PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6,

GOGF 9/44, 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/63430

9 December 1999 (09.12.99)

(21) International Application Number: PCT/US99/11534

(22) International Filing Date: 25 May 1999 (25.05.99)

(30) Priority Data:

09/086,898 us

29 May 1998 (29.05.98)

(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 6400 N.W. 6th
Way, Fort Lauderdale, FL 33309 (US).

(72) Inventors: PANASYUK, Anatoliy; 6/34 Forster Street, West
Ryde, NSW 2114 (AU). DUURSMA, Martin; 4 Orchid
Place, West Pennant Hills, NSW 2125 (AU).

A.; Testa, Hurwitz &
125 High Street,

(74) Agent: RODRIGUEZ, Michael,
Thibeault, LLP, High Street Tower,
Boston, MA 02110 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S],
SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
With international search report.

(54) Title: SYSTEM AND METHOD FOR COMBINING LOCAL AND REMOTE WINDOWS INTO A SINGLE DESKTOP

ENVIRONMENT

(57) Abstract

A system for incorporating windows from remote desktop environments into a local desktop environment includes a local node, a
local agent, a first remote node, and a first remote agent. The first remote node provides a first remote desktop environment, and the first
remote agent monitors the first remote desktop environment for changes in the environment. The first remote node transmits messages to the
local agent indicative of changes in the first remote desktop environment. The local agent receives the transmitted messages and commands
the local node to modify a representation of a first remote window that is part of a local desktop environment. The local agent also monitors
the local desktop and transmits messages to the remote agent indicative of a change in the local desktop. In some embodiment, the local
node provides the local desktop environment. Local agents can be embodied on articles of manufacture.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Ck
CcM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
UzZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/63430 PCT/US99/11534

SYSTEM AND METHOD FOR COMBINING LOCAL AND
REMOTE WINDOWS INTO A SINGLE DESKTOP ENVIRONMENT

Field of the Invention

The present invention relates to displaying information on remote computers and, in
particular, to a system and method for combining display data received from various remote

sources into a single, local display.

Background of the Invention

Client-server systems, in which a user of a client node is typically remote from a server
which provides application processing or access to files and other resources, are both convenient
and cost-effective. Client nodes are generally cheaper than servers, and since one server
typically provides services to more than one client, overall system cost is reduced. Additionally,
client-server systems allow an enterprise to make decisions regarding the location of certain
system resources (such as applications) on a situational basis. For example, certain applications
may be resident solely on clients, solely on servers, solely on certain servers, or any combination
of the above which improves the overall efficiency of the system.

To date, however, efforts to combine output data from various sources into a single
display have not met with success. For example, early attempts have been made to cause server-
based applications to write directly into local windows. Although this method can display
application output from various servers on a single display, it lacks the ability to arrange the
windows on the client responsive to the z-axis ordering of the windows at each individual server.
Thus, if a server brings a new window to the top of its desktop, no corresponding change appears
to the user at the client.

Further, systems typically cannot support combining various sources of data into a single
display without modification of the applications generating output data. This results because
most enterprises desire to use off-the-shelf software to generate output data and such software
does not support combination of output data. This represents a practical problem because re-
writing such applications to support output combination is generally prohibited by the

manufacturer of such software and, even if not prohibited, can be expensive.

10

15

20

25

30

WO 99/63430 PCT/US99/11534

Summary of the Invention -

The present invention relates to a system in which multiple data displays can be
represented as a cohesive, single, unitary display, without intervention on the part of the user and
without requiring modification of the applications generating displayed output data. The system
allows a user to interact with displayed windows without knowledge of the source of those
windows, and changes to the window, either locally or remotely, are reflected in the
corresponding display on the server or client.

In one aspect, the present invention relates to a system for incorporating windows from
remote desktop environments into a local desktop environment. The system includes a local
node, a local agent, a first remote node, and a first remote agent. The first remote node provides
a first remote desktop environment, and the first remote agent monitors the first remote desktop
environment for changes in the environment. The first remote node transmits messages to the
local agent indicative of changes in the first remote desktop environment. The local agent
receives the transmitted messages and commands the local node to modify a representation of a
first remote window that is part of a local desktop environment. The local agent also monitors
the local desktop and transmits messages to the remote agent indicative of a change in the local
desktop. In some embodiments, the local node provides the local desktop environment.

In another aspect, the present invention relates to a method for incorporating windows
from remote desktop environments into a local desktop environment. The method comprises the
steps of: providing a local node hosting a local agent; receiving, by the local agent, a message
indicating a change to windows included in a remote desktop environment; commanding, by the
local agent, the local node to effect a corresponding change in the local desktop environment;
monitoring, by the local agent, the local desktop; and transmitting, by the local node, messages
to the remote node indicative of a change in the local desktop environment. The method may be
embodied on an article of manufacture.

