This invention relates to a hydrocarbon fuel composition of high octane rating. More specifically, it involves the discovery that the octane rating of leaded gasoline fuels is substantially improved by the addition of synergistic additive mixtures of hydrocarbons monocarboxylic acids or tertiary alkyl esters thereof with low molecular weight aliphatic alcohols. The recent increases in compression ratios of automobile engines have placed a severe strain on petroleum refineries to produce fuels having the octane rating demanded by these engines. Premium fuels at the present time have research octane ratings between 97 and 100 and it has been predicted that premium fuels will require octane ratings between 105 and 110 five years from now in order to satisfy the octane requirements of the high compression automobile engines predicted for that date. In order to produce premium fuels of octane ratings of 97 and above, refineries must resort to more heavily on catalytic refining operations such as fluid catalytic cracking, catalytic reforming, alklylation and catalytic isomerization. Catalytic cracking and catalytic reforming, which are the most widely used refining operations in the production of gasoline, produce substantial quantities of aromatics; catalytic cracking also produces a substantial amount of olefins. It is well known that olefins and aromatics, although possessing high octane ratings have a poorer response to organo-lead compounds such as tetraethyl lead than saturated aliphatic gasoline components. Accordingly, as the aromatic and olefinic content of the gasolines has increased to meet the octane levels required by modern automotive high compression engines, the lead response of the resulting fuels has diminished. Stated another way, the octane increment obtainable by the addition of an organo-lead compound to an aromatic fuel is substantially less than the aromatic or olefinic content of the base fuel. In my commonly assigned copending application Serial No. 689,466, filed October 11, 1957, it is disclosed that hydrocarbons monocarboxylic acids substantially raise the octane rating of a motor fuel containing an organo-lead anti-knock agent and a substantial concentration of high octane components which may be aromatic hydrocarbons, olefinic hydrocarbons or mixtures thereof. In another commonly assigned copending application Serial No. 699,544, filed December 2, 1957, in the names of George W. Eckert, Howard V. Hess and Edwin C. Knowles, it is disclosed that t-alkyl esters of hydrocarbons monocarboxylic acids have a similar octane appreciating action on leaded fuels of this composition. Low molecular weight aliphatic alcohols have long been used as components of gasoline fuels, methyl, ethyl, isopropyl and butyl alcohols are known to possess high octane ratings and their use per se and as components of high octane gasoline has been suggested in many patents and publications. The recommended concentration of aliphatic alcohol for improving the octane rating of gasoline alcohol ranges from about 5 to about 50 or more volume percent of the total fuel. The use of small concentrations of low molecular weight aliphatic alcohols that is, of the order of 0.2 to 2.0 volume percent has been widely practiced in recent years to impart anti-icing, anti-icing properties to gasoline. The subject invention involves the discovery that the octane rating of leaded motor fuel containing a substan-
and ethylene bromide, the latter two reagents being present in 1.0 theory and 0.5 theory, respectively, theory denoting the stoichiometric amount required for reaction with the lead content of the tetraethyl lead.

The organo-lead reagent is present in the fuel compositions of the invention in concentrations between 0.5 ml. per gallon up to the statutory limit of organo-lead reagent concentration which, at the present time, is 3 ml. per gallon in the case of automotive fuel and 4.6 ml. per gallon in the case of aviation fuel. The usual concentration of tetraethyl lead is between 1 and 3 ml. per gallon in automotive gasoline and 2–4.6 ml. per gallon in aviation gasoline.

The monocarboxylic acid or ester component of the synergistic additive of this invention has the general formula: RCOOH wherein R is an aliphatic, cycloaliphatic, or aryl radical containing 1–10 carbon atoms. The preferred alcohols for use in the synergistic octane appreciating action of the invention are acetic acid, 2-ethylhexanoic acid, propionic acid, benzoic acid, cyclohexanecarboxylic acid, oleic acid and mixtures thereof. Particularly preferred acids for use in the synergistic octane appreciating action of the invention are acetic acid, 2-ethylhexanoic acid, propionic acid, benzoic acid, cyclohexanecarboxylic acid and hexanoic acid.

