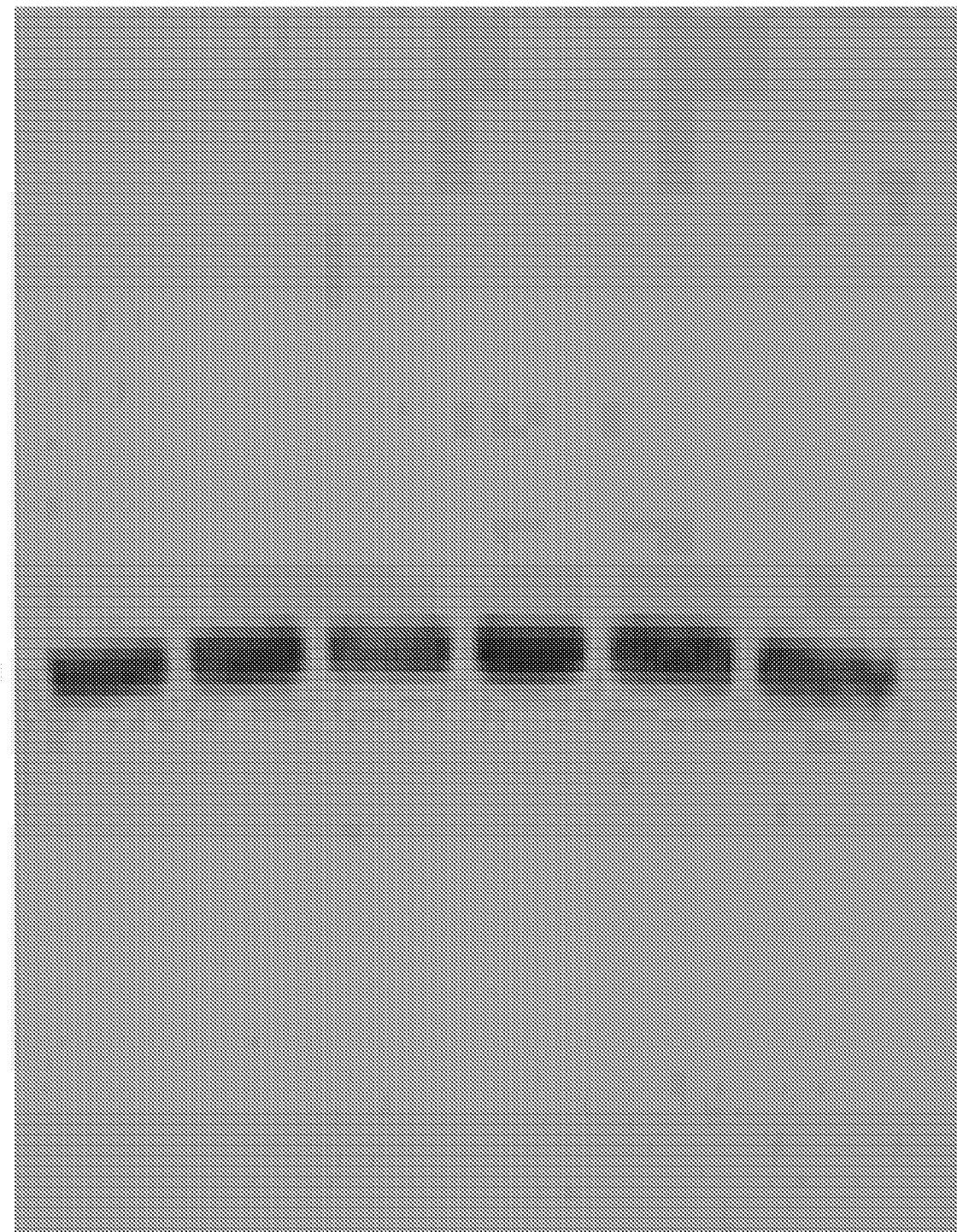


Figure 12

