
(12) United States Patent
Ohba

USOO7028141B2

(10) Patent No.: US 7,028,141 B2
(45) Date of Patent: *Apr. 11, 2006

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(60)

(30)
Jan.

(51)

(52)

(58)

HIGH-SPEED DISTRIBUTED DATA
PROCESSING SYSTEMAND METHOD

Inventor: Akio Ohba, Kanagwa (JP)

Assignee: Sony Computer Entertainment Inc.,
Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is Subject to a terminal dis
claimer.

Appl. No.: 10/827,749

Filed: Apr. 20, 2004

Prior Publication Data

US 2004/0215881 A1 Oct. 28, 2004

Related U.S. Application Data
Continuation of application No. 10/422,117, filed on
Apr. 24, 2003, now Pat. No. 6,745,290, which is a
division of application No. 09/488,405, filed on Jan.
20, 2000, now Pat. No. 6,578,110.

Foreign Application Priority Data
21, 1999 (JP) P11-O13486

Int. C.
G06F 12/00 (2006.01)
U.S. Cl. 711/119: 711/100; 711/122;

711/140; 711/168
Field of Classification Search 711/100,

711/104,113, 119-122, 140-141, 137, 168:
712/12, 14, 39

See application file for complete search history.

a

cache (BUFFER)

CPU lob c

CACHE BUFFER)

(56) References Cited

U.S. PATENT DOCUMENTS

4,823,257 A 4, 1989 Tonomura
5,226,169 A * 7/1993 Gregor T11 113
5,617,577 A 4/1997 Barker et al.
5,678,021 A * 10/1997 Pawate et al. T11 104

(Continued)
FOREIGN PATENT DOCUMENTS

EP O818733 A2 1, 1998
JP 1-229.345 9, 1989
JP 2-039339 2, 1990
JP 2-214937 8, 1990

(Continued)
OTHER PUBLICATIONS

Complementary Hybrid Architecture with Two Different
Processing Elements with Different Grain Size pp. 324-331.

(Continued)
Primary Examiner Nasser Moazzami
(74) Attorney, Agent, or Firm Katten Muchin Rosenman
LLP

(57) ABSTRACT

The invention is aimed at providing a high-speed processor
system capable of performing distributed concurrent pro
cessing without requiring modification of conventional pro
gramming styles.

The processor System in accordance with the invention has
a CPU, a plurality of parallel DRAMs, and a plurality of
cache memories arranged in a hierarchical configuration.
Each of the cache memories is provided with an MPU which
is binarily-compatible with the CPU and which has a func
tion to serve as a processor.

10 Claims, 9 Drawing Sheets

O

ir CACHE (BUFFER)

DRAM

3-1 13-2 3-3

US 7,028,141 B2
Page 2

JP
JP

JP
JP
JP
JP

5,680,579
5,751,987
5,778.436
5,895.487
6,000,027
6,192.451
6,226,722
6,453,398

U.S. PATENT DOCUMENTS

A 10, 1997
A 5, 1998
A * 7, 1998
A 4, 1999
A 12, 1999
B1 2, 2001
B1 5, 2001
B1 9, 2002

Young et al.
Mahant-Shetti et al.
Kedem et al. 711 137

Boyd et al.
Pawate et al.
Arimilli et al.

Shippy et al.
McKenzie

FOREIGN PATENT DOCUMENTS

3-003047
6-274414

6-318154
10-031621
10-133947
10-214223

1, 1991
9, 1994

11, 1994
2, 1998
5, 1998
8, 1998

OTHER PUBLICATIONS

Missing the Memory Wall: The Case for Processor/Memory
Integration pp. 90-101.
An Intelligent Memory System pp. 12-21.
Notice of Rejection Reasons dated Dec. 8, 2004 with
translation.
Takashi Matsumoto et al. Cache Injection and High
Performance Memory-Based Synchronization Mechanisms.
Research Report from Information Processing Society of
Japan, Information Processing Society of Japan
Incorporated, Aug. 20, 1993, vol. 93, No. 71 pp. 113-120.
Takashi Matsumoto et al. Shared Memory Architecture on
Very Large Parallel Computer. Technologies Research
Report from Electronic Information Communication Society
of Japan. Electronic Information Communication Society of
Japan Incorporated, Aug. 21, 1992, vol. 92, No. 173 pp.
47-55.