In yet another aspect, the present invention relates to an agent which incorporates
windows from remote desktop environments into a local desktop environment. The agent
includes a message receiving process capable of receiving messages indicating a change has
occurred in a remote desktop environment. A command process effects changes to the local
desktop environment responsive to messages received by the message receiving process. A

monitor process monitors local desktop events. A transmission process transmits messages

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-3-
indicating occurrence of the local desktop event. The agent may be embodied on an article of -

manufacture.

In a further aspect, the present invention relates to a system for incorporating windows
from a remote desktop into a local desktop. The system comprises a local node and a remote
node connected by a communications link. The communications link includes a first virtual
channel and a second virtual channel. The nodes exchange desktop information such as window
position, window size, and z-ordering of desktop windows, over the first virtual channel. The
nodes exchange graphical information over the second virtual channel. In some embodiments,

the first virtual channel and the second channel may be provided as a single virtual channel.

Brief Description of the Drawings

The invention is pointed out with particularity in the appended claims. The advantages of
this invention described above, and further advantages, may be better understood by reference to
the following description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a functional block diagram of an embodiment of a client-server system;

FIG. 2 is a functional block diagram of a client node connected to two separate server
nodes;

FIG. 3 is a flow diagram of the steps to be taken when a server agent detects a change in
its associated desktop environment;

FIG. 4 is a flow diagram of the steps to be taken when a client agent detects a change in
its associated desktop environment;

FIG. 5 is a flow chart of the steps to be taken to open a virtual channel between a client
agent and a server agent; and

FIG. 6 is a functional block diagram of an agent.

Detailed Description of the Invention

Referring now to Fig. 1, a client-server system is shown in which server node 20 provides
services for one or more client nodes 10. Client nodes may communicate with server node 20
via any of a number of industry-standard data communications protocols including, but not
limited to, TCP/IP, IPX/SPX, NetBEUI, or serial protocols. Alternatively, client nodes 10 may
connect to server node 20 using a proprietary data communications protocol such as the ICA

protocol manufactured by Citrix Systems, Inc. of Fort Lauderdale, Florida or the RDP protocol

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-4 -

manufactured by Microsoft Corporation of Redmond, Washington. The actual connection -
between the client nodes 10 and the server node 20 may be physical cabling or it may be a
wireless connection, such as infrared transmission.

Fig. 2 depicts a system in which a single client node 10 is connected to more than one
server node 20, 20°. As shown in Fig. 2, client node 10 has an associated display 12. The
display 12 may be used to display one or more components of a graphical user interface, such as
windows and pull-down menus. The collection of graphical user interface components displayed
to a user by the display 12 is generally referred to as the “desktop.” As shown in Fig. 2, the local
node 10 displays a local desktop environment 14 to a user. Local node 10 may provide at least a
part of the local desktop environment 14 or local node 10 may simply display various desktop
components received from other sources such as server nodes 20. As shown in Fig. 2, each
server node 20, 20’ has an associated display 22, 22’ which also displays a desktop environment
24,24, Tt should be noted that display 22, 22’ need not be a video display monitor. For
example, display 22, 22’ may simply be a bank of video RAM to which applications write the
output of graphical procedure calls. Fig. 2 depicts an embodiment of a system in which each
server node display 22, 22’ displays one graphical user interface window 26, 27°.

Each server 20, 20 also includes at least one agent 30, 30°. In particular embodiments,
each server 20, 20’ includes one agent 30, 30’ for each client 10 connected to the server 20, 20°.
Client node 10 may also host an agent 40. In some embodiments, a client node 10 hosts a
separate local agent 40 for each server to which the client node 10 is connected. In other
embodiments, the client node 10 hosts a single agent 40 that manages connections to multiple
server nodes 20. Each of the agents 30, 30°, 40 may monitor their associated desktop
environment 24, 24°, 14 for windows which: change position; are opened; are closed; change
size; are minimized; are maximized; or are brought to the top of the desktop, i.e., windows which
gain focus that do not previously have focus. Each agent 30, 30°, 40 transmits messages
indicative of changes in their associated desktop 24, 24°, 14 to other agents. For example, local
agent 40 may receive messages transmitted from server node agents 30, 30°. The local agent 40
commands the client 10 to modify the local desktop environment 14 in response to the messages
received from server agents 30, 30°, that is, the local agent 40 issues commands to the client
node 10 to conform the local desktop environment 14 to the server desktop environment 24. In

other embodiments, server node agents 30, 30’ receive messages from a local agent 40 and

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-5-
command the server 20, 20° to modify the server desktop environment 24, 24’ in response to -
messages received from the local agent 40.

