The document appears to be a patent application titled "DIMENSION DATA INSERTION INTO DIMENSION TABLE". It includes a description of a method for inserting dimension data into a dimension table, supporting a type 6 slowly changing dimension (SCD) format. The method also includes inserting the dimension data into the dimension table as an additional dimension data record, without updating any other dimension data record already stored in the table.

Example text from the document:

"In some examples, a method includes receiving dimension data for insertion into a dimension table that supports a type 6 slowly changing dimension (SCD) format. The method may also include inserting the dimension data into the dimension table as an additional dimension data record, without updating any other dimension data record already stored in the dimension table."
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(H))
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))

Published:
— with international search report (Art. 21(3))
DIMENSION DATA INSERTION INTO DIMENSION TABLE

BACKGROUND

[0001] Recent advances in technology have spurred the generation and storage of immense amounts of data. Corporations may generate immense amounts of data through financial logs, e-mail messages, business records, and the like. As technology continues to develop, search and analysis of relevant data among large data sources may become increasingly difficult. Increasing the efficiency of data systems may improve user experience.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Certain examples are described in the following detailed description and in reference to the drawings.

[0003] Figure 1 shows an example of a device that supports dimension data insertion into a dimension table.

[0004] Figure 2 shows an example of dimension data insertion into a dimension table.

[0005] Figure 3 shows an example of dimension data insertion into a dimension table implemented as a time-series fact table.

[0008] Figure 4 shows an example of logical view extraction from a dimension table.

[0007] Figure 5 shows an example of logic that a device or system may implement to support dimension data insertion into a dimension table.

[0008] Figure 6 shows an example of a system that supports dimension fact insertion into a dimension table.
DETAILED DESCRIPTION

[0009] The discussion below refers to dimension data, including dimension data subject to change. Dimension data may refer to attribute data of a data management or data warehousing method that is relatively static. Put another way, a dimension data may refer to a collection of reference information about a measurable event. In this context, the events may be referred to as facts, and dimensions may categorize and describe facts and measures, such as time-series facts, measurements, or events. For example, dimensions may support categorization of fact data in ways that support meaningful answers to business question. Some examples of dimension data in a business context may thus include geographical locations of the business, services, terms, customers, products, employees, or various other business attributes that change slowly (e.g., relatively to other business data or transactional data such as sales record data), unpredictably, or irregularly. These dimensions of data may also be referred to as slowly changing dimensions.

[0010] Dimension data may be stored in a dimension table. A dimension table may refer to any table or other data structure that stores dimension data. As discussed below, the actual representation of a dimension table may vary, for example taking the form of a time-series fact table or through various other physical implementations. A system may implement a dimension table to store, organize, track, or otherwise manage dimension data according the slowly changing dimension (SCD) format, which includes types 1, 2, 3 as well as other hybrid and combination types of the SCD format. The features described below are provided in a continuing illustration using, as an example, a pure type 6 SCD format for dimension data records stored in a dimension table. However, any of the dimension data insertion, extraction, access, and derivation features described herein may be consistently implemented for other SCD formats that track historical dimension values or any other data management techniques applied to dimension data.

[0011] The discussion herein may provide for systems, methods, devices, and logic that support dimension data insertion into dimension table. In particular, the
features described herein may provide increased efficiency in dimension data
insertion, by implementing insertion of dimension data into a dimension table
without updating any other dimension data records already stored in the
dimension table. Dimension data insertion without additional updates may be
supported even while the dimension table maintains historical dimension data
values and corresponding time periods associated with the historical dimension
data values. Reducing or eliminating update operations performed on the
dimension table may result in increased data management speed and resource
efficiency, particularly for database systems with a high cost for performing
update operations such as column-store databases storing large data volumes.

[0012] Figure 1 shows an example of a device 100 that supports dimension data
insertion into a dimension table. The device 100 may take the form of a
computing system, including a single or multiple computing devices such as
application servers, compute nodes, desktop or laptop computers, smart phones
or other mobile devices, table devices, embedded controllers, and more. The
device 100 may be part of a database system or data warehouse, for example
storing dimension data, fact data, or both.

