

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2010216329 B2

(54) Title
Hydrocarbon gas processing

(51) International Patent Classification(s)
F25J 3/00 (2006.01)

(21) Application No: **2010216329** (22) Date of Filing: **2010.01.19**

(87) WIPO No: **WO10/096223**

(30) Priority Data

(31) Number (32) Date (33) Country
12/372,604 **2009.02.17** **US**
61/186,361 **2009.06.11** **US**

(43) Publication Date: **2010.08.26**
(44) Accepted Journal Date: **2013.11.14**

(71) Applicant(s)
S.M.E. Products LP;Ortloff Engineers, Ltd.

(72) Inventor(s)
Johnke, Andrew F.;Lewis, W. Larry;Wilkinson, John D.;Lynch, Joe T.;Hudson, Hank M.;Cuellar, Kyle T.

(74) Agent / Attorney
Watermark Patent and Trade Marks Attorneys, Level 2 302 Burwood Road, HAWTHORN, VIC, 3122

(56) Related Art
US 2008/0078205
US 2006/0032269

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

A standard linear barcode is located at the bottom of the page, spanning most of the width. It is used for document tracking and identification.

**(43) International Publication Date
26 August 2010 (26.08.2010)**

(10) International Publication Number
WO 2010/096223 A1

(51) International Patent Classification:
F25J 3/00 (2006.01)

(74) Agent: **MOLENDA, Victoria, S.**; Fitzpatrick, Cella, Harper & Scinto, 1290 Avenue of The Americas, New York, NY 10104-3800 (US).

(21) International Application Number:

PCT/US2010/021364

(22) International Filing Date:

19 January 2010 (19.01.2010)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

Priority Data: 12/372,604 17 February 2009 (17.02.2009) US
61/186,361 11 June 2009 (11.06.2009) US

(71) **Applicant** (for all designated States except US): **ORT-LOFF ENGINEERS, LTD.** [US/US]; 415 W. Wall, Suite 2000, Midland, TX 79701 (US).

(72) Inventors; and

(75) Inventors/ Applicants (for US only): **JOHNKE, Andrew**, F. [US/US]; 907 W. Main St., Beresford, SD 57004 (US). **LEWIS, W., Larry** [US/US]; 5602 Court of Lions, Houston, TX 77069 (US). **WILKINSON, John, D.** [US/US]; 4113 Tanforan Avenue, Midland, TX 79707 (US). **LYNCH, Joe, T.** [US/US]; 5510 Ashwood Ct., Midland, TX 79707 (US). **HUDSON, Hank, M.** [US/US]; 2508 W. Sinclair Avenue, Midland, TX 79705 (US). **CUEL-LAR, Kyle, T.** [US/US]; 1611 Cottage Point Drive, Katy, TX 77494 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PF, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: HYDROCARBON GAS PROCESSING

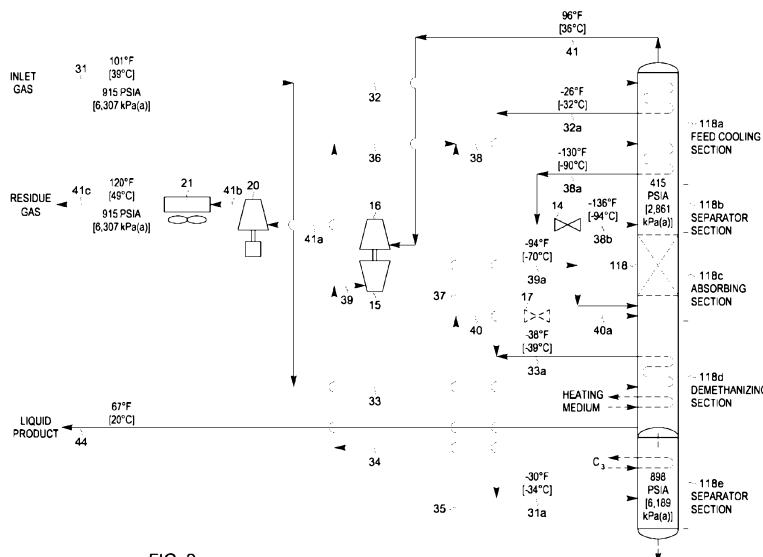


FIG. 2

(57) Abstract: A process and an apparatus are disclosed for the recovery of ethane, ethylene, propane, propylene, and heavier hydrocarbon components from a hydrocarbon gas stream in a compact processing assembly.

HYDROCARBON GAS PROCESSING

SPECIFICATION

BACKGROUND OF THE INVENTION

[0001] This invention relates to a process and apparatus for the separation of a gas containing hydrocarbons.

[0002] Ethylene, ethane, propylene, propane, and/or heavier hydrocarbons can be recovered from a variety of gases, such as natural gas, refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite. Natural gas usually has a major proportion of methane and ethane, i.e., methane and ethane together comprise at least 50 mole percent of the gas. The gas also contains relatively lesser amounts of heavier hydrocarbons such as propane, butanes, pentanes, and the like, as well as hydrogen, nitrogen, carbon dioxide, and other gases.

[0003] The present invention is generally concerned with the recovery of ethylene, ethane, propylene, propane, and heavier hydrocarbons from such gas streams. A typical analysis of a gas stream to be processed in accordance with this invention would be, in approximate mole percent, 90.0% methane, 4.0% ethane and other C₂ components, 1.7% propane and other C₃ components, 0.3% iso-butane, 0.5% normal butane, and 0.8% pentanes plus, with the balance made up of nitrogen and carbon dioxide. Sulfur containing gases are also sometimes present.

[0004] The historically cyclic fluctuations in the prices of both natural gas and its natural gas liquid (NGL) constituents have at times reduced the incremental value of ethane, ethylene, propane, propylene, and heavier components as liquid products. This has resulted in a demand for processes that can provide more efficient recoveries of these products and for processes that can provide efficient recoveries with lower capital investment. Available processes for separating these materials include those based upon cooling and refrigeration of gas, oil absorption, and refrigerated oil absorption. Additionally, cryogenic processes have become popular because of the availability of economical equipment that produces power while simultaneously expanding and extracting heat from the gas being processed. Depending upon the

pressure of the gas source, the richness (ethane, ethylene, and heavier hydrocarbons content) of the gas, and the desired end products, each of these processes or a combination thereof may be employed.

[0005] The cryogenic expansion process is now generally preferred for natural gas liquids recovery because it provides maximum simplicity with ease of startup, operating flexibility, good efficiency, safety, and good reliability. U.S. Patent Nos. 3,292,380; 4,061,481; 4,140,504; 4,157,904; 4,171,964; 4,185,978; 4,251,249; 4,278,457; 4,519,824; 4,617,039; 4,687,499; 4,689,063; 4,690,702; 4,854,955; 4,869,740; 4,889,545; 5,275,005; 5,555,748; 5,566,554; 5,568,737; 5,771,712; 5,799,507; 5,881,569; 5,890,378; 5,983,664; 6,182,469; 6,578,379; 6,712,880; 6,915,662; 7,191,617; 7,219,513; reissue U.S. Patent No. 33,408; and co-pending application nos. 11/430,412; 11/839,693; 11/971,491; and 12/206,230 describe relevant processes (although the description of the present invention in some cases is based on different processing conditions than those described in the cited U.S. Patents).

[0006] In a typical cryogenic expansion recovery process, a feed gas stream under pressure is cooled by heat exchange with other streams of the process and/or external sources of refrigeration such as a propane compression-refrigeration system. As the gas is cooled, liquids may be condensed and collected in one or more separators as high-pressure liquids containing some of the desired C₂+ components. Depending on the richness of the gas and the amount of liquids formed, the high-pressure liquids may be expanded to a lower pressure and fractionated. The vaporization occurring during expansion of the liquids results in further cooling of the stream. Under some conditions, pre-cooling the high pressure liquids prior to the expansion may be desirable in order to further lower the temperature resulting from

the expansion. The expanded stream, comprising a mixture of liquid and vapor, is fractionated in a distillation (demethanizer or deethanizer) column. In the column, the expansion cooled stream(s) is (are) distilled to separate residual methane, nitrogen, and other volatile gases as overhead vapor from the desired C₂ components, C₃ components, and heavier hydrocarbon components as bottom liquid product, or to separate residual methane, C₂ components, nitrogen, and other volatile gases as overhead vapor from the desired C₃ components and heavier hydrocarbon components as bottom liquid product.

[0007] If the feed gas is not totally condensed (typically it is not), the vapor remaining from the partial condensation can be split into two streams. One portion of the vapor is passed through a work expansion machine or engine, or an expansion valve, to a lower pressure at which additional liquids are condensed as a result of further cooling of the stream. The pressure after expansion is essentially the same as the pressure at which the distillation column is operated. The combined vapor-liquid phases resulting from the expansion are supplied as feed to the column.

[0008] The remaining portion of the vapor is cooled to substantial condensation by heat exchange with other process streams, e.g., the cold fractionation tower overhead. Some or all of the high-pressure liquid may be combined with this vapor portion prior to cooling. The resulting cooled stream is then expanded through an appropriate expansion device, such as an expansion valve, to the pressure at which the demethanizer is operated. During expansion, a portion of the liquid will vaporize, resulting in cooling of the total stream. The flash expanded stream is then supplied as top feed to the demethanizer. Typically, the vapor portion of the flash expanded stream and the demethanizer overhead vapor combine in an upper separator section in the fractionation tower as residual methane product gas. Alternatively, the cooled and

expanded stream may be supplied to a separator to provide vapor and liquid streams.

The vapor is combined with the tower overhead and the liquid is supplied to the column as a top column feed.

[0009] The present invention employs a novel means of performing the various steps described above more efficiently and using fewer pieces of equipment. This is accomplished by combining what heretofore have been individual equipment items into a common housing, thereby reducing the plot space required for the processing plant and reducing the capital cost of the facility. Surprisingly, applicants have found that the more compact arrangement also significantly reduces the power consumption required to achieve a given recovery level, thereby increasing the process efficiency and reducing the operating cost of the facility. In addition, the more compact arrangement also eliminates much of the piping used to interconnect the individual equipment items in traditional plant designs, further reducing capital cost and also eliminating the associated flanged piping connections. Since piping flanges are a potential leak source for hydrocarbons (which are volatile organic compounds, VOCs, that contribute to greenhouse gases and may also be precursors to atmospheric ozone formation), eliminating these flanges reduces the potential for atmospheric emissions that can damage the environment.