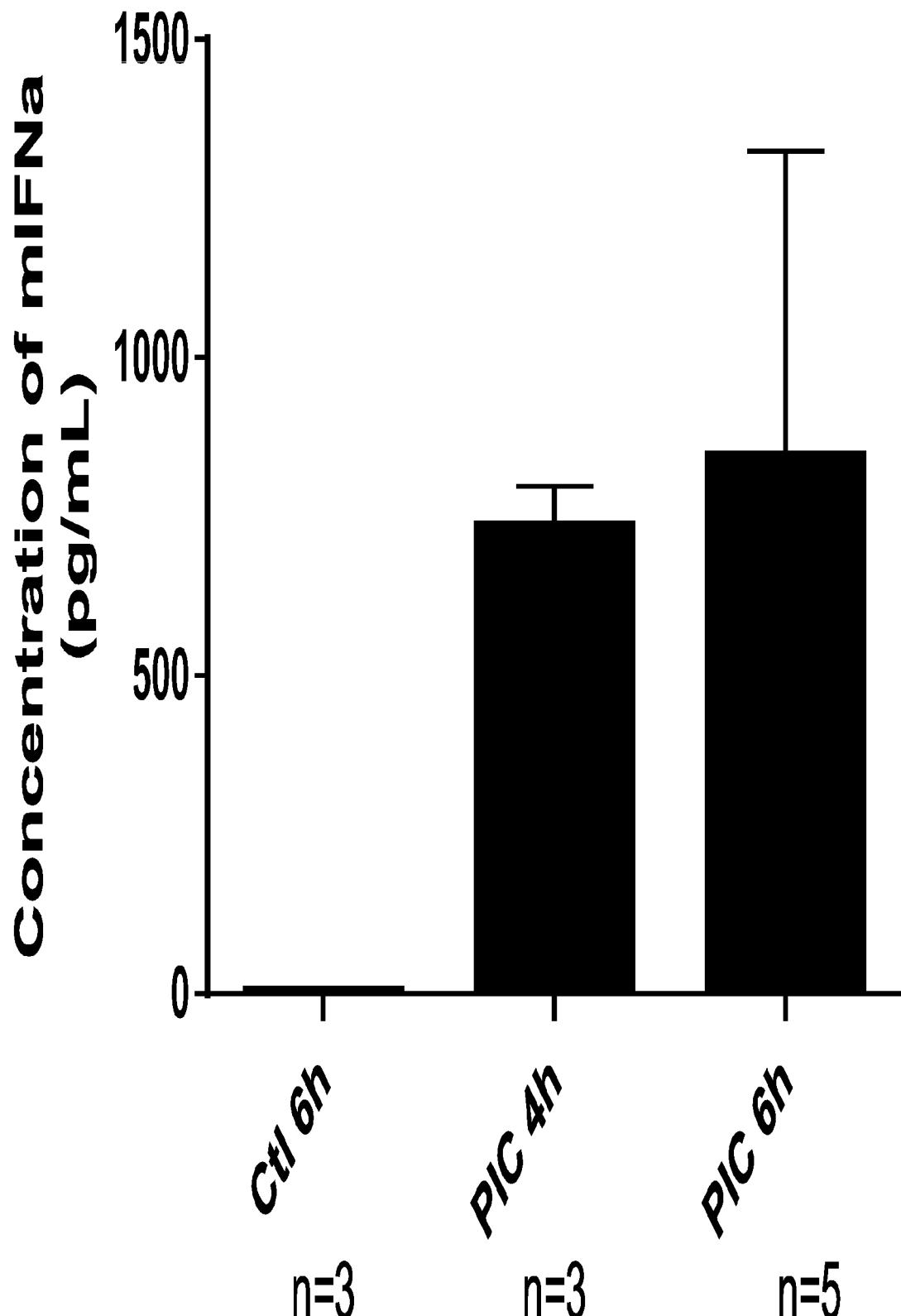


Figure 13

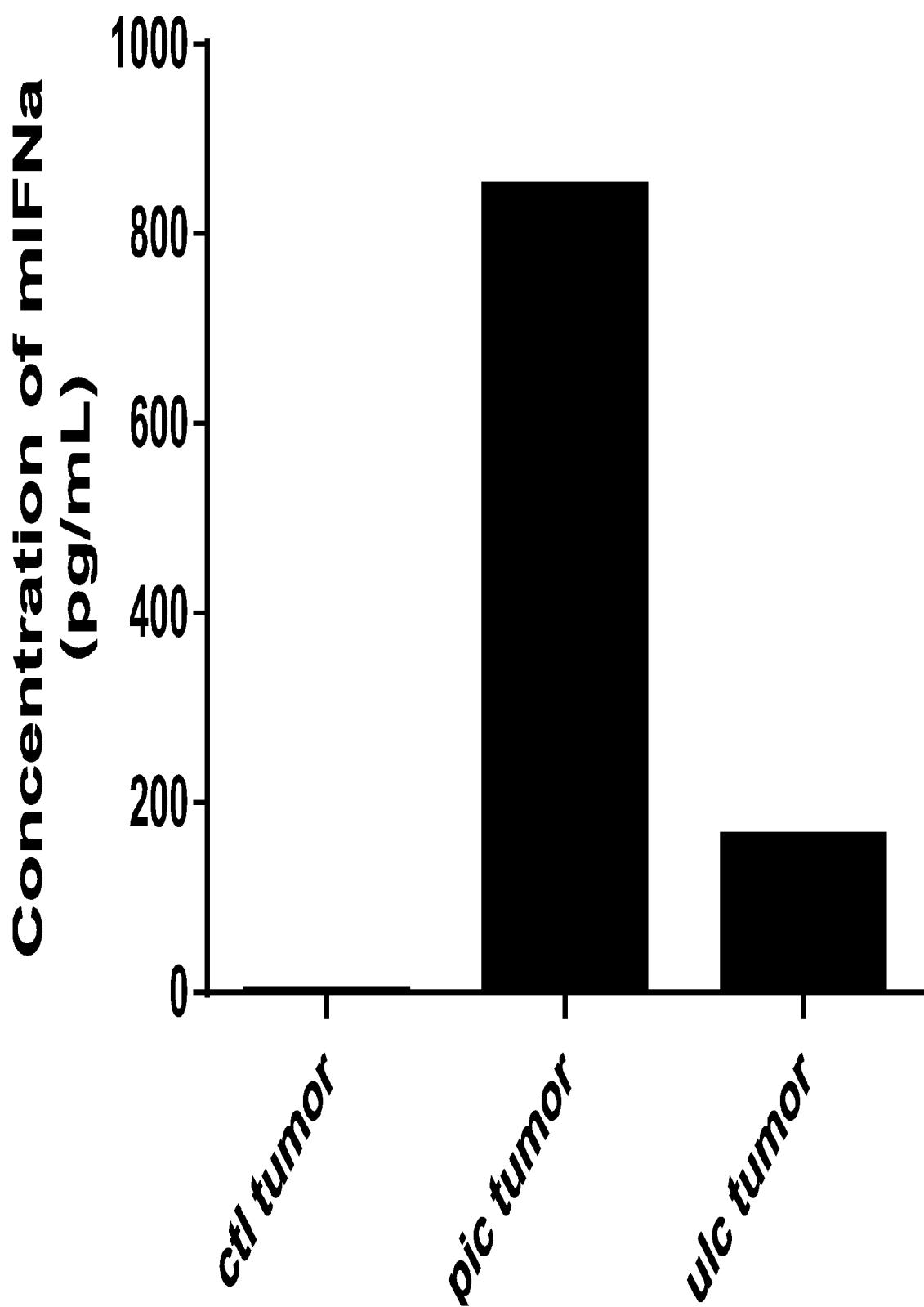


Figure 14

PD-L1

(24h intra-lesional Ctrl vs Poly (I:C) 500 mcg)