[0013] As described in greater detail below, the device 100 may support access
to dimension data according to a predefined SCD format, such as pure type 6
SCD, but implement a representation of a dimension table that may provide
increased efficiency in maintaining the dimension data. In particular, the device
100 may include logic, engines, or circuitry to implement the dimension table to
support dimension data insertions without updating dimension data records
already stored in the dimension table. As one example, the device 100 shown in
Figure 1 includes implementation engine 110, reception engine 111, and insertion
engine 112. The device 100 may implement the engines 110, 111, and 112 (and
components thereof) in various ways, for example as hardware and
programming. The programming for the engines 110, 111, and 112 may take the
form of processor-executable instructions stored on a non-transitory machine-
readable storage medium and the hardware for the engines 110, 111, and 112
may include a processing resource to execute those instructions. A processing
resource may take the form of a single-processor or multi-processor resource, for example.

[0014] The implementation engine 110 may include an engine component to implement a dimension table that supports a type 6 SCD format for dimension data records stored in the dimension table. The reception engine 111 may include an engine component to receive dimension data for insertion into the dimension table, and the insertion engine 112 may include an engine component to insert the dimension data into the dimension table as an additional dimension data record without updating any other dimension data record already stored in the dimension table. Examples of dimension data insertion that the device 100 may support through the implementation engine 110, reception engine 111, and insertion engine 112 are described in greater detail next.

[0015] Figure 2 shows an example of dimension data insertion into a dimension table. In the example shown in Figure 2, the reception engine 111 receives dimension data 201 for insertion into a dimension table 210. Dimension data received by the reception engine 111 may include any change or update to a dimension attribute tracked by a particular dimension table. As illustrative examples, dimension data may specify a new location for a particular supplier of a business, an updated employee address, the internal product code of a newly-released product version, or any other change to dimension data tracked by the dimension table. In the example shown in Figure 2, the dimension data 201 indicates a supplier named “Acme Supply Co” moving to the state of New York starting from a start time value of February 4, 2008.

[0018] The implementation engine 110 (not shown) may implement the dimension table 210 to support access to dimension data records in a SCD format. Implementation of the dimension table 210 by the implementation engine 110 may refer to any generation, maintaining, or modification of a physical or logical representation of the dimension table 210 to include specific parameters, data fields, or any other table attributes. The dimension table 210 may support tracking the current and historical values of a particular dimension attribute and associated time periods for the various values. As shown in the example in Figure
2, the dimension table 210 tracks the state location of the supplier coded as "ABC" and named "Acme Supply Co" through the Supplier__State field, tracking historical values in the dimension data records 221 and 222 stored in the dimension table 210.

[0017] The implementation engine 110 may also implement the dimension table 210 in a pure type 6 SCD format such that records in the dimension table for the same master data item (e.g., particular dimension attribute values) use the same surrogate key. To illustrate through the example shown in Figure 2, the "Supplier.Key" field may represent a surrogate key, and dimension data records for each unique supplier (e.g., as identified through a unique natural key stored in the "Supplier.Code" field) may use the same respective surrogate key value. Thus, in this example, the different dimension attribute values of the "Supplier.Code" field may represent different master data items, each with a unique surrogate key. As seen in Figure 2, each of the dimension data records for the "Supplier.Code" value of "ABC" has a "Supplier.Key" value of "456".

[0018] The implementation engine 110 may implement the dimension table 210 to identify a time period for historical dimension values. However, the implementation engine 110 may implement the dimension table 210 such that dimension data records stored in the dimension table 210 include a start time field 230, but not an end time field. The start time field 230 of a dimension table 210 may indicate any date, time, or other temporal indicator as b when a particular dimension value started to take effect. In the example shown in Figure 2 relating to suppliers, the dimension table 210 includes the start time field 230 through the "Start__Date" field of stored dimension data records, indicating the initial or earliest calendar date at which a supplier was located in a particular state.

[0019] By implementing the dimension table 210 to include dimension data records with a start time field 230 but not an end time field, the implementation engine 110 may support insertion of dimension data records into the dimension table 210 without updating any other dimension data records already stored in the dimension table 210. To illustrate through Figure 2, the insertion engine 112 may insert the additional dimension data record 240 into the dimension table 210,
which may add a record in the dimension table 210 for the dimension change specified in the dimension data 201. That is, the insertion engine 112 may insert the additional dimension data record 240 indicating that the supplier named "Acme Supply Co" is located in the state of New York starting from February 4, 2008 without having to update any of the dimension data records 221 and 222 already stored in the dimension table 210. Without an end time field for records in the dimension table 210, the insertion engine 112 or other database management logic need not update the dimension data record tracking the previous location of the Acme Supply Co to indicate when the time when the previous location of the Acme Supply Co ended.

