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ADVANCED CONTROL SYSTEMS FOR MACHINES

Reference to Related Application

[0001] This PCT application claims the benefit and priority of U.S. Provisional Patent

Application No. 62/433,002, filed December 12, 2016, and U.S. Provisional Patent Application

No. 62/409,964, filed October 19, 2016, the entirety of each of which is hereby incorporated by

reference herein.

Technical Field

[0002] The present disclosure relates generally to a control system for a machine. More

specifically, but not by way of limitation, this disclosure relates to advanced control systems for

machines.

Background

[0003] Machines can be used to perform various processes. For example, industrial plants

that process chemicals can include machines, such as heaters, furnaces, and fired heaters, that

perform various steps to process the chemicals. Modern machines can be controlled using a variety

of control systems to implement different operations and prevent failures.

Summary

[0004] In one examples, a method of the present disclosure can include receiving a time

series having a plurality of data points arranged in a sequential order over a period of time. The

method can include performing singular spectrum analysis on the time series. Performing singular

spectrum analysis on the time series can include generating a trajectory matrix from the time series.

The trajectory matrix can be a multi-dimensional representation of the time series. Performing

singular spectrum analysis on the time series can include performing singular value decomposition

on the trajectory matrix to (i) decompose the trajectory matrix into a plurality of elementary

matrices and (ii) determine a plurality of eigenvalues that corresponds to the plurality of

elementary matrices. Performing singular spectrum analysis on the time series can include

automatically categorizing the plurality of elementary matrices into a plurality of groups. This can

include generating a matrix of w-correlation values based on the plurality of eigenvalues



corresponding to the plurality of elementary matrices. Each w-correlation value in the matrix can

be generated by determining an absolute value of a weighted correlation between a pair of

eigenvalues in the plurality of eigenvalues. Automatically categorizing the plurality of elementary

matrices into a plurality of groups can also include categorizing the w-correlation values in the

matrix into a predefined number of w-correlation sets such that, for each w-correlation set in the

predefined number of w-correlation sets, all of the w-correlation values in the w-correlation set are

above a predefined threshold value. Automatically categorizing the plurality of elementary

matrices into a plurality of groups can also include forming the plurality of groups based on the

predefined number of w-correlation sets. Each respective group in the plurality of groups can

include a respective subset of the plurality of elementary matrices. The respective subset of the

plurality of elementary matrices can correspond to the w-correlation values in a respective w-

correlation set of the predefined number of w-correlation sets. Performing singular spectrum

analysis on the time series can also include determining a plurality of component time-series based

on the plurality of groups. Each component time-series of the plurality of component time-series

can be determined by performing diagonal averaging on the respective subset of the plurality of

elementary matrices in a respective group in the plurality of groups. The method can include

generating a predictive forecast using the plurality of component time-series. Some or all of the

above steps can be performed by a processing device.

[0005] In another example, a system of the present disclosure can include a processing

device and a memory device on which program code that is executable by the processing device

is stored. The program code can cause the processing device to receive a time series having a

plurality of data points arranged in a sequential order over a period of time. The program code

can cause the processing device to perform singular spectrum analysis on the time series.

Performing singular spectrum analysis on the time series can include generating a trajectory matrix

from the time series. The trajectory matrix can be a multi-dimensional representation of the time

series. Performing singular spectrum analysis on the time series can include performing singular

value decomposition on the trajectory matrix to (i) decompose the trajectory matrix into a plurality

of elementary matrices and (ii) determine a plurality of eigenvalues that corresponds to the

plurality of elementary matrices. Performing singular spectrum analysis on the time series can

include automatically categorizing the plurality of elementary matrices into a plurality of groups.

This can include generating a matrix of w-correlation values based on the plurality of eigenvalues



corresponding to the plurality of elementary matrices. Each w-correlation value in the matrix can

be generated by determining an absolute value of a weighted correlation between a pair of

eigenvalues in the plurality of eigenvalues. Automatically categorizing the plurality of elementary

matrices into a plurality of groups can also include categorizing the w-correlation values in the

matrix into a predefined number of w-correlation sets such that, for each w-correlation set in the

predefined number of w-correlation sets, all of the w-correlation values in the w-correlation set are

above a predefined threshold value. Automatically categorizing the plurality of elementary

matrices into a plurality of groups can also include forming the plurality of groups based on the

predefined number of w-correlation sets. Each respective group in the plurality of groups can

include a respective subset of the plurality of elementary matrices. The respective subset of the

plurality of elementary matrices can correspond to the w-correlation values in a respective w-

correlation set of the predefined number of w-correlation sets. Performing singular spectrum

analysis on the time series can also include determining a plurality of component time-series based

on the plurality of groups. Each component time-series of the plurality of component time-series

can be determined by performing diagonal averaging on the respective subset of the plurality of

elementary matrices in a respective group in the plurality of groups. The program code can cause

the processing device to generate a predictive forecast using the plurality of component time-

series. Some or all of the above steps can be performed by a processing device.

[0006] In another example, a non-transitory computer-readable medium of the present

disclosure can include program code that is executable by a processing device. The program code

can cause the processing device to receive a time series having a plurality of data points arranged

in a sequential order over a period of time. The program code can cause the processing device to

perform singular spectrum analysis on the time series. Performing singular spectrum analysis on

the time series can include generating a trajectory matrix from the time series. The trajectory

matrix can be a multi-dimensional representation of the time series. Performing singular spectrum

analysis on the time series can include performing singular value decomposition on the trajectory

matrix to (i) decompose the trajectory matrix into a plurality of elementary matrices and (ii)

determine a plurality of eigenvalues that corresponds to the plurality of elementary matrices.

Performing singular spectrum analysis on the time series can include automatically categorizing

the plurality of elementary matrices into a plurality of groups. This can include generating a matrix

of w-correlation values based on the plurality of eigenvalues corresponding to the plurality of



elementary matrices. Each w-correlation value in the matrix can be generated by determining an

absolute value of a weighted correlation between a pair of eigenvalues in the plurality of

eigenvalues. Automatically categorizing the plurality of elementary matrices into a plurality of

groups can also include categorizing the w-correlation values in the matrix into a predefined

number of w-correlation sets such that, for each w-correlation set in the predefined number of w-

correlation sets, all of the w-correlation values in the w-correlation set are above a predefined

threshold value. Automatically categorizing the plurality of elementary matrices into a plurality

of groups can also include forming the plurality of groups based on the predefined number of w-

correlation sets. Each respective group in the plurality of groups can include a respective subset

of the plurality of elementary matrices. The respective subset of the plurality of elementary

matrices can correspond to the w-correlation values in a respective w-correlation set of the

predefined number of w-correlation sets. Performing singular spectrum analysis on the time series

can also include determining a plurality of component time-series based on the plurality of groups.

Each component time-series of the plurality of component time-series can be determined by

performing diagonal averaging on the respective subset of the plurality of elementary matrices in

a respective group in the plurality of groups. The program code can cause the processing device

to generate a predictive forecast using the plurality of component time-series. Some or all of the

above steps can be performed by a processing device.

[0007] This summary is not intended to identify key or essential features of the claimed

subject matter, nor is it intended to be used in isolation to determine the scope of the claimed

subject matter. The subject matter should be understood by reference to appropriate portions of

the entire specification, any or all drawings, and each claim.

[0008] The foregoing, together with other features and examples, will become more

apparent upon referring to the following specification, claims, and accompanying drawings.

Brief Description of the Drawings

[0009] The present disclosure is described in conjunction with the appended figures:

[0010] FIG. 1 is a block diagram of an example of the hardware components of a

computing system according to some aspects.

[001 1] FIG. 2 is an example of devices that can communicate with each other over an

exchange system and via a network according to some aspects.



[0012] FIG. 3 is a block diagram of a model of an example of a communications protocol

system according to some aspects.

[001 3] FIG. 4 is a hierarchical diagram of an example of a communications grid computing

system including a variety of control and worker nodes according to some aspects.

[0014] FIG. 5 is a flow chart of an example of a process for adjusting a communications

grid or a work project in a communications grid after a failure of a node according to some aspects.

[001 5] FIG. 6 is a block diagram of a portion of a communications grid computing system

including a control node and a worker node according to some aspects.

[0016] FIG. 7 is a flow chart of an example of a process for executing a data analysis or

processing project according to some aspects.

[0017] FIG. 8 is a block diagram including components of an Event Stream Processing

Engine (ESPE) according to some aspects.

[0018] FIG. 9 is a flow chart of an example of a process including operations performed

by an event stream processing engine according to some aspects.

[0019] FIG. 10 is a block diagram of an ESP system interfacing between a publishing

device and multiple event subscribing devices according to some aspects.

[0020] FIG. 1 1 is a flow chart of an example of a process for generating and using a

machine-learning model according to some aspects.

[0021] FIG. 12 is a node-link diagram of an example of a neural network according to

some aspects.

[0022] FIG. 13 is a block diagram of an example of an advanced control system for a

machine according to some aspects.

[0023] FIG. 14 is a flow chart of an example of a process for controlling operation of a

machine using predictions according to some aspects.

[0024] FIG. 15 is a flow chart of an example of a process for performing an automated

version of singular spectrum analysis on a time series according to some aspects.

[0025] FIG. 16 is a heat map of an example of w-correlation matrix values according to

some aspects.

[0026] FIG. 1 is a flow chart of an example of a process for performing a grouping step

of singular spectrum analysis according to some aspects.

[0027] In the appended figures, similar components or features can have the same



reference label. Further, various components of the same type may be distinguished by following

the reference label by a dash and a second label that distinguishes among the similar components.

If only the first reference label is used in the specification, the description is applicable to any one

of the similar components having the same first reference label irrespective of the second reference

label.

Detailed Description

[0028] In the following description, for the purposes of explanation, specific details are set

forth in order to provide a thorough understanding of examples of the technology. But various

examples can be practiced without these specific details. The figures and description are not

intended to be restrictive.

[0029] The ensuing description provides examples only, and is not intended to limit the

scope, applicability, or configuration of the disclosure. Rather, the ensuing description of the

examples provides those skilled in the art with an enabling description for implementing an

example. Various changes may be made in the function and arrangement of elements without

departing from the spirit and scope of the technology as set forth in the appended claims.

[0030] Specific details are given in the following description to provide a thorough

understanding of the examples. But the examples may be practiced without these specific details.

For example, circuits, systems, networks, processes, and other components can be shown as

components in block diagram form to prevent obscuring the examples in unnecessary detail. In

other examples, well-known circuits, processes, algorithms, structures, and techniques may be

shown without unnecessary detail in order to avoid obscuring the examples.

[0031] Also, individual examples can be described as a process that is depicted as a

flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although

a flowchart can describe the operations as a sequential process, many of the operations can be

performed in parallel or concurrently. In addition, the order of the operations can be re-arranged.

A process is terminated when its operations are completed, but can have additional operations not

included in a figure. A process can correspond to a method, a function, a procedure, a subroutine,

a subprogram, etc. When a process corresponds to a function, its termination can correspond to a

return of the function to the calling function or the main function.

[0032] Systems depicted in some of the figures can be provided in various configurations.



In some examples, the systems can be configured as a distributed system where one or more

components of the system are distributed across one or more networks in a cloud computing

system.

[0033] Certain aspects and features of the present disclosure relate to advanced control

systems for machines. Modern machines can use a variety of control systems to implement various

operations. Typically, these control systems can rely on data from sensors, feedback loops, and

complex mathematical algorithms. But these control systems can be slow; require manual inputs;

perform inadequately under a variety of conditions; and may be unable to prevent errors, failures,

and other undesirable conditions from occurring.

[0034] Some examples of the present disclosure can overcome one or more of the

abovementioned issues by providing a control system that can predict how a machine will perform

in the future and adjust an operational setting of the machine to reduce the likelihood of an

undesirable condition (e.g., an error or failure) from occurring. The control system can generate

the predictions using an automated version of singular spectrum analysis. The control system can

then analyze the predictions to determine, for example, if an error, failure, and other undesirable

condition associated with the machine is going to occur in the future. If so, the control system can

take appropriate preventative action (or corrective action) to prevent the undesirable condition

from occurring. This can prevent damage to the machine and injuries.

[0035] As discussed above, some control systems of the present disclosure can predict how

a machine will operate in the future by performing an automated version of singular spectrum

analysis, in which singular spectrum analysis is performed with little or no human involvement.

The automated version of singular spectrum analysis is different from traditional methods of

performing singular spectrum analysis at least in part because traditional methods of performing

singular spectrum analysis require a human to subjectively determine a spectral partition by

visually analyzing graphs of elementary matrices and eigenvalues. Conversely, the automated

version of singular spectrum analysis uses specific rules to automatically determine the spectral

partition. The specific rules enable the automation of a specific process that previously could not

be automated (e.g., because it was previously performed by humans using subjective

determinations).