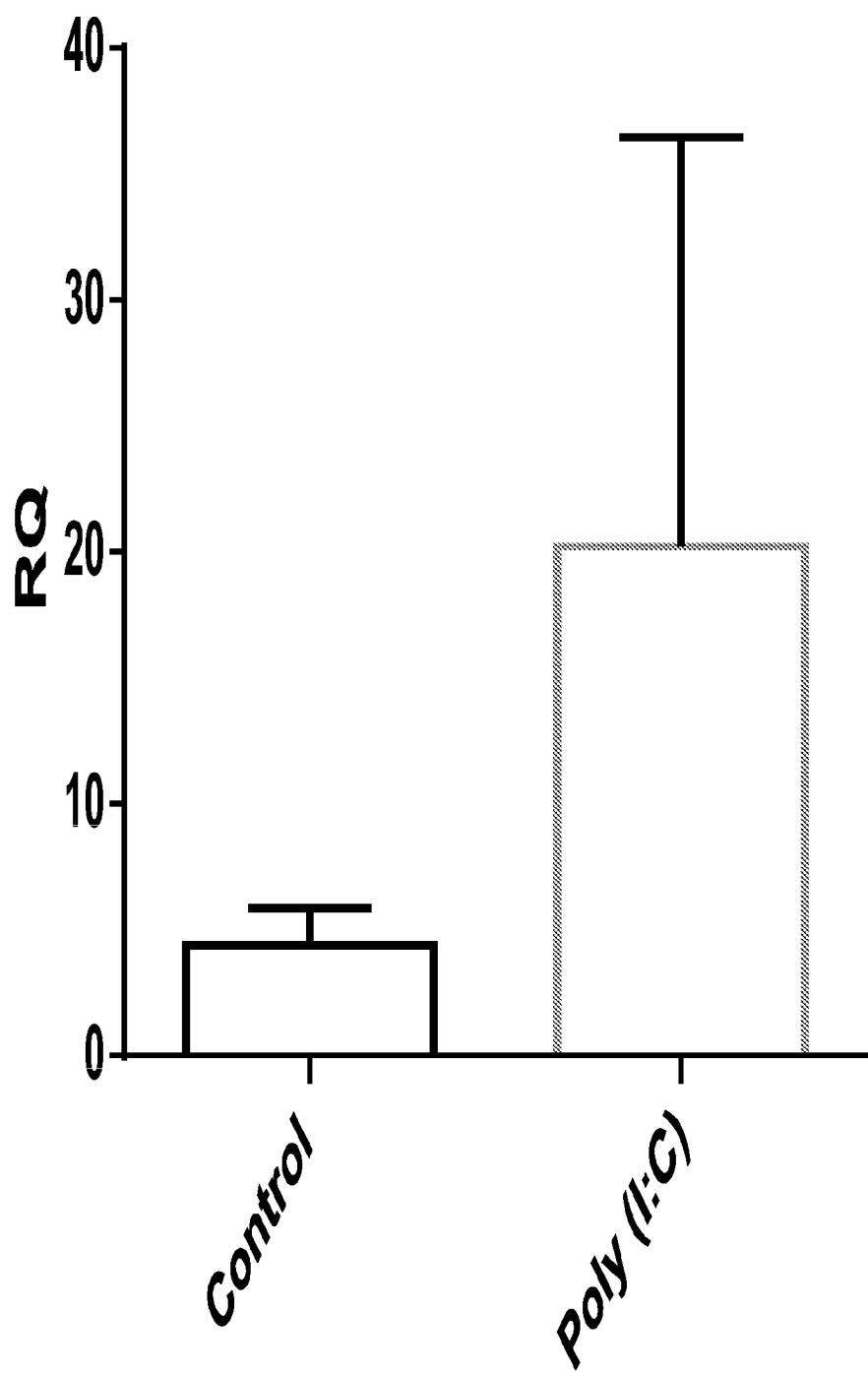


Figure 15