* cited by examiner

U.S. Patent Apr. 11, 2006 Sheet 1 of 9 US 7,028,141 B2

CPU

3

CACHE (BUFFER) CACHE (BUFFER) CACHE (BUFFER)

F. G. 1

U.S. Patent Apr. 11, 2006 Sheet 2 of 9 US 7,028,141 B2

Oa CPU lob c O

SECONDARY CACHE UN FED)

2
4.

States CACHE (BUFFER) CACHE (BFFER) CACHE BUFFER)

3-1 13-2 13-3

F. G. 2

U.S. Patent Apr. 11, 2006 Sheet 3 of 9 US 7,028,141 B2

15

DRAM (DRAM CORE)

ORA ARRAY

SENSE AAPL FER as

SRAM (CACHE) - 9
t
?

CONTROL COUMUN ADDRESS

3e 3d

F.G. 3

U.S. Patent Apr. 11, 2006 Sheet 4 of 9 US 7,028,141 B2

10

CONTROL
16

SRAM 11 a
(UNIFED CACHE)

U
O
C
l
4.

2
>

O
e
U
s

TO DRAM (MAN MEMORY)

FG. 4

U.S. Patent Apr. 11, 2006 Sheet 5 Of 9 US 7,028,141 B2

10

SECONDARY CACHE UNIFED)

2

4. -
cities: CACHE (BUFFER) CACHE (BUFFER) CACHE (BUFFER)

3

F.G. 5

U.S. Patent Apr. 11, 2006 Sheet 6 of 9 US 7,028,141 B2

10

CONTROL
PROTOCOL.

F.G. 6

U.S. Patent Apr. 11, 2006 Sheet 7 of 9 US 7,028,141 B2

CPU

CACHED CACHE scRATCH
16- 1

SECONDARY CACHE (UNIFED)

12
4

situateli CACHE (BUFFER) CACHE (BUFFER) CACHE (BUFFER)

3

10

FIG. 7

U.S. Patent Apr. 11, 2006 Sheet 8 of 9 US 7,028,141 B2

CPU
CPU NSTRUCTIONS

EEE CATCH (UNIFIED) CACHE OU y

DESIGNED:
ROGRA

DESIGNAED

Ob
DESIGNATED DATA AREA 13

DRA
OR

LOWER-LEVEL MEMORY BLOCKS

F. G. 8

U.S. Patent Apr. 11, 2006 Sheet 9 Of 9 US 7,028,141 B2

16 O

MPu
SECONDARY CACHE

CACHE CBUFFER) CACHE CBUFFER) CACHE (BUFFER) CACHE CBUFFER)

4

FG. 9

US 7,028,141 B2
1.

HIGH-SPEED DISTRIBUTED DATA
PROCESSING SYSTEMAND METHOD

GROSS REFERENCE TO RELATED
APPLICATION

The present application is a continuation application of
and claims priority under 35 U.S.C. S 120 from U.S. patent
application Ser. No. 10/422,117 filed on Apr. 24, 2003, now
U.S. Pat. No. 6,745,290, which is a divisional of U.S. patent
application Ser. No. 09/488,405 filed on Jan. 20, 2000 now
U.S. Pat. No. 6,578,110 each of which are hereby incorpo
rated by reference.

TECHNICAL FIELD

The present invention relates to a hierarchically-config
ured parallel computer system and, more particularly, to a
high-speed processor System that can perform high-speed
parallel processing without requiring modification of exist
ing programming styles, to a method of using the high-speed
processor System, and to a recording medium.