In one embodiment, the agents 30, 40 monitor changes to their associated desktop
environment 24, 24’ by periodically issuing one or more of a set of commands provided by the
operating system that allow details of the graphical user interface desktop to be determined. For
embodiments in which the agents 30, 40 reside on nodes that execute a version of the
WINDOWS operating system, the agents 30, 40 may periodically issue the EnumWindows
command to the WINDOWS operating system, which returns a list of all windows present on the
desktop, together with information related to those windows. The agents 30, 40 can issue the
EnumWindows command every 50 milliseconds, every 100 milliseconds, every 500
milliseconds, or at any period that allows the agent 30, 40 to rapidly determine when changes to
its associated desktop environment have occurred without putting a significant computational
burden on the node. In this embodiment, the agent 30, 40 maintains a data structure storing
information about the desktop windows and compares the values returned by the EnumWindows
command to the data structure to determine changes.

Information determined and stored by the agent 30, 30’ can include the title bar
associated with each window, the location of each window in the desktop environment 24, 24°,
the size of each window, and the z-order positioning of each window in the desktop environment
24, 24’. In another embodiment, the agent 30, 30°, 40 monitors an intranode graphics message
queue to determine changes to its associated desktop environment. Server agents 30, 30’
monitor an intraserver message queue and local agent 40 monitors an intraclient message queue.
In this embodiment, changes to the desktop environment 24, 24’ are effected via messages sent
to a graphics subsystem from system applications or the operating system itself. Thus, an
application executing an a server 20, 20° would send a message to a graphics engine residing on
the server 20, 20’ in order to change the server desktop environment 24, 24°. Other commands
which return graphical user interface data are readily apparent to those of ordinary skill in the art.
For embodiments in which the agents 30, 40 reside on nodes executing a version of the
WINDOWS operating system, the agents 30, 40 monitor the Windows Message Queue for
messages affecting the desktop environment associated with the node on which the agent resides.
Examples of such messages include: WM_SETFOCUS, which indicates to which window focus
will be given (i.e., brought to the “top” of the desktop); WM_KILLFOCUS, which removes

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-6-

focus from an indicated window; and WM_WINDOWPOSCHANGING, which indicates a
change in the position of a window. Other messages that can be posted to the Windows Message
Queue are readily known to those of ordinary skill in the art.

Referring now to Fig. 3, the steps taken during a server-initiated event are shown. The
server agent 30 senses a change in its associated desktop (step 302). The server agent 30 may do
this by intercepting a window event on the server message queue, or the agent 30 may determine
a change in the desktop by comparing the results returned from serially issued operating system
commands, as described above. The server agent 30 sends a message to a client agent 40
indicating the change in the server desktop 24 (step 304). For example, if a new window has
been given focus, the server agent 30 can transmit a message to a client agent 40 indicating the
identity of the new “top” window. In one embodiment, the server agent 30 broadcasts its
message to all client agents 40 that exist in the system. Alternatively, the server agent 30 may
transmit its message only to a predetermined subset of client agents 40. For example, when a
client 10 makes a connection to a server 20, the client agent 40 may register with the server agent
30. In this embodiment, the server agent 30 would transmit change messages only to those client
agents that have registered with the server.

The client agent 40 receives the transmitted message (step 306). In embodiments in
which the server broadcasts commands, the client agent 40 must have some mechanism for
determining whether a transmitted command affects its associated desktop 12. For example, the
client agent 40 may maintain a list of servers to which it is connected. In these embodiments, the
client agent 40 responds to messages broadcast by any server present in its list. For
embodiments in which the server agent 30 does not broadcast messages, no such mechanism is
necessary.

The client agent 40 implements a change to its associated desktop 14 responsively to the
received message (step 308). The client agent 40 may accomplish this by directly issuing
graphics Application Programming Interface commands that cause the client 10 to change the
display of its associated desktop 14. Alternatively, the client agent 40 may issue GDI commands
to change its associated desktop 14. In still other embodiments, the client agent 40 issues
commands directly to the system, whether implemented in hardware or software, responsible for

displaying graphics on the client 10.

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-7-

Referring now to Fig. 4, the steps taken when a client initiates a desktop change are -
shown. The client agent 40 senses a change in its associated desktop 14 (step 402). As noted
above, this may be done on an event-driven basis or by polling the operating system operating on
the client 10. The client agent 40 determines to which server 20 the affected window belongs
(step 404). To facilitate this process, the client agent 40 may maintain a list that associates
remote windows with a particular server 20. The client agent 40 then sends a message to the
identified server 40 indicating the change in its desktop 14 (step 406). Alternatively, the client
agent 40 may skip step 404 entirely and broadcast its change message to all servers 20. The
server agent receives the transmitted message (step 408) and implements the change in its
associated desktop (step 410), as described above.