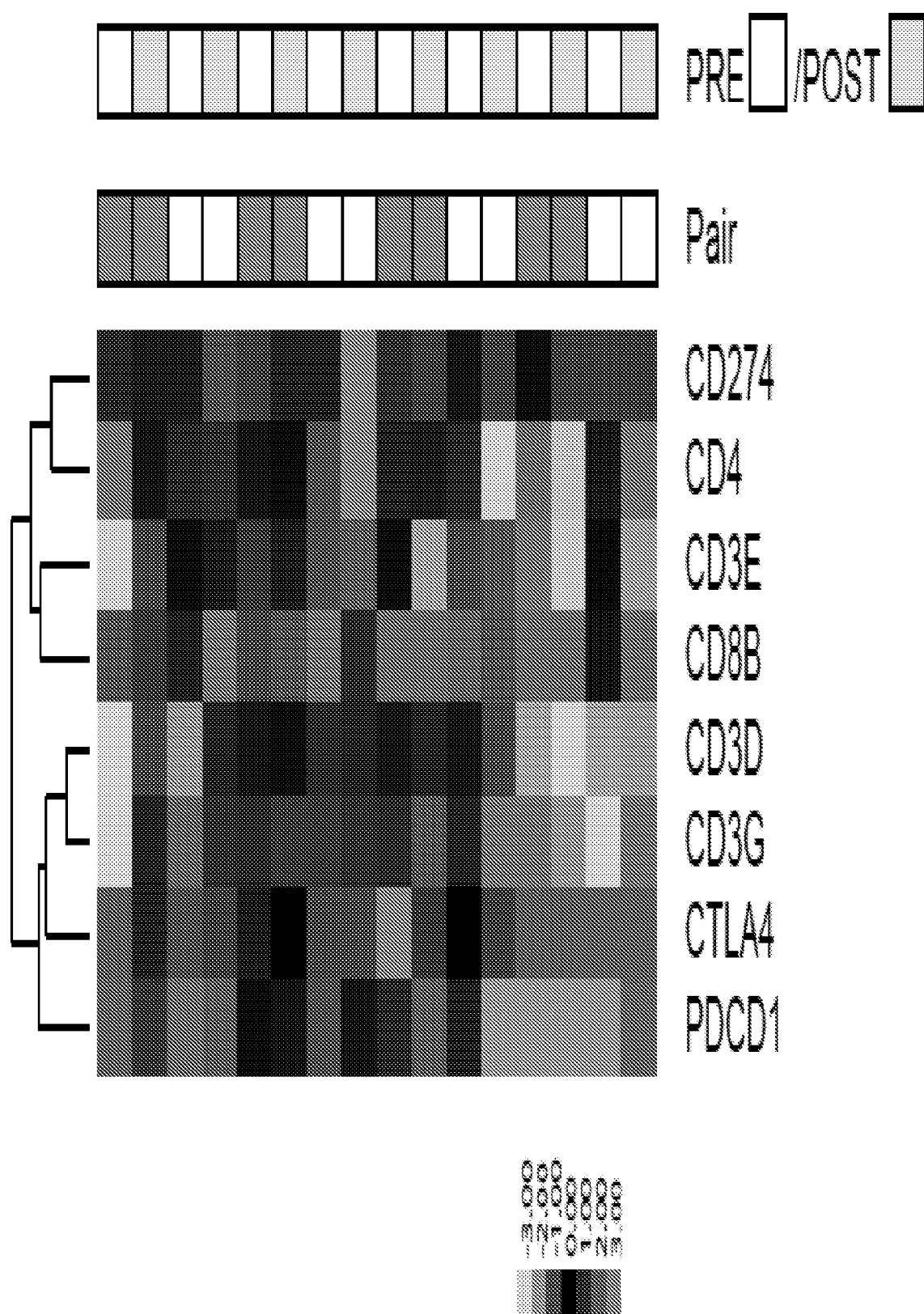


Figure 16