[0020] As also shown in Figure 2, the implementation engine 110 may implement the dimension table 210 so that the dimension data records do not store both a historical dimension value and a current dimension value, as specified by some type 6 SCD implementations. Accordingly, dimension data insertions into the dimension table 210 do not require updating each of the other dimension data records stored in the dimension table 210 to specify newly changed current dimension value. Similarly, the implementation engine 110 may implement the dimension table 210 such that dimension data records do not include a "current record" or "current flag" field indicating which of the dimension data records represents the current dimension value of the dimension. Thus, for dimension data insertions into the dimension table 210, the insertion engine 112 may insert the additional dimension data record 240 without having to update a "current record" field of a previously stored dimension data record, as dimension data records in the dimension table 210 do not include such a field.

[0021] Thus, as described above, the insertion engine 112 may insert an additional dimension data record 240 into the dimension table 210 to reflect a dimension value change specified in dimension data 201 received by the reception engine 111. The insertion engine 112 may perform the insertion without updating any other record in the dimension table 210, such as the dimension data records 221 and 222. insertions into a dimension table 210 may thus be performed without any update operations on the dimension table 210,
which may increase the efficiency and speed at which changes to the dimension table 210 are effectuated. Such effects may be particularly impactful for database systems in which update operations incur a relatively high performance cost, for example a database system effectuating update operations through a delete-insertion combination of operations and columnar databases.

[0022] Figure 3 shows an example of dimension data insertion into a dimension table implemented as a time-series fact table. In some examples, the implementation engine 110 may implement the dimension table 210 as a fact table, such as the time-series fact table 310 shown in Figure 3. That is, the implementation engine 110 may support a conceptual or logical representation of a dimension table 210, accessible or viewable to a user. However, the actual (e.g., physical) representation of the dimension table 210 generated or maintained by the implementation engine 110 may take the form of a time-series fact table 310, which may include a "time" field for tracking when a particular event occurred. In this example, the event or fact tracked by the time-series fact table 310 may take the form of a change or update to a dimension value. A fact record stored in the time-series fact table 310 may thus be a dimension data record.

[0023] To support insertion into a dimension table 210 implemented as a time-series fact table 310, the reception engine 111 may convert the dimension data 201 into a fact record format supported by the time-series fact table 310. As seen in Figure 3, the reception engine 111 may generate the dimension data (converted into fact record format) 320. The reception engine 111 may do so by adding a data field, removing a data field, or otherwise configuring the dimension data 201 into the fact record format for dimension data records stored in the time-series fact table 310. In the example shown in Figure 3, dimension data records stored in the time-series fact table 310 include the "time" field indicating when an event or fact in the time-series fact table 310 occurred. As such, the reception engine 111 may add an associated time for the fact or event (e.g., the dimension value change) as part of converting the dimension data 201 into a fact record format supported by the time-series fact table 310. The time may indicate when
the dimension value change is to occur or when the record was inserted into the
time-series fact table 310.

[0024] The insertion engine 112 may insert the dimension data (converted into the fact record format) 320 as an additional dimension data record 321 in the time-series fact table 310. The insertion engine 112 may do so without updating any of the other dimension data records 322 and 323 already (e.g., previously) stored in the time-series fact table 310. Thus, the time-series fact table 310 may represent the dimension table 210 and persist the dimension history of a dimension while supporting dimension data record insertions without updating any other dimension data records already stored in the time-series fact table 310.

[0025] Although dimension data records stored in the dimension table 210 may not include an end time field, the dimension table 210 may nonetheless support derivation of a time period for historical dimension values stored in the dimension table 210. Example derivation features in the context of accessing dimension data are described next.

[0028] Figure 4 shows an example of logical view extraction from a dimension table 210. In the example shown in Figure 4, an access engine 410 may extract dimension data stored in a dimension table 210. The access engine 410 may be implemented as part of a database system, such as a data warehouse. In that regard, the access engine 410 may include hardware and programming to implement any of the dimension table access features described herein.

[0027] The access engine 410 may extract dimension data from the dimension table 210 through a table view, which may refer to a virtualized table with contents defined by a query. In that regard, the access engine 410 may provide dimension data according to a pure type 8 SCD format by extracting the dimension data from the dimension table 210. As seen in Figure 4, the access engine 410 presents the logical view 420 of dimension data stored in the dimension table 210. In the example shown in Figure 4, the access engine 410 presents the logical view 420 of the dimension data according to the pure type 6 SCD format.