In one particular embodiment, a client node 10 and a server node 20 communicate using
the ICA protocol and the client node 10 and the server node 20 execute a version of the
WINDOWS operating system. Client node 10 hosts a local agent 40 that may be provided as a
dynamically linked library module. The server node 20 hosts a server agent 30 that may be
provided as a separate thread.

In this embodiment, the local agent 40 and the server agent 30 exchange graphical data,
i.e., the data actually displayed in each window on the desktop, via a first ICA virtual channel.
Information about window positioning, window size, z-access ordering of window and other
such information is communicated between the client node 10 and the server node 20 via a
second ICA virtual channel. Throughout the description, when the client node 10 and the server
node 20 are actively exchanging information via the second ICA virtual channel, the client will
be referred to as being in “seamless windowing mode.”

Referring now to Fig. 5, the process for enabling seamless windowing mode between the
local agent 40 and server agent 30 is shown. In this embodiment, all communication between a
server agent and a client agent is packet-oriented and takes place over a dedicated ICA virtual
channel, making the functioning of the agents 30, 40 independent from the underlying
communication protocol. All packets start with packet type (1 byte), followed by packet data
length (2 bytes, can be zero) and data (optional). Agents 30, 40 will try to send as much data in a
single network packet as possible, but it will always send complete packets. That is, the size of

seamless window virtual packets never exceeds the allowable size of an ICA packet. Packet flow

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-8-
control and delivery confirmation is implemented by the transport level of the ICA protocol. -
Individual packets are executed immediately on reception.

The client agent 40 waits for an initial packet from the server agent 30. After user logon
to the server, a server agent 30 will be invoked (step 504).

The server agent sends a TWI_PACKET_START packet to the client agent 40, which
includes some essential information about the server desktop environment (desktop resolution,
desktop size, version number of ICA protocol supported by the server, etc.) (step 506). This
packet is sent by the server agent 30 on initial connection or on reconnect, and is used to: (1)
detect seamless windowing capabilities of the client; and (2) requests basic client information.

The client agent receives the TWI_PACKET_START packet (step 507) and responds
with a TWI_PACKET_C2H_START_ACK packet, confirming TWI_PACKET START and
supplying client version/capabilities information (step 508). This packet is sent by the client
agent 40 to confirm reception of TWI_PACKET_START packet and to send the requested basic
client information to the server agent 30.

If there is no response from the client agent 40 (step 509), the server agent 30 assumes
that the client is unable to enter seamless windowing mode, and the seamless windowing virtual
channel is not used by the server node 20 to communicate window information. In this case, the
server node 20 continues to communicate graphical data to the client node 10 via another virtual
channel, and the client desktop displays the server desktop without incorporating windows from
other nodes.

The client agent 40 uses the information sent by the server agent 30 in step 506 to
determine if a seamless windowing session can be established between the server agent 30 and
the client agent 40. In one embodiment, the client agent 40 compares information relating to the
version of the virtual channel protocol supported by the server agent 30 to makes the
determination If the client agent 40 determines that it is possible to enable seamless windowing
mode (step 510), the client agent 40 sends a TWI_PACKET C2H_OPEN packet to the server
agent 30 (step 511). This packet requests that the server agent 30 enable seamless windowing

mode.

On reception of a TWI_PACKET_C2H_OPEN packet (step 512) the server agent 40 (I)
resets its internal data structures, (i1) sends a TWI_PACKET_ SYSINFO packet to the client

agent 40 to communicate some general information regarding the window settings on the server

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-9-

node 20 to the client agent 40, (iii) sends a TWI_PACKET_OPEN packet to the client agent 40
(step 514) indicating the establishment of seamless windowing mode, and (iv) enables its main
polling loop (step 516) that will poll the operating system on the server node for desktop
changes. If the client agent 40 and the server agent 30 do not support the same version of the
seamless window protocol, the server agent 30 ignores the TWI_PACKET C2H_OPEN packet.

On reception of TWI_PACKET_OPEN packet (step 520), the client agent 40 resets its
internal data structures (step 522) and seamless windowing mode between the client agent 40 and
the server agent 30 is established.

During a seamless windowing mode session, the server agent 30 will send window
information such as window position, size, styles, window text, etc. for all top-level windows on
the server node. Also, foreground window information is sent, i.e., which window on the server
node desktop is the foreground window. In accordance with this information, the client agent 40
creates windows with the same size/position as the server node windows on the client node
desktop. In some embodiments, window elements are transmitted as bitmaps from the server
node 20. Examples of packets sent by the server agent 30 include : TWI_PACKET CLOSE,
which is sent to switch the client agent 40 out of seamless windowing mode and back to regular,
or full screen, mode; that is, the client node 10 is switched back to displaying the server node
desktop environment without incorporating windows from other desktop environments;
TWI_PACKET_CREATEW, which is sent to create new windows on the client node 10;
TWI_PACKET_DELETEW, which is sent to destroy a window on the client node 10;
TWI_PACKET _CHANGEW, which is sent to change a window displayed by the local node 10;
TWI_PACKET_SYSINFO, which is sent to report server node 20 system settings -- normally it
is sent only once, but the packet can be sent multiple times; TWI_PACKET FOREGROUNDW,
which is sent during normal seamless windowing mode operation to change the foreground
window; TWI_PACKET_SETTOPW, which is sent during normal seamless windowing mode
operation to change the top window, that is, to bring a new window to top;
TWI_PACKET_SETFOCUS, which is sent during normal seamless windowing mode operation
to change the focus window; TWI_PACKET_FOCUSACK, which is sent in response to
TWI_PACKET_C2H_SETFOCUS (see below), and reports the result of a SetFocus attempt; and
TWI_PACKET_SPA_STATUS, which is sent in response to