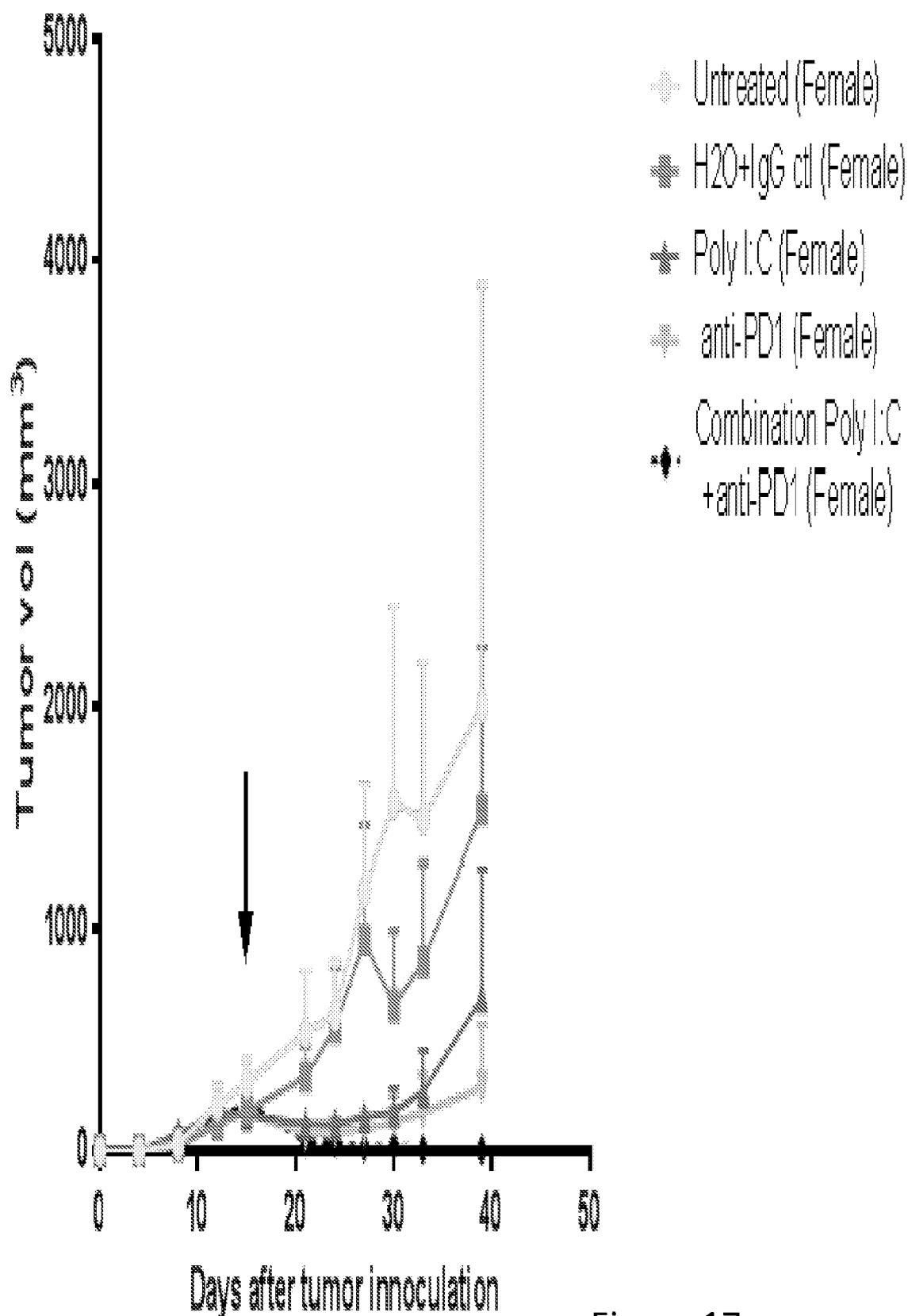


Figure 17

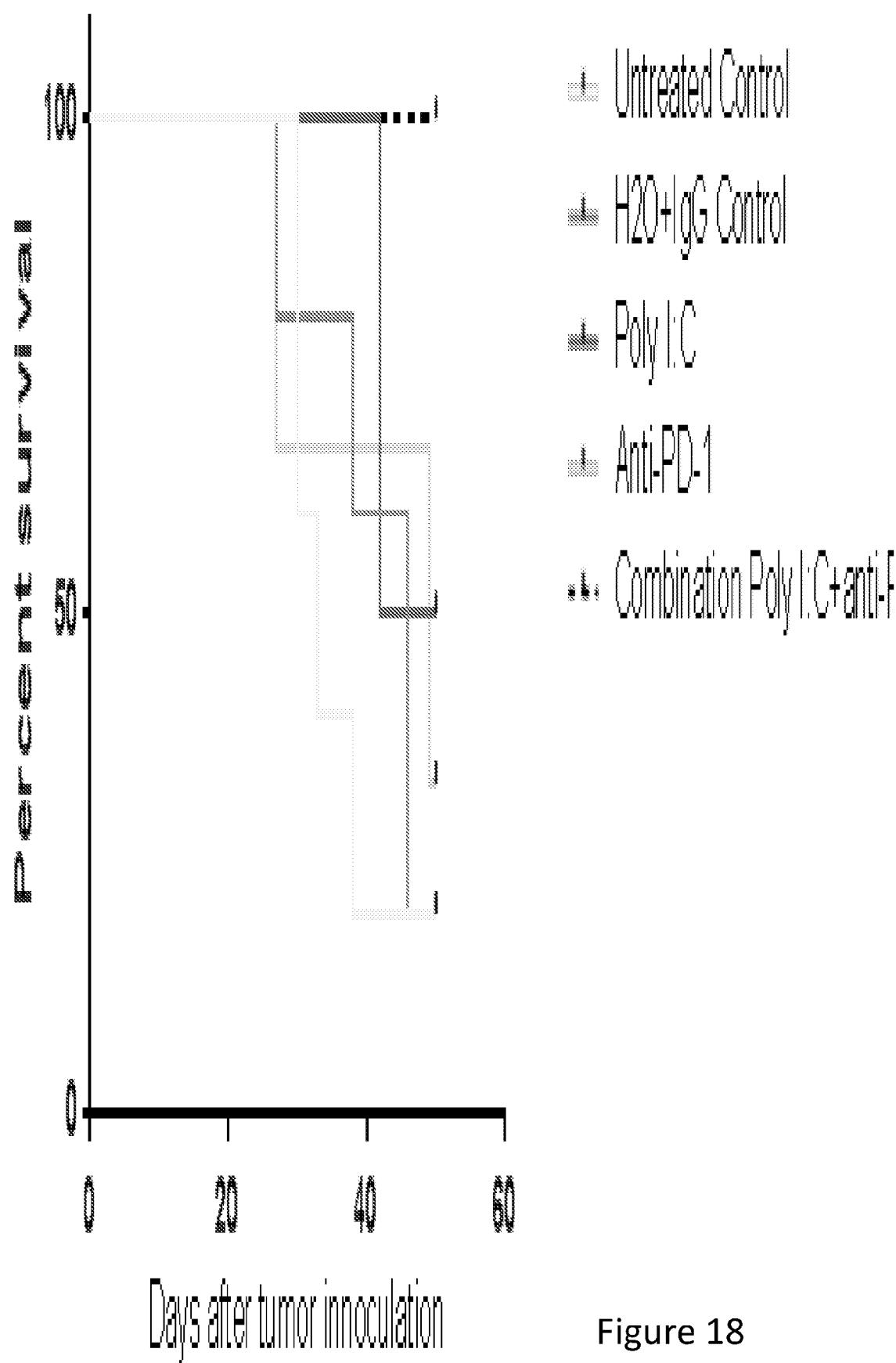