[0036] In some examples, the automated version of singular spectrum analysis can enable

singular spectrum analysis to be performed on thousands or millions of time series at speeds that



are impossible for humans to accomplish (e.g., in real time), which can enable the control system

to make important predictions about a machine (e.g., if an undesirable condition is occurring or

will occur) that would otherwise be unable to be made. This can result in better control systems

that can more precisely control operation of the machine to avoid undesirable conditions, resulting

in better machine performance.

[0037] As a particular example, a control system of the present disclosure can be used in

an intelligent transport system that monitors traffic flow and adjusts traffic lights accordingly. The

intelligent transport system can include a variety of sensors that stream real-time sensor data about,

for example, the status of traffic lights back to the control system. The control system can analyze

the sensor data using an automated version of singular spectrum analysis to determine, for

example, if two traffic lights will have a green light at the same time in the near future, which

could lead to a collision. If so, the control system can adjust the timing of one or both of the two

traffic lights to avoid the collision.

[0038] FIGS. 1-12 depict examples of systems and methods usable for controlling

operation of a machine using predictions according to some aspects. For example, FIG. 1 is a

block diagram of an example of the hardware components of a computing system according to

some aspects. Data transmission network 100 is a specialized computer system that may be used

for processing large amounts of data where a large number of computer processing cycles are

required.

[0039] Data transmission network 100 may also include computing environment 114.

Computing environment 114 may be a specialized computer or other machine that processes the

data received within the data transmission network 100. The computing environment 114 may

include one or more other systems. For example, computing environment 114 may include a

database system 118 or a communications grid 120. The computing environment 114 can include

one or more processing devices (e.g., distributed over one or more networks or otherwise in

communication with one another) that, in some examples, can collectively be referred to as a

processor or a processing device.

[0040] Data transmission network 100 also includes one or more network devices 102.

Network devices 102 may include client devices that can communicate with computing

environment 114. For example, network devices 102 may send data to the computing environment

114 to be processed, may send communications to the computing environment 114 to control



different aspects of the computing environment or the data it is processing, among other reasons.

Network devices 102 may interact with the computing environment 114 through a number of ways,

such as, for example, over one or more networks 108.

[0041 ] In some examples, network devices 102 may provide a large amount of data, either

all at once or streaming over a period of time (e.g., using event stream processing (ESP)), to the

computing environment 114 via networks 108. For example, the network devices 102 can transmit

electronic messages for use in creating predictions for controlling operation of a machine, all at

once or streaming over a period of time, to the computing environment 114 via networks 108.

[0042] The network devices 102 may include network computers, sensors, databases, or

other devices that may transmit or otherwise provide data to computing environment 114. For

example, network devices 102 may include local area network devices, such as routers, hubs,

switches, or other computer networking devices. These devices may provide a variety of stored

or generated data, such as network data or data specific to the network devices 102 themselves.

Network devices 102 may also include sensors that monitor their environment or other devices to

collect data regarding that environment or those devices, and such network devices 102 may

provide data they collect over time. Network devices 102 may also include devices within the

internet of things, such as devices within a home automation network. Some of these devices may

be referred to as edge devices, and may involve edge-computing circuitry. Data may be transmitted

by network devices 102 directly to computing environment 114 or to network-attached data stores,

such as network-attached data stores 110 for storage so that the data may be retrieved later by the

computing environment 114 or other portions of data transmission network 100. For example, the

network devices 102 can transmit data usable for creating predictions to a network-attached data

store 110 for storage. The computing environment 114 may later retrieve the data from the

network-attached data store 110 and use the data to control operation of a machine using

predictions.

[0043] Network-attached data stores 110 can store data to be processed by the computing

environment 114 as well as any intermediate or final data generated by the computing system in

non-volatile memory. But in certain examples, the configuration of the computing environment

114 allows its operations to be performed such that intermediate and final data results can be stored

solely in volatile memory (e.g., RAM), without a requirement that intermediate or final data results

be stored to non-volatile types of memory (e.g., disk). This can be useful in certain situations,



such as when the computing environment 114 receives ad hoc queries from a user and when

responses, which are generated by processing large amounts of data, need to be generated

dynamically (e.g., on the fly). In this situation, the computing environment 114 may be configured

to retain the processed information within memory so that responses can be generated for the user

at different levels of detail as well as allow a user to interactively query against this information.

[0044] Network-attached data stores 110 may store a variety of different types of data

organized in a variety of different ways and from a variety of different sources. For example,

network-attached data stores may include storage other than primary storage located within

computing environment 114 that is directly accessible by processors located therein. Network-

attached data stores may include secondary, tertiary or auxiliary storage, such as large hard drives,

servers, virtual memory, among other types. Storage devices may include portable or non-portable

storage devices, optical storage devices, and various other mediums capable of storing, containing

data. A machine-readable storage medium or computer-readable storage medium may include a

non-transitory medium in which data can be stored and that does not include carrier waves or

transitory electronic communications. Examples of a non-transitory medium may include, for

example, a magnetic disk or tape, optical storage media such as compact disk or digital versatile

disk, flash memory, memory or memory devices. A computer-program product may include code

or machine-executable instructions that may represent a procedure, a function, a subprogram, a

program, a routine, a subroutine, a module, a software package, a class, or any combination of

instructions, data structures, or program statements. A code segment may be coupled to another

code segment or a hardware circuit by passing or receiving information, data, arguments,

parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed,

forwarded, or transmitted via any suitable means including memory sharing, message passing,

token passing, network transmission, among others. Furthermore, the data stores may hold a

variety of different types of data. For example, network-attached data stores 110 may hold

unstructured (e.g., raw) data.

[0045] The unstructured data may be presented to the computing environment 114 in

different forms such as a flat file or a conglomerate of data records, and may have data values and

accompanying time stamps. The computing environment 114 may be used to analyze the

unstructured data in a variety of ways to determine the best way to structure (e.g., hierarchically)

that data, such that the structured data is tailored to a type of further analysis that a user wishes to



perform on the data. For example, after being processed, the unstructured time-stamped data may

be aggregated by time (e.g., into daily time period units) to generate time series data or structured

hierarchically according to one or more dimensions (e.g., parameters, attributes, or variables). For

example, data may be stored in a hierarchical data structure, such as a relational online analytical

processing (ROLAP) or multidimensional online analytical processing (MOLAP) database, or

may be stored in another tabular form, such as in a flat-hierarchy form.

[0046] Data transmission network 100 may also include one or more server farms 106.

Computing environment 114 may route select communications or data to the sever farms 106 or

one or more servers within the server farms 106. Server farms 106 can be configured to provide

information in a predetermined manner. For example, server farms 106 may access data to

transmit in response to a communication. Server farms 106 may be separately housed from each

other device within data transmission network 100, such as computing environment 114, or may

be part of a device or system.

[0047] Server farms 106 may host a variety of different types of data processing as part of

data transmission network 100. Server farms 106 may receive a variety of different data from

network devices, from computing environment 114, from cloud network 116, or from other

sources. The data may have been obtained or collected from one or more websites, sensors, as

inputs from a control database, or may have been received as inputs from an external system or

device. Server farms 106 may assist in processing the data by turning raw data into processed data

based on one or more rules implemented by the server farms. For example, sensor data may be

analyzed to determine changes in an environment over time or in real-time.

[0048] Data transmission network 100 may also include one or more cloud networks 116.

Cloud network 116 may include a cloud infrastructure system that provides cloud services. In

certain examples, services provided by the cloud network 116 may include a host of services that

are made available to users of the cloud infrastructure system on demand. Cloud network 116 is

shown in FIG. 1 as being connected to computing environment 114 (and therefore having

computing environment 114 as its client or user), but cloud network 116 may be connected to or

utilized by any of the devices in FIG. 1 . Services provided by the cloud network 116 can

dynamically scale to meet the needs of its users. The cloud network 116 may include one or more

computers, servers, or systems. In some examples, the computers, servers, or systems that make

up the cloud network 116 are different from the user's own on-premises computers, servers, or



systems. For example, the cloud network 116 may host an application, and a user may, via a

communication network such as the Internet, order and use the application on demand. In some

examples, the cloud network 116 may host an application for creating predictions (e.g., for

controlling operation of a machine).

[0049] While each device, server, and system in FIG. 1 is shown as a single device,

multiple devices may instead be used. For example, a set of network devices can be used to

transmit various communications from a single user, or remote server 140 may include a server

stack. As another example, data may be processed as part of computing environment 114.

[0050] Each communication within data transmission network 100 (e.g., between client

devices, between a device and connection management system 150, between server farms 106 and

computing environment 114, or between a server and a device) may occur over one or more

networks 108. Networks 108 may include one or more of a variety of different types of networks,

including a wireless network, a wired network, or a combination of a wired and wireless network.

Examples of suitable networks include the Internet, a personal area network, a local area network

(LAN), a wide area network (WAN), or a wireless local area network (WLAN). A wireless

network may include a wireless interface or combination of wireless interfaces. As an example, a

network in the one or more networks 108 may include a short-range communication channel, such

as a Bluetooth or a Bluetooth Low Energy channel. A wired network may include a wired

interface. The wired or wireless networks may be implemented using routers, access points,

bridges, gateways, or the like, to connect devices in the network 108. The networks 108 can be

incorporated entirely within or can include an intranet, an extranet, or a combination thereof. In

one example, communications between two or more systems or devices can be achieved by a

secure communications protocol, such as secure sockets layer (SSL) or transport layer security

(TLS). In addition, data or transactional details may be encrypted.

[0051 ] Some aspects may utilize the Internet of Things (IoT), where things (e.g., machines,

devices, phones, sensors) can be connected to networks and the data from these things can be

collected and processed within the things or external to the things. For example, the IoT can

include sensors in many different devices, and high value analytics can be applied to identify

hidden relationships and drive increased efficiencies. This can apply to both big data analytics

and real-time (e.g., ESP) analytics.

[0052] As noted, computing environment 114 may include a communications grid 1 0 and



a transmission network database system 118. Communications grid 120 may be a grid-based

computing system for processing large amounts of data. The transmission network database

system 118 may be for managing, storing, and retrieving large amounts of data that are distributed

to and stored in the one or more network-attached data stores 110 or other data stores that reside

at different locations within the transmission network database system 118. The computing nodes

in the communications grid 120 and the transmission network database system 118 may share the

same processor hardware, such as processors that are located within computing environment 114.

[0053] In some examples, the computing environment 114, a network device 102, or both

can implement one or more processes for creating predictions (e.g., for controlling operation of a

machine). For example, the computing environment 114, a network device 102, or both can

implement one or more versions of the processes discussed with respect to any of the figures.

[0054] FIG. 2 is an example of devices that can communicate with each other over an

exchange system and via a network according to some aspects. As noted, each communication

within data transmission network 100 may occur over one or more networks. System 200 includes

a network device 204 configured to communicate with a variety of types of client devices, for

example client devices 230, over a variety of types of communication channels.

[0055] As shown in FIG. 2, network device 204 can transmit a communication over a

network (e.g., a cellular network via a base station 210). In some examples, the communication

can include times series data. The communication can be routed to another network device, such

as network devices 205-209, via base station 210. The communication can also be routed to

computing environment 214 via base station 210. In some examples, the network device 204 may

collect data either from its surrounding environment or from other network devices (such as

network devices 205-209) and transmit that data to computing environment 214.

[0056] Although network devices 204-209 are shown in FIG. 2 as a mobile phone, laptop

computer, tablet computer, temperature sensor, motion sensor, and audio sensor respectively, the

network devices may be or include sensors that are sensitive to detecting aspects of their

environment. For example, the network devices may include sensors such as water sensors, power

sensors, electrical current sensors, chemical sensors, optical sensors, pressure sensors, geographic

or position sensors (e.g., GPS), velocity sensors, acceleration sensors, flow rate sensors, among

others. Examples of characteristics that may be sensed include force, torque, load, strain, position,

temperature, air pressure, fluid flow, chemical properties, resistance, electromagnetic fields,



radiation, irradiance, proximity, acoustics, moisture, distance, speed, vibrations, acceleration,

electrical potential, and electrical current, among others. The sensors may be mounted to various

components used as part of a variety of different types of systems. The network devices may

detect and record data related to the environment that it monitors, and transmit that data to

computing environment 214.

[0057] The network devices 204-209 may also perform processing on data it collects

before transmitting the data to the computing environment 214, or before deciding whether to

transmit data to the computing environment 214. For example, network devices 204-209 may

determine whether data collected meets certain rules, for example by comparing data or values

calculated from the data and comparing that data to one or more thresholds. The network devices

204-209 may use this data or comparisons to determine if the data is to be transmitted to the

computing environment 214 for further use or processing. In some examples, the network devices

204-209 can pre-process the data prior to transmitting the data to the computing environment 214.

For example, the network devices 204-209 can reformat the data before transmitting the data to

the computing environment 214 for further processing (e.g., analyzing the data to control operation

of a machine).