[0010] In accordance with the present invention, it has been found that C₂ recoveries in excess of 88% can be obtained. Similarly, in those instances where recovery of C₂ components is not desired, C₃ recoveries in excess of 93% can be maintained. In addition, the present invention makes possible essentially 100% separation of methane (or C₂ components) and lighter components from the C₂ components (or C₃ components) and heavier components at lower energy requirements compared to the prior art while maintaining the same recovery level.

The present invention, although applicable at lower pressures and warmer temperatures, is particularly advantageous when processing feed gases in the range of 400 to 1500 psia [2,758 to 10,342 kPa(a)] or higher under conditions requiring NGL recovery column overhead temperatures of -50°F [-46°C] or colder.

[0011] For a better understanding of the present invention, reference is made to the following examples and drawings. Referring to the drawings:

[0012] FIG. 1 is a flow diagram of a prior art natural gas processing plant in accordance with United States Patent No. 4,157,904;

[0013] FIG. 2 is a flow diagram of a natural gas processing plant in accordance with the present invention; and

[0014] FIGS. 3 through 9 are flow diagrams illustrating alternative means of application of the present invention to a natural gas stream.

[0015] In the following explanation of the above figures, tables are provided summarizing flow rates calculated for representative process conditions. In the tables appearing herein, the values for flow rates (in moles per hour) have been rounded to the nearest whole number for convenience. The total stream rates shown in the tables include all non-hydrocarbon components and hence are generally larger than the sum of the stream flow rates for the hydrocarbon components. Temperatures indicated are approximate values rounded to the nearest degree. It should also be noted that the process design calculations performed for the purpose of comparing the processes depicted in the figures are based on the assumption of no heat leak from (or to) the surroundings to (or from) the process. The quality of commercially available insulating materials makes this a very reasonable assumption and one that is typically made by those skilled in the art.

[0016] For convenience, process parameters are reported in both the traditional British units and in the units of the Système International d'Unités (SI). The molar flow rates given in the tables may be interpreted as either pound moles per hour or kilogram moles per hour. The energy consumptions reported as horsepower (HP) and/or thousand British Thermal Units per hour (MBTU/Hr) correspond to the stated molar flow rates in pound moles per hour. The energy consumptions reported as kilowatts (kW) correspond to the stated molar flow rates in kilogram moles per hour.

DESCRIPTION OF THE PRIOR ART

[0017] FIG. 1 is a process flow diagram showing the design of a processing plant to recover C₂+ components from natural gas using prior art according to U.S. Pat. No. 4,157,904. In this simulation of the process, inlet gas enters the plant at 101°F [39°C] and 915 psia [6,307 kPa(a)] as stream **31**. If the inlet gas contains a concentration of sulfur compounds which would prevent the product streams from meeting specifications, the sulfur compounds are removed by appropriate pretreatment of the feed gas (not illustrated). In addition, the feed stream is usually dehydrated to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccant has typically been used for this purpose.

[0018] The feed stream **31** is divided into two portions, streams **32** and **33**. Stream **32** is cooled to -31°F [-35°C] in heat exchanger **10** by heat exchange with cool residue gas (stream **41a**), while stream **33** is cooled to -37°F [-38°C] in heat exchanger **11** by heat exchange with demethanizer reboiler liquids at 43°F [6°C] (stream **43**) and side reboiler liquids at -47°F [-44°C] (stream **42**). Streams **32a** and **33a** recombine to form stream **31a**, which enters separator **12** at -33°F [-36°C] and

893 psia [6,155 kPa(a)] where the vapor (stream **34**) is separated from the condensed liquid (stream **35**).

[0019] The vapor (stream **34**) from separator **12** is divided into two streams, **36** and **39**. Stream **36**, containing about 32% of the total vapor, is combined with the separator liquid (stream **35**), and the combined stream **38** passes through heat exchanger **13** in heat exchange relation with the cold residue gas (stream **41**) where it is cooled to substantial condensation. The resulting substantially condensed stream **38a** at -131°F [-90°C] is then flash expanded through expansion valve **14** to the operating pressure (approximately 410 psia [2,827 kPa(a)]) of fractionation tower **18**. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in FIG. 1, the expanded stream **38b** leaving expansion valve **14** reaches a temperature of -137°F [-94°C] and is supplied to separator section **18a** in the upper region of fractionation tower **18**. The liquids separated therein become the top feed to demethanizing section **18b**.

[0020] The remaining 68% of the vapor from separator **12** (stream **39**) enters a work expansion machine **15** in which mechanical energy is extracted from this portion of the high pressure feed. The machine **15** expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream **39a** to a temperature of approximately -97°F [-72°C]. The typical commercially available expanders are capable of recovering on the order of 80-85% of the work theoretically available in an ideal isentropic expansion. The work recovered is often used to drive a centrifugal compressor (such as item **16**) that can be used to re-compress the residue gas (stream **41b**), for example. The partially condensed expanded stream **39a** is thereafter supplied as feed to fractionation tower **18** at a mid-column feed point.

[0021] The demethanizer in tower **18** is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. As is often the case in natural gas processing plants, the fractionation tower may consist of two sections. The upper section **18a** is a separator wherein the partially vaporized top feed is divided into its respective vapor and liquid portions, and wherein the vapor rising from the lower distillation or demethanizing section **18b** is combined with the vapor portion of the top feed to form the cold demethanizer overhead vapor (stream **41**) which exits the top of the tower at -136°F [-93°C]. The lower, demethanizing section **18b** contains the trays and/or packing and provides the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section **18b** also includes reboilers (such as the reboiler and the side reboiler described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product, stream **44**, of methane and lighter components.

[0022] The liquid product stream **44** exits the bottom of the tower at 65°F [19°C], based on a typical specification of a methane to ethane ratio of 0.010:1 on a mass basis in the bottom product. The residue gas (demethanizer overhead vapor stream **41**) passes countercurrently to the incoming feed gas in heat exchanger **13** where it is heated to -44°F [-42°C] (stream **41a**) and in heat exchanger **10** where it is heated to 96°F [36°C] (stream **41b**). The residue gas is then re-compressed in two stages. The first stage is compressor **16** driven by expansion machine **15**. The second stage is compressor **20** driven by a supplemental power source which compresses the residue gas (stream **41d**) to sales line pressure. After cooling to 120°F [49°C] in discharge cooler **21**, the residue gas product (stream **41e**) flows to the sales gas

pipeline at 915 psia [6,307 kPa(a)], sufficient to meet line requirements (usually on the order of the inlet pressure).

[0023] A summary of stream flow rates and energy consumption for the process illustrated in FIG. 1 is set forth in the following table:

Table I

(FIG. 1)

Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]

<u>Stream</u>	<u>Methane</u>	<u>Ethane</u>	<u>Propane</u>	<u>Butanes+</u>	<u>Total</u>
31	12,359	546	233	229	13,726
32	8,404	371	159	155	9,334
33	3,955	175	74	74	4,392
34	12,117	493	172	70	13,196
35	242	53	61	159	530
36	3,829	156	54	22	4,170
38	4,071	209	115	181	4,700
39	8,288	337	118	48	9,026
41	12,350	62	5	1	12,620
44	9	484	228	228	1,106

Recoveries*

Ethane	88.54%
Propane	97.70%
Butanes+	99.65%

Power

Residue Gas Compression	5,174 HP	[8,506 kW]
-------------------------	----------	-------------

* (Based on un-rounded flow rates)

DESCRIPTION OF THE INVENTION

[0024] FIG. 2 illustrates a flow diagram of a process in accordance with the present invention. The feed gas composition and conditions considered in the process presented in FIG. 2 are the same as those in FIG. 1. Accordingly, the FIG. 2 process can be compared with that of the FIG. 1 process to illustrate the advantages of the present invention.

[0025] In the simulation of the FIG. 2 process, inlet gas enters the plant as stream **31** and is divided into two portions, streams **32** and **33**. The first portion, stream **32**, enters a heat exchange means in the upper region of feed cooling section **118a** inside processing assembly **118**. This heat exchange means may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat exchange means is configured to provide heat exchange between stream **32** flowing through one pass of the heat exchange means and a distillation vapor stream arising from separator section **118b** inside processing assembly **118** that has been heated in a heat exchange means in the lower

region of feed cooling section **118a**. Stream **32** is cooled while further heating the distillation vapor stream, with stream **32a** leaving the heat exchange means at -26°F [-32°C].

[0026] The second portion, stream **33**, enters a heat and mass transfer means in demethanizing section **118d** inside processing assembly **118**. This heat and mass transfer means may also be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat and mass transfer means is configured to provide heat exchange between stream **33** flowing through one pass of the heat and mass transfer means and a distillation liquid stream flowing downward from absorbing section **118c** inside processing assembly **118**, so that stream **33** is cooled while heating the distillation liquid stream, cooling stream **33a** to -38°F [-39°C] before it leaves the heat and mass transfer means. As the distillation liquid stream is heated, a portion of it is vaporized to form stripping vapors that rise upward as the remaining liquid continues flowing downward through the heat and mass transfer means. The heat and mass transfer means provides continuous contact between the stripping vapors and the distillation liquid stream so that it also functions to provide mass transfer between the vapor and liquid phases, stripping the liquid product stream **44** of methane and lighter components.

[0027] Streams **32a** and **33a** recombine to form stream **31a**, which enters separator section **118e** inside processing assembly **118** at -30°F [-34°C] and 898 psia [6,189 kPa(a)], whereupon the vapor (stream **34**) is separated from the condensed liquid (stream **35**). Separator section **118e** has an internal head or other means to divide it from demethanizing section **118d**, so that the two sections inside processing assembly **118** can operate at different pressures.

[0028] The vapor (stream **34**) from separator section **118e** is divided into two streams, **36** and **39**. Stream **36**, containing about 32% of the total vapor, is combined with the separated liquid (stream **35**, via stream **37**), and the combined stream **38** enters a heat exchange means in the lower region of feed cooling section **118a** inside processing assembly **118**. This heat exchange means may likewise be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat exchange means is configured to provide heat exchange between stream **38** flowing through one pass of the heat exchange means and the distillation vapor stream arising from separator section **118b**, so that stream **38** is cooled to substantial condensation while heating the distillation vapor stream.