Tertiary alkyl esters effective as synergistic octane appreciators with aliphatic alcohols in the fuel compositions of the invention are the following: t-buty1 acetate, t-buty1 formate, t-amyl propionate, t-amyl caproate, t-amyl heptanoate, t-ocetyl palergonate, t-ocetyl caprate, t-buty1 laurate, t-amyl myristate, t-amyl palmitate, t-amyl stearate, t-amyl behenate, t-dodecyl butyrate, t-amyl hexanoate, t-dodecyl o-cumate, t-dodecyl benzoate, t-amyl cyclohexane carboxylate, t-ocetyl cinnamate, t-amyl phenyl acetate, t-buty1 oleate, t-buty1 ester of Snodette acids (hydrogenated fish oil acids comprising mainly C10 to C12 acids) and t-buty1 esters of coconut fatty acids (comprising mainly a mixture of C6 to C12 fatty acids).

The preferred tertiary alkyl esters used in the fuel compositions of the invention are derived from aliphatic and aromatic monocarboxylic acids containing 1–9 carbon atoms and from a tertiary alkyl radical containing 4–12 carbon atoms. Preferred tertiary alkyl esters are t-buty1 2-ethylhexanoate, t-buty1 benzoate, t-buty1 acetate, t-amyl propionate, t-ocetyl benzoate, t-buty1 hexanoate, t-dodecyl hexanoate, t-buty1 acetate and t-buty1 propionate.

The monocarboxylic acid or t-alkyl ester must be present in the leaded aromatic and/or olefin-containing compositions of the invention in a minimum concentration of 0.1 volume percent before a synergistic octane appreciating action is realized. With acid or ester concentrations below 0.1 volume percent, neither octane improvement per se nor synergistic action with alcohols is obtained in leaded gasoline of prescribed composition. The preferred concentration of acid or ester in the synergistic additive falls between 0.2 and 1.5 volume percent with maximum results generally being obtained at a concentration level of about 0.75 volume percent. Although acid or ester concentrations as high as 5 volume percent can be incorporated in the fuel compositions, higher concentrations produce the use of such high concentrations. In addition, it appears there is a fall-off in octane improvement after acid or ester concentration exceeds about 1.5 volume percent.

The aliphatic alcohol component of the synergistic anti-knock additive of the invention contain 1–6 carbon atoms since the lower alcohols not only display a maximum synergistic octane appreciating action with the t-alkyl esters but they are effective anticing agents. Examples of alcohols which react synergistically with t-alkyl esters are methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, secondary butyl alcohol, t-butyl alcohol, isononyl alcohol, n-heptyl alcohol, 2-ethylhexanol, isooctyl alcohol and t-amyl alcohol.

Although minimum concentration of alcohol for synergistic octane improvement is set at 0.2 volume percent, the preferred alcohol concentration employed in the synergistic anti-knock additive of the invention falls between about 0.5 and 2.0 volume percent. Although it has been found that concentrations as high as 10 volume percent alcohol can be used in synergistic combination with acids or t-alkyl esters, alcohol concentrations above about 3.0 volume percent are uneconomical.

In Table I there is shown a synergistic octane appreciating action of mixtures of tertiary alkyl esters and methyl alcohol in a gasoline having a Research Octane Number (RON) of 105. The base fuel contained 3 cc. of tetraethyl lead (TEL) per gallon and comprised approximately 10 percent n-butane, 40 percent isobutane-isobutylene alkylate, 10 percent pentanes from fluid catalytically cracked naphtha and 40 percent heavy platformate. By Fluorescent Indicator Analysis (FIA) the base fuel had an aromatic content of approximately 35 percent and an olefin content of approximately 6 percent; its IBP was 90°F. and its end point was 367°F.