[0058] Computing environment 214 may include machines 220, 240. Although computing

environment 214 is shown in FIG. 2 as having two machines 220, 240, computing environment

214 may have only one machine or may have more than two machines. The machines 220, 240

that make up computing environment 214 may include specialized computers, servers, or other

machines that are configured to individually or collectively process large amounts of data. The

computing environment 214 may also include storage devices that include one or more databases

of structured data, such as data organized in one or more hierarchies, or unstructured data. The

databases may communicate with the processing devices within computing environment 214 to

distribute data to them. Since network devices may transmit data to computing environment 214,

that data may be received by the computing environment 214 and subsequently stored within those

storage devices. Data used by computing environment 214 may also be stored in data stores 235,

which may also be a part of or connected to computing environment 214.

[0059] Computing environment 214 can communicate with various devices via one or

more routers 225 or other inter-network or intra-network connection components. For example,

computing environment 214 may communicate with client devices 230 via one or more routers



225. Computing environment 214 may collect, analyze or store data from or pertaining to

communications, client device operations, client rules, or user-associated actions stored at one or

more data stores 235. Such data may influence communication routing to the devices within

computing environment 214, how data is stored or processed within computing environment 214,

among other actions.

[0060] Notably, various other devices can further be used to influence communication

routing or processing between devices within computing environment 214 and with devices

outside of computing environment 214. For example, as shown in FIG. 2, computing environment

214 may include a machine 240 that is a web server. Computing environment 214 can retrieve

data of interest, such as client information (e.g., product information, client rules, etc.), technical

product details, news, blog posts, e-mails, forum posts, electronic documents, social media posts

(e.g., Twitter™ posts or Facebook ™ posts), time series data, and so on.

[0061] In addition to computing environment 214 collecting data (e.g., as received from

network devices, such as sensors, and client devices or other sources) to be processed as part of a

big data analytics project, it may also receive data in real time as part of a streaming analytics

environment. As noted, data may be collected using a variety of sources as communicated via

different kinds of networks or locally. Such data may be received on a real-time streaming basis.

For example, network devices 204-209 may receive data periodically and in real time from a web

server or other source. Devices within computing environment 214 may also perform pre-analysis

on data it receives to determine if the data received should be processed as part of an ongoing

project. For example, as part of a project in which the operation of a machine is controlled based

on data, the computing environment 214 can perform a pre-analysis of the data. The pre-analysis

can include determining whether the data is in a correct format for creating predictions using the

data and, if not, reformatting the data into the correct format.

[0062] FIG. 3 is a block diagram of a model of an example of a communications protocol

system according to some aspects. More specifically, FIG. 3 identifies operation of a computing

environment in an Open Systems Interaction model that corresponds to various connection

components. The model 300 shows, for example, how a computing environment, such as

computing environment (or computing environment 214 in FIG. 2) may communicate with other

devices in its network, and control how communications between the computing environment and

other devices are executed and under what conditions.



[0063] The model 300 can include layers 302-314. The layers 302-314 are arranged in a

stack. Each layer in the stack serves the layer one level higher than it (except for the application

layer, which is the highest layer), and is served by the layer one level below it (except for the

physical layer 302, which is the lowest layer). The physical layer 302 is the lowest layer because

it receives and transmits raw bites of data, and is the farthest layer from the user in a

communications system. On the other hand, the application layer is the highest layer because it

interacts directly with a software application.

[0064] As noted, the model 300 includes a physical layer 302. Physical layer 302

represents physical communication, and can define parameters of that physical communication.

For example, such physical communication may come in the form of electrical, optical, or

electromagnetic communications. Physical layer 302 also defines protocols that may control

communications within a data transmission network.

[0065] Link layer 304 defines links and mechanisms used to transmit (e.g., move) data

across a network. The link layer manages node-to-node communications, such as within a grid-

computing environment. Link layer 304 can detect and correct errors (e.g., transmission errors in

the physical layer 302). Link layer 304 can also include a media access control (MAC) layer and

logical link control (LLC) layer.

[0066] Network layer 306 can define the protocol for routing within a network. In other

words, the network layer coordinates transferring data across nodes in a same network (e.g., such

as a grid-computing environment). Network layer 306 can also define the processes used to

structure local addressing within the network.

[0067] Transport layer 308 can manage the transmission of data and the quality of the

transmission or receipt of that data. Transport layer 308 can provide a protocol for transferring

data, such as, for example, a Transmission Control Protocol (TCP). Transport layer 308 can

assemble and disassemble data frames for transmission. The transport layer can also detect

transmission errors occurring in the layers below it.

[0068] Session layer 310 can establish, maintain, and manage communication connections

between devices on a network. In other words, the session layer controls the dialogues or nature

of communications between network devices on the network. The session layer may also establish

checkpointing, adjournment, termination, and restart procedures.

[0069] Presentation layer 312 can provide translation for communications between the



application and network layers. In other words, this layer may encrypt, decrypt or format data

based on data types known to be accepted by an application or network layer.

[0070] Application layer 314 interacts directly with software applications and end users,

and manages communications between them. Application layer 314 can identify destinations, local

resource states or availability or communication content or formatting using the applications.

[0071] For example, a communication link can be established between two devices on a

network. One device can transmit an analog or digital representation of an electronic message that

includes a data set to the other device. The other device can receive the analog or digital

representation at the physical layer 302. The other device can transmit the data associated with

the electronic message through the remaining layers 304-314. The application layer 314 can

receive data associated with the electronic message. The application layer 314 can identify one or

more applications, such as an application for creating predictions (e.g., for controlling operation

of a machine), to which to transmit data associated with the electronic message. The application

layer 314 can transmit the data to the identified application.

[0072] Intra-network connection components 322, 324 can operate in lower levels, such as

physical layer 302 and link layer 304, respectively. For example, a hub can operate in the physical

layer, a switch can operate in the physical layer, and a router can operate in the network layer.

Inter-network connection components 326, 328 are shown to operate on higher levels, such as

layers 306-314. For example, routers can operate in the network layer and network devices can

operate in the transport, session, presentation, and application layers.

[0073] A computing environment 330 can interact with or operate on, in various examples,

one, more, all or any of the various layers. For example, computing environment 330 can interact

with a hub (e.g., via the link layer) to adjust which devices the hub communicates with. The

physical layer 302 may be served by the link layer 304, so it may implement such data from the

link layer 304. For example, the computing environment 330 may control which devices from

which it can receive data. For example, if the computing environment 330 knows that a certain

network device has turned off, broken, or otherwise become unavailable or unreliable, the

computing environment 330 may instruct the hub to prevent any data from being transmitted to

the computing environment 330 from that network device. Such a process may be beneficial to

avoid receiving data that is inaccurate or that has been influenced by an uncontrolled environment.

As another example, computing environment 330 can communicate with a bridge, switch, router



or gateway and influence which device within the system (e.g., system 200) the component selects

as a destination. In some examples, computing environment 330 can interact with various layers

by exchanging communications with equipment operating on a particular layer by routing or

modifying existing communications. In another example, such as in a grid-computing

environment, a node may determine how data within the environment should be routed (e.g., which

node should receive certain data) based on certain parameters or information provided by other

layers within the model.

[0074] The computing environment 330 may be a part of a communications grid

environment, the communications of which may be implemented as shown in the protocol of FIG.

3 . For example, referring back to FIG. 2, one or more of machines 220 and 240 may be part of a

communications grid-computing environment. A gridded computing environment may be

employed in a distributed system with non-interactive workloads where data resides in memory

on the machines, or compute nodes. In such an environment, analytic code, instead of a database

management system, can control the processing performed by the nodes. Data is co-located by

pre-distributing it to the grid nodes, and the analytic code on each node loads the local data into

memory. Each node may be assigned a particular task, such as a portion of a processing project,

or to organize or control other nodes within the grid. For example, each node may be assigned a

portion of a processing task for controlling operation of a machine using predictions.

[0075] FIG. 4 is a hierarchical diagram of an example of a communications grid computing

system 400 including a variety of control and worker nodes according to some aspects.

Communications grid computing system 400 includes three control nodes and one or more worker

nodes. Communications grid computing system 400 includes control nodes 402, 404, and 406.

The control nodes are communicatively connected via communication paths 451, 453, and 455.

The control nodes 402-406 may transmit information (e.g., related to the communications grid or

notifications) to and receive information from each other. Although communications grid

computing system 400 is shown in FIG. 4 as including three control nodes, the communications

grid may include more or less than three control nodes.

[0076] Communications grid computing system 400 (which can be referred to as a

"communications grid") also includes one or more worker nodes. Shown in FIG. 4 are six worker

nodes 410-420. Although FIG. 4 shows six worker nodes, a communications grid can include

more or less than six worker nodes. The number of worker nodes included in a communications



grid may be dependent upon how large the project or data set is being processed by the

communications grid, the capacity of each worker node, the time designated for the

communications grid to complete the project, among others. Each worker node within the

communications grid computing system 400 may be connected (wired or wirelessly, and directly

or indirectly) to control nodes 402-406. Each worker node may receive information from the

control nodes (e.g., an instruction to perform work on a project) and may transmit information to

the control nodes (e.g., a result from work performed on a project). Furthermore, worker nodes

may communicate with each other directly or indirectly. For example, worker nodes may transmit

data between each other related to a job being performed or an individual task within a job being

performed by that worker node. In some examples, worker nodes may not be connected

(communicatively or otherwise) to certain other worker nodes. For example, a worker node 410

may only be able to communicate with a particular control node 402. The worker node 410 may

be unable to communicate with other worker nodes 412-420 in the communications grid, even if

the other worker nodes 412-420 are controlled by the same control node 402.

[0077] A control node 402-406 may connect with an external device with which the control

node 402-406 may communicate (e.g., a communications grid user, such as a server or computer,

may connect to a controller of the grid). For example, a server or computer may connect to control

nodes 402-406 and may transmit a project or job to the node, such as a project or job related to

creating predictions for controlling operation of a machine. The project may include the data set.

The data set may be of any size and can include a time series. Once the control node 402-406

receives such a project including a large data set, the control node may distribute the data set or

projects related to the data set to be performed by worker nodes. Alternatively, for a project

including a large data set, the data set may be receive or stored by a machine other than a control

node 402-406 (e.g., a Hadoop data node).

[0078] Control nodes 402-406 can maintain knowledge of the status of the nodes in the

grid (e.g., grid status information), accept work requests from clients, subdivide the work across

worker nodes, and coordinate the worker nodes, among other responsibilities. Worker nodes 412-

420 may accept work requests from a control node 402-406 and provide the control node with

results of the work performed by the worker node. A grid may be started from a single node (e.g.,

a machine, computer, server, etc.). This first node may be assigned or may start as the primary

control node 402 that will control any additional nodes that enter the grid.



[0079] When a project is submitted for execution (e.g., by a client or a controller of the

grid) it may be assigned to a set of nodes. After the nodes are assigned to a project, a data structure

(e.g., a communicator) may be created. The communicator may be used by the project for

information to be shared between the project code running on each node. A communication handle

may be created on each node. A handle, for example, is a reference to the communicator that is

valid within a single process on a single node, and the handle may be used when requesting

communications between nodes.

[0080] A control node, such as control node 402, may be designated as the primary control

node. A server, computer or other external device may connect to the primary control node. Once

the control node 402 receives a project, the primary control node may distribute portions of the

project to its worker nodes for execution. For example, a project for creating predictions can be

initiated on communications grid computing system 400. A primary control node can control the

work to be performed for the project in order to complete the project as requested or instructed.

The primary control node may distribute work to the worker nodes 412-420 based on various

factors, such as which subsets or portions of projects may be completed most efficiently and in the

correct amount of time. For example, a worker node 412 may create a prediction using at least a

portion of data that is already local (e.g., stored on) the worker node. The primary control node

also coordinates and processes the results of the work performed by each worker node 412-420

after each worker node 412-420 executes and completes its job. For example, the primary control

node may receive a result from one or more worker nodes 412-420, and the primary control node

may organize (e.g., collect and assemble) the results received and compile them to produce a

complete result for the project received from the end user.

[0081 ] Any remaining control nodes, such as control nodes 404, 406, may be assigned as

backup control nodes for the project. In an example, backup control nodes may not control any

portion of the project. Instead, backup control nodes may serve as a backup for the primary control

node and take over as primary control node if the primary control node were to fail. If a

communications grid were to include only a single control node 402, and the control node 402

were to fail (e.g., the control node is shut off or breaks) then the communications grid as a whole

may fail and any project or job being run on the communications grid may fail and may not

complete. While the project may be run again, such a failure may cause a delay (severe delay in

some cases, such as overnight delay) in completion of the project. Therefore, a grid with multiple



control nodes 402-406, including a backup control node, may be beneficial.