[0029] The resulting substantially condensed stream **38a** at -130°F [-90°C] is then flash expanded through expansion valve **14** to the operating pressure (approximately 415 psia [2,861 kPa(a)]) of absorbing section **118c** inside processing assembly **118**. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in FIG. 2, the expanded stream **38b** leaving expansion valve **14** reaches a temperature of -136°F [-94°C] and is supplied to separator section **118b** inside processing assembly **118**. The liquids separated therein are directed to absorbing section **118c**, while the remaining vapors combine with the vapors rising from absorbing section **118c** to form the distillation vapor stream that is heated in cooling section **118a**.

[0030] The remaining 68% of the vapor from separator section **118e** (stream **39**) enters a work expansion machine **15** in which mechanical energy is extracted from this portion of the high pressure feed. The machine **15** expands the vapor

substantially isentropically to the operating pressure of absorbing section **118c**, with the work expansion cooling the expanded stream **39a** to a temperature of approximately -94°F [-70°C]. The partially condensed expanded stream **39a** is thereafter supplied as feed to the lower region of absorbing section **118c** inside processing assembly **118**.

[0031] Absorbing section **118c** contains a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The trays and/or packing in absorbing section **118c** provide the necessary contact between the vapors rising upward and cold liquid falling downward. The liquid portion of the expanded stream **39a** commingles with liquids falling downward from absorbing section **118c** and the combined liquid continues downward into demethanizing section **118d**. The stripping vapors arising from demethanizing section **118d** combine with the vapor portion of the expanded stream **39a** and rise upward through absorbing section **118c**, to be contacted with the cold liquid falling downward to condense and absorb the C₂ components, C₃ components, and heavier components from these vapors.

[0032] The distillation liquid flowing downward from the heat and mass transfer means in demethanizing section **118d** inside processing assembly **118** has been stripped of methane and lighter components. The resulting liquid product (stream **44**) exits the lower region of demethanizing section **118d** and leaves processing assembly **118** at 67°F [20°C]. The distillation vapor stream arising from separator section **118b** is warmed in feed cooling section **118a** as it provides cooling to streams **32** and **38** as described previously, and the resulting residue gas stream **41** leaves processing assembly **118** at 96°F [36°C]. The residue gas is then re-compressed in two stages, compressor **16** driven by expansion machine **15** and

compressor **20** driven by a supplemental power source. After stream **41b** is cooled to 120°F [49°C] in discharge cooler **21**, the residue gas product (stream **41c**) flows to the sales gas pipeline at 915 psia [6,307 kPa(a)].

[0033] A summary of stream flow rates and energy consumption for the process illustrated in FIG. 2 is set forth in the following table:

Table II

(FIG. 2)

Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]

<u>Stream</u>	<u>Methane</u>	<u>Ethane</u>	<u>Propane</u>	<u>Butanes+</u>	<u>Total</u>
31	12,359	546	233	229	13,726
32	8,651	382	163	160	9,608
33	3,708	164	70	69	4,118
34	12,139	498	176	74	13,234
35	220	48	57	155	492
36	3,860	158	56	24	4,208
37	220	48	57	155	492
38	4,080	206	113	179	4,700
39	8,279	340	120	50	9,026
41	12,350	62	5	1	12,625
44	9	484	228	228	1,101

Recoveries*

Ethane	88.58%
Propane	97.67%
Butanes+	99.64%

Power

Residue Gas Compression	4,829 HP	[7,939 kW]
-------------------------	----------	-------------

* (Based on un-rounded flow rates)

[0034] A comparison of Tables I and II shows that the present invention maintains essentially the same recoveries as the prior art. However, further comparison of Tables I and II shows that the product yields were achieved using significantly less power than the prior art. In terms of the recovery efficiency (defined by the quantity of ethane recovered per unit of power), the present invention represents nearly a 7% improvement over the prior art of the FIG. 1 process.

[0035] The improvement in recovery efficiency provided by the present invention over that of the prior art of the FIG. 1 process is primarily due to two factors. First, the compact arrangement of the heat exchange means in feed cooling section **118a** and the heat and mass transfer means in demethanizing section **118d** in processing assembly **118** eliminates the pressure drop imposed by the interconnecting piping found in conventional processing plants. The result is that the portion of the feed gas flowing to expansion machine **15** is at higher pressure for the present invention compared to the prior art, allowing expansion machine **15** in the present invention to produce as much power with a higher outlet pressure as expansion machine **15** in the prior art can produce at a lower outlet pressure. Thus, absorbing

section **118c** in processing assembly **118** of the present invention can operate at higher pressure than fractionation column **18** of the prior art while maintaining the same recovery level. This higher operating pressure, plus the reduction in pressure drop for the residue gas due to eliminating the interconnecting piping, results in a significantly higher pressure for the residue gas entering compressor **20**, thereby reducing the power required by the present invention to restore the residue gas to pipeline pressure.

[0036] Second, using the heat and mass transfer means in demethanizing section **118d** to simultaneously heat the distillation liquid leaving absorbing section **118c** while allowing the resulting vapors to contact the liquid and strip its volatile components is more efficient than using a conventional distillation column with external reboilers. The volatile components are stripped out of the liquid continuously, reducing the concentration of the volatile components in the stripping vapors more quickly and thereby improving the stripping efficiency for the present invention.

[0037] The present invention offers two other advantages over the prior art in addition to the increase in processing efficiency. First, the compact arrangement of processing assembly **118** of the present invention replaces five separate equipment items in the prior art (heat exchangers **10**, **11**, and **13**; separator **12**; and fractionation tower **18** in FIG. 1) with a single equipment item (processing assembly **118** in FIG. 2). This reduces the plot space requirements and eliminates the interconnecting piping, reducing the capital cost of a process plant utilizing the present invention over that of the prior art. Second, elimination of the interconnecting piping means that a processing plant utilizing the present invention has far fewer flanged connections compared to the prior art, reducing the number of potential leak sources in the plant.

Hydrocarbons are volatile organic compounds (VOCs), some of which are classified as greenhouse gases and some of which may be precursors to atmospheric ozone formation, which means the present invention reduces the potential for atmospheric releases that can damage the environment.

Other Embodiments

[0038] Some circumstances may favor supplying liquid stream **35** directly to the lower region of absorbing section **118c** via stream **40** as shown in FIGS. 2, 4, 6, and 8. In such cases, an appropriate expansion device (such as expansion valve **17**) is used to expand the liquid to the operating pressure of absorbing section **118c** and the resulting expanded liquid stream **40a** is supplied as feed to the lower region of absorbing section **118c** (as shown by the dashed lines). Some circumstances may favor combining a portion of liquid stream **35** (stream **37**) with the vapor in stream **36** (FIGS. 2 and 6) or with cooled second portion **33a** (FIGS. 4 and 8) to form combined stream **38** and routing the remaining portion of liquid stream **35** to the lower region of absorbing section **118c** via streams **40/40a**. Some circumstances may favor combining the expanded liquid stream **40a** with expanded stream **39a** (FIGS. 2 and 6) or expanded stream **34a** (FIGS. 4 and 8) and thereafter supplying the combined stream to the lower region of absorbing section **118c** as a single feed.

[0039] If the feed gas is richer, the quantity of liquid separated in stream **35** may be great enough to favor placing an additional mass transfer zone in demethanizing section **118d** between expanded stream **39a** and expanded liquid stream **40a** as shown in FIGS. 3 and 7, or between expanded stream **34a** and expanded liquid stream **40a** as shown in FIGS. 5 and 9. In such cases, the heat and mass transfer means in demethanizing section **118d** may be configured in upper and

lower parts so that expanded liquid stream **40a** can be introduced between the two parts. As shown by the dashed lines, some circumstances may favor combining a portion of liquid stream **35** (stream **37**) with the vapor in stream **36** (FIGS. 3 and 7) or with cooled second portion **33a** (FIGS. 5 and 9) to form combined stream **38**, while the remaining portion of liquid stream **35** (stream **40**) is expanded to lower pressure and supplied between the upper and lower parts of the heat and mass transfer means in demethanizing section **118d** as stream **40a**.

[0040] Some circumstances may favor not combining the cooled first and second portions (streams **32a** and **33a**) as shown in FIGS. 4, 5, 8, and 9. In such cases, only the cooled first portion **32a** is directed to separator section **118e** inside processing assembly **118** (FIGS. 4 and 5) or separator **12** (FIGS. 8 and 9) where the vapor (stream **34**) is separated from the condensed liquid (stream **35**). Vapor stream **34** enters work expansion machine **15** and is expanded substantially isentropically to the operating pressure of absorbing section **118c**, whereupon expanded stream **34a** is supplied as feed to the lower region of absorbing section **118c** inside processing assembly **118**. The cooled second portion **33a** is combined with the separated liquid (stream **35**, via stream **37**), and the combined stream **38** is directed to the heat exchange means in the lower region of feed cooling section **118a** inside processing assembly **118** and cooled to substantial condensation. The substantially condensed stream **38a** is flash expanded through expansion valve **14** to the operating pressure of absorbing section **118c**, whereupon expanded stream **38b** is supplied to separator section **118b** inside processing assembly **118**. Some circumstances may favor combining only a portion (stream **37**) of liquid stream **35** with the cooled second portion **33a**, with the remaining portion (stream **40**) supplied to the lower region of absorbing section **118c** via expansion valve **17**. Other circumstances may favor

sending all of liquid stream **35** to the lower region of absorbing section **118c** via expansion valve **17**.

[0041] In some circumstances, it may be advantageous to use an external separator vessel to separate cooled feed stream **31a** or cooled first portion **32a**, rather than including separator section **118e** in processing assembly **118**. As shown in FIGS. 6 and 7, separator **12** can be used to separate cooled feed stream **31a** into vapor stream **34** and liquid stream **35**. Likewise, as shown in FIGS. 8 and 9, separator **12** can be used to separate cooled first portion **32a** into vapor stream **34** and liquid stream **35**.