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-10 -
TWI_PACKET_C2H_START_PUBLICAPP (see below), and is used to report the result of the
requested operation.

Examples of packets that can be sent by the client agent 40 to the server agent 30 include
: TWI_PACKET_C2H_PAUSE, which is sent to suspend the server agent 30, that is, the server
agent 30 will stop sending window information, clear its internal data structure and send a
TWI_PACKET_CLOSE packet (see above); TWI_PACKET C2H RESUME, which is sent to
resume the server agent 30 -- the server agent 30 will clear its internal data structure, and send a
TWI_PACKET_OPEN packet (see above); TWI_PACKET C2H_SETPOS, which is sent to
report window size/position change on the client node; TWI_PACKET C2H_SETFOCUS,
which is sent to report a change in the focus window on the client node;
TWI_PACKET_C2H_RESTORE, which is sent to request restoration of a minimized window;
TWI_PACKET_C2H_TERMINATE, which is sent to request termination of a program
executing on the server node 20; TWI_PACKET C2H_ STARTAPP, which is sent to start a new
application on the server node 20; TWI_PACKET C2H_LOGOUT, which is sent to end the
current session; TWI_PACKET C2H_START PUBLICAPP, which is sent to start a new
published application on the server node; and TWI_PACKET C2H_CLIENTINFO, which is
sent to report client desktop settings to the server agent 30 -- this packet is generally sent on
startup, but can also be used during seamless windowing session.

The client agent 40 will try to perform some operations (such as window move and
resize) locally, sending update information back to the server node 40 afterwards. Proper
window behavior is emulated by intercepting the WM_NCHITTEST message for the client-
created windows.

Foreground window changes can happen on both the client node and the server node, so
the client and server will negotiate and balance actual foreground window changes. For
example, if the server node 20 changes its foreground window, that change should be properly
represented on the client desktop. The server agent 30 sends information regarding the new
foreground window to the client agent 40 using the TWI_PACKET FOREGROUNDW packet.
Similarly, if the client agent 40 detects a foreground window change on the client desktop, the
client agent 40 sends information regarding the change to the server agent 30 and the server

agent 30 implements the change on the server desktop.

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-11-

When focus is taken away from a window representing a server window and is given to a
local client window, the client notifies the server of the change and the server gives focus to an
invisible window. For embodiments in which the client node 10 is connected to two server
nodes 20, and focus is shifted from a window representing a window from the first server and is
given to a window representing a window from the second server, the client sends a packet
informing the current server that its window no longer has focus. Once the server responds by
giving focus to an invisible window, the client agent 40 instructs the other server that its window
now has focus on the local desktop.

In some embodiments, it is desirable to add some complexity to the agent’s main polling
loop to reduce network traffic. In these embodiments, the main polling loop includes a
comparison between the current foreground window and the identity of the window last
requested to be moved to the foreground. If the current foreground window matches the window
identified in the most recent request, the agent does not need to send information acknowledging
the change. This technique is useful in both server agent 30 and client agents 40.

Window z-ordering on the client is a superset of the server node z-ordering (client will
always have more windows than the host). Server node z-ordering is reproduced on the client by
reproducing owner/owned relationship among windows and the TOP_MOST flag in the window
style. Owner/owned relationships refer to windows which are children of other windows, such as
dialog boxes associated with application windows. The dialog box is said to be owned by the
application window, and the dialog box will always appear on top of its owner. The TOP_MOST
flag indicates that a particular window should appear on “top” of the desktop, for example, the
status bar in WINDOWS 95.

When a user disconnects, the server agent 30 switches itself to suspended mode, and will
not send information to the client agent 40. On a reconnect, the server agent 30 sends a
TWI_PACKET_START packet, reporting HostAgentState as “already running, reconnect.”

Based on the version number of the protocol supported by the server the client will decide
whether it is possible to enable seamless windowing mode (from the client point of view). Ifit is
possible to switch to seamless windowing mode, the client agent 40 will send a
TWI_PACKET_C2H_OPEN packet, asking the server agent 30 to enable seamless windowing

mode.