TABLE I

Units Improvement in RON With Mixtures of Tertiary Alkyl Esters and Methyl Alcohols in 105 Octane Gasoline

<table>
<thead>
<tr>
<th>Rester concentration vol. percent</th>
<th>Concentration of methyl alcohol, volume percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The data in Table I show clearly the synergistic octane appreciating action of mixtures of methyl alcohol and t-alkyl esters in leaded high octane gasoline having the prescribed aromatic and/or olefin content. It will be noted that methyl alcohol in amounts up to about 2.0 volume percent, has substantially no octane appreciating action. As the concentration of methyl alcohol increases from 3 to about 7.5 volume percent the octane appreciating action of the alcohol alone rises from about 1 RON unit to 3 RON units. It is significant that a synergistic octane appreciating action is obtained with mixtures of t-alkyl esters and methyl alcohol throughout the whole range of alcohol concentration.

The synergistic action of the t-alkyl esters with methyl alcohol is exemplified in Table I by the fact that a mixture of 0.75 percent t-buty1 acetate and 1.0 percent methyl alcohol appreciating concentration of 2.5 units whereas a 1.9 unit improvement would be expected if the additives acted independently. Similarly, a mixture of 0.75 percent t-buty1 acetate and 2.0 percent methyl alcohol effected a 3.2 unit improvement whereas only a 2.0 unit octane improvement would have been obtained if the additives acted independently.

In Table II there is shown the octane appreciating action of t-alkyl esters with C8 to C12 aliphatic alcohols.
The 105 octane base fuel employed in obtaining the data shown in Table II had the same composition as the base fuel employed in Table I.

TABLE II
Units Improvement in RON With Mixtures of t-Butyl Acetate and Methyl Alcohol
Additive: Increase in RON
0.75% t-butyl acetate 1.8 10
0.75% t-butyl propionate 1.7
1.0% ethyl alcohol 0.0
1.0% isopropl alcohol 0.0
1.0% t-butyl alcohol 0.0
1.0% sec-butyl alcohol 0.0
1.0% isobutyl alcohol 0.0
1.0% n-butyl alcohol 0.0
2.0% 2-ethylbutanol 0.0
0.75% t-butyl acetate+1.0% ethyl alcohol 2.9
0.75% t-butyl acetate+1.0% isopropl alcohol .. 3.0
0.75% t-butyl acetate+1.0% sec-butyl alcohol . 2.5
0.75% t-butyl acetate+1.0% isobutyl alcohol .. 2.8
0.75% t-butyl acetate+1.0% n-butyl alcohol .. 2.7
0.75% t-butyl propionate+1.0% ethyl alcohol .. 2.5
0.75% t-butyl acetate+1.0% t-butyl alcohol .. 2.7

The data in Table III show clearly the synergistic octane appreciating action of mixtures of t-butyl acetate and methyl alcohol in regular and premium gasolines. The action of mixtures of hydrocarby monocarboxylic acids and aliphatic alcohols in a 105 octane fuel is discussed in Table IV.

TABLE III
Units Improvement in RON With Mixtures of t-Butyl Acetate and Methyl Alcohol

<table>
<thead>
<tr>
<th>Additive</th>
<th>Increase in RON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base fuel A</td>
<td>Base fuel B</td>
</tr>
<tr>
<td>0.75% t-butyl acetate 1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0% t-butyl alcohol 0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.75% t-butyl acetate+1.0% methyl alcohol</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The 105 octane base fuel employed in the experiments described in Table II had a leaded RON of about 93.0. This gasoline was not used in Tables III and IV.