[0042] Depending on the quantity of heavier hydrocarbons in the feed gas and the feed gas pressure, the cooled feed stream **31a** entering separator section **118e** in FIGS. 2 and 3 or separator **12** in FIGS. 6 and 7 (or the cooled first portion **32a** entering separator section **118e** in FIGS. 4 and 5 or separator **12** in FIGS. 8 and 9) may not contain any liquid (because it is above its dewpoint, or because it is above its cricondenbar). In such cases, there is no liquid in streams **35** and **37** (as shown by the dashed lines), so only the vapor from separator section **118e** in stream **36** (FIGS. 2 and 3), the vapor from separator **12** in stream **36** (FIGS. 6 and 7), or the cooled second portion **33a** (FIGS. 4, 5, 8, and 9) flows to stream **38** to become the expanded substantially condensed stream **38b** supplied to separator section **118b** in processing assembly **118**. In such circumstances, separator section **118e** in processing assembly **118** (FIGS. 2 through 5) or separator **12** (FIGS. 6 through 9) may not be required.

[0043] Feed gas conditions, plant size, available equipment, or other factors may indicate that elimination of work expansion machine **15**, or replacement with an alternate expansion device (such as an expansion valve), is feasible. Although individual stream expansion is depicted in particular expansion devices, alternative

expansion means may be employed where appropriate. For example, conditions may warrant work expansion of the substantially condensed portion of the feed stream (stream **38a**).

[0044] In accordance with the present invention, the use of external refrigeration to supplement the cooling available to the inlet gas from the distillation vapor and liquid streams may be employed, particularly in the case of a rich inlet gas. In such cases, a heat and mass transfer means may be included in separator section **118e** (or a collecting means in such cases when the cooled feed stream **31a** or the cooled first portion **32a** contains no liquid) as shown by the dashed lines in FIGS. 2 through 5, or a heat and mass transfer means may be included in separator **12** as shown by the dashed lines in FIGS. 6 though 9. This heat and mass transfer means may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers. The heat and mass transfer means is configured to provide heat exchange between a refrigerant stream (e.g., propane) flowing through one pass of the heat and mass transfer means and the vapor portion of stream **31a** (FIGS. 2, 3, 6, and 7) or stream **32a** (FIGS. 4, 5, 8, and 9) flowing upward, so that the refrigerant further cools the vapor and condenses additional liquid, which falls downward to become part of the liquid removed in stream **35**. Alternatively, conventional gas chiller(s) could be used to cool stream **32a**, stream **33a**, and/or stream **31a** with refrigerant before stream **31a** enters separator section **118e** (FIGS. 2 and 3) or separator **12** (FIGS. 6 and 7) or stream **32a** enters separator section **118e** (FIGS. 4 and 5) or separator **12** (FIGS. 8 and 9).

[0045] Depending on the temperature and richness of the feed gas and the amount of C₂ components to be recovered in liquid product stream **44**, there may not

be sufficient heating available from stream **33** to cause the liquid leaving demethanizing section **118d** to meet the product specifications. In such cases, the heat and mass transfer means in demethanizing section **118d** may include provisions for providing supplemental heating with heating medium as shown by the dashed lines in FIGS. 2 through 9. Alternatively, another heat and mass transfer means can be included in the lower region of demethanizing section **118d** for providing supplemental heating, or stream **33** can be heated with heating medium before it is supplied to the heat and mass transfer means in demethanizing section **118d**.

[0046] Depending on the type of heat transfer devices selected for the heat exchange means in the upper and lower regions of feed cooling section **118a**, it may be possible to combine these heat exchange means in a single multi-pass and/or multi-service heat transfer device. In such cases, the multi-pass and/or multi-service heat transfer device will include appropriate means for distributing, segregating, and collecting stream **32**, stream **38**, and the distillation vapor stream in order to accomplish the desired cooling and heating.

[0047] Some circumstances may favor providing additional mass transfer in the upper region of demethanizing section **118d**. In such cases, a mass transfer means can be located below where expanded stream **39a** (FIGS. 2, 3, 6, and 7) or expanded stream **34a** (FIGS. 4, 5, 8, and 9) enters the lower region of absorbing section **118c** and above where cooled second portion **33a** leaves the heat and mass transfer means in demethanizing section **118d**.

[0048] A less preferred option for the FIGS. 2, 3, 6, and 7 embodiments of the present invention is providing a separator vessel for cooled first portion **31a**, a separator vessel for cooled second portion **32a**, combining the vapor streams separated therein to form vapor stream **34**, and combining the liquid streams separated

therein to form liquid stream **35**. Another less preferred option for the present invention is cooling stream **37** in a separate heat exchange means inside feed cooling section **118a** (rather than combining stream **37** with stream **36** or stream **33a** to form combined stream **38**), expanding the cooled stream in a separate expansion device, and supplying the expanded stream to an intermediate region in absorbing section **118c**.

[0049] It will be recognized that the relative amount of feed found in each branch of the split vapor feed will depend on several factors, including gas pressure, feed gas composition, the amount of heat which can economically be extracted from the feed, and the quantity of horsepower available. More feed above absorbing section **118c** may increase recovery while decreasing power recovered from the expander and thereby increasing the recompression horsepower requirements. Increasing feed below absorbing section **118c** reduces the horsepower consumption but may also reduce product recovery.

[0050] The present invention provides improved recovery of C₂ components, C₃ components, and heavier hydrocarbon components or of C₃ components and heavier hydrocarbon components per amount of utility consumption required to operate the process. An improvement in utility consumption required for operating the process may appear in the form of reduced power requirements for compression or re-compression, reduced power requirements for external refrigeration, reduced energy requirements for supplemental heating, or a combination thereof.

[0051] While there have been described what are believed to be preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto, e.g. to adapt the invention to various

conditions, types of feed, or other requirements without departing from the spirit of the present invention as defined by the following claims.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A process for the separation of a gas stream containing methane, C₂ components, C₃ components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C₂ components, C₃ components, and heavier hydrocarbon components or said C₃ components and heavier hydrocarbon components wherein
 - (1) said gas stream is divided into first and second portions;
 - (2) said first portion is cooled;
 - (3) said second portion is cooled;
 - (4) said cooled first portion is combined with said cooled second portion to form a cooled gas stream;
 - (5) said cooled gas stream is divided into first and second streams;
 - (6) said first stream is cooled to condense substantially all of it and is thereafter expanded to lower pressure whereby it is further cooled;
 - (7) said expanded cooled first stream is supplied as a top feed to an absorbing means housed in a processing assembly;
 - (8) said second stream is expanded to said lower pressure and is supplied as a bottom feed to said absorbing means;
 - (9) a distillation vapor stream is collected from an upper region of said absorbing means and heated in one or more heat exchange means housed in said processing assembly, thereby to supply at least a portion of the cooling of steps (2) and (6), and thereafter discharging said heated distillation vapor stream from said processing assembly as said volatile residue gas fraction;

(10) a distillation liquid stream is collected from a lower region of said absorbing means and heated in a heat and mass transfer means housed in said processing assembly, thereby to supply at least a portion of the cooling of step (3) while simultaneously stripping the more volatile components from said distillation liquid stream, and thereafter discharging said heated and stripped distillation liquid stream from said processing assembly as said relatively less volatile fraction; and

(11) the quantities and temperatures of said feed streams to said absorbing means are effective to maintain the temperature of said upper region of said absorbing means at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.

2. The process according to claim 1 wherein

(a) said cooled first portion is combined with said cooled second portion to form a partially condensed gas stream;

(b) said partially condensed gas stream is supplied to a separating means and is separated therein to provide a vapor stream and at least one liquid stream;

(c) said vapor stream is divided into said first and second streams; and

(d) at least a portion of said at least one liquid stream is expanded to said lower pressure and is supplied as an additional bottom feed to said absorbing means.

3. The process according to claim 2 wherein

(a) said first stream is combined with at least a portion of said at least one liquid stream to form a combined stream;

- (b) said combined stream is cooled to condense substantially all of it and is thereafter expanded to lower pressure whereby it is further cooled;
- (c) said expanded cooled combined stream is supplied as said top feed to said absorbing means;
- (d) any remaining portion of said at least one liquid stream is expanded to said lower pressure and is supplied as said additional bottom feed to said absorbing means; and
- (e) said distillation vapor stream is heated in said one or more heat exchange means housed in said processing assembly, thereby to supply at least a portion of the cooling of steps (a) and(b).

4. The process according to claim 1 wherein

- (a) said first portion is cooled and is thereafter expanded to said lower pressure;
- (b) said expanded cooled first portion is supplied as said bottom feed to said absorbing means;
- (c) said second portion is cooled to condense substantially all of it and is thereafter expanded to said lower pressure whereby it is further cooled;
- (d) said expanded cooled second portion is supplied as said top feed to said absorbing means;
- (e) said distillation vapor stream is collected from said upper region of said absorbing means and heated in said one or more heat exchange means, thereby to supply at least a portion of cooling of steps (a) and(c); and

(d) said distillation liquid stream is collected from said lower region of said absorbing means and heated in said heat and mass transfer means, thereby to supply at least a portion of the cooling of step (c).

5. The process according to claim 4 wherein

(a) said first portion is cooled sufficiently to partially condense it;
(b) said partially condensed first portion is supplied to a separating means and is separated therein to provide a vapor stream and at least one liquid stream;
(c) said vapor stream is expanded to lower pressure and is supplied as said bottom feed to said absorbing means; and
(d) at least a portion of said at least one liquid stream is expanded to said lower pressure and is supplied as an additional bottom feed to said absorbing means.

6. The process according to claim 5 wherein

(i) said second portion is cooled and is thereafter combined with at least a portion of said at least one liquid stream to form a combined stream;
(ii) said combined stream is cooled to condense substantially all of it and is thereafter expanded to said lower pressure whereby it is further cooled;
(iii) said expanded cooled combined stream is supplied as said top feed to said absorbing means;
(iv) any remaining portion of said at least one liquid stream is expanded to said lower pressure and is supplied as said additional bottom feed to said absorbing means; and
(v) said distillation vapor stream is heated in said one or more heat exchange means, thereby to supply at least a portion of the cooling of steps (a) and (ii).

7. The process according to claim 2 or 5 wherein

- (1) said heat and mass transfer means is arranged in upper and lower regions; and
- (2) said expanded at least a portion of said at least one liquid stream is supplied to said processing assembly to enter between said upper and lower regions of said heat and mass transfer means.

8. The process according to claim 3 or 6 wherein

- (1) said heat and mass transfer means is arranged in upper and lower regions; and
- (2) said expanded any remaining portion of said at least one liquid stream is supplied to said processing assembly to enter between said upper and lower regions of said heat and mass transfer means.