[0028] In extracting the dimension data, the access engine 410 may derive end times for various historical dimension values of a dimension. That is, the access
engine 410 may extract the dimension data records stored in the dimension table 210, and in doing so derive an end time value for a particular dimension data record stored in the dimension table from a start time value of another dimension data record stored in the dimension table that is subsequent to the particular dimension data record. The access engine 410 may then present the extracted dimension data records, including the derived end time value for the particular dimension record, as the logical view 420 of the dimension table 210.

[0029] A subsequent dimension data record may refer to a dimension data record that was stored subsequently or later in time than the particular dimension data record, which may be reflected in the ordering of the dimension data records in the dimension table 210 when ordered by start time value or through the time field of a time-series fact table 310. Thus, in some implementations, the dimension data record subsequent to the particular dimension data record may refer to the dimension data record stored in the next, subsequent row in the dimension table 210 or the dimension data record with a time data later in time than the time data of the particular dimension data record. Along similar lines, a previous dimension data record may refer to a dimension data record that was inserted into the dimension table 210 at an earlier time or stored in a previous row of the dimension table 210.

[0030] To illustrate through Figure 4, the access engine 410 may derive an end time value for the dimension data record 322 from the start time value stored in the start time field of the dimension data record 323, which is subsequent to the dimension data record 322 (as the dimension data record 323 is inserted later in time and stored in a subsequent row of the dimension table 210). In particular, the access engine 410 may identify the start time value of the dimension data record 323 as “22-Dec-2004” and identify the end time value of the dimension data record 322 as a previous time value. In the logical view 420, the access engine 410 presents the derived end time value for the dimension data record 322 as “21-Dec-2004”.

[0031] in a similar way, the access engine 410 may derive end time values for the dimension data records stored in the dimension table 210, aside from the
dimension data record storing the current value of the tracked dimension attribute. This may be the case as the dimension data record storing the current value of the dimension attribute may have the latest time data of any dimension data record stored in the dimension table 210, and thus without a subsequent dimension data record to derive the end time value from. For the dimension data record storing the current value of the dimension attribute, the access engine 410 may present the end time value as blank in the logical view 420, thus indicating the dimension data record as storing the current value (e.g., the current supplier state of "NY" as shown in the logical view 420 shown in Figure 4).

[0032] As noted above, the access engine 410 may support access to the dimension data records stored in the dimension table 210 through a table view. The query defining the table view may derive the end time values presented through the logical view 420, and the access engine 410 may implement or execute the table view query to derive the end time values for dimension data records of the dimension table 210. As one example according to the supplier dimension table shown in Figure 4, the access engine 410 may utilize the following example table view:

```
CREATE View supplier_pure__scd6 ( 
    Supplier_Key, Supplier_Code, Supplier_Name, 
    Supplier_State, Start_Date, End_Date) as 
Select Supplier__Key, Supplier__Code, Supplier_Name, 
    Supplier__State, ta_period as start_date, 
    LEAD (start_date) OVER (PARTITION BY dsi_key_id 
order by start_date) + INTERVAL '1 second' as 
    end_date from supplier_pure_scd6_f act; 
```

in the example above, the table view `supplier_pure__scd6` may extract dimension data from the fact table named `supplier_pure_scd6_f act`, deriving the `end_date` values for the dimension data records of the table view.

[0033] Figure 5 shows an example of logic 500 that a system or device may implement to support dimension data insertion into a dimension table 210. For example, the device 100 may implement the logic 500 as hardware, executable instructions stored on a machine-readable medium, or as combinations thereof. The device 100 may implement the logic 500 through the reception engine 111 and insertion engine 112, for example, through which the device 100 may perform
or execute the logic 500 as a method to insert a dimension data record into a dimension table 210.

[0034] In implementing the logic 500, the reception engine 111 may receive dimension data for insertion into a dimension table that supports a type 6 SCD management format (502). The insertion engine 112 may insert the dimension data into the dimension table as an additional dimension data record without updating any other dimension data record already stored in the dimension table 210 (504).