[0082] In some examples, the primary control node may open a pair of listening sockets to

add another node or machine to the grid. A socket may be used to accept work requests from

clients, and the second socket may be used to accept connections from other grid nodes. The

primary control node may be provided with a list of other nodes (e.g., other machines, computers,

servers, etc.) that can participate in the grid, and the role that each node can fill in the grid. Upon

startup of the primary control node (e.g., the first node on the grid), the primary control node may

use a network protocol to start the server process on every other node in the grid. Command line

parameters, for example, may inform each node of one or more pieces of information, such as: the

role that the node will have in the grid, the host name of the primary control node, the port number

on which the primary control node is accepting connections from peer nodes, among others. The

information may also be provided in a configuration file, transmitted over a secure shell tunnel,

recovered from a configuration server, among others. While the other machines in the grid may

not initially know about the configuration of the grid, that information may also be sent to each

other node by the primary control node. Updates of the grid information may also be subsequently

sent to those nodes.

[0083] For any control node other than the primary control node added to the grid, the

control node may open three sockets. The first socket may accept work requests from clients, the

second socket may accept connections from other grid members, and the third socket may connect

(e.g., permanently) to the primary control node. When a control node (e.g., primary control node)

receives a connection from another control node, it first checks to see if the peer node is in the list

of configured nodes in the grid. If it is not on the list, the control node may clear the connection.

If it is on the list, it may then attempt to authenticate the connection. If authentication is successful,

the authenticating node may transmit information to its peer, such as the port number on which a

node is listening for connections, the host name of the node, information about how to authenticate

the node, among other information. When a node, such as the new control node, receives

information about another active node, it can check to see if it already has a connection to that

other node. If it does not have a connection to that node, it may then establish a connection to that

control node.

[0084] Any worker node added to the grid may establish a connection to the primary

control node and any other control nodes on the grid. After establishing the connection, it may



authenticate itself to the grid (e.g., any control nodes, including both primary and backup, or a

server or user controlling the grid). After successful authentication, the worker node may accept

configuration information from the control node.

[0085] When a node joins a communications grid (e.g., when the node is powered on or

connected to an existing node on the grid or both), the node is assigned (e.g., by an operating

system of the grid) a universally unique identifier (UUID). This unique identifier may help other

nodes and external entities (devices, users, etc.) to identify the node and distinguish it from other

nodes. When a node is connected to the grid, the node may share its unique identifier with the

other nodes in the grid. Since each node may share its unique identifier, each node may know the

unique identifier of every other node on the grid. Unique identifiers may also designate a hierarchy

of each of the nodes (e.g., backup control nodes) within the grid. For example, the unique

identifiers of each of the backup control nodes may be stored in a list of backup control nodes to

indicate an order in which the backup control nodes will take over for a failed primary control

node to become a new primary control node. But, a hierarchy of nodes may also be determined

using methods other than using the unique identifiers of the nodes. For example, the hierarchy

may be predetermined, or may be assigned based on other predetermined factors.

[0086] The grid may add new machines at any time (e.g., initiated from any control node).

Upon adding a new node to the grid, the control node may first add the new node to its table of

grid nodes. The control node may also then notify every other control node about the new node.

The nodes receiving the notification may acknowledge that they have updated their configuration

information.

[0087] Primary control node 402 may, for example, transmit one or more communications

to backup control nodes 404, 406 (and, for example, to other control or worker nodes 412-420

within the communications grid). Such communications may be sent periodically, at fixed time

intervals, between known fixed stages of the project's execution, among other protocols. The

communications transmitted by primary control node 402 may be of varied types and may include

a variety of types of information. For example, primary control node 402 may transmit snapshots

(e.g., status information) of the communications grid so that backup control node 404 always has

a recent snapshot of the communications grid. The snapshot or grid status may include, for

example, the structure of the grid (including, for example, the worker nodes 410-420 in the

communications grid, unique identifiers of the worker nodes 410-420, or their relationships with



the primary control node 402) and the status of a project (including, for example, the status of each

worker node's portion of the project). The snapshot may also include analysis or results received

from worker nodes 410-420 in the communications grid. The backup control nodes 404, 406 may

receive and store the backup data received from the primary control node 402. The backup control

nodes 404, 406 may transmit a request for such a snapshot (or other information) from the primary

control node 402, or the primary control node 402 may send such information periodically to the

backup control nodes 404, 406.

[0088] As noted, the backup data may allow a backup control node 404, 406 to take over

as primary control node if the primary control node 402 fails without requiring the communications

grid to start the project over from scratch. If the primary control node 402 fails, the backup control

node 404, 406 that will take over as primary control node may retrieve the most recent version of

the snapshot received from the primary control node 402 and use the snapshot to continue the

project from the stage of the project indicated by the backup data. This may prevent failure of the

project as a whole.

[0089] A backup control node 404, 406 may use various methods to determine that the

primary control node 402 has failed. In one example of such a method, the primary control node

402 may transmit (e.g., periodically) a communication to the backup control node 404, 406 that

indicates that the primary control node 402 is working and has not failed, such as a heartbeat

communication. The backup control node 404, 406 may determine that the primary control node

402 has failed if the backup control node has not received a heartbeat communication for a certain

predetermined period of time. Alternatively, a backup control node 404, 406 may also receive a

communication from the primary control node 402 itself (before it failed) or from a worker node

410-420 that the primary control node 402 has failed, for example because the primary control

node 402 has failed to communicate with the worker node 410-420.

[0090] Different methods may be performed to determine which backup control node of a

set of backup control nodes (e.g., backup control nodes 404, 406) can take over for failed primary

control node 402 and become the new primary control node. For example, the new primary control

node may be chosen based on a ranking or "hierarchy" of backup control nodes based on their

unique identifiers. In an alternative example, a backup control node may be assigned to be the

new primary control node by another device in the communications grid or from an external device

(e.g., a system infrastructure or an end user, such as a server or computer, controlling the



communications grid). In another alternative example, the backup control node that takes over as

the new primary control node may be designated based on bandwidth or other statistics about the

communications grid.

[0091] A worker node within the communications grid may also fail. If a worker node

fails, work being performed by the failed worker node may be redistributed amongst the

operational worker nodes. In an alternative example, the primary control node may transmit a

communication to each of the operable worker nodes still on the communications grid that each of

the worker nodes should purposefully fail also. After each of the worker nodes fail, they may each

retrieve their most recent saved checkpoint of their status and re-start the project from that

checkpoint to minimize lost progress on the project being executed. In some examples, a

communications grid computing system 400 can be used to create predictions (e.g., for controlling

operation of a machine).

[0092] FIG. 5 is a flow chart of an example of a process for adjusting a communications

grid or a work project in a communications grid after a failure of a node according to some aspects.

The process may include, for example, receiving grid status information including a project status

of a portion of a project being executed by a node in the communications grid, as described in

operation 502. For example, a control node (e.g., a backup control node connected to a primary

control node and a worker node on a communications grid) may receive grid status information,

where the grid status information includes a project status of the primary control node or a project

status of the worker node. The project status of the primary control node and the project status of

the worker node may include a status of one or more portions of a project being executed by the

primary and worker nodes in the communications grid. The process may also include storing the

grid status information, as described in operation 504. For example, a control node (e.g., a backup

control node) may store the received grid status information locally within the control node.

Alternatively, the grid status information may be sent to another device for storage where the

control node may have access to the information.

[0093] The process may also include receiving a failure communication corresponding to

a node in the communications grid in operation 506. For example, a node may receive a failure

communication including an indication that the primary control node has failed, prompting a

backup control node to take over for the primary control node. In an alternative embodiment, a

node may receive a failure that a worker node has failed, prompting a control node to reassign the



work being performed by the worker node. The process may also include reassigning a node or a

portion of the project being executed by the failed node, as described in operation 508. For

example, a control node may designate the backup control node as a new primary control node

based on the failure communication upon receiving the failure communication. If the failed node

is a worker node, a control node may identify a project status of the failed worker node using the

snapshot of the communications grid, where the project status of the failed worker node includes

a status of a portion of the project being executed by the failed worker node at the failure time.

[0094] The process may also include receiving updated grid status information based on

the reassignment, as described in operation 510, and transmitting a set of instructions based on the

updated grid status information to one or more nodes in the communications grid, as described in

operation 512. The updated grid status information may include an updated project status of the

primary control node or an updated project status of the worker node. The updated information

may be transmitted to the other nodes in the grid to update their stale stored information.

[0095] FIG. 6 is a block diagram of a portion of a communications grid computing system

600 including a control node and a worker node according to some aspects. Communications grid

600 computing system includes one control node (control node 602) and one worker node (worker

node 610) for purposes of illustration, but may include more worker and/or control nodes. The

control node 602 is communicatively connected to worker node 610 via communication path 650.

Therefore, control node 602 may transmit information (e.g., related to the communications grid or

notifications), to and receive information from worker node 610 via communication path 650.

[0096] Similar to in FIG. 4, communications grid computing system (or just

"communications grid") 600 includes data processing nodes (control node 602 and worker node

610). Nodes 602 and 610 comprise multi-core data processors. Each node 602 and 610 includes a

grid-enabled software component (GESC) 620 that executes on the data processor associated with

that node and interfaces with buffer memory 622 also associated with that node. Each node 602

and 610 includes database management software (DBMS) 628 that executes on a database server

(not shown) at control node 602 and on a database server (not shown) at worker node 610.

[0097] Each node also includes a data store 624. Data stores 624, similar to network-

attached data stores 110 in FIG. 1 and data stores 235 in FIG. 2, are used to store data to be

processed by the nodes in the computing environment. Data stores 624 may also store any

intermediate or final data generated by the computing system after being processed, for example



in non-volatile memory. However in certain examples, the configuration of the grid computing

environment allows its operations to be performed such that intermediate and final data results can

be stored solely in volatile memory (e.g., RAM), without a requirement that intermediate or final

data results be stored to non-volatile types of memory. Storing such data in volatile memory may

be useful in certain situations, such as when the grid receives queries (e.g., ad hoc) from a client

and when responses, which are generated by processing large amounts of data, need to be

generated quickly or on-the-fly. In such a situation, the grid may be configured to retain the data

within memory so that responses can be generated at different levels of detail and so that a client

may interactively query against this information.

[0098] Each node also includes a user-defined function (UDF) 626. The UDF provides a

mechanism for the DMBS 628 to transfer data to or receive data from the database stored in the

data stores 624 that are managed by the DBMS. For example, UDF 626 can be invoked by the

DBMS to provide data to the GESC for processing. The UDF 626 may establish a socket

connection (not shown) with the GESC to transfer the data. Alternatively, the UDF 626 can transfer

data to the GESC by writing data to shared memory accessible by both the UDF and the GESC.

[0099] The GESC 620 at the nodes 602 and 610 may be connected via a network, such as

network 108 shown in FIG. 1 . Therefore, nodes 602 and 610 can communicate with each other

via the network using a predetermined communication protocol such as, for example, the Message

Passing Interface (MPI). Each GESC 620 can engage in point-to-point communication with the

GESC at another node or in collective communication with multiple GESCs via the network. The

GESC 620 at each node may contain identical (or nearly identical) software instructions. Each

node may be capable of operating as either a control node or a worker node. The GESC at the

control node 602 can communicate, over a communication path 652, with a client device 630.

More specifically, control node 602 may communicate with client application 632 hosted by the

client device 630 to receive queries and to respond to those queries after processing large amounts

of data.

[00100] DMBS 628 may control the creation, maintenance, and use of database or data

structure (not shown) within nodes 602 or 610. The database may organize data stored in data

stores 624. The DMBS 628 at control node 602 may accept requests for data and transfer the

appropriate data for the request. With such a process, collections of data may be distributed across

multiple physical locations. In this example, each node 602 and 610 stores a portion of the total



data managed by the management system in its associated data store 624.

[001 0 1] Furthermore, the DBMS may be responsible for protecting against data loss using

replication techniques. Replication includes providing a backup copy of data stored on one node

on one or more other nodes. Therefore, if one node fails, the data from the failed node can be

recovered from a replicated copy residing at another node. However, as described herein with

respect to FIG. 4, data or status information for each node in the communications grid may also be

shared with each node on the grid.

[001 02] FIG. 7 is a flow chart of an example of a process for executing a data analysis or a

processing project according to some aspects. As described with respect to FIG. 6, the GESC at

the control node may transmit data with a client device (e.g., client device 630) to receive queries

for executing a project and to respond to those queries after large amounts of data have been

processed. The query may be transmitted to the control node, where the query may include a

request for executing a project, as described in operation 702. The query can contain instructions

on the type of data analysis to be performed in the project and whether the project should be

executed using the grid-based computing environment, as shown in operation 704.

[001 03] To initiate the project, the control node may determine if the query requests use of

the grid-based computing environment to execute the project. If the determination is no, then the

control node initiates execution of the project in a solo environment (e.g., at the control node), as

described in operation 710. If the determination is yes, the control node may initiate execution of

the project in the grid-based computing environment, as described in operation 706. In such a

situation, the request may include a requested configuration of the grid. For example, the request

may include a number of control nodes and a number of worker nodes to be used in the grid when

executing the project. After the project has been completed, the control node may transmit results

of the analysis yielded by the grid, as described in operation 708. Whether the project is executed

in a solo or grid-based environment, the control node provides the results of the project.