TABLE IV
Units Improvement in RON With Mixtures of Monocarboxylic Acids and Aliphatic Alcohols in 105 Octane Gasoline
Additive: Increase in RON
1.0% methyl alcohol 0.1
1.0% isopropl alcohol 0.0
1.0% t-butyl alcohol 0.0
0.5% 2-ethylhexanoic acid 2.7
0.3% propionic acid 2.6
0.5% benzoic acid 3.4
0.5% 2-ethylhexanoic acid+1.0% methyl alcohol 3.5
0.5% propionic acid+1.0% methyl alcohol .. 3.1
0.3% propionic acid+1.0% isopropl alcohol . 4.2
0.5% benzoic acid+1.0% t-butyl alcohol 5.8

The data in Table IV demonstrate the synergistic octane appreciating action of mixtures of hydrocarby monocarboxylic acids and aliphatic alcohols in a 105 octane fuel containing the prescribed aromatic and/or olefin content. This invention is an important advance in the technology of high octane fuels since it provides means whereby the significant octane appreciating action of t-alkyl esters and hydrocarby monocarboxylic acids on leaded fuels of prescribed composition is significantly enhanced. The results obtained show that the fuel can be used as gasoline components for their anti-icing function. It is noteworthy that the fuels of this invention containing a synergistic octane appreciating mixture of a hydrocarby monocarboxylic acid or a t-alkyl ester thereof with a low molecular weight aliphatic alcohol are characterized by the excellent anti-stalling and anti-icing properties as a result of the presence therein of low molecular weight alcohols.

The selectivity of the synergistic octane appreciating action of mixtures of t-alkyl acetates with alcohols was demonstrated by the fact that mixtures comprising 0.75% t-butyl acetate and various other oxygenated hydrocarbon derivatives gave the same or poorer octane appreciation than that obtained with 0.75% t-butyl acetate alone. Table III lists the oxygenated hydrocarbons which display no synergistic octane appreciating action with t-butyl acetate.

TABLE V
Percent

<table>
<thead>
<tr>
<th>Compound</th>
<th>0.1 to 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>1.0</td>
</tr>
<tr>
<td>Methylethyl ketone</td>
<td>1.0</td>
</tr>
<tr>
<td>Mesityl oxide</td>
<td>1.0</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>1.0</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1.0</td>
</tr>
<tr>
<td>Morpholine</td>
<td>1.0</td>
</tr>
<tr>
<td>Propylene oxide</td>
<td>0.5</td>
</tr>
<tr>
<td>Dioxane</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Of course, many modifications and variations of the invention as hereinbefore set forth may be made without departing from the spirit and scope thereof and, therefore, only such limitations should be imposed as are indicated in the appended claims.

I claim:
1. A hydrocarbon fuel in the gasoline boiling range containing an alkyl lead anti-knock agent, high octane components selected from the group consisting of olefinic hydrocarbons, aromatic hydrocarbons and mixtures thereof in a concentration of at least 10 volume percent of said fuel and a synergistic additive combination of (1) an acidic compound selected from the group consisting of hydrocarby monocarboxylic acids containing 1 to 30 carbon atoms, their tertiary alkyl esters and mixtures thereof and (2) a low molecular weight aliphatic alcohol of the general formula: ROH wherein R is an aliphatic hydrocarbyl radical containing 1-10 carbon atoms, said acidic compound being present in a con-
centration between 0.1 and 5.0 volume percent of said fuel and said alcohol being present in a concentration between 0.2 and 5.0 volume percent of said fuel said combination effecting a substantial improvement of the octane rating of said organo-lead-containing hydrocarbon fuel.

2. A hydrocarbon fuel according to claim 1 in which said acidic compound has the general formula: RCOOR', wherein R is selected from the group consisting of hydrogen and hydrocarbyl radicals containing 1-29 carbon atoms, and R' is selected from the group consisting of hydrogen and a t-alkyl group containing 4-18 carbon atoms.

3. A hydrocarbon fuel according to claim 1 in which said alkyl lead anti-knock agent is present in a concentration between 0.5 and 4.6 cc. per gallon.

4. A hydrocarbon fuel in the gasoline boiling range containing an alkyl lead anti-knock agent in a concentration of at least 0.5 cc. per gallon, high octane components selected from the group consisting of olefinic hydrocarbons, aromatic hydrocarbons, and mixtures thereof, in a concentration of at least 10 volume percent of said fuel, a synergistic additive combination of (1) an acidic compound having the general formula: RCOOR', wherein R is a hydrocarbyl radical containing 1-8 carbon atoms and R' is selected from the group consisting of hydrogen and a t-alkyl group containing 4-12 carbon atoms, and (2) a low molecular weight aliphatic alcohol having the general formula: ROH wherein R is an aliphatic hydrocarbyl radical containing 1-6 carbon atoms, said acidic compound being present in a concentration between 0.1 and 5.0 volume percent and said alcohol being present in a concentration between 0.2 and 5.0 volume percent.