[0035] In some examples, the logic 500 may further include implementing the dimension table such that dimension data records stored in the dimension table do not include an end time field, e.g., as performed by implementation engine 110. As such, the insertion engine 112 may insert the dimension data into the dimension table 210 without updating an end time field of any dimension data records stored in the dimension table 210. In other examples, the insertion engine 112 may insert the dimension data into the dimension table without updating a current record field of any dimension data records in the dimension table, such as when the implementation engine 110 implements the dimension table 210 such that dimension data records do not include a current record field.

[0038] The logic 500 may further include implementing the dimension table 210 as a fact table, such as time-series fact table 310. When the implementation engine 110 does so, the reception engine 111 may convert the dimension data to a fact record format compatible with the fact table after receiving the dimension data and the insertion engine 112 may insert into the fact table implementing the dimension table, the dimension data that was converted into the fact record format.

[0037] Figure 8 shows an example of a system 600 that supports dimension data insertion into a dimension table 210. In that regard, the system 800 may support insertion of dimension data records into the dimension table 210 that provides type 6 SCD management without updating any other dimension data record already stored in the dimension table 210. The system 800 may include a processing resource 810 which may take the form of a single or multiple
processors. The processors may include a central processing unit (CPU), microprocessor, or any hardware device suitable for executing instructions stored on a machine-readable medium. The system 600 may include a machine-readable medium 620. The machine-readable medium 620 may take the form of any non-transitory electronic, magnetic, optical, or other physical storage device that stores executable instructions, such as the instructions 622 and 624 shown in Figure 6. As such, the machine-readable medium 620 may be, for example, Random Access Memory (RAM) such as a dynamic RAM (DRAM), flash memory, memristor memory, spin-transfer torque memory, an Electrically-Erasable Programmable Read-Only Memory (EEPROM), a storage drive, an optical disk, and the like.

[0038] The system 600 may execute instructions stored on the machine-readable medium 620 through the processing resource 610. Executing the instructions may cause the system 600 to perform any of the dimension data insertion features described herein, including according to any of the features with respect to the implementation engine 110, the reception engine 111, the insertion engine 112, the access engine 410, or any combination thereof. For example, execution of the instructions 622 by the processing resource 610 may cause the system 600 to insert a particular dimension data record into a dimension table 210 without updating any other dimension data record already stored in the dimension table 210, wherein the dimension table 210 supports a type 6 SCD format for dimension data records stored in the dimension table 210 and the particular dimension data record includes a start time field but not an end time field. Execution of the instructions 624 may cause the system 600 to access the particular dimension data record, including deriving an end time value for the particular dimension data record from a start time field of another dimension data record stored in the dimension table 210 that is subsequent to the particular dimension data record.

[0039] In some examples, the machine-readable medium 620 may further include executable instructions that cause the system 600 to implement the dimension table 210 as a time-series fact table; convert dimension data of the
particular dimension data record into a fact record format compatible with the
time-series fact table; and insert, as the particular dimension data record, the
dimension data converted into the fact record format.

[0040] The systems, methods, devices, and logic described above, including the
implementation engine 110, reception engine 111, insertion engine 112, and
access engine 410, may be implemented in many different ways in many different
combinations of hardware, logic, circuitry, and executable instructions stored on
a machine-readable medium. For example, the implementation engine 110,
reception engine 111, insertion engine 112, access engine 410, or combinations
thereof, may include circuitry in a controller, a microprocessor, or an application
specific integrated circuit (ASIC), or may be implemented with discrete logic or
components, or a combination of other types of analog or digital circuitry,
combined on a single integrated circuit or distributed among multiple integrated
circuits. A product, such as a computer program product, may include a storage
medium and machine readable instructions stored on the medium, which when
executed in an endpoint, computer system, or other device, cause the device to
perform operations according to any of the description above, including according
to any features of the implementation engine 110, reception engine 111, insertion
engine 112, access engine 410, or combinations thereof.

[0041] The processing capability of the systems, devices, and engines
described herein, including the implementation engine 110, reception engine 111,
insertion engine 112, and access engine 410, may be distributed among multiple
system components, such as among multiple processors and memories,
optionally including multiple distributed processing systems. Parameters,
databases, and other data structures may be separately stored and managed,
may be incorporated into a single memory or database, may be logically and
physically organized in many different ways, and may implemented in many ways,
including data structures such as linked lists, hash tables, or implicit storage
mechanisms. Programs may be parts (e.g., subroutines) of a single program,
separate programs, distributed across several memories and processors, or
implemented in many different ways, such as in a library (e.g., a shared library).
While various examples have been described above, many more implementations are possible.
CLAIMS

1. A method comprising:
 receiving dimension data for insertion into a dimension table that supports a type 6 slowly changing dimension (SCD) format; and
 inserting the dimension data into the dimension table as an additional dimension data record without updating any other dimension data record already stored in the dimension table.