BACKGROUND ART

A high-speed processor System that has a CPU and a
low-speed large-capacity DRAM with cache memories has
been known as a system for high-speed processing of
large-sized data. Such a known high-speed processor System
has, as shown in FIG. 1, a CPU 1 incorporating a primary
cache, and a plurality of parallel DRAMs 2 connected to the
CPU 1 through a common bus line, each DRAM 2 being
equipped with a secondary cache 3 which serves to enable
the DRAM 2 to process at a speed approximating the
processing speed of the CPU 1.

In the operation of the circuitry shown in FIG. 1, contents
of one of the DRAMs 2 are read in accordance with an
instruction given by the CPU 1, and writing of information
into the DRAM 2 also is executed in accordance with an
instruction from the CPU 1. If the reading instruction hits,
i.e., if the desired content to be read from the DRAM 2 is
held in the cache 3, the CPU 10 can perform high-speed data
processing by accessing the secondary cache 3. However, in
case of a miss-hit, i.e., when the desired content does not
exist in the cache 3, the cache 3 is required to read the target
content from the DRAM 2.
The described basic configuration of the high-speed pro

cessor system having a processor, DRAMs, and caches is
nowadays the dominant one, because it advantageously
permits the use of an ordinary programming style for the
control.

This high-speed processor system employing a hierarchi
cal arrangement of caches, however, cannot perform parallel
processing because it employs only one CPU 1. In addition,
ordinary programming style is not inherently intended for
parallel processing and cannot easily be used for running a
parallel processing system unless it is modified, thus causing
an impediment in practical use.

DISCLOSURE OF THE INVENTION

Under these circumstances, the present invention is aimed
at providing a novel high-speed processor System, a method
of using the high-speed processor system, and a recording
medium for recording a computer-readable and computer
executable program.

10

15

25

30

35

40

45

50

55

60

65

2
In view of the foregoing, an object of the present inven

tion is to provide a high-speed processor system that imple
ments parallel processing without requiring any change or
modification of a conventional programming style, a method
of producing such a high-speed processor system, and a
recording medium recording a computer-readable and com
puter-executable program.

In accordance with the present invention, there is pro
vided a high-speed processor system, comprising: a CPU
having a primary cache memory; a secondary cache memory
arranged on a hierarchical level lower than that of the CPU,
the secondary cache memory having a first MPU; and a
plurality of main memories connected to the secondary
cache memory and arranged in parallel with one another,
each of the main memories having a tertiary cache memory
provided with a second MPU; wherein each of the first MPU
and the second MPUs has both a cache logic function and a
processor function, thereby enabling distributed concurrent
processing.

In the high-speed processor System of the invention, the
tertiary cache memories may have a greater line size than
that of the secondary cache memory which is greater than
the line size of the primary cache memory.
The secondary cache memory is accessed as a secondary

cache memory from the CPU and as a primary cache
memory from the first MPU.
The tertiary cache memories are accessed as tertiary cache

memories from the CPU, as secondary cache memories from
the first MPU, and as primary cache memories from the
Second MPU.

Each of the data processing performed by the first MPU
and the second MPUs is executed in accordance with a
control protocol carried by a prefetch instruction or an
intelligent prefetch instruction given by the CPU. Mean
while, each of the first MPU and the second MPU selectively
performs the data processing, depending on the data transfer
size and data transfer frequency.

For instance, the first MPU executes mainly global trans
fer processing or a low-computation-level and high-transfer
rate processing by using data and programs stored in the
plurality of main memories. The second MPU executes
mainly local object processing by using data and a program
stored in the associated single main memory.
The high-speed processor system may be implemented in

a single chip as an ASIC-DRAM.
The present invention also provides a method of using a

high-speed processor System which includes a CPU having
a primary cache memory, a secondary cache memory
arranged on a hierarchical level lower than that of the CPU,
the secondary cache memory having a first MPU, and a
plurality of main memories connected to the secondary
cache memory and arranged in parallel with one another,
each of the main memories having a tertiary cache provided
with a second MPU, the method comprising: causing the
CPU to execute mainly high-level arithmetic processings;
causing the first MPU to execute mainly global transfer
processings and low-level computation, and large-rate trans
fer processing; and causing one of the second MPUs to
execute mainly local object processing by using data and a
program stored in the main memory associated with the
second MPU, whereby distributed concurrent processing is
performed.