9. The process according to claim 2, 3, 5, 6, 7, or 8 wherein said separating means is housed in said processing assembly.

10. The process according to claim 1 wherein

- (1) a gas collecting means is housed in said processing assembly;
- (2) an additional heat and mass transfer means is included inside said gas collecting means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;
- (3) said cooled gas stream is supplied to said gas collecting means and directed to said additional heat and mass transfer means to be further cooled by said external refrigeration medium; and

(4) said further cooled gas stream is divided into said first and second streams.

11. The process according to claim 4 wherein

(1) a gas collecting means is housed in said processing assembly;

(2) an additional heat and mass transfer means is included inside said gas collecting means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(3) said cooled first portion is supplied to said gas collecting means and directed to said additional heat and mass transfer means to be further cooled by said external refrigeration medium; and

(4) said further cooled first portion is expanded to said lower pressure and is thereafter supplied as said bottom feed to said absorbing means.

12. The process according to claim 2, 3, 5, 6, 7, 8, or 9 wherein

(1) an additional heat and mass transfer means is included inside said separating means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(2) said vapor stream is directed to said additional heat and mass transfer means to be cooled by said external refrigeration medium to form additional condensate; and

(3) said condensate becomes a part of said at least one liquid stream separated therein.

13. The process according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 wherein said heat and mass transfer means includes one or more passes for an external

heating medium to supplement the heating supplied by said feed gas for said stripping of said more volatile components from said distillation liquid stream.

14. An apparatus for the separation of a gas stream containing methane, C₂ components, C₃ components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C₂ components, C₃ components, and heavier hydrocarbon components or said C₃ components and heavier hydrocarbon components comprising

- (1) first dividing means to divide said gas stream into first and second portions;
- (2) first heat exchange means housed in a processing assembly and connected to said first dividing means to receive said first portion and cool it;
- (3) heat and mass transfer means housed in said processing assembly and connected to said first dividing means to receive said second portion and cool it;
- (4) combining means connected to said first heat exchange means and said heat and mass transfer means to receive said cooled first portion and said cooled second portion and form a cooled gas stream;
- (5) second dividing means connected to said combining means to receive said cooled gas stream and divide it into first and second streams;
- (6) second heat exchange means housed in said processing assembly and connected to said second dividing means to receive said first stream and cool it sufficiently to substantially condense it;

(7) first expansion means connected to said second heat exchange means to receive said substantially condensed first stream and expand it to lower pressure;

(8) absorbing means housed in said processing assembly and connected to said first expansion means to receive said expanded cooled first stream as a top feed thereto;

(9) second expansion means connected to said second dividing means to receive said second stream and expand it to said lower pressure, said second expansion means being further connected to said absorbing means to supply said expanded second stream as a bottom feed thereto;

(10) vapor collecting means housed in said processing assembly and connected to said absorbing means to receive a distillation vapor stream from an upper region of said absorbing means;

(11) said second heat exchange means being further connected to said vapor collecting means to receive said distillation vapor stream and heat it, thereby to supply at least a portion of the cooling of step (6);

(12) said first heat exchange means being further connected to said second heat exchange means to receive said heated distillation vapor stream and further heat it, thereby to supply at least a portion of the cooling of step (2), and thereafter discharging said further heated distillation vapor stream from said processing assembly as said volatile residue gas fraction;

(13) liquid collecting means housed in said processing assembly and connected to said absorbing means to receive a distillation liquid stream from a lower region of said absorbing means;

(14) said heat and mass transfer means being further connected to said liquid collecting means to receive said distillation liquid stream and heat it, thereby to supply at least a portion of the cooling of step (3) while simultaneously stripping the more volatile components from said distillation liquid stream, and thereafter discharging said heated and stripped distillation liquid stream from said processing assembly as said relatively less volatile fraction; and

(15) control means adapted to regulate the quantities and temperatures of said feed streams to said absorbing means to maintain the temperature of said upper region of said absorbing means at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.

15. The apparatus according to claim 14 wherein

(a) said combining means is adapted to receive said cooled first portion and said cooled second portion and form a partially condensed gas stream;

(b) a separating means is connected to said combining means to receive said partially condensed gas stream and separate it into a vapor stream and at least one liquid stream;

(c) said second dividing means is connected to said separating means to receive said vapor stream and divide it into said first and second streams; and

(d) a third expansion means is connected to said separating means to receive at least a portion of said at least one liquid stream and expand it to said lower pressure, said third expansion means being further connected to said absorbing means to supply said expanded at least a portion of said at least one liquid stream as an additional bottom feed thereto.

16. The apparatus according to claim 15 wherein

(a) an additional combining means is connected to said second

dividing means and said separating means to receive said first stream and at least a portion of
said at least one liquid stream and form a combined stream;

(b) said second heat exchange means housed is connected to said
additional combining means to receive said combined stream and cool it sufficiently to
substantially condense it;

(c) said first expansion means is connected to said second heat
exchange means to receive said substantially condensed combined stream and expand it to
lower pressure;

(d) said absorbing means is connected to said first expansion means to
receive said expanded cooled combined stream as a top feed thereto;

(e) said third expansion means is connected to said separating
means to receive any remaining portion of said at least one liquid stream and expand it to said
lower pressure, said third expansion means being further connected to said absorbing means
to supply said expanded any remaining portion of said at least one liquid stream as an
additional bottom feed thereto; and

(f) said second heat exchange means being further connected to
said vapor collecting means to receive said distillation vapor stream and heat it, thereby to
supply at least a portion of the cooling of step (b);

17. The apparatus according to claim 14 wherein

(a) said second heat exchange means is connected to said heat and mass transfer means to receive said cooled second portion and further cool it sufficiently to substantially condense it;

(b) said first expansion means is connected to said second heat exchange means to receive said substantially condensed second portion and expand it to lower pressure;

(c) said absorbing means is connected to said first expansion means to receive said expanded cooled second portion as said top feed thereto;

(d) said second expansion means is connected to said first heat exchange means to receive said cooled first portion and expand it to said lower pressure, said second expansion means being further connected to said absorbing means to supply said expanded cooled first portion as said bottom feed thereto; and

(e) said second heat exchange means being further connected to said vapor collecting means to receive said distillation vapor stream and heat it, thereby to supply at least a portion of the cooling of step (a).

18. The apparatus according to claim 17 wherein

(a) said first heat exchange means is adapted to receive said first portion and cool it sufficiently to partially condense it;

(b) a separating means is connected to said first heat exchange means to receive said partially condensed first portion and to separate it into a vapor stream and at least one liquid stream;

(c) said second expansion means is connected to said separating means to receive said vapor stream and expand it to said lower pressure, said second

expansion means being further connected to said absorbing means to supply said expanded vapor stream as said first bottom feed thereto; and

(d) a third expansion means is connected to said separating means to receive at least a portion of said at least one liquid stream and expand it to said lower pressure, said third expansion means being further connected to said absorbing means to supply said expanded at least a portion of said at least one liquid stream as an additional bottom feed thereto.

19. The apparatus according to claim 18 wherein

(a) said combining means is adapted to be connected to said heat and mass transfer means and said separating means to receive said cooled second portion and at least a portion of said at least one liquid stream and form a combined stream;

(b) said second heat exchange means is connected to said combining means to receive said combined stream and cool it sufficiently to substantially condense it;

(c) said first expansion means is connected to said second heat exchange means to receive said substantially condensed combined stream and expand it to lower pressure;

(d) said absorbing means is connected to said first expansion means to receive said expanded cooled combined stream as said top feed thereto;

(e) said third expansion means is connected to said separating means to receive any remaining portion of said at least one liquid stream and expand it to said lower pressure, said third expansion means being further connected to said absorbing means

to supply said expanded any remaining portion of said at least one liquid stream as said additional bottom feed thereto; and

(f) said second heat exchange means being further connected to said vapor collecting means to receive said distillation vapor stream and heat it, thereby to supply at least a portion of the cooling of step (b);

20. The apparatus according to claim 15 or 18 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said processing assembly is connected to said third expansion means to receive said expanded at least a portion of said at least one liquid stream and direct it between said upper and lower regions of said heat and mass transfer means.

21. The apparatus according to claim 16 or 19 wherein

(1) said heat and mass transfer means is arranged in upper and lower regions; and

(2) said processing assembly is connected to said third expansion means to receive said expanded any remaining portion of said at least one liquid stream and direct it between said upper and lower regions of said heat and mass transfer means.

22. The apparatus according to claim 15, 16, 18, 19, 20, or 21 wherein said separating means is housed in said processing assembly.

23. The apparatus according to claim 14 wherein

(1) a gas collecting means is housed in said processing assembly;

(2) an additional heat and mass transfer means is included inside said gas collecting means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(3) said gas collecting means is connected to said combining means to receive said cooled gas stream and direct it to said additional heat and mass transfer means to be further cooled by said external refrigeration medium; and

(4) said second dividing means is adapted to be connected to said gas collecting means to receive said further cooled gas stream and divide it into said first and second streams.

24. The apparatus according to claim 17 wherein

(1) a gas collecting means is housed in said processing assembly;

(2) an additional heat and mass transfer means is included inside said gas collecting means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;

(3) said gas collecting means is connected to said first heat exchange means to receive said cooled first portion and direct it to said additional heat and mass transfer means to be further cooled by said external refrigeration medium; and

(4) said second expansion means is adapted to be connected to said gas collecting means to receive said further cooled first portion and expand it to said lower pressure, said second expansion means being further connected to said absorbing means to supply said expanded further cooled first portion as said bottom feed thereto.

25. The apparatus according to claim 15, 16, 18, 19, 20, 21, or 22 wherein

- (1) an additional heat and mass transfer means is included inside said separating means, said additional heat and mass transfer means including one or more passes for an external refrigeration medium;
- (2) said vapor stream is directed to said additional heat and mass transfer means to be cooled by said external refrigeration medium to form additional condensate; and
- (3) said condensate becomes a part of said at least one liquid stream separated therein.

26. The apparatus according to claim 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 wherein said heat and mass transfer means includes one or more passes for an external heating medium to supplement the heating supplied by said second portion for said stripping of said more volatile components from said distillation liquid stream.