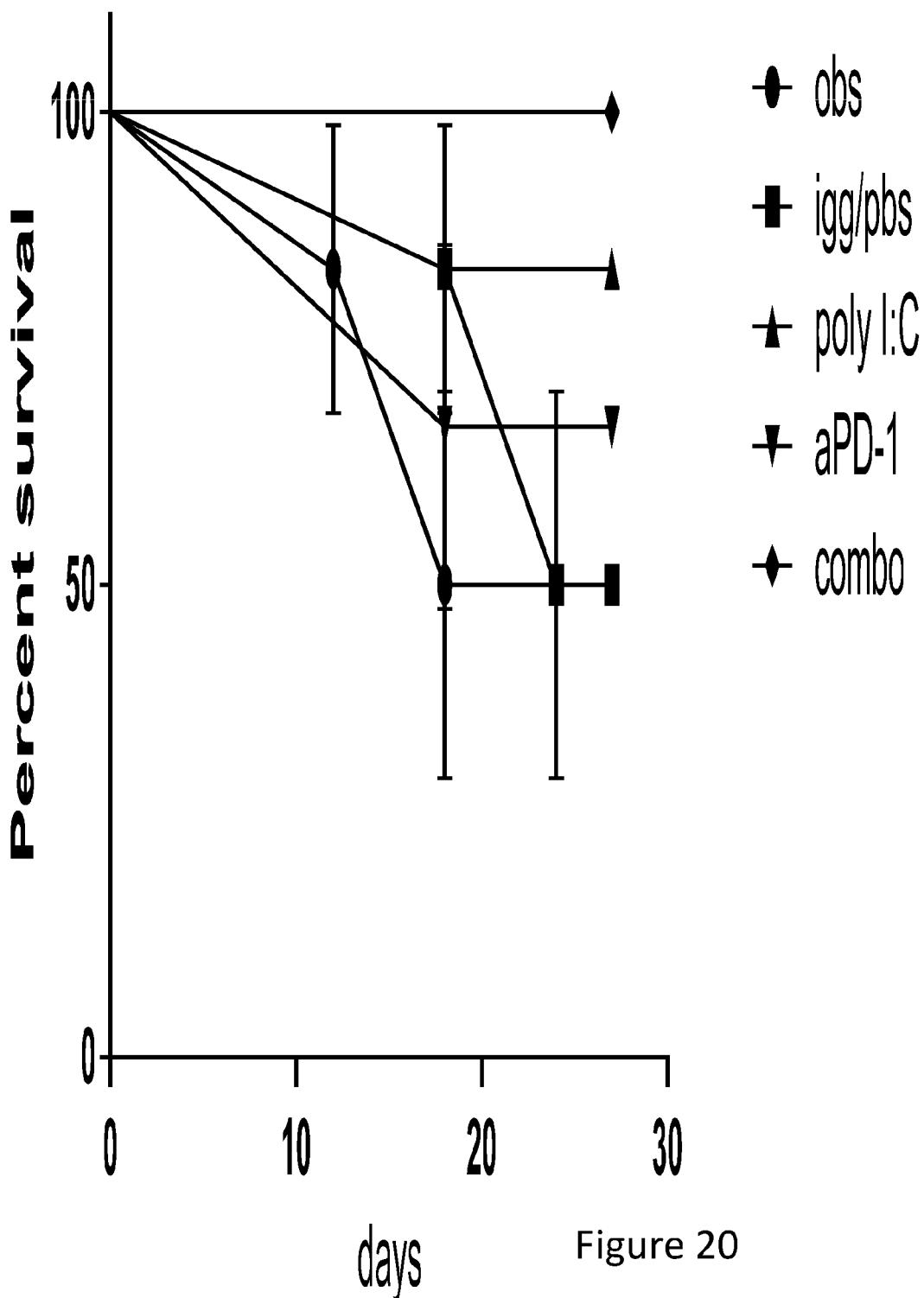