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-12-

Each agent responsible for monitoring an associated desktop may be implemented as a
stand-alone software routine (such as an executable file on DOS-based systems), a dynamically
linked library routine (DLL), or as an integral piece of the operating system. Referring now to
FIG. 6, and in brief overview, each agent includes a message receiving facility 602, a command
facility 604, a monitor facility 606, and a message transmission facility 608. Agent-agent
communication is full-duplex, i.e., agents can transmit and receive messages simultaneously.
Thus, each facility can be implemented as a separately functioning code segment that operates
independently of the other facilities. For example, message receiving facility 602 and command
facility 604 can be implemented as separate threads which communicate with each other via a
named pipe or shared memory. Use of a common data allows the message receiving facility 602
and the message transmitting facility 608 to be synchronized.

Message receiving facility 602 receives messages transmitted from other agents
indicating changes in the desktop environments associated with those agents. Message receiving
facility 602 may connect directly with the physical layer of the communications protocol the
agents use to communicate, or the message receiving facility 602 may operate at a higher layer of
the protocol by cooperating with one or more communications subsystems. For embodiments in
which messages are broadcast by agents, the message receiving facility 602 has some mechanism
for determining whether a broadcast message is intended for it. For example, the message
receiving facility 602 may store a list of the windows which its associated desktop displays. The
message receiving facility 602 would compare the target of any received message to its list of
windows to determine whether or not to take action on the received message. The message
receiving facility may be implemented as a blocking function. Alternatively, the message
receiving facility can be implemented a call-back function invoked by the ICA virtual channel
transport.

Once the message receiving facility 602 has determined that a received message is
intended for its desktop, the command facility is invoked to effect the change indicated by the
message to the associated desktop environment. The command facility 604 may be passed the
received message facility, or the message receiving facility 602 may process the received
message before communicating with the command facility 604. The command facility 604 may

implement the desktop change indicated by the received message by issuing GDI commands. In

10

15

20

25

30

WO 99/63430 PCT/US99/11534

-13-
other embodiments, the command facility 604 may issue commands directly to an associated -
graphics subsystem or may issue other graphics API commands.

During a seamless windowing session, a number of desktops are associated with a single
client node - one desktop on the client itself and one desktop per server node 20 to which the
client node 10 is connected. The client agent 40, in conjunction with the server agent 30, 30°,
creates a combined window list representing the z-order of all desktops. All participating
desktops are “linked” together by the client agents 40 and the server agents 30, 30°, and any z-
order changes on any desktops will be propagated to other desktops.

In one embodiment, each server has knowledge only of its own graphical desktop
representation and the server desktops are individually represented within the client. The client
display is updated by combining all server and client desktop images into a single display image
based on the window information that has been obtained from each server node 20, 20’ by the
client agent 40. The resulting image is displayed at the client node 10.

The combining process involves building a common window list based on the windows
information exchanged by all agents. Using the combined window list, the graphical desktop
data is clipped and merged for representation by the client node 10. The node takes care of
“clipping” displayed windows resulting from the commands issued by the command facility 604.
Such “clipping” functions are well-known to those of ordinary skill in the art. In some
embodiments, however, the command facility 604 maintains a shadow bitmap of clipped
windows. That is, the command facility 604 maintains a bit image of windows that are obscured
by other windows. This allows the agent to change its associated desktop without requiring it to
reload the window image of an obscured window from the appropriate source. In other
embodiments, the node determines whether graphical data is obscured at the time it is received.
If it is, the node ignores the received graphical data. If it is not, the node displays the data. The
node makes a determination as to whether the graphical data is obscured by applying clipping
functions.

Monitoring facility 606 monitors the desktop associated with the agent. Monitoring
facility 606 may monitor the desktop by periodically issuing commands provided by the
operating system executing on the node which return information about the node’s desktop.
Alternatively, the monitoring facility 506 may watch for messages posted to an intranode

message queue. As noted above, in one particular embodiment the monitoring facility 606

10

15

WO 99/63430 PCT/US99/11534

-14 -
monitors the Windows Message Queue. Once a desktop change occurred, the message -
transmission facility 608 transmits a message indicating the change that has occurred. In some
embodiments, the message transmission facility 608 broadcasts notification of the change.

In one embodiment, message transmission facility 608 can be implemented in the form of
non-blocking function, that can be called from any window procedure. If the function can not
send a data packet immediately (for example, the communication subsystem has no buffer
space), a timer will be set and retry attempts will be done until the send succeeds.

The present invention may be provided as one or more computer-readable programs
embodied on or in one or more articles of manufacture. The article of manufacture may be a
floppy disk, a hard disk, a CD ROM, a flash memory card, a PROM, a RAM, a ROM, or a
magnetic tape. In general, the computer-readable programs may be implemented in any
programming language. Some examples of languages that can be used include C, C++, or
JAVA. The software programs may be stored on or in one or more articles of manufacture as
object code.