Each of the data processings performed by the first MPU
and the second MPU may be executed in accordance with a
control protocol carried by a prefetch instruction or an

US 7,028,141 B2
3

intelligent prefetch instruction given by the CPU. Therefore,
the high-speed processor is controlled with an ordinary
programming style.

The high-speed processor System of the present invention
may be implemented to comprise a CPU having a primary
cache memory, and a plurality of main memories connected
to the CPU and arranged in parallel with one another, each
of the main memories having a secondary cache memory
provided with an MPU, wherein each of the MPUs has both
a cache logic function and a processor function, thereby
enabling distributed concurrent processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a conventional parallel
processor.

FIG. 2 is a block diagram of an embodiment of the present
invention.

FIG. 3 is a block diagram showing a practical example of
the chip arrangement of DRAMs, an MPU, and caches.

FIG. 4 is a block diagram showing internal structures of
a secondary cache and the MPU.

FIG. 5 is a diagram illustrating the flow of data in an
ordinary cache mode.

FIG. 6 is a diagram illustrating the flow of data in a local
object distributed execution.

FIG. 7 is a diagram illustrating the flow of data in a
transfer processing performed by the secondary cache.

FIG. 8 is an illustration of an intelligent prefetch instruc
tion.

FIG. 9 is a diagram showing a chip system of an ASIC
DRAM.

BEST MODE FOR CARRYING OUT THE
INVENTION

An embodiment of the present invention will be described
with reference to FIGS. 2 to 9. Referring to FIG. 2, a
high-speed processor system has a CPU 10 which includes
an I cache (Instruction Cache) 10a Serving as a primary
cache, a D cache (Data Cache) 10b, and a scratch pad
memory 10c. (The term “primary cache' is also used to
collectively denote the I cache 10a, the D cache 10b and the
scratch pad memory 10c.) The high-speed processor System
also has a unified cache memory 11 (also referred to as a
“secondary cache') connected to the CPU 10. The lowest
hierarchical level of the high-speed processor system
includes a plurality of unified cache memories 12 (also
referred to as “tertiary caches”) that are connected in parallel
through a bus line, and DRAMs 13-1 to 13-3. The secondary
and tertiary caches are respectively provided with MPUs
(Micro Processing Units) 16 and 14 serving as cache logic.

Each hierarchical level of the configuration shown in FIG.
2 employs a cache or caches for the purpose of achieving
high-speed processing. The arrangement is such that the line
size, which is the size of the unit of capacity of the cache
memory, i.e., the burst read/write length, is greater for the
cache memories of lower hierarchical levels than for those
of higher hierarchical levels. The configuration shown in
FIG. 2 is illustrative only and the secondary cache 11 is not
essential. Namely, the high-speed processor System may
have such a configuration that includes the CPU 10 and a
plurality of DRAMs 13 each having the unified cache
memory 12.

In the arrangement shown in FIG. 2, the MPU16 and the
MPU14 that serve as cache logic for the secondary cache 12
and the tertiary cache 13 are binary-compatible with the

10

15

25

30

35

40

45

50

55

60

65

4
CPU 10. Each of the MPU 14 and the MPU 16 has a double
role: namely, a function to serve as the cache logic and a
function to serve as a processor. The cache function is a
function for controlling the cache memory under the com
mand of the CPU 10, while the processor function is a
function to serve as a sub-CPU for a distributed concurrent
system under the commanding CPU 10.