[001 04] As noted with respect to FIG. 2, the computing environments described herein may

collect data (e.g., as received from network devices, such as sensors, such as network devices 204-

209 in FIG. 2, and client devices or other sources) to be processed as part of a data analytics project,

and data may be received in real time as part of a streaming analytics environment (e.g., ESP).

Data may be collected using a variety of sources as communicated via different kinds of networks

or locally, such as on a real-time streaming basis. For example, network devices may receive data



periodically from network device sensors as the sensors continuously sense, monitor and track

changes in their environments. More specifically, an increasing number of distributed applications

develop or produce continuously flowing data from distributed sources by applying queries to the

data before distributing the data to geographically distributed recipients. An event stream

processing engine (ESPE) may continuously apply the queries to the data as it is received and

determines which entities should receive the data. Client or other devices may also subscribe to

the ESPE or other devices processing ESP data so that they can receive data after processing, based

on for example the entities determined by the processing engine. For example, client devices 230

in FIG. 2 may subscribe to the ESPE in computing environment 214. In another example, event

subscription devices 1024a-c, described further with respect to FIG. 10, may also subscribe to the

ESPE. The ESPE may determine or define how input data or event streams from network devices

or other publishers (e.g., network devices 204-209 in FIG. 2) are transformed into meaningful

output data to be consumed by subscribers, such as for example client devices 230 in FIG. 2 .

[00105] FIG. 8 is a block diagram including components of an Event Stream Processing

Engine (ESPE) according to some aspects. ESPE 800 may include one or more projects 802. A

project may be described as a second-level container in an engine model managed by ESPE 800

where a thread pool size for the project may be defined by a user. Each project of the one or more

projects 802 may include one or more continuous queries 804 that contain data flows, which are

data transformations of incoming event streams. The one or more continuous queries 804 may

include one or more source windows 806 and one or more derived windows 808.

[00106] The ESPE may receive streaming data over a period of time related to certain

events, such as events or other data sensed by one or more network devices. The ESPE may

perform operations associated with processing data created by the one or more devices. For

example, the ESPE may receive data from the one or more network devices 204-209 shown in

FIG. 2 . As noted, the network devices may include sensors that sense different aspects of their

environments, and may collect data over time based on those sensed observations. For example,

the ESPE may be implemented within one or more of machines 220 and 240 shown in FIG. 2 . The

ESPE may be implemented within such a machine by an ESP application. An ESP application

may embed an ESPE with its own dedicated thread pool or pools into its application space where

the main application thread can do application-specific work and the ESPE processes event streams

at least by creating an instance of a model into processing objects.



[00107] The engine container is the top-level container in a model that manages the

resources of the one or more projects 802. In an illustrative example, there may be only one ESPE

800 for each instance of the ESP application, and ESPE 800 may have a unique engine name.

Additionally, the one or more projects 802 may each have unique project names, and each query

may have a unique continuous query name and begin with a uniquely named source window of

the one or more source windows 806. ESPE 800 may or may not be persistent.

[001 08] Continuous query modeling involves defining directed graphs of windows for event

stream manipulation and transformation. A window in the context of event stream manipulation

and transformation is a processing node in an event stream processing model. A window in a

continuous query can perform aggregations, computations, pattern-matching, and other operations

on data flowing through the window. A continuous query may be described as a directed graph of

source, relational, pattern matching, and procedural windows. The one or more source windows

806 and the one or more derived windows 808 represent continuously executing queries that

generate updates to a query result set as new event blocks stream through ESPE 800. A directed

graph, for example, is a set of nodes connected by edges, where the edges have a direction

associated with them.

[001 09] An event object may be described as a packet of data accessible as a collection of

fields, with at least one of the fields defined as a key or unique identifier (ID). The event object

may be created using a variety of formats including binary, alphanumeric, XML, etc. Each event

object may include one or more fields designated as a primary identifier (ID) for the event so ESPE

800 can support operation codes (opcodes) for events including insert, update, upsert, and delete.

Upsert opcodes update the event if the key field already exists; otherwise, the event is inserted.

For illustration, an event object may be a packed binary representation of a set of field values and

include both metadata and field data associated with an event. The metadata may include an opcode

indicating if the event represents an insert, update, delete, or upsert, a set of flags indicating if the

event is a normal, partial-update, or a retention generated event from retention policy management,

and a set of microsecond timestamps that can be used for latency measurements.

[001 10] An event block object may be described as a grouping or package of event objects.

An event stream may be described as a flow of event block objects. A continuous query of the one

or more continuous queries 804 transforms a source event stream made up of streaming event

block objects published into ESPE 800 into one or more output event streams using the one or



more source windows 806 and the one or more derived windows 808. A continuous query can also

be thought of as data flow modeling.

[001 11] The one or more source windows 806 are at the top of the directed graph and have

no windows feeding into them. Event streams are published into the one or more source windows

806, and from there, the event streams may be directed to the next set of connected windows as

defined by the directed graph. The one or more derived windows 808 are all instantiated windows

that are not source windows and that have other windows streaming events into them. The one or

more derived windows 808 may perform computations or transformations on the incoming event

streams. The one or more derived windows 808 transform event streams based on the window type

(that is operators such as join, filter, compute, aggregate, copy, pattern match, procedural, union,

etc.) and window settings. As event streams are published into ESPE 800, they are continuously

queried, and the resulting sets of derived windows in these queries are continuously updated.

[001 12] FIG. 9 is a flow chart of an example of a process including operations performed

by an event stream processing engine according to some aspects. As noted, the ESPE 800 (or an

associated ESP application) defines how input event streams are transformed into meaningful

output event streams. More specifically, the ESP application may define how input event streams

from publishers (e.g., network devices providing sensed data) are transformed into meaningful

output event streams consumed by subscribers (e.g., a data analytics project being executed by a

machine or set of machines).

[001 13] Within the application, a user may interact with one or more user interface windows

presented to the user in a display under control of the ESPE independently or through a browser

application in an order selectable by the user. For example, a user may execute an ESP application,

which causes presentation of a first user interface window, which may include a plurality of menus

and selectors such as drop down menus, buttons, text boxes, hyperlinks, etc. associated with the

ESP application as understood by a person of skill in the art. Various operations may be performed

in parallel, for example, using a plurality of threads.

[001 14] At operation 900, an ESP application may define and start an ESPE, thereby

instantiating an ESPE at a device, such as machine 220 and/or 240. In an operation 902, the engine

container is created. For illustration, ESPE 800 may be instantiated using a function call that

specifies the engine container as a manager for the model.

[001 15] In an operation 904, the one or more continuous queries 804 are instantiated by



ESPE 800 as a model. The one or more continuous queries 804 may be instantiated with a

dedicated thread pool or pools that generate updates as new events stream through ESPE 800. For

illustration, the one or more continuous queries 804 may be created to model business processing

logic within ESPE 800, to predict events within ESPE 800, to model a physical system within

ESPE 800, to predict the physical system state within ESPE 800, etc. For example, as noted, ESPE

800 may be used to support sensor data monitoring and management (e.g., sensing may include

force, torque, load, strain, position, temperature, air pressure, fluid flow, chemical properties,

resistance, electromagnetic fields, radiation, irradiance, proximity, acoustics, moisture, distance,

speed, vibrations, acceleration, electrical potential, or electrical current, etc.).

[001 16] ESPE 800 may analyze and process events in motion or "event streams." Instead of

storing data and running queries against the stored data, ESPE 800 may store queries and stream

data through them to allow continuous analysis of data as it is received. The one or more source

windows 806 and the one or more derived windows 808 may be created based on the relational,

pattern matching, and procedural algorithms that transform the input event streams into the output

event streams to model, simulate, score, test, predict, etc. based on the continuous query model

defined and application to the streamed data.

[001 17] In an operation 906, a publish/subscribe (pub/sub) capability is initialized for ESPE

800. In an illustrative embodiment, a pub/sub capability is initialized for each project of the one

or more projects 802. To initialize and enable pub/sub capability for ESPE 800, a port number may

be provided. Pub/sub clients can use a host name of an ESP device running the ESPE and the port

number to establish pub/sub connections to ESPE 800.

[001 18] FIG. 10 is a block diagram of an ESP system 1000 interfacing between publishing

device 1022 and event subscribing devices 1024a-c according to some aspects. ESP system 1000

may include ESP device or subsystem 1001, publishing device 1022, an event subscribing device

A 1024a, an event subscribing device B 1024b, and an event subscribing device C 1024c. Input

event streams are output to ESP device 1001 by publishing device 1022. In alternative

embodiments, the input event streams may be created by a plurality of publishing devices. The

plurality of publishing devices further may publish event streams to other ESP devices. The one

or more continuous queries instantiated by ESPE 800 may analyze and process the input event

streams to form output event streams output to event subscribing device A 1024a, event

subscribing device B 1024b, and event subscribing device C 1024c. ESP system 1000 may include



a greater or a fewer number of event subscribing devices of event subscribing devices.

[001 19] Publish-subscribe is a message-oriented interaction paradigm based on indirect

addressing. Processed data recipients specify their interest in receiving information from ESPE

800 by subscribing to specific classes of events, while information sources publish events to ESPE

800 without directly addressing the receiving parties. ESPE 800 coordinates the interactions and

processes the data. In some cases, the data source receives confirmation that the published

information has been received by a data recipient.

[00120] A publish/subscribe API may be described as a library that enables an event

publisher, such as publishing device 1022, to publish event streams into ESPE 800 or an event

subscriber, such as event subscribing device A 1024a, event subscribing device B 1024b, and event

subscribing device C 1024c, to subscribe to event streams from ESPE 800. For illustration, one or

more publish/subscribe APIs may be defined. Using the publish/subscribe API, an event

publishing application may publish event streams into a running event stream processor project

source window of ESPE 800, and the event subscription application may subscribe to an event

stream processor project source window of ESPE 800.

[00121] The publish/subscribe API provides cross-platform connectivity and endianness

compatibility between ESP application and other networked applications, such as event publishing

applications instantiated at publishing device 1022, and event subscription applications

instantiated at one or more of event subscribing device A 1024a, event subscribing device B 1024b,

and event subscribing device C 1024c.

[001 22] Referring back to FIG. 9, operation 906 initializes the publish/subscribe capability

of ESPE 800. In an operation 908, the one or more projects 802 are started. The one or more started

projects may run in the background on an ESP device. In an operation 910, an event block object

is received from one or more computing device of the publishing device 1022.

[001 23] ESP subsystem 800 may include a publishing client 1002, ESPE 800, a subscribing

client A 1004, a subscribing client B 1006, and a subscribing client C 1008. Publishing client 1002

may be started by an event publishing application executing at publishing device 1022 using the

publish/subscribe API. Subscribing client A 1004 may be started by an event subscription

application A, executing at event subscribing device A 1024a using the publish/subscribe API.

Subscribing client B 1006 may be started by an event subscription application B executing at event

subscribing device B 1024b using the publish/subscribe API. Subscribing client C 1008 may be



started by an event subscription application C executing at event subscribing device C 1024c using

the publish/subscribe API.

[001 24] An event block object containing one or more event objects is injected into a source

window of the one or more source windows 806 from an instance of an event publishing

application on publishing device 1022. The event block object may be generated, for example, by

the event publishing application and may be received by publishing client 1002. A unique ID may

be maintained as the event block object is passed between the one or more source windows 806

and/or the one or more derived windows 808 of ESPE 800, and to subscribing client A 1004,

subscribing client B 1006, and subscribing client C 1008 and to event subscription device A 1024a,

event subscription device B 1024b, and event subscription device C 1024c. Publishing client 1002

may further generate and include a unique embedded transaction ID in the event block object as

the event block object is processed by a continuous query, as well as the unique ID that publishing

device 1022 assigned to the event block object.

[00125] In an operation 912, the event block object is processed through the one or more

continuous queries 804. In an operation 914, the processed event block object is output to one or

more computing devices of the event subscribing devices 1024a-c. For example, subscribing client

A 1004, subscribing client B 1006, and subscribing client C 1008 may send the received event

block object to event subscription device A 1024a, event subscription device B 1024b, and event

subscription device C 1024c, respectively.

[00126] ESPE 800 maintains the event block containership aspect of the received event

blocks from when the event block is published into a source window and works its way through

the directed graph defined by the one or more continuous queries 804 with the various event

translations before being output to subscribers. Subscribers can correlate a group of subscribed

events back to a group of published events by comparing the unique ID of the event block object

that a publisher, such as publishing device 1022, attached to the event block object with the event

block ID received by the subscriber.

[001 27] In an operation 916, a determination is made concerning whether or not processing

is stopped. If processing is not stopped, processing continues in operation 910 to continue

receiving the one or more event streams containing event block objects from the, for example, one

or more network devices. If processing is stopped, processing continues in an operation 918. In

operation 918, the started projects are stopped. In operation 920, the ESPE is shutdown.