Having described certain embodiments of the invention, it will now become apparent to
one of skill in the art that other embodiments incorporating the concepts of the invention may be
used. Therefore, the invention should not be limited to certain embodiments, but rather should

be limited only by the spirit and scope of the following claims.

O 00 N O W A~ W

P T S T =
AW = O

wm A W N

— [V I - VS A S]

E- NS B V]

WO 99/63430 PCT/US99/11534

-15-

What is claimed is: R

1.

A system for incorporating windows from remote desktop environments into a local
desktop environment, the system comprising:

a local node having a local desktop environment;

a local agent;

a first remote node having a first remote desktop environment including at least one
first remote window; and

a first remote agent monitoring said first remote desktop environment and in
communication with said local agent, said first remote agent transmitting a message to
said local agent indicative of a change to said first remote window,

said local agent receiving the message transmitted by said first remote agent and,.
responsive to the received message, commanding said local node to modify a
representation of said first remote window as part of said local desktop environment and
said local agent transmitting messages to said first remote agent indicative of a locally-

generated change to a representation of said first remote window.

The system of claim 1 wherein said local node provides said local desktop environment,
said local agent monitors said local desktop environment, and wherein said local agent
receives the messages transmitted by said remote agent and, responsive to the received
message, commands said local node to modify a representation of said first remote

window as part of said local desktop environment.

The system of claim 1 wherein said first remote agent transmits a message indicating that
said first remote window has changed position and wherein said local agent receives the
message transmitted by said first remote agent and commands said local node to change
the position of a representation of said first remote window in said local desktop

environment.

The system of claim 1 wherein said first remote agent transmits a message indicating that
said first remote window has closed and wherein said local agent receives the message
transmitted by said first remote agent and commands said local node to close a

representation of said first remote window in said local desktop environment.

E - VS B)

O 00 N O W b WD =

[
(]

10.

11.

12.

WO 99/63430 PCT/US99/11534

-16-

The system of claim 1 wherein said first remote agent transmits a message indicating that
said first remote window has changed size and wherein said local agent receives the
transmitted message and commands said local node to change the size of a representation

of said first remote window in said local desktop environment.

The system of claim 1 wherein said first remote agent monitors said first remote desktop

environment by monitoring an intranode message queue.

The system of claim 1 wherein said local node provides said local desktop environment

and said local agent monitors said local desktop environment.

The system of claim 7 wherein said local node broadcasts a message indicative of a

locally-generated change to a representation of said first remote window.

The system of claim 1 wherein said remote node broadcasts a message indicative of a

change to said first remote window.

The system of claim 1 wherein said local node performs clipping functions on said
representations of said first remote window that are obscured by local windows or other

remote windows.

A method for incorporating windows from remote desktop environments into a local
desktop environment, the method comprising the steps of:

(a) providing a local node hosting a local agent;

(b) receiving, by the local agent, a message indicating a change to windows
included in a remote desktop environment;

(¢) commanding, by the local agent, the local node to effect a corresponding
change in the local desktop environment;

(d) monitoring, by the local agent, the local desktop environment; and

(e) transmitting, by the local agent, a message indicative of a change to

representation of the remote windows included in the local desktop environment.

The method of claim 11 wherein steps (b) and (c) comprise:

(b) receiving, by the local agent, a message indicating that a window included in a

v A W N = [V, B N B *]

oy

O 0 N N U B W

13.

14.

15.

16.

17.

18.

WO 99/63430 PCT/US99/11534

-17-
remote desktop environment has changed position; and -
(¢) commanding, by the local agent, the local node to change the position of a

representation of the remote window in the local desktop environment.

The method of claim 11 wherein steps (b) and (c) comprise:

(b) receiving, by the local agent, a message indicating that a window included in a
remote desktop environment has closed; and

(c) commanding, by the local agent, the local node to close a representation of the

remote window in the local desktop environment.

The method of claim 11 wherein steps (b) and (c) comprise:

(b) receiving, by the local agent, a message indicating that a window included in a
remote desktop environment has changed size; and

(¢) commanding, by the local agent, the local node to change the size of a

representation of the remote window in the local desktop environment.

An agent for incorporating windows from remote desktop environments into a local
desktop environment, the agent comprising:

a message receiving process capable of receiving messages indicative of a change in a
remote desktop environment;

a command process capable of effecting changes to a local desktop environment
responsive to the received messages;

a monitor process capable of monitoring local desktop events; and

a transmission process capable of transmitting messages indicative of the local

desktop events.

The agent of claim 15 wherein said transmission process broadcasts messages indicative

of the local desktop events.