FIG. 3 is an illustration of the high-speed processor
configuration of FIG. 2 implemented practically on a semi
conductor chip 15. Formed on the chip 15 are a DRAM array
13a constituting the DRAM 13 as a major part, a sense
amplifier 13b. a row address 13c, a column address 13d, a
control circuit 13e, and a data input/output circuit 13f. The
chip 15 shown in FIG. 3 employs an SRAM 12 serving as
the cache memory. The SRAM 12 is directly coupled to the
sense amplifier 13b that inputs and outputs data to and from
the DRAM array 13a. The SRAM 12 exchanges data
between itself and the data input/output circuit 13f.
The cache memory implemented by the SRAM 12 is

controlled by the MPU 14 that has both the cache logic
function and the processor function. In regard to the cache
logic function, the SRAM 12 serves as a simple unified
cache, under the control of the MPU 14, so that read/write
operations on the DRAM array 13a are performed via the
SRAM 12. In regard to the processing function, in the
arrangement shown in FIG. 2, the SRAM 12 serves as a
tertiary cache for the CPU 10, so that the MPU 14 performs
operations such as the execution of an object constituted by
a program and data stored in the DRAM 13a and pre-read of
data in accordance with a predetermined prefetch instruc
tion.
The MPU14 is driven by the prefetch instruction given by

the CPU 10. In general, the processing speed of a processor
system depends on a cache which interconnects a CPU and
a memory and which serves as a high-speed memory, and
this is the reason why the use of caches is positively
accepted. More particularly, the CPU pre-reads data by
using a prefetch instruction. In the present invention, the
prefetch instruction for the cache control is further applied
to the MPU 14, so that the MPU 14 is also enabled to
perform processing.

Practically, the MPU 14 can be incorporated in the cache
memory of the system by means of a scalable RISC (Re
stricted Instruction Set Computer) CPU core which can be
implemented by a comparatively small core such as an ARM
(Advanced RISC Machines) processor or a MIPS (Micro
processor without interlocked Pipe Stage) processor and
which can realize a high-performance CPU.

FIG. 4 illustrates a practical arrangement of the intercon
nection between the CPU 10 and the secondary cache 11
which are shown in FIG. 2. Basically, the secondary cache
11 can be regarded as being a processor which incorporates
a unified cache 11a. The MPU 16 which performs the
processing function serves as the secondary cache memory
for the CPU 10 and can work as the secondary cache. The
unified cache 11a in the secondary cache is constituted by an
SRAM. The unified cache 11a, when accessed by the CPU
10, serves as the secondary cache for the CPU 10 and, when
accessed by the MPU 16, serves as a primary cache for the
MPU 16. In FIG. 4, reference numeral 17 designates a
memory interface for connection to the DRAM 13.
As stated before, the secondary cache 11 has a greater

burst read/write length than the primary cache which
includes the I cache, D cache, and the Scratch pad. In
accordance with control protocols given by the CPU 10, the
secondary cache 11 works as the secondary cache and, at the
same time, performs processing of objects constituted by

US 7,028,141 B2
5

programs and data stored in the tertiary cache and a main
memory, the processing in this case being mainly that
requiring frequent data transfer between DRAMs 13-1 to
13-3, rather than complicated arithmetic processing. The
secondary cache 11 also executes, in accordance with com
mands given by the CPU 10, prefetch instructions of a type
which are more generic and more Sophisticated than those
executed by the MPU 14 of each tertiary cache 12. For
instance, the secondary cache 12 performs a prefetch
instruction which involves a plurality of DRAMs.

FIG. 5 shows the flow of data as observed when the
circuitry shown in FIG. 2 operates in an ordinary cache
mode wherein the MPUs 14 and 16 perform only the cache
logic functions without performing the processing functions.
The CPU 10, when processing the data contained in the
DRAM 13, reads the data via the secondary cache 11.
Namely, the data is transferred to the secondary cache 11
from the tertiary cache 12 of the lowest hierarchical level
and which is designed to have a comparatively large transfer
size (size of data transferred at one time) and a compara
tively low transfer frequency. The data transferred to the
secondary cache 11 is further transferred to the primary
cache of the topmost hierarchical level, and is delivered to
the CPU 10. Writing of data into the DRAM 13 is performed
by tracing backward the above-described route.