[001 28] As noted, in some examples, big data is processed for an analytics project after the

data is received and stored. In other examples, distributed applications process continuously

flowing data in real-time from distributed sources by applying queries to the data before

distributing the data to geographically distributed recipients. As noted, an event stream processing

engine (ESPE) may continuously apply the queries to the data as it is received and determines

which entities receive the processed data. This allows for large amounts of data being received

and/or collected in a variety of environments to be processed and distributed in real time. For

example, as shown with respect to FIG. 2, data may be collected from network devices that may

include devices within the internet of things, such as devices within a home automation network.

However, such data may be collected from a variety of different resources in a variety of different

environments. In any such situation, embodiments of the present technology allow for real-time

processing of such data.

[001 29] Aspects of the present disclosure provide technical solutions to technical problems,

such as computing problems that arise when an ESP device fails which results in a complete service

interruption and potentially significant data loss. The data loss can be catastrophic when the

streamed data is supporting mission critical operations, such as those in support of an ongoing

manufacturing or drilling operation. An example of an ESP system achieves a rapid and seamless

failover of ESPE running at the plurality of ESP devices without service interruption or data loss,

thus significantly improving the reliability of an operational system that relies on the live or rea l

time processing of the data streams. The event publishing systems, the event subscribing systems,

and each ESPE not executing at a failed ESP device are not aware of or effected by the failed ESP

device. The ESP system may include thousands of event publishing systems and event subscribing

systems. The ESP system keeps the failover logic and awareness within the boundaries of out-

messaging network connector and out-messaging network device.

[001 30] In one example embodiment, a system is provided to support a failover when event

stream processing (ESP) event blocks. The system includes, but is not limited to, an out-messaging

network device and a computing device. The computing device includes, but is not limited to, one

or more processors and one or more computer-readable mediums operably coupled to the one or

more processor. The processor is configured to execute an ESP engine (ESPE). The computer-

readable medium has instructions stored thereon that, when executed by the processor, cause the

computing device to support the failover. An event block object is received from the ESPE that



includes a unique identifier. A first status of the computing device as active or standby is

determined. When the first status is active, a second status of the computing device as newly active

or not newly active is determined. Newly active is determined when the computing device is

switched from a standby status to an active status. When the second status is newly active, a last

published event block object identifier that uniquely identifies a last published event block object

is determined. A next event block object is selected from a non-transitory computer-readable

medium accessible by the computing device. The next event block object has an event block object

identifier that is greater than the determined last published event block object identifier. The

selected next event block object is published to an out-messaging network device. When the

second status of the computing device is not newly active, the received event block object is

published to the out-messaging network device. When the first status of the computing device is

standby, the received event block object is stored in the non-transitory computer-readable medium.

[00131] FIG. 1 1 is a flow chart of an example of a process for generating and using a

machine- learning model according to some aspects. Machine learning is a branch of artificial

intelligence that relates to mathematical models that can learn from, categorize, and make

predictions about data. Such mathematical models, which can be referred to as machine-learning

models, can classify input data among two or more classes; cluster input data among two or more

groups; predict a result based on input data; identify patterns or trends in input data; identify a

distribution of input data in a space; or any combination of these. Examples of machine-learning

models can include (i) neural networks; (ii) decision trees, such as classification trees and

regression trees; (iii) classifiers, such as naive bias classifiers, logistic regression classifiers, ridge

regression classifiers, random forest classifiers, least absolute shrinkage and selector (LASSO)

classifiers, and support vector machines; (iv) clusterers, such as k-means clusterers, mean-shift

clusterers, and spectral clusterers; (v) factorizers, such as factorization machines, principal

component analyzers and kernel principal component analyzers; and (vi) ensembles or other

combinations of machine-learning models. In some examples, neural networks can include deep

neural networks, feed-forward neural networks, recurrent neural networks, convolutional neural

networks, radial basis function (RBF) neural networks, echo state neural networks, long short-term

memory neural networks, bi-directional recurrent neural networks, gated neural networks,

hierarchical recurrent neural networks, stochastic neural networks, modular neural networks,

spiking neural networks, dynamic neural networks, cascading neural networks, neuro-fuzzy neural



networks, or any combination of these.

[001 32] Different machine- learning models may be used interchangeably to perform a task.

Examples of tasks that can be performed at least partially using machine-learning models include

various types of scoring; bioinformatics; cheminformatics; software engineering; fraud detection;

customer segmentation; generating online recommendations; adaptive websites; determining

customer lifetime value; search engines; placing advertisements in real time or near real time;

classifying DNA sequences; affective computing; performing natural language processing and

understanding; object recognition and computer vision; robotic locomotion; playing games;

optimization and metaheuristics; detecting network intrusions; medical diagnosis and monitoring;

or predicting when an asset, such as a machine, will need maintenance.

[00133] Any number and combination of tools can be used to create machine- learning

models. Examples of tools for creating and managing machine-learning models can include SAS®

Enterprise Miner, SAS® Rapid Predictive Modeler, and SAS® Model Manager, SAS Cloud

Analytic Services (CAS) ®, SAS Viya ® of all which are by SAS Institute Inc. of Cary, North

Carolina.

[00 134] Machine-learning models can be constructed through an at least partially automated

(e.g., with little or no human involvement) process called training. During training, input data can

be iteratively supplied to a machine-learning model to enable the machine-learning model to

identify patterns related to the input data or to identify relationships between the input data and

output data. With training, the machine-learning model can be transformed from an untrained state

to a trained state. Input data can be split into one or more training sets and one or more validation

sets, and the training process may be repeated multiple times. The splitting may follow a k-fold

cross-validation rule, a leave-one-out-rule, a leave-p-out rule, or a holdout rule. An overview of

training and using a machine- learning model is described below with respect to the flow chart of

FIG. 11.

[00135] In block 1104, training data is received. In some examples, the training data is

received from a remote database or a local database, constructed from various subsets of data, or

input by a user. The training data can be used in its raw form for training a machine-learning

model or pre-processed into another form, which can then be used for training the machine-

learning model. For example, the raw form of the training data can be smoothed, truncated,

aggregated, clustered, or otherwise manipulated into another form, which can then be used for



training the machine-learning model.

[00136] In block 1106, a machine-learning model is trained using the training data. The

machine-learning model can be trained in a supervised, unsupervised, or semi-supervised manner.

In supervised training, each input in the training data is correlated to a desired output. This desired

output may be a scalar, a vector, or a different type of data structure such as text or an image. This

may enable the machine-learning model to learn a mapping between the inputs and desired outputs.

In unsupervised training, the training data includes inputs, but not desired outputs, so that the

machine-learning model has to find structure in the inputs on its own. In semi-supervised training,

only some of the inputs in the training data are correlated to desired outputs.

[00137] In block 1108, the machine-learning model is evaluated. For example, an

evaluation dataset can be obtained, for example, via user input or from a database. The evaluation

dataset can include inputs correlated to desired outputs. The inputs can be provided to the

machine-learning model and the outputs from the machine-learning model can be compared to the

desired outputs. If the outputs from the machine-learning model closely correspond with the

desired outputs, the machine-learning model may have a high degree of accuracy. For example,

if 90% or more of the outputs from the machine-learning model are the same as the desired outputs

in the evaluation dataset, the machine-learning model may have a high degree of accuracy.

Otherwise, the machine-learning model may have a low degree of accuracy. The 90% number is

an example only. A realistic and desirable accuracy percentage is dependent on the problem and

the data.

[00138] In some examples, if the machine- learning model has an inadequate degree of

accuracy for a particular task, the process can return to block 1106, where the machine-learning

model can be further trained using additional training data or otherwise modified to improve

accuracy. If the machine-learning model has an adequate degree of accuracy for the particular

task, the process can continue to block 1110.

[001 39] In block 1 1 10, new data is received. In some examples, the new data is received

from a remote database or a local database, constructed from various subsets of data, or input by a

user. The new data may be unknown to the machine-learning model. For example, the machine-

learning model may not have previously processed or analyzed the new data.

[001 40] In block 1112, the trained machine-learning model is used to analyze the new data

and provide a result. For example, the new data can be provided as input to the trained machine-



learning model. The trained machine-learning model can analyze the new data and provide a result

that includes a classification of the new data into a particular class, a clustering of the new data

into a particular group, a prediction based on the new data, or any combination of these.

[001 4 1] In block 1 1 14, the result is post-processed. For example, the result can be added

to, multiplied with, or otherwise combined with other data as part of a job. As another example,

the result can be transformed from a first format, such as a time series format, into another format,

such as a count series format. Any number and combination of operations can be performed on

the result during post-processing.

[00142] A more specific example of a machine-learning model is the neural network 1200

shown in FIG. 12. The neural network 1200 is represented as multiple layers of interconnected

neurons, such as neuron 1208, that can exchange data between one another. The layers include an

input layer 1202 for receiving input data, a hidden layer 1204, and an output layer 1206 for

providing a result. The hidden layer 1204 is referred to as hidden because it may not be directly

observable or have its input directly accessible during the normal functioning of the neural network

1200. Although the neural network 1200 is shown as having a specific number of layers and

neurons for exemplary purposes, the neural network 1200 can have any number and combination

of layers, and each layer can have any number and combination of neurons.

[00143] The neurons and connections between the neurons can have numeric weights,

which can be tuned during training. For example, training data can be provided to the input layer

1202 of the neural network 1200, and the neural network 1200 can use the training data to tune

one or more numeric weights of the neural network 1200. In some examples, the neural network

1200 can be trained using backpropagation. Backpropagation can include determining a gradient

of a particular numeric weight based on a difference between an actual output of the neural network

1200 and a desired output of the neural network 1200. Based on the gradient, one or more numeric

weights of the neural network 1200 can be updated to reduce the difference, thereby increasing the

accuracy of the neural network 1200. This process can be repeated multiple times to train the

neural network 1200. For example, this process can be repeated hundreds or thousands of times

to train the neural network 1200.

[001 44] In some examples, the neural network 1200 is a feed-forward neural network. In a

feed-forward neural network, every neuron only propagates an output value to a subsequent layer

of the neural network 1200. For example, data may only move one direction (forward) from one



neuron to the next neuron in a feed-forward neural network.

[00145] In other examples, the neural network 1200 is a recurrent neural network. A

recurrent neural network can include one or more feedback loops, allowing data to propagate in

both forward and backward through the neural network 1200. This can allow for information to

persist within the recurrent neural network. For example, a recurrent neural network can determine

an output based at least partially on information that the recurrent neural network has seen before,

giving the recurrent neural network the ability to use previous input to inform the output.

[00146] In some examples, the neural network 1200 operates by receiving a vector of

numbers from one layer; transforming the vector of numbers into a new vector of numbers using

a matrix of numeric weights, a nonlinearity, or both; and providing the new vector of numbers to

a subsequent layer of the neural network 1200. Each subsequent layer of the neural network 1200

can repeat this process until the neural network 1200 outputs a final result at the output layer 1206.

For example, the neural network 1200 can receive a vector of numbers as an input at the input

layer 1202. The neural network 1200 can multiply the vector of numbers by a matrix of numeric

weights to determine a weighted vector. The matrix of numeric weights can be tuned during the

training of the neural network 1200. The neural network 1200 can transform the weighted vector

using a nonlinearity, such as a sigmoid tangent or the hyperbolic tangent. In some examples, the

nonlinearity can include a rectified linear unit, which can be expressed using the following

equation:

y = max(x, 0)

where y is the output and x is an input value from the weighted vector. The transformed output

can be supplied to a subsequent layer, such as the hidden layer 1204, of the neural network 1200.

The subsequent layer of the neural network 1200 can receive the transformed output, multiply the

transformed output by a matrix of numeric weights and a nonlinearity, and provide the result to

yet another layer of the neural network 1200. This process continues until the neural network 1200

outputs a final result at the output layer 1206.

[001 47] Other examples of the present disclosure may include any number and combination

of machine- learning models having any number and combination of characteristics. The machine-

learning model(s) can be trained in a supervised, semi-supervised, or unsupervised manner, or any

combination of these. The machine-learning model(s) can be implemented using a single

computing device or multiple computing devices, such as the communications grid computing



system 400 discussed above.

[00148] Implementing some examples of the present disclosure at least in part by using

machine-learning models can reduce the total number of processing iterations, time, memory,

electrical power, or any combination of these consumed by a computing device when analyzing

data. For example, a neural network may more readily identify patterns in data than other

approaches. This may enable the neural network to analyze the data using fewer processing cycles

and less memory than other approaches, while obtaining a similar or greater level of accuracy.

[00149] FIG. 13 is a block diagram of an example of an advanced control system 1300 for

a machine 1302 according to some aspects. The machine 1302 can include an electronic device,

an electronic system, a mechanical device, a mechanical system, or any other type of physical

system or combination of physical systems. For example, the machine 1302 can be a furnace; a

pump; a heater; or a computing device, such as a laptop computer, desktop computer, server,

mobile phone, etc. In some examples, the machine 1302 can include one or more subsystems. For

example, the machine 1302 can be a furnace formed from multiple subsystems, such as a heating

unit, a computing device, a conveyor belt, a fluid pump, a valve, etc.