2. The method of claim 1, wherein inserting comprises inserting the dimension data into the dimension table without updating an end time field of any dimension data records in the dimension table.

3. The method of claim 1, wherein inserting comprises inserting the dimension data into the dimension table without updating a current record field of any dimension data records in the dimension table.

4. The method of claim 1, further comprising implementing the dimension table such that dimension data records stored in the dimension table do not include an end time field.

5. The method of claim 1, further comprising implementing the dimension table as a fact table.

6. The method of claim 5, further comprising, after receiving the dimension data, converting the dimension data to a fact record format compatible with the fact table.

7. The method of claim 6, wherein inserting the dimension data into the dimension table comprises:
 inserting, into the fact table implementing the dimension table, the dimension data that was converted into the fact record format.
8. A device comprising:
 an implementation engine to implement a dimension table that supports a
type 6 slowly changing dimension (SCD) format for dimension data records
stored in the dimension table;
 a reception engine to receive dimension data for insertion into the
dimension table; and
 a insertion engine to insert the dimension data into the dimension table
as an additional dimension data record without updating any other dimension
data record already stored in the dimension table.

9. The device of claim 8, wherein the implementation engine is to
 implement the dimension table so the dimension data records stored in the
dimension table include a start time field, but not an end time field.

10. The device of claim 8, wherein the implementation engine is to
 implement the dimension table to support a type 6 SCD format that does not
 include a historical data field for the data dimension records stored in the
dimension table.

11. The device of claim 8, wherein the implementation engine is to
 implement the dimension table to support a type 6 SCD format that uses a
single surrogate key for dimension data records with the same master data
item.

12. The device of claim 8, wherein:
 the implementation engine is to implement the dimension table as a time-
series fact table;
 the reception engine is further to convert the dimension data into a fact
record format compatible with the time-series fact table; and
the insertion engine is to insert, as the additional dimension data record, the dimension data converted into the fact record format.

13. The device of claim 8, further comprising an access engine to:
 extract the dimension data records stored in the dimension fable, including deriving an end time value for a particular dimension data record stored in the dimension table from a start time value of another dimension data record stored in the dimension table that is subsequent to the particular dimension data record; and
 present the extracted dimension data records, including the derived end time value for the particular dimension record, as a logical view of the dimension table.

14. A non-transitory machine-readable medium comprising executable instructions to:
 insert a particular dimension data record into a dimension table without updating any other dimension data record already stored in the dimension table, wherein:
 the dimension table supports a type 6 slowly changing dimension (SCD) format for dimension data records stored in the dimension fable; and
 the particular dimension data record includes a start time field but not an end time field; and
 access the particular dimension data record, including deriving an end time value for the particular dimension data record from a start time field of another dimension data record stored in the dimension table that is subsequent to the particular dimension data record.

15. The non-transitory machine-readable medium of claim 14, wherein the instructions are further to:
 implement the dimension table as a time-series fact table;
convert dimension data of the particular dimension data record into a fact record format compatible with the time-series fact table; and insert as the particular dimension data record, the dimension data converted into the fact record format.
Figure 1

Device 100

Implementation Engine
Engine component to implement a dimension table that supports a type B slowly changing dimension management format for dimension data records stored in the dimension table

Reception Engine
Engine component to receive dimension data for insertion into the dimension table

Insertion Engine
Engine component to insert the dimension data into the dimension table as an additional dimension data record without updating any other dimension data record already stored in the dimension table
Dimension Table 210

<table>
<thead>
<tr>
<th>Supplier Key</th>
<th>Supplier Code</th>
<th>Supplier Name</th>
<th>Supplier State</th>
<th>Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>CA</td>
<td>01-Jan-2000</td>
</tr>
<tr>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>IL</td>
<td>22-Dec-2004</td>
</tr>
<tr>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>NY</td>
<td>04-Feb-2008</td>
</tr>
</tbody>
</table>