The agent of claim 15 wherein said command process issues application programming
interface commands, responsively to received messages, to effect changes to a local

desktop environment.

A article of manufacture having the agent of claim 15 embodied thereon.

O 0 ~1 O WU bW N e

bt
(=]

19.

20.

WO 99/63430 PCT/US99/11534

-18 -
A system for incorporating windows from remote desktop environments into a local -
desktop environment, each desktop environment including at least one window displaying
graphical data, the system comprising:

a communications link comprising a first virtual channel and a second virtual
channel;

a local node; and

a remote node,

said local node and said remote node exchanging window information over said first
virtual channel of said communications link and said local node and said remote node

exchanging graphical data over said second virtual channel of said communications link.

The system of claim 20 wherein the first virtual channel and the second virtual channel

comprise the same virtual channel.

WO 99/63430 PCT/US99/11534
1/5

o

®
® /
1097__/'\

Fig. 1
24 24’
o o
o])\ [-22
26— 57 22’
14
~—12

Fig. 2 = 40
C1b~—10

SUBSTITUTE SHEET (Rule 26)

WO 99/63430

SERVER

NO
SERVER

AGENT
DETECTS
CHANGE?

PCT/US99/11534

CLIENT

302 |
YES
y |
SERVER AGENT CLIENT AGENT
TRANSMITS g RECEIVES
MESSAGE —> MESSAGE
304 / N
| | CLIENT IMPLEMENTS
§ CHANGE
Fig. 3 | N

SUBSTITUTE SHEET (Rule 26)

| WO 99/63430 PCT/US99/11534

Fig. 4

3/5
SERVER | CLIENT
NO
5 CLIENT
| AGENT L
| DETECTS
5 CHANGE?
40
DETERMINE TO
| WHICH SERVER
| AFFECTED WINDOW
| BELONGS
! 404 J l
SERVER] SEND MESSAGE
RECEIVES |« ! TO SERVER
MESSAGE 5
l _ ws | 408
SERVER
IMPLEMENTS :
CHANGE |

SUBSTITUTE SHEET (Rule 26)

WO 99/63430

4/5

PCT/US99/11534

CLIENT SERVER i
E SERVER AGENT
i INVOKED | L 504
CLIENT RECEIVES |, TWIPACKET START | SERVER AGENT
ESsaGE [5 SENDS START | —) 5o
se7 | PACKET TO CLIENT
TRANSMIT ACK
PACKET TO ‘
SERVER
508

POSSIBLE

TO ENABLE SEAMLESS
WINDOW MODE?

510

T

SEAMLESS
WINDOWING YES
OT ENABLED
= SII;:E(IZ)KI?]? EI(\)I TWI_PACKET _C2H_OPEN RECEIVE OPEN —
511 SERVER E PACKET 512
RECEIVE SYSINFO | _ TWI_PACKET_SYSINFO SEND SYSINFO
520 = | AND TWI_PACKET OPEN AND L 514
OPEN PACKET ; OPEN PACKETS
e RESETDIETT[ERNAL ENABLEMAIN |
522 STRUCTURES | POLLING LOOP

Fig. 5

SUBSTITUTE SHEET (Rule 26)

WO 99/63430 PCT/US99/11534
575

602 604

N | —
//’_“‘\\\\\

L DESKTOP (:ZM>
Q:ESSAGES]

608 606

Fig. 6

SUBSTITUTE SHEET (Rule 26)

INTERNATIONAL SEARCH REPORT

i national Application No

FLT/US 99/11534

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/44 G06F9/46

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fieids searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 5 537 548 A (FIN TONG-HAING ET AL) 1-20
16 July 1996 (1996-07-16)
the whole document

A ABE T ET AL: "DISTRIBUTED COOPERATIVE 1-19
CONTROL FOR SHARING APPLICATIONS BASED ON
THE MERMAID MULTIPARTY AND MULTIMEDIA
DESKTOP CONFERENCING SYSTEM"

NEC RESEARCH AND DEVELOPMENT,

vol. 34, no. 1,

1 January 1993 (1993-01-01), pages

122-131, XP000363016
ISSN: 0547-051X

A WO 97 28623 A (GOLAN GILAD ;ZANGVIL ARNON 1-19

the whole document

(IL); ZANGVIL AVNER (IL); MENTA SOFTWAR)
7 August 1997 (1997-08-07)

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular retevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y' document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intermational search

9 September 1999

Date of mailing of the internationai search report

16/09/1999

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent tamily members

Ir" mational Application No

FUT/US 99/11534

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5537548 A 16-07-1996 JP 5046568 A 26-02-1993
CA 2071451 A,C 09-02-1993
EP 0527590 A 17-02-1993
WO 9728623 A 07-08-1997 IL 116804 A 06-12-1998
AU 1397097 A 22-08-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