[001 50] The machine 1302 can include or be coupled to one or more sensors, such as sensor

1304. In some examples, the sensor(s) are positioned to detect characteristics of the machine 1302,

ambient conditions (e.g., near to the machine 1302), or both of these. In an example in which the

machine 1302 is a furnace, the sensor(s) can detect a firing rate of the furnace, a feed rate of a

material into or through the furnace, a temperature in a bridge-wall section of the furnace, a

temperature in a stack section of the furnace, an atmospheric temperature, a humidity, a wind

direction, or any combination of these. For example, one sensor may detect the feed rate of the

material into or through the furnace, another sensor may detect the temperature in the bridge-wall

section of the furnace, another sensor may detect the temperature in the stack section of the furnace,

and still another sensor can detect the atmospheric temperature. The sensor(s) can transmit sensor

signals indicating the sensed measurements to one or more processing devices 1308.

[00151] The processing device(s) 1308 can receive information (e.g., the sensor signals or

a time series) from the machine 1302 and make predictions based on the information. For example,

the processing device(s) 1308 can receive a time series from the machine 1302 and make

predictions about the machine 1302 based on the time series. The system 1300 can also include

one or more memory devices 1310, which can include instructions (e.g., program code) that are



executable by the processing device(s) 1308 for causing the processing device 1308 to, for

example, make the predictions.

[00152] In some examples, the processing device(s) 1308 can control operation of a

machine, such as the machine 1302 or another machine, based at least in part on the predictions.

An example of a process for controlling operation of a machine using predictions is shown in FIG.

14 and described in greater detail below.

[00153] FIG. 14 is a flow chart of an example of a process for controlling operation of a

machine according to some aspects. Some examples can include more, fewer, or different

operations than the operations depicted in FIG. 14. Also, some examples can implement the

operations of the process in a different order. The operations below are described with reference

to the components of FIG. 13.

[00154] In block 1402, a processing device 1308 receives a time series. A time series can

include multiple data points arranged in sequential order over a period of time. The time series

can relate to the machine 1302, a product, a company, a person, a natural phenomenon, or any

combination of these. The processing device 1308 can receive the time series from a machine

1302, a database, a server or computing device, a sensor 1304, or any combination of these.

[00155] In block 1404, the processing device 1308 performs an automated version of

singular spectrum analysis on the time series to determine one or more component time-series.

Singular spectrum analysis is a nonparametric spectral estimation method in which a time series

is decomposed into one or more sub-components, which are referred to herein as component time-

series. Typical methods of performing singular spectrum analysis can require human involvement,

but the automated version of singular spectrum analysis can perform singular spectrum analysis

with little or no human involvement. In some examples, the automated version of singular

spectrum analysis can enable thousands of time series related to the machine 1302 to be analyzed

using singular spectrum analysis at speeds that are impossible for humans to accomplish (e.g., in

real time) to make valuable predictions about the machine 1302, such as if an error, failure, and

other undesirable condition is going to occur in the future. The processing device 1308 or a

machine operator can then use these predictions to take appropriate corrective action or

preventative action to improve the functionality of the machine 1302, such as to prevent the

machine 1302 from failing. An example of the automated process for performing singular

spectrum analysis is shown in FIG. 15.



[00156] Now referring to FIG. 15, in block 1504, the processing device 1308 performs an

embedding operation on a time series. The embedding operation can include forming a trajectory

matrix based on the time series. A trajectory matrix can be a multi-dimensional representation of

the time series. As a particular example, if the time series is a real-valued time series X =

... , xN of length N, a window length (L) is defined as ( 1 < L <N , and K is defined a N-L

+ 1, the trajectory matrix (X) can be determined as the matrix of LxK:

X = [X ... : X ] = Xi j =

where X = x , ... , Xi+L-i) , and ( 1 < i <K are lagged vectors of size L . In some examples, the

trajectory matrix can be a Hankel matrix.

[001 57] In block 1506, the processing device 1308 performs a decomposition operation. In

some examples, the decomposition operation can include performing singular value

decomposition of the trajectory matrix X . Singular value decomposition can include decomposing

the trajectory matrix X into elementary matrices and eigenvalues that correspond to the elementary

matrices.

[001 58] More specifically, singular value decomposition can include computing the matrix

S = ΧΧ . Then, the eigenvalues of S can be obtained in decreasing order of magnitude such

that λ > λ 2 ≥ ··· ≥ ≥ 0, where / can be referred to as a window index. Next, for each

eigenvalue ( ), a corresponding left singular value ( j) and right singular value (Vj) can be

calculated lfd = max(i : > 0), then the singular value decomposition of the trajectory matrix

X can be represented as X = X + . . . +Xa, where X = These are matrices of rank 1

and can be referred to as elementary matrices. The collection of ( , , V can be referred to as

the eigentriple of the trajectory matrix X, and f can be the singular values of the trajectory

matrix X . The output of block 1506 can include the elementary matrices and the eigenvalues for

each window index ( ) .

[00159] After determining the elementary matrices and the eigenvalues for each window

index ( ), the processing device 1308 can substantially automatically determine a spectral partition

by performing some or all of the operations in dashed box 1518. In contrast, typical singular

spectrum analysis requires a human to subjectively determine the spectral partition by visually



analyzing graphs of the elementary matrices and eigenvalues, which prevented singular spectrum

analysis from being automated in the past. But the specific rules described below (e.g., the

operations in dashed box 1518) can enable the processing device 1308 to determine the spectral

partition substantially automatically, thereby enabling the automation of singular spectrum

analysis.

[00160] In block 1508, the processing device 1308 performs a diagonal averaging operation.

The diagonal averaging operation can include initially assuming that there is to be a predefined

number of groups ( ), whereby the predefined number of groups ( ) is equal to the window

length (L). Then, for each group (m = 1, M), the diagonal average of the grouped trajectory

matrix can be determined by:

where s = 1, e = t , n = t for (1 < t < )

s = l , e = L, n = L for (L ≤ t ≤ (T - L + 1))

s t = (T - t + 1), e = L, n = (T - t + 1) for ( ( - L + 1) < t ≤ Τ)

and where T is the total number of time points (or the length) of the time series; t is a single time

point from t = 1, ... , T and I is the window index I = 1, ... , L. The diagonal averaging operation

can result in a spectral component for each window index ( ) . A spectrum component can include

all artifacts related to a particular eigenvalue in an eigenspectrum.

[00161] In block 1510, the processing device 1308 determines w-correlations between the

groups (m). For example, the processing device 1308 can determine a (L*L)

w-correlations (e.g., weighted correlations) matrix according to the following equation:

where is the w-correlati w t = min(t, L, T —

t ) ; w is the weight associated with a particular time point; i is the row index associated with the

w-correlation matrix; and j is the column index associated with the w-correlation matrix. The w-

correlations matrix can represent the weighted correlations between groups, and can be used to

find the dominant spectral components among the window indices / = 1, L .



[00162] An example of a heat map showing features of a w-correlation matrix is shown in

FIG. 16. The heat map 1602 has X-axis values that represent columns in the w-correlation matrix

and Y-axis values that represent rows in the w-correlation matrix. The color depicted at each

intersecting (X, Y) coordinate in the heat map 1602 can represent the absolute value of the w-

correlation at the (column, row) intersection of the w-correlation matrix.

[00163] In block 1512, the processing device 1308 determines a spectral partition based on

the w-correlations between the groups (m). The spectral partition can divide the eigenspectrum

into disjoint and contiguous sets (e.g., highest singular value and lowest singular value sets). In

some examples, the spectral partition can be determined according to some or all of the process

shown in FIG. 17 .

[00164] Referring now to FIG. 17, in block 1702, the processing device 1308 initializes

variables for use in determining the spectral partition. The variables can include the group number

(m), the w-correlation matrix column index (k), the w-correlation matrix row index ( ), some or all

of which can be set to zero. Also, the values in group number m can be stored in an array, Im

which can be set to empty.

[00165] In block 1704, the processing device 1308 initializes a new group. To do so, the

processing device 1308 can increment the value of m by 1; set the w-correlation matrix column

index (k) equal to the w-correlation matrix row index ( ) ; set the w-correlation matrix row index

( ) equal to the w-correlation matrix column index (k) plus one; include the w-correlation matrix

column index (k) in the array Im or any combination of these.

[00166] In block 1706, the processing device 1308 determines if is greater than a

( )predefined threshold, which can be set by a user. can be the value of the w-correlation

matrix at the intersection of (k +j , i). An example of the predefined threshold can be 0.9. If so,

the process can proceed to block 1708, where the processing device 1308 can add the w-correlation

matrix row index (z) to the array Im. The processing device 1308 can then increment the value of

i in block 1710, and the process can return to block 1706 and iterate.

( )[00167] If the processing device 1308 determines in block 1706 that Pk+j,. is less than

or equal to the predefined threshold, the process can proceed to block 1712, where the processing

device 1308 can determine if a predefined number of groups ( ) have been generated. The

predefined number of groups can be supplied by a user in some examples. If the predefined



number of groups ( ) have not been generated, the process can proceed back to block 1704 and

iterate. Otherwise, the process can end.

[00168] The process of FIG. 1 can produce a spectral partition of the dominant window

indices. This can be represented as Im -Ξ {1, ... , L} such that is greater than the predefined

threshold for all i,j E Im . The spectral partition can then be used to perform some or all of the

remaining steps in FIG. 15.

[00169] Returning now to FIG. 15, in block 1514 the processing device 1308 uses the

spectral partition to perform a grouping operation. The grouping operation can include splitting

the elementary matrices X into the spectral partition groups obtained from the operations of FIG.

1 and summing the matrices within each group. For example, if a spectral partition group includes

= il ... , i , then the matrix X , corresponding to this spectral partition group can be defined as:

X , = x + + x i

where X can be referred to as a resultant matrix. The resultant matrix can be computed for each

of the m spectral partition groups. The grouping operation can result in multiple resultant matrices

associated with the spectral partition groups.

[00170] In block 1516, the processing device 1308 performs a diagonal averaging operation.

In the diagonal averaging operation, each resultant matrix can be transformed into a time series,

which can be an additive component of the initial (original) time series. For example, each

resultant matrix can be hankelized to generate a Hankel matrix. The Hankel matrix can then be

transformed into a new time series of length N using the one-to-one correspondence between

Hankel matrices and time series. The new time series can be a component time-series (e.g., an

additive component) of the initial time series, such that the initial time series has been decomposed

into a sum of m subseries.

[00171] In some examples, after the processing device 1308 completes some or all of the

steps in FIG. 14, the process of FIG. 14 can continue to block 1406, where the processing device

1308 generates a predictive forecast using the one or more component time-series.

[001 72] The processing device 1308 can use any number and combination of techniques for

generating the predictive forecast using the one or more component time-series. In some

examples, the processing device 1308 uses a machine-learning model to generate the predictive

forecast using the one or more component time-series. For example, the processing device 1308



can train the neural network and then provide one or more of the component time-series as input

to the neural network to generate the predictive forecast. Additionally or alternatively, the

processing device 1308 can use an autoregressive integrated moving average (ARIMA) model, an

ARIMA model with exogenous variables (ARIMAX), an unobserved component model (UCM),

an exponential smoothing model (ESM), or any combination of these, to generate the predictive

forecast.

[001 73] In block 1408, the processing device 1308 predicts an event related to the machine

1302 using the predictive forecast. Examples of the event can include anomaly associated with

the machine 1302, an error in the machine 1302, a failure of the machine 1302, a shutdown of the

machine 1302, a startup of the machine 1302, an overheating of the machine 1302, a physical

movement of the machine 1302, or another condition or status of the machine 1302. Other

examples of the event can include the machine 1302 receiving certain data, sending certain data,

detecting the presence of certain data or computer connections, or any combination of these.

[001 74] In some examples, the processing device 1308 can compare a predicted value in the

predictive forecast to a preset value stored in memory and known to be indicative of a particular

type of event. A user, distributer, manufacturer, or installer may provide the preset value indicative

of the event as input. If the predicted value is within a certain tolerance range (e.g., +/- 0 .1) of the

preset value, the processing device 1308 can determine that the particular type of event is occurring

or is likely to occur in the future. Alternatively, if the processing device 1308 determines that the

predicted value meets or exceeds the preset value, the processing device 1308 can determine that

the particular type of event is occurring or is likely to occur in the future. Alternatively, if the

processing device 1308 determines that the predicted value is below the preset value, the

processing device 1308 can determine that the particular type of event is occurring or is likely to

occur in the future.