Figure 18

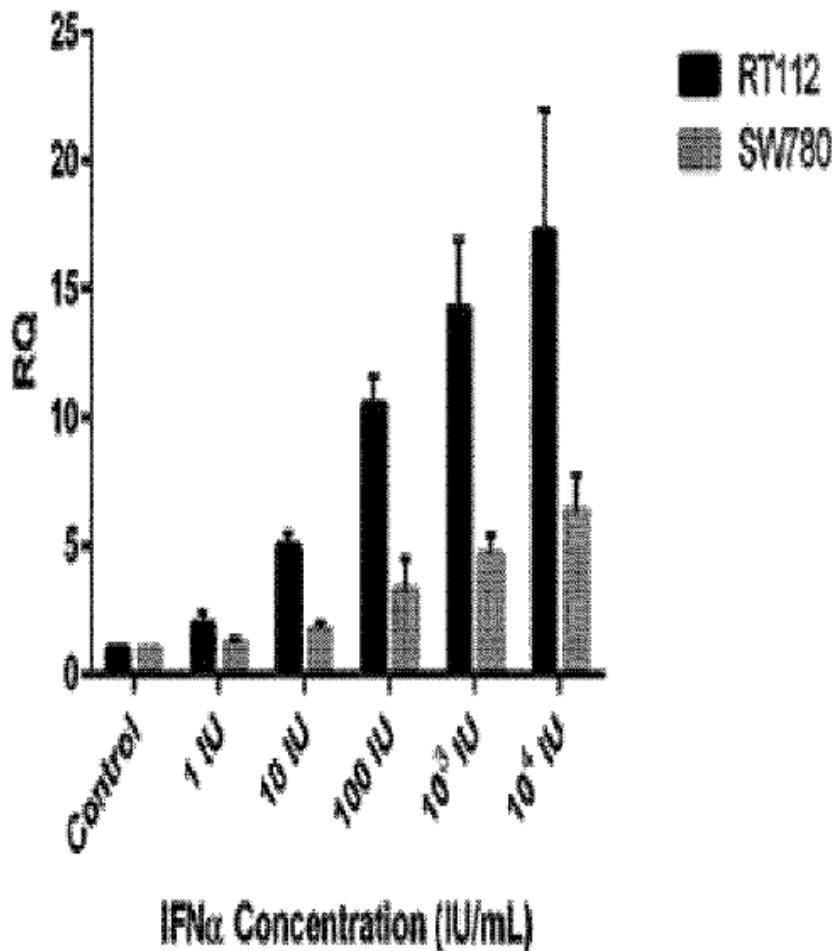


Figure 19

Survival proportions: Survival of survival data

PD-L1