ORTLOFF ENGINEERS, LTD AND S.M.E. PRODUCTS LP

WATERMARK PATENT AND TRADE MARKS ATTORNEYS

1 / 9

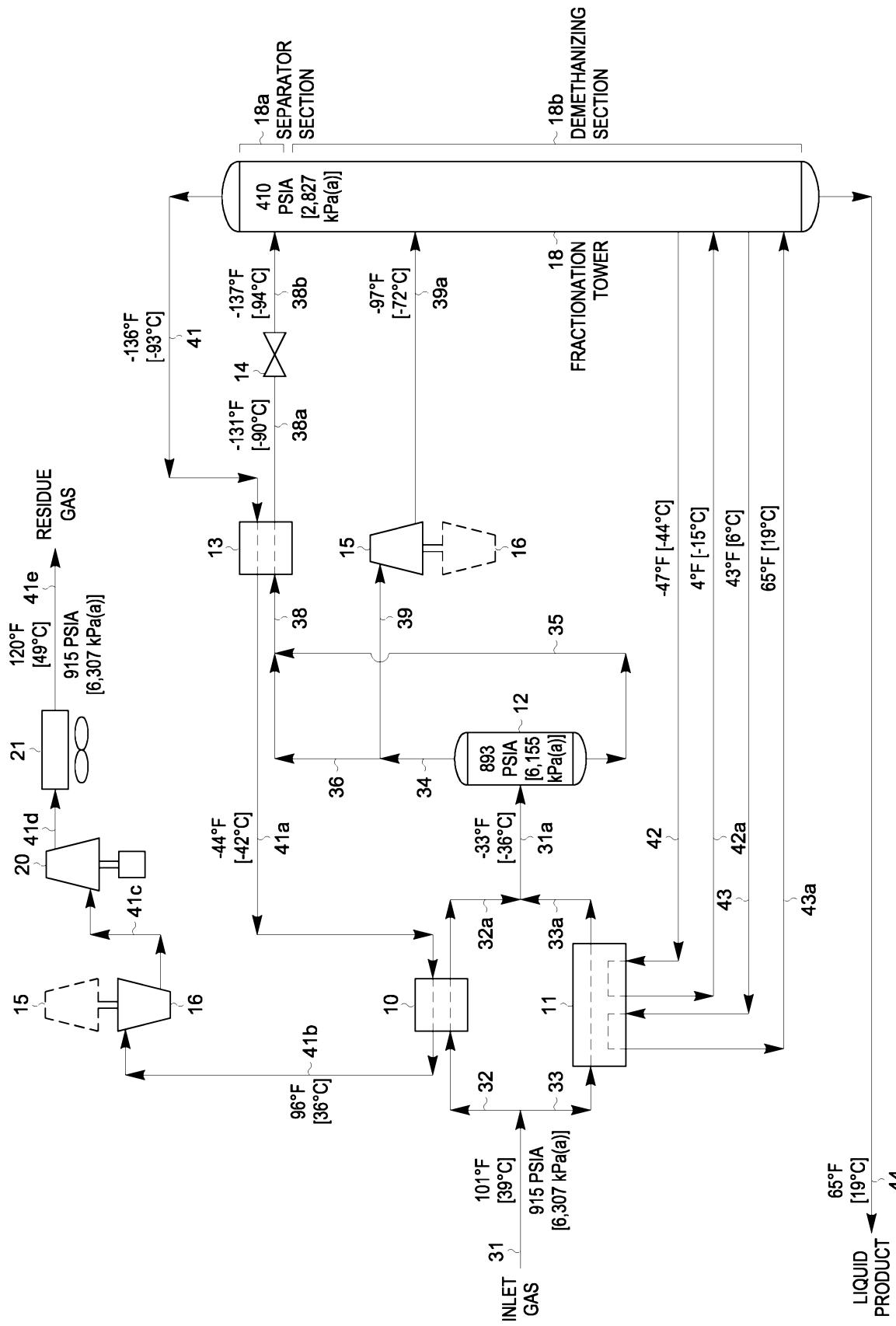


FIG. 1
(PRIOR ART)