Consequently, access to the data is performed many times.
This fashion of making access may seem to be efficiently
managed by a presently-available stack function of a CPU
10, e.g., a last-in first-out storage function. Actually, how
ever, a problem is encountered in that cache-out of data that
has to be frequently accessed is caused by data which has to
be accessed only once by the CPU 10, such as data for image
processing and large-sized data to be retrieved. This leads to
an increase in the number of wasteful accesses. The
described concept of cache control in accordance with the
present invention is based upon the demands for eliminating
or reducing the number of Such wasteful accesses.

Presently available processing systems are designed as
shown in FIG. 5, assuming the presence of many access
paths. From a practical point of view, the memory architec
ture of FIG. 5 operable under ordinary programming is very
useful.

Referring now to FIG. 6, the flow of data which is
implemented when the MPU 14 of the tertiary cache 12
performs the processing function is shown. In this case, the
MPU 14 performs distributed processing of a local object.
Thus, a local object that need not be processed by the CPU
10 is processed by the MPU 14 in accordance with a control
protocol included in a prefetch instruction given by the CPU
10. For instance, a program or data stored in a single DRAM
block is treated as a local object, and is subjected to
processing Such as merely an incrementing computation or
determination of a maximum value. It is thus possible to
execute distributed concurrent processing by using the MPU
14. It is to be understood that the DRAM block on which the
local object processing is executed is cached out from the
commanding cache during the execution of the distributed
concurrent processing.

FIG. 7 shows the flow of data implemented when the
MPU 16 in the secondary cache 11 performs the processing
function. The MPU 16 executes distributed processing of
objects within a predetermined scope. Namely, the MPU16
undertakes the processing of objects that need not be pro
cessed by the CPU 10, in accordance with a control protocol
given by the CPU 10. Examples of the distributed processing
performed by the MPU 16 are global transfer processing,

10

15

25

30

35

40

45

50

55

60

65

6
and a low-level-computation and high-rate transfer process
ing, e.g., transfer of data from one DRAM 13-1 to another
DRAM 13-2.

Basically, the MPU 16 can make access to all the memo
ries, so that it can serve as a multiprocessor System which
executes processing in place of the CPU 10. The MPU 16,
however, can most suitably be used for a large-size transfer
Such as a global transfer of large-sized data, because its
computation ability is much lower than that of the CPU 10.
Therefore, the MPU 16 selectively performs processing of
the kind which does not require the high computation ability
of the CPU 10 or a sophisticated function of the command
ing primary cache. The processing performed by the MPU
16 also is under the control of the control protocol given by
the CPU 10.

FIG. 8 illustrates an intelligent prefetch instruction. The
intelligent prefetch instruction (IPREF) is used as means for
enabling control of the MPUs 16 and 14 which are subor
dinate to the CPU 10 without requiring any change in
conventional programming styles. Referring to FIG. 8, the
CPU 10 has the Icache 10a and the D cache 10b. A problem
of cache coherence is encountered with the use of the MPU
16 as the processor. Namely, data changed as a result of
execution of a program by the MPU 16 may not conform
with the data held in the D cache 10b of the CPU 10. In order
to avert from this problem, the illustrated embodiment is so
arranged that, when the CPU 10 instructs the MPU 16 to
execute a job, the data in the D cache 10b of the CPU 10 is
cached out, so that the content of the D cache 10 is updated
with new data (designated data) obtained as a result of
execution of the program by the MPU 16.
The MPU16 is inherently a cache, so that it is controllable

to function as a cache. To this end, MPU 16 conducts a job
in accordance with the IPREF instruction in the same
manner as an ordinary cache works in accordance with a
prefetch instruction. It is therefore possible to simulta
neously control both a cache and the MPU 16 by means of
the IPREF instruction. More specifically, the MPU16 func
tions as a cache in response to a prefetch instruction, and
conducts a job in response to the IPREF instruction.

In other words, referring to FIG. 8, the IPREF is an
extended instruction given by the CPU 10. When executed,
this extended instruction effects cache-out of a designated
area in the D cache 10b and sends a control protocol to the
cache of the lower hierarchical level. Upon receipt of the
control protocol, the designated MPU of the lower hierar
chical level executes a program designated by the protocol
by making access to the DRAM or memory blocks of lower
hierarchical level, and puts desired data in the cache
memory.