5. A hydrocarbon fuel according to claim 4 in which said acidic compound is present in a concentration of 0.2 to 1.5 volume percent and said alcohol is present in a concentration of 0.5 to 2.0 volume percent.

6. A hydrocarbon fuel according to claim 4 in which said additive combination comprises t-butyl acetate and methyl alcohol.

7. A hydrocarbon fuel according to claim 4 in which said additive combination comprises t-butyl propionate and methyl alcohol.

8. A hydrocarbon fuel according to claim 4 in which said additive combination comprises t-butyl acetate and isopropyl alcohol.

9. A hydrocarbon fuel according to claim 4 in which said additive combination comprises t-butyl acetate and ethyl alcohol.

10. A hydrocarbon fuel according to claim 4 in which said additive combination comprises t-amyl acetate and methyl alcohol.

11. A hydrocarbon fuel according to claim 4 in which said additive combination comprises t-butyl acetate and t-butyl alcohol.

12. A hydrocarbon fuel according to claim 4 in which said additive combination comprises propionic acid and methyl alcohol.

13. A hydrocarbon fuel according to claim 4 in which said additive combination comprises propionic acid and isopropyl alcohol.

14. A hydrocarbon fuel according to claim 4 in which said additive combination comprises 2-ethylhexanoic acid and methyl alcohol.

15. A hydrocarbon fuel according to claim 4 in which said additive combination comprises benzoic acid and t-butyl alcohol.

16. A synergistic octane appreciating additive for leaded fuels containing a substantial concentration of high octane components selected from the group consisting of aromatic and olefinic hydrocarbons and mixtures thereof consisting of 1-50 parts by volume of an acidic compound having the general formula: RCOOR', wherein R is selected from the group consisting of hydrogen and hydrocarbyl radicals containing 1-29 carbon atoms and R' is selected from the group consisting of hydrogen and a t-alkyl group containing 4-18 carbon atoms and 2-100 parts by volume of a low molecular weight aliphatic alcohol of the general formula: ROH wherein R is an aliphatic hydrocarbyl radical containing 1-10 carbon atoms.

17. A synergistic additive combination according to claim 16 comprising 2 to 15 parts by volume of said acidic compound and 5 to 20 parts by volume of said alcohol.

18. A synergistic octane appreciating additive according to claim 16 in which said acidic compound has the general formula: RCOOR', wherein R is a hydrocarbyl radical containing 1-8 carbon atoms and R' is selected from the group consisting of hydrogen and a t-alkyl group containing 4-12 carbon atoms and said alcohol has the general formula: ROH wherein R is an aliphatic hydrocarbyl radical containing 1-6 carbon atoms.

References Cited in the file of this patent

UNITED STATES PATENTS

1,420,006 Whitaker June 20, 1922
1,423,049 Tunison July 18, 1922
1,423,058 Whitaker July 18, 1922
1,692,784 Orelup et al. Nov. 20, 1928
1,752,724 Bourrie Apr. 1, 1930
1,757,837 Johns May 6, 1930
2,210,942 Lipkin Aug. 13, 1940
2,218,137 Pysel Oct. 15, 1940
2,228,662 Holm Jan. 14, 1941
2,403,268 Davis et al. July 2, 1942
2,409,156 Schulze et al. Oct. 8, 1946
2,789,891 Brandes Apr. 23, 1957
2,884,315 Barnum Apr. 28, 1959

FOREIGN PATENTS

277,326 Great Britain Jan. 7, 1929
640,311 France July 10, 1928
837,965 France Feb. 23, 1939

OTHER REFERENCES