2 / 9

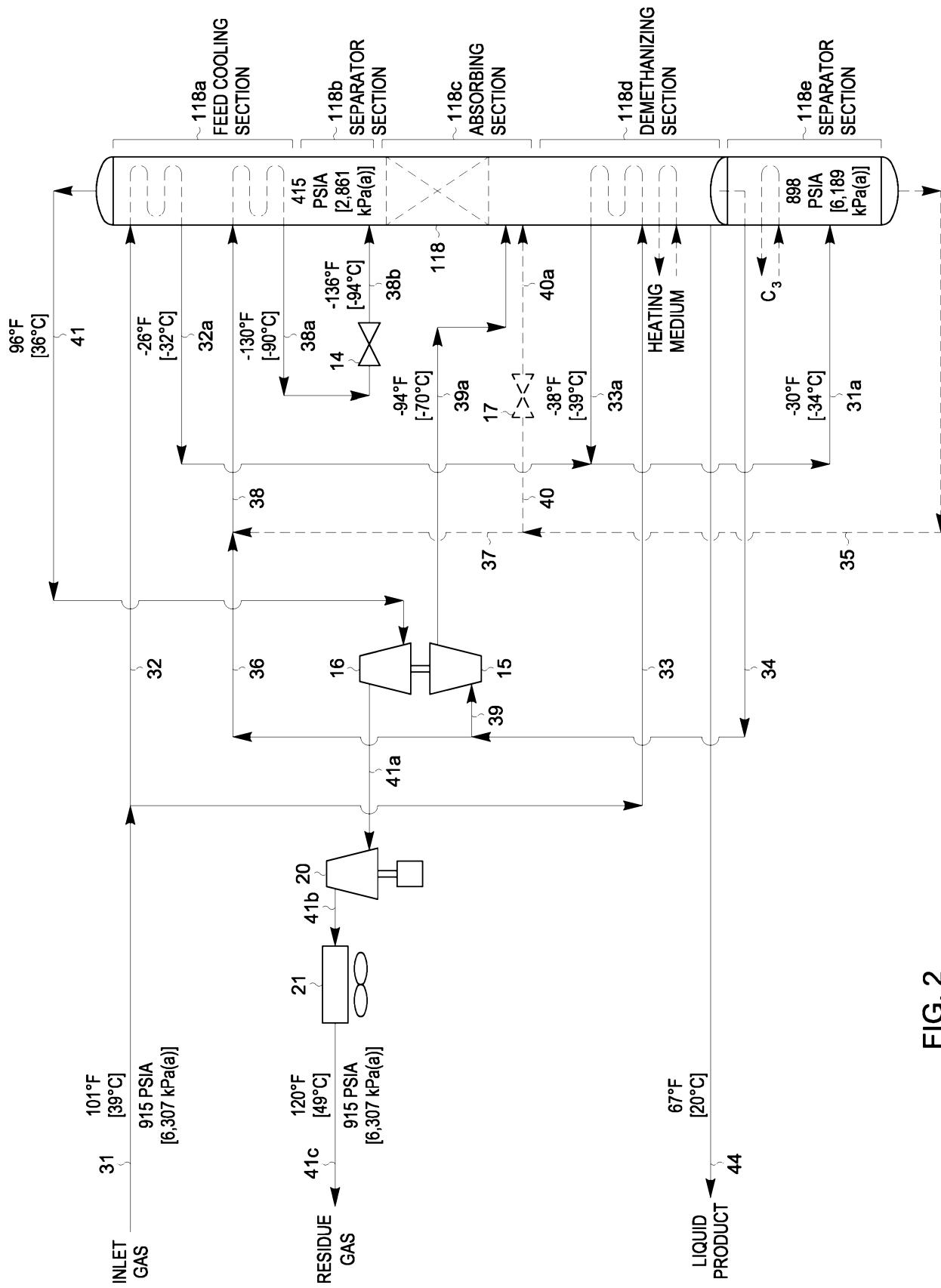


FIG. 2

3 / 9

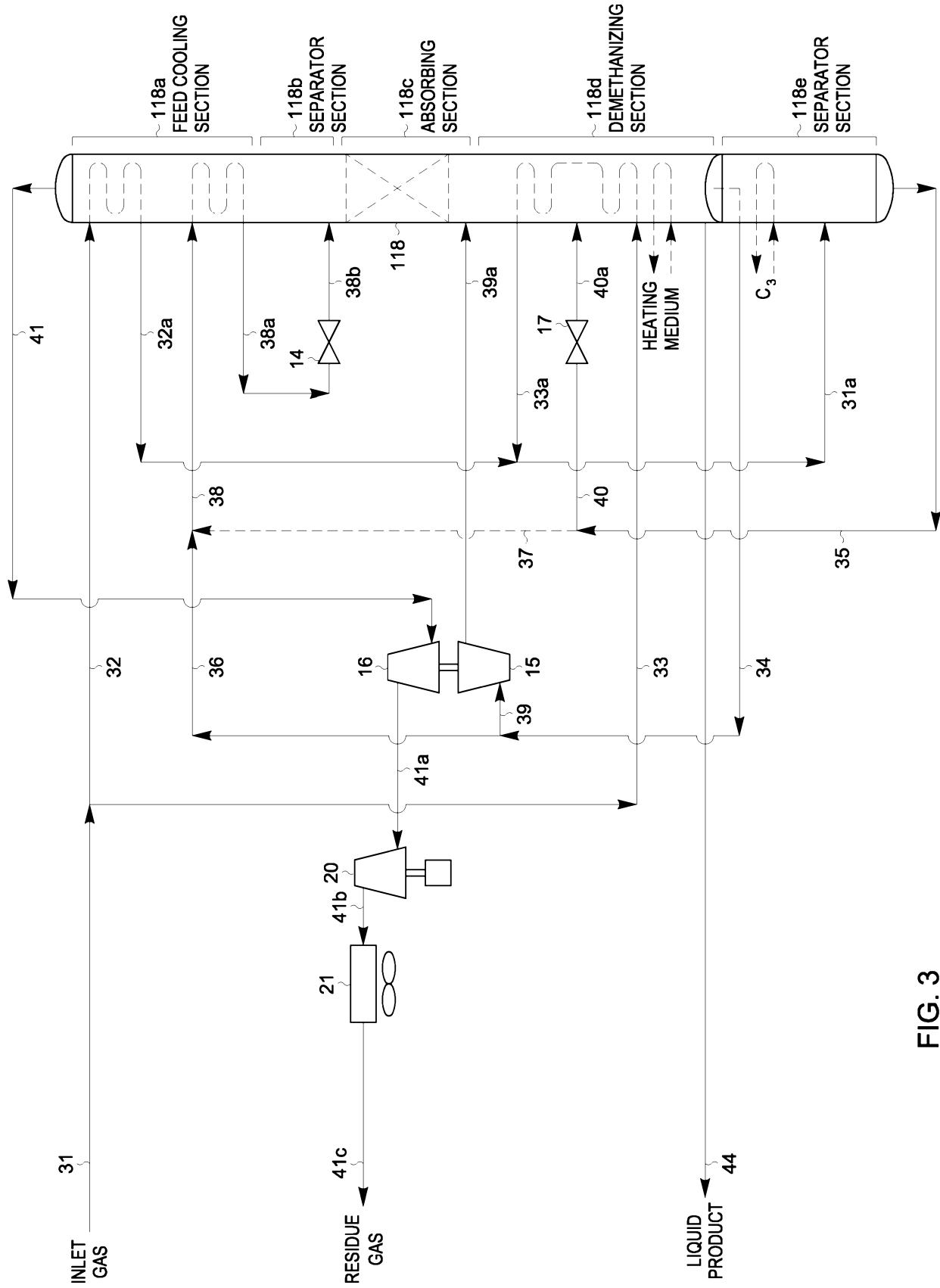


FIG. 3

4 / 9

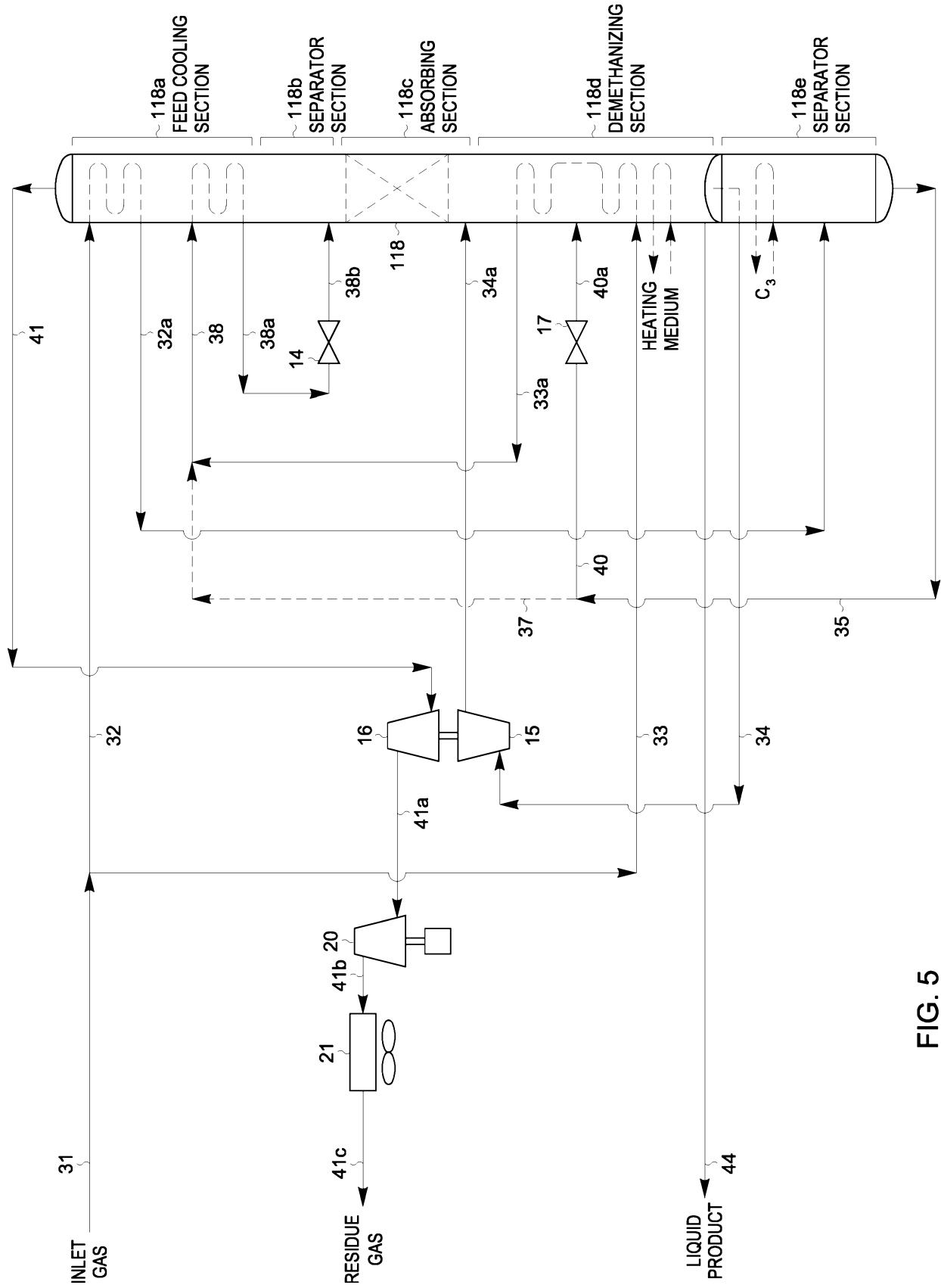



FIG. 4

5 / 9

FIG. 5

6 / 9