An example of retrieval for determining maximum value
data is shown below.

IPREF DRAMO /*Maximum value from data array in DRAMO */
IPREF DRAM1 f*Maximum value from data array in DRAM1 */
IPREF DRAM2 /*Maximum value from data array in DRAM2 */
IPREF DRAM3 /*Maximum value from data array in DRAM3 */
Load ro DRAM1-MAX*Read maximum value in DRAMO *
Load r1 DRAM1-MAX*Read maximum value in DRAM1 */
Load r2 DRAM1-MAX*Read maximum value in DRAM2 */
Load r3 DRAM1-MAX*Read maximum value in DRAM3 *
Max r0, r0,r1
Max r2, r2, r3
Max r0, rO, r2 * Retrieval of maximum value data end */

US 7,028,141 B2
7

This example is based on an assumption that the desig
nated data shown in FIG. 8 has been registered in the
DRAMO to DRAM3. The instructions IPREF DRAMO to
IPREF DRAM3 are instructions for executing a designated
program. The program that has been registered is executed
in accordance with the IPREF instruction, after effecting
cache-out of the contents of the designated area of the D
cache 10b. The IPREF is executed on the DRAMO to
DRAM3, while the CPU 10 sends the control protocol to the
DRAM1 to DRAM3. Load instructions are executed when
maximum values have been set in the caches. In this case, it
is possible to determine four maximum values by using eight
instructions including four IPREF instructions and four
Load instructions, although the number of maximum values
obtainable depends on the transfer size of the DRAM. The
true maximum value can be determined by checking the
obtained maximum values with one another.
As will be seen from the foregoing description, according

to the present invention, a processor System is provided
having cache memories each incorporating an MPU that
serves both as a cache logic and a processor for a Subordi
nate hierarchical level. With this processor system, it is
possible to effect a high-speed, efficient concurrent process
ing without requiring any modification of conventional
programming styles.

The invention claimed is:
1. An apparatus for controlling data processing in a first

distributed memory with a control means, the apparatus
comprising:

a memory; and
a central processing unit (CPU);
wherein said CPU is operable to cache out an area of said

memory, to issue a control protocol to the control
means of the first distributed memory, and to write data
returned by the control means in response to the control
protocol to the area that has been cached out in said
memory.

2. The apparatus of claim 1, further comprising the first
distributed memory, wherein the distributed memory is
arranged on a hierarchical level lower than that of the CPU.

10

15

25

30

35

8
3. The apparatus of claim 2, wherein the control means is

memory processing unit (MPU).
4. The apparatus of claim 2, wherein the first distributed

memory includes a plurality of memories, and wherein the
plurality of memories are connected to said CPU in parallel.

5. The apparatus of claim 2, wherein the first distributed
memory is capable of accessing at least one second distrib
uted memory, and said at least one second distributed
memory is arranged on a hierarchical level lower than that
of the first distributed memory.

6. The apparatus of claim 1, wherein said CPU caches out
said area of said memory and issues said control protocol to
the control means of the first distributed memory by issuing
a single extended instruction.

7. A method for distributed data processing by an appa
ratus including a central processing unit (CPU) and a
memory, the method being carried out by said CPU and
comprising the steps of:

caching out an area of said memory;
issuing a control protocol to a control means in a first

distributed memory; and
writing data returned by the control means in response to

the control protocol to the area that has been cached out
in said memory.

8. The method of claim 7, wherein the distributed memory
is arranged on a hierarchical level lower than that of the
CPU.

9. The method of claim 7, wherein said CPU caches out
said area of said memory and issues said control protocol to
the control means of the first distributed memory by issuing
a single extended instruction.

10. The method of claim 9, wherein the control means is
a memory processing unit (MPU), and wherein the single
extended instruction is an intelligent prefetch instruction
including said control protocol, said intelligent prefetch
instruction causing the MPU both to execute a data process
ing program designated by said control protocol and to