[00175] In some examples, the processing device 1308 can compare a pattern of predicted

values in the predictive forecast to a pattern of preset values stored in memory and known to be

indicative of a particular type of event. The pattern of preset values can be a predetermined pattern

provided as input by a user, distributer, manufacturer, installer, etc. For example, the processing

device 1308 can analyze the predicted values in the predictive forecast to determine if they form a

similar shape as (or have values within a preset tolerance range of) the pattern of present values

associated with the particular type of event. For instance, the processing device 1308 can



determine if the predicted values include a high peak followed by a sharp dip, which can be a shape

associated with the particular type of event. If so, the processor can determine that, for example,

the particular type of event is occurring or is likely to occur in the future. The processing device

1308 can use any number and combination of techniques to determine if a particular type of event

is occurring or is likely to occur in the future.

[00176] In block 1410, the processing device 1308 causes an operational setting of the

machine 1302 to be modified in response to predicting the event. For example, the processing

device 1308 can transmit commands to the machine 1302 or another device associated with the

machine to modify the operational setting of the machine 1302. In some examples, modifying the

operational setting can bring about a physical change in the physical operation of the machine

1302.

[001 77] Modifying the operational setting of the machine 1302 may include configuring the

operational setting to avoid the event or reduce the likelihood of the event occurring. For example,

the event can be related to the machine 1302 overheating. To reduce the likelihood of the event

occurring, the processing device 1308 can configure the operational setting to (i) shutdown the

machine 1302 for a period of time; (ii) put the machine 1302 into an idle state or another

operational state (e.g., that emits less heat); (iii) turn on an air conditioner, fan, or other cooling

device to cool the machine 1302; or (iv) any combination of these.

[001 78] As another example, the machine 1302 can be a robot or vehicle moving around in

real space, and the event can include the robot colliding with a physical object in real space. The

processing device 1308 may predict that if the machine 1302 maintains its current path, direction,

or speed, it will collide with a wall, another car, or another physical object. To reduce the

likelihood of the event occurring, the processing device 1308 can cause the machine 1302 to turn,

change speed, or move in another direction.

[00179] As still another example, the machine 1302 can be for physically manipulating a

material, such as rubber. And the event can include material becoming too hot, becoming too cool,

cooling too quickly, becoming brittle, deforming in shape, or having another property. To reduce

the likelihood of the event occurring, the processing device 1308 can cause adjust a curing time

for the material, change a temperature at which the material is cured, open a physical covering or

a press of the machine 1302, or otherwise cause the material to be physically manipulated.

[00180] Additionally or alternatively, the processing device 1308 can transmit a



communication related to the event to a remote computing device. In some examples, the

communication can include indicia of the event. The communication can cause the remote

computing device to (i) output an alert or notification so that an operator of the machine 1302 can

take action; (ii) store the indicia of the event in a remote database for later access and use; or (iii)

both of these.

[001 8 1] The foregoing description of certain examples, including illustrated examples, has

been presented only for the purpose of illustration and description and is not intended to be

exhaustive or to limit the disclosure to the precise forms disclosed. Numerous modifications,

adaptations, and uses thereof will be apparent to those skilled in the art without departing from the

scope of the disclosure.



Claims

1. A method comprising:

receiving, by a processing device, a time series having a plurality of data points arranged

in a sequential order over a period of time;

performing, by the processing device, singular spectrum analysis on the time series at least

partially by:

generating a trajectory matrix from the time series, the trajectory matrix being a

multi-dimensional representation of the time series;

performing singular value decomposition on the trajectory matrix to (i) decompose

the trajectory matrix into a plurality of elementary matrices and (ii) determine a plurality of

eigenvalues that corresponds to the plurality of elementary matrices;

automatically categorizing the plurality of elementary matrices into a plurality of

groups by:

generating a matrix of w-correlation values based on the plurality of

eigenvalues corresponding to the plurality of elementary matrices, each w-correlation value in the

matrix being generated by determining an absolute value of a weighted correlation between a pair

of eigenvalues in the plurality of eigenvalues;

categorizing the w-correlation values in the matrix into a predefined number

of w-correlation sets such that, for each w-correlation set in the predefined number of w-correlation

sets, all of the w-correlation values in the w-correlation set are above a predefined threshold value;

and

forming the plurality of groups based on the predefined number of w-

correlation sets, each respective group in the plurality of groups including a respective subset of

the plurality of elementary matrices, the respective subset of the plurality of elementary matrices

corresponding to the w-correlation values in a respective w-correlation set of the predefined

number of w-correlation sets; and

determining a plurality of component time-series based on the plurality of groups,

each component time-series of the plurality of component time-series being determined by

performing diagonal averaging on the respective subset of the plurality of elementary matrices in

a respective group in the plurality of groups; and



generating, by the processing device, a predictive forecast using the plurality of component

time-series.

2 . The method of claim 1, wherein the predefined number of w-correlation sets and the

predefined threshold value are both set by a user prior to the singular spectrum analysis being

performed.

3 . The method of claim 1, wherein generating the predictive forecast comprises using a

machine-learning model to generate the predictive forecast.

4 . The method of claim 3, wherein the machine-learning model is a neural network, and

further comprising providing the plurality of component time-series as input to the neural network

to generate the predictive forecast.

5 . The method of claim 3, further comprising training the machine-learning model prior to

generating the predictive forecast to transform the machine- learning model into a trained state.

6 . The method of claim 1, wherein generating the predictive forecast comprises using an

autoregressive integrated moving average (ARIMA) model, an ARIMA model with exogenous

variables (ARIMAX), an unobserved component model (UCM), or an exponential smoothing

model (ESM) to generate the predictive forecast.

7 . The method of claim 1, wherein the time series is associated with a machine, and further

comprising:

predicting an event related to the machine using the predictive forecast.

8 . The method of claim 7, further comprising:

modifying an operational setting of the machine in response to predicting the event.

9 . The method of claim 8, wherein:

the event comprises an anomaly related to the machine; and



modifying the operational setting of the machine comprises configuring the operational

setting to reduce a likelihood of the anomaly occurring.

10. The method of claim 8, wherein modifying the operational setting of the machine

comprises transmitting a signal to a remote computing device, the signal being configured to cause

information related to the event to be stored in a remote database for later access and use.

11. A system comprising:

a processing device; and

a memory device comprising program code that is executable by the processing device for

causing the processing device to:

receive a time series having a plurality of data points arranged in a sequential order

over a period of time;

perform singular spectrum analysis on the time series at least partially by:

generating a trajectory matrix from the time series, the trajectory matrix

being a multi-dimensional representation of the time series;

performing singular value decomposition on the trajectory matrix to (i)

decompose the trajectory matrix into a plurality of elementary matrices and (ii) determine a

plurality of eigenvalues that corresponds to the plurality of elementary matrices;

automatically categorizing the plurality of elementary matrices into a

plurality of groups by:

generating a matrix of w-correlation values based on the plurality of

eigenvalues corresponding to the plurality of elementary matrices, each w-correlation value in the

matrix being generated by determining an absolute value of a weighted correlation between a pair

of eigenvalues in the plurality of eigenvalues;

categorizing the w-correlation values in the matrix into a predefined

number of w-correlation sets such that, for each w-correlation set in the predefined number of w-

correlation sets, all of the w-correlation values in the w-correlation set are above a predefined

threshold value; and

forming the plurality of groups based on the predefined number of

w-correlation sets, each respective group in the plurality of groups including a respective subset



of the plurality of elementary matrices, the respective subset of the plurality of elementary matrices

corresponding to the w-correlation values in a respective w-correlation set of the predefined

number of w-correlation sets; and

determining a plurality of component time-series based on the plurality of

groups, each component time-series of the plurality of component time-series being determined

by performing diagonal averaging on the respective subset of the plurality of elementary matrices

in a respective group in the plurality of groups; and

generate a predictive forecast using the plurality of component time-series.

12. The system of claim 11, wherein the predefined number of w-correlation sets and the

predefined threshold value are both set by a user prior to the singular spectrum analysis being

performed.

13. The system of claim 11, wherein the memory device further comprises program code that

is executable by the processing device for causing the processing device to generate the predictive

forecast using a machine-learning model.

14. The system of claim 13, wherein the machine-learning model is a neural network, and

wherein the memory device further comprises program code that is executable by the processing

device for causing the processing device to provide the plurality of component time-series as input

to the neural network to generate the predictive forecast.

15. The system of claim 11, wherein the memory device further comprises program code that

is executable by the processing device for causing the processing device to train the machine-

learning model prior to generating the predictive forecast to transform the machine-learning model

into a trained state.

16. The system of claim 11, wherein the memory device further comprises program code that

is executable by the processing device for causing the processing device to generate the predictive

forecast using an autoregressive integrated moving average (ARIMA) model, an ARIMA model

with exogenous variables (ARIMAX), an unobserved component model (UCM), or an exponential



smoothing model (ESM) to generate the predictive forecast.

17. The system of claim 11, wherein the time series is associated with a machine, and wherein

the memory device further comprises program code that is executable by the processing device for

causing the processing device to predict an event related to the machine using the predictive

forecast.

18. The system of claim 11, wherein the memory device further comprises program code that

is executable by the processing device for causing the processing device to modify an operational

setting of the machine in response to predicting the event.

19. The system of claim 18, wherein the event comprises an anomaly related to the machine,

and wherein the memory device further comprises program code that is executable by the

processing device for causing the processing device to modify the operational setting of the

machine by configuring the operational setting to reduce a likelihood of the anomaly occurring.

20. The system of claim 18, wherein the memory device further comprises program code that

is executable by the processing device for causing the processing device to modify the operational

setting of the machine by transmitting a signal to a remote computing device, the signal being

configured to cause information related to the event to be stored in a remote database for later

access and use.

21. A non-transitory computer-readable medium comprising program code that is executable

by a processing device for causing the processing device to:

receive a time series having a plurality of data points arranged in a sequential order over a

period of time;

perform singular spectrum analysis on the time series at least partially by:

generating a trajectory matrix from the time series, the trajectory matrix being a

multi-dimensional representation of the time series;

performing singular value decomposition on the trajectory matrix to (i) decompose

the trajectory matrix into a plurality of elementary matrices and (ii) determine a plurality of



eigenvalues that corresponds to the plurality of elementary matrices;

automatically categorizing the plurality of elementary matrices into a plurality of

groups by:

generating a matrix of w-correlation values based on the plurality of

eigenvalues corresponding to the plurality of elementary matrices, each w-correlation value in the

matrix being generated by determining an absolute value of a weighted correlation between a pair

of eigenvalues in the plurality of eigenvalues;

categorizing the w-correlation values in the matrix into a predefined number

of w-correlation sets such that, for each w-correlation set in the predefined number of w-correlation

sets, all of the w-correlation values in the w-correlation set are above a predefined threshold value;

and

forming the plurality of groups based on the predefined number of w-

correlation sets, each respective group in the plurality of groups including a respective subset of

the plurality of elementary matrices, the respective subset of the plurality of elementary matrices

corresponding to the w-correlation values in a respective w-correlation set of the predefined

number of w-correlation sets; and

determining a plurality of component time-series based on the plurality of groups,

each component time-series of the plurality of component time-series being determined by

performing diagonal averaging on the respective subset of the plurality of elementary matrices in

a respective group in the plurality of groups; and

generate a predictive forecast using the plurality of component time-series.

22. The non-transitory computer-readable medium of claim 2 1, wherein the predefined number

of w-correlation sets and the predefined threshold value are both set by a user prior to the singular

spectrum analysis being performed.

23. The non-transitory computer-readable medium of claim 21, further comprising program

code that is executable by the processing device for causing the processing device to generate the

predictive forecast using a machine-learning model.

24. The non-transitory computer-readable medium of claim 23, wherein the machine-learning



model is a neural network, and further comprising program code that is executable by the

processing device for causing the processing device to provide the plurality of component time-

series as input to the neural network to generate the predictive forecast.

25. The non-transitory computer-readable medium of claim 21, further comprising program

code that is executable by the processing device for causing the processing device to train the

machine-learning model prior to generating the predictive forecast to transform the machine-

learning model into a trained state.

26. The non-transitory computer-readable medium of claim 21, further comprising program

code that is executable by the processing device for causing the processing device to generate the

predictive forecast using an autoregressive integrated moving average (ARIMA) model, an

ARIMA model with exogenous variables (ARIMAX), an unobserved component model (UCM),

or an exponential smoothing model (ESM) to generate the predictive forecast.

27. The non-transitory computer-readable medium of claim 21, wherein the time series is

associated with a machine, and further comprising program code that is executable by the

processing device for causing the processing device to predict an event related to the machine

using the predictive forecast.

28. The non-transitory computer-readable medium of claim 21, further comprising program

code that is executable by the processing device for causing the processing device to modify an

operational setting of the machine in response to predicting the event.

29. The non-transitory computer-readable medium of claim 28, wherein the event comprises

an anomaly related to the machine, and further comprising program code that is executable by the

processing device for causing the processing device to modify the operational setting of the

machine by configuring the operational setting to reduce a likelihood of the anomaly occurring.

30. The non-transitory computer-readable medium of claim 28, further comprising program

code that is executable by the processing device for causing the processing device to modify the



operational setting of the machine by transmitting a signal to a remote computing device, the signal

being configured to cause information related to the event to be stored in a remote database for

later access and use.
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