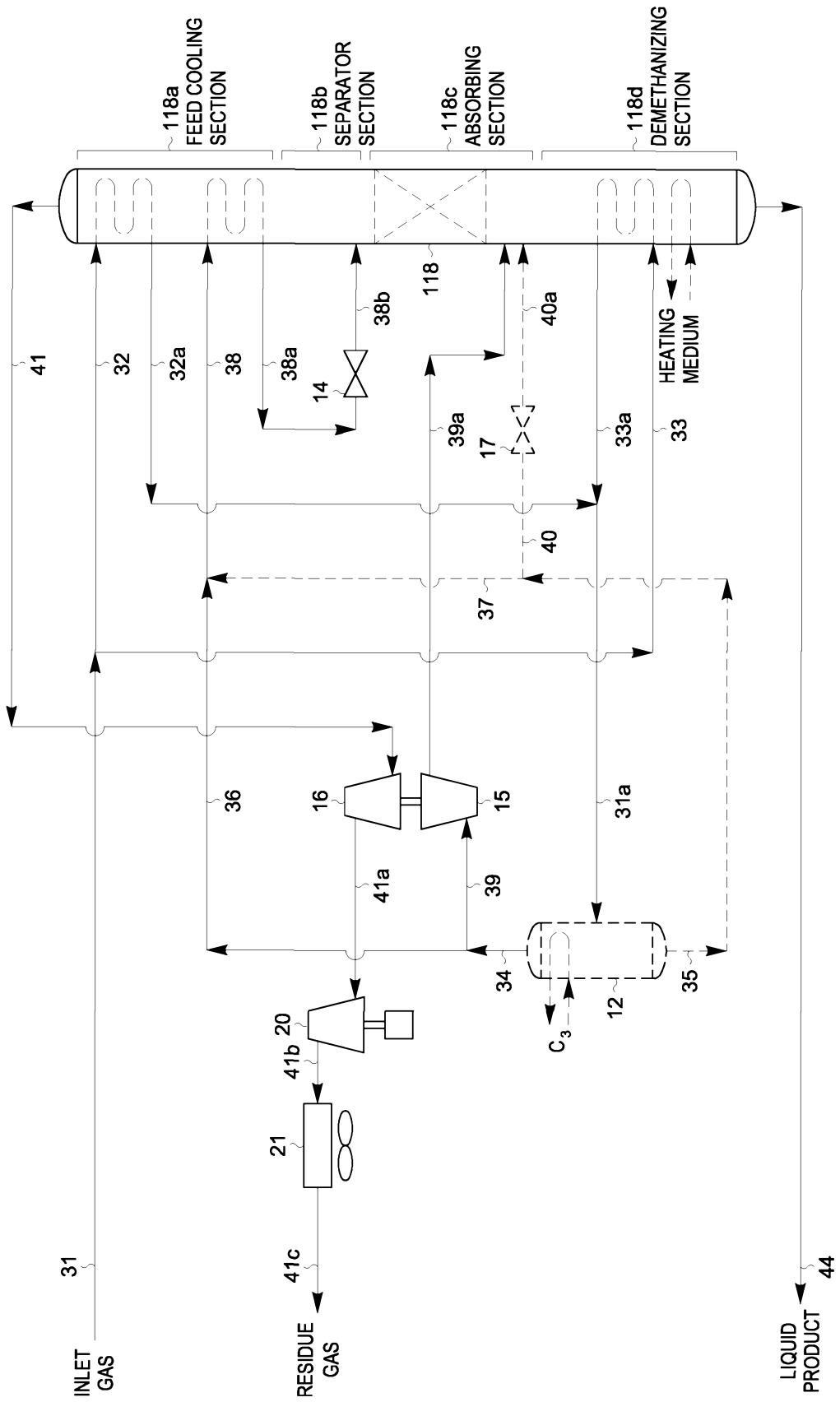


FIG. 6

7 / 9

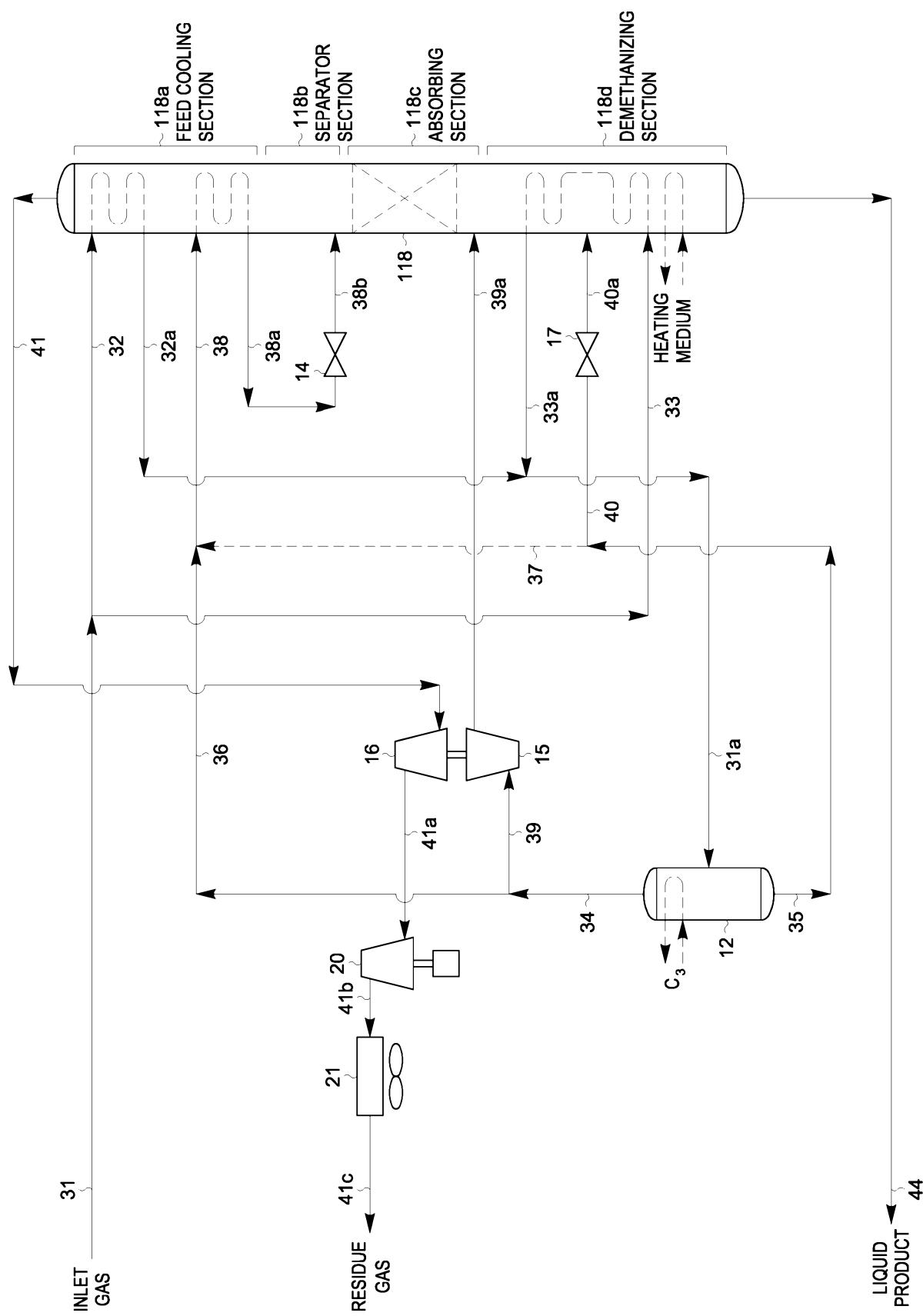
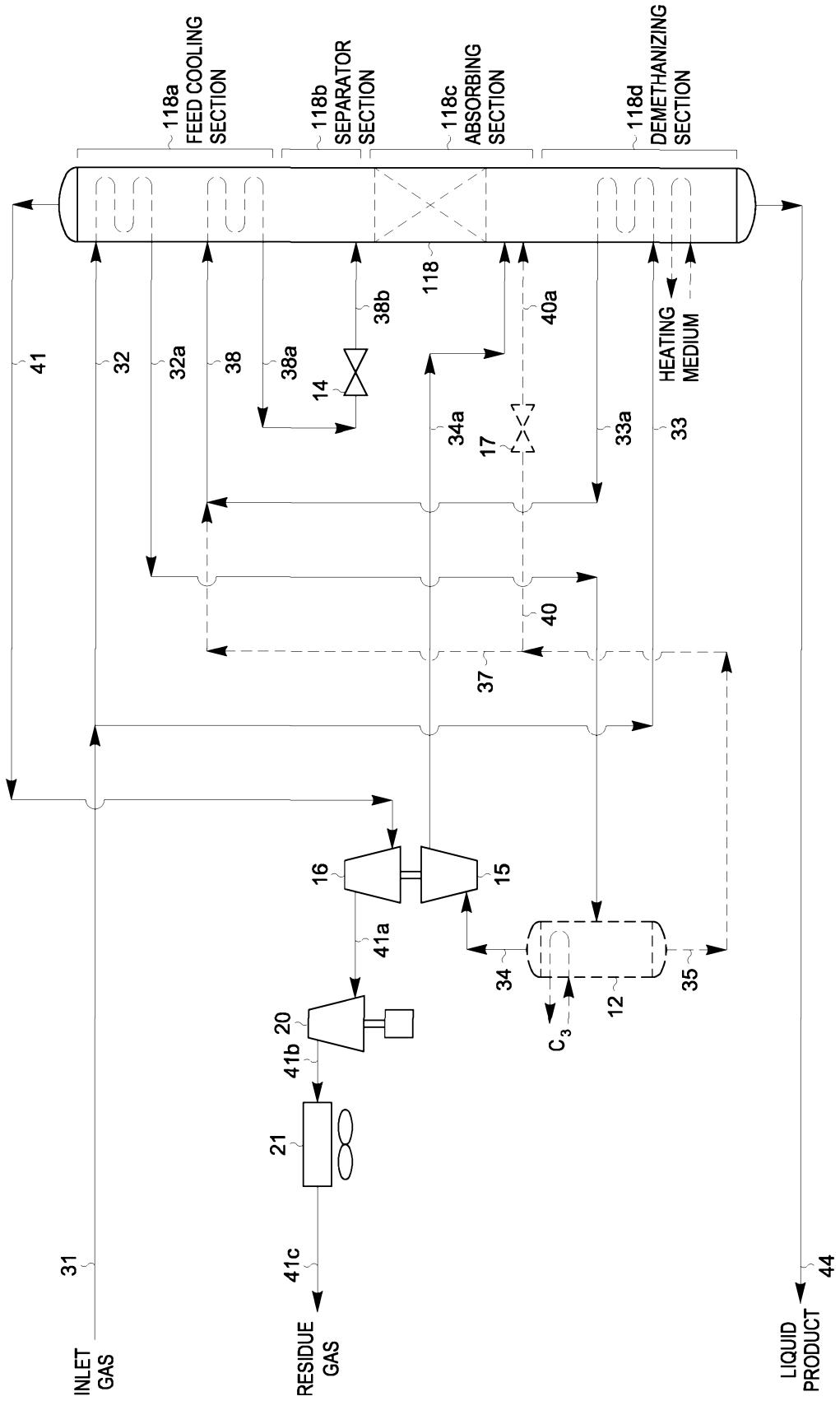



FIG. 7

8 / 9

FIG. 8

9 / 9

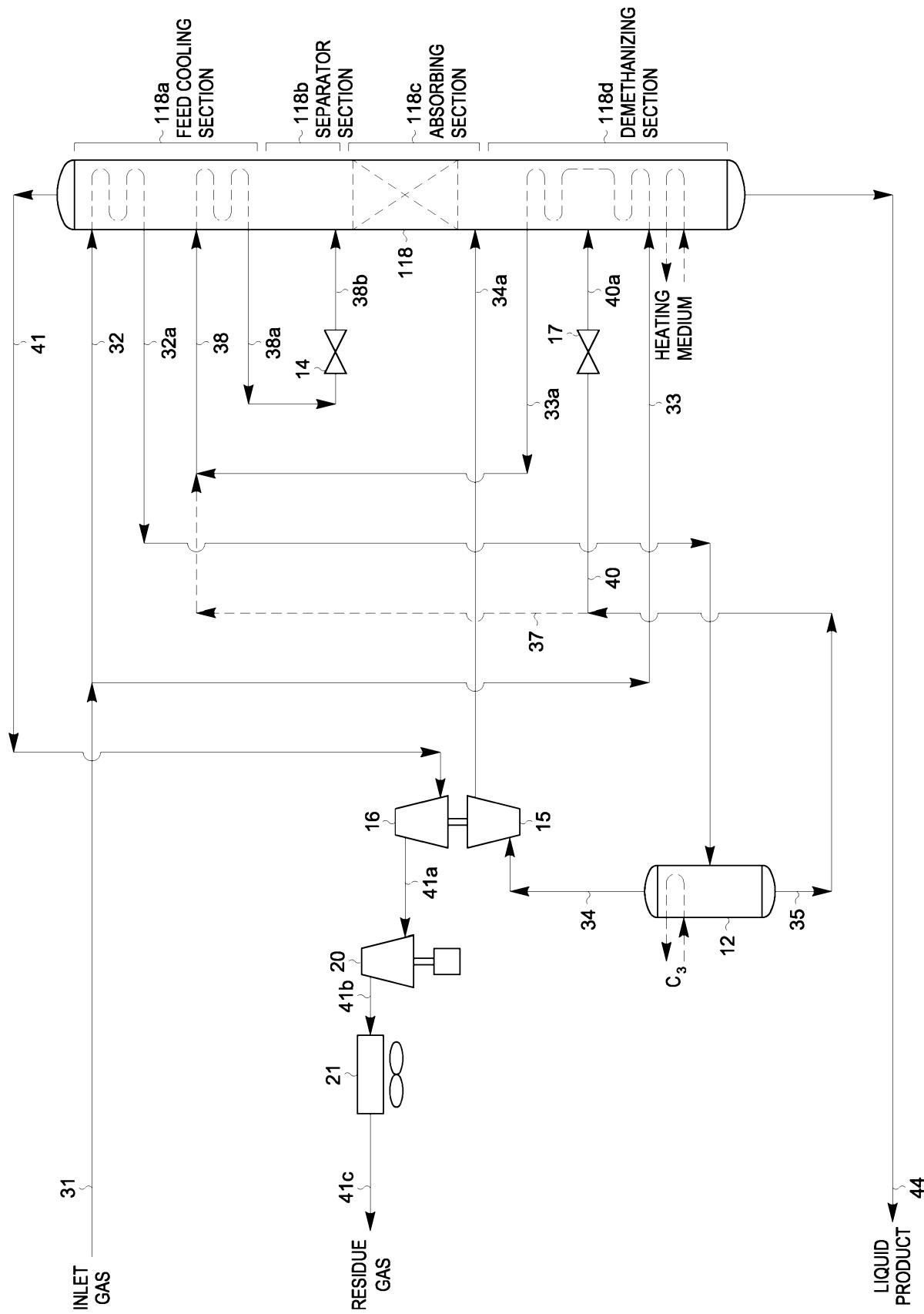


FIG. 9