Figure 2
Dimension Table 210

<table>
<thead>
<tr>
<th>Time</th>
<th>Supplier_Key</th>
<th>Supplier_Code</th>
<th>Supplier_Name</th>
<th>Supplier_State</th>
<th>Start_Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Jan-2000</td>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>CA</td>
<td>01-Jan-2000</td>
</tr>
<tr>
<td>01-Dec-2004</td>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>IL</td>
<td>22-Dec-2004</td>
</tr>
<tr>
<td>04-Feb-2008</td>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>NY</td>
<td>04-Feb-2008</td>
</tr>
</tbody>
</table>

Figure 3
Table 1: Supplier Data

<table>
<thead>
<tr>
<th>Supplier_Key</th>
<th>Supplier_Code</th>
<th>Supplier_Name</th>
<th>Supplier_State</th>
<th>Start_Date</th>
<th>End_Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>CA</td>
<td>01-Jan-2000</td>
<td>21-Dec-2004</td>
</tr>
<tr>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>IL</td>
<td>22-Dec-2004</td>
<td>03-Feb-2008</td>
</tr>
<tr>
<td>456</td>
<td>ABC</td>
<td>Acme Supply Co</td>
<td>NY</td>
<td>04-Feb-2008</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Time-Series Fact Table

<table>
<thead>
<tr>
<th>Time</th>
<th>Supplier_Key</th>
<th>Supplier_Name</th>
<th>Supplier_State</th>
<th>Start_Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Jan-2000</td>
<td>456</td>
<td>Acme Supply Co</td>
<td>CA</td>
<td>01-Jan-2000</td>
</tr>
<tr>
<td>01-Dec-2004</td>
<td>456</td>
<td>Acme Supply Co</td>
<td>IL</td>
<td>22-Dec-2004</td>
</tr>
<tr>
<td>04-Feb-2008</td>
<td>456</td>
<td>Acme Supply Co</td>
<td>NY</td>
<td>04-Feb-2008</td>
</tr>
</tbody>
</table>

Figure 4
Receive dimension data for insertion into a dimension table that supports a type 6 slowly changing dimension (SCD) management format.

Insert the dimension data into the dimension table as an additional dimension data record without updating any other dimension data record already stored in the dimension table.
Machins-Readable Medium 620

Instructions to insert a particular dimension data record into a dimension table without updating any other dimension data record already stored in the dimension table, wherein, wherein the dimension table supports a type 6 slowly changing dimension (SCD) format for dimension data records stored in the dimension table and the particular dimension data record includes a start time field but not an end time field.

Instructions to access the particular dimension data record, including deriving an end time value for the particular dimension data record from a start time field of another dimension data record stored in the dimension table that is subsequent to the particular dimension data record.

Figure 6
A. CLASSIFICATION OF SUBJECT MATTER
G06F 17/40(2006.01)i, G06F 17/30(2006.01)i, G06F 3/06(2006.01)i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
G06F 17/40; G06F 17/30; G06F 7/00; G06Q 10/00; G06F 3/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS/KIPO internal & Keywords: dimension data, insertion, dimension table, type 6 slowly changing dimension (SCD), update, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2014-0279977 AI (BMC SOFTWARE, INC.) 18 Sept ember 2014 See paragraphs [0005H0006], [0023], and [0027H0047] ; and figures 3A-5.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>US 2013-0124454 AI (MANISH A. BHIDE et al.) 16 May 2013 See paragraphs [0005] and [0042]; and figure 5.</td>
<td>13-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2013-0268567 AI (FRANK ADJIE-BAN IN et al.) 10 October 2013 See paragraphs [0008]; [0020] and [0081H0082]; and figure 17.</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0264618 AI (ASHA KIRAN POTDAR et al.) 27 October 2011 See paragraphs [0068]; [0071]; and figure 12.</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>wo 2010-091457 AI (ZAP HOLDINGS PTY LTD) 19 August 2010 See page 12, line 19; page 15, line 8; and figure 1.</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 19 July 2016 (19.07.2016)
Date of mailing of the international search report 19 July 2016 (19.07.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578

Authorized officer
NHO, Ji Myong
Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2013-0124454 Al</td>
<td>16/05/2013</td>
<td>US 2013-124453 Al</td>
<td>16/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9031902 B2</td>
<td>12/05/2015</td>
</tr>
<tr>
<td>US 2013-0268567 Al</td>
<td>10/10/2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2751384 Al</td>
<td>19/08/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102349081 A</td>
<td>08/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2396753 Al</td>
<td>21/12/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2396753 A4</td>
<td>07/05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011-0320399 Al</td>
<td>29/12/2011</td>
</tr>
</tbody>
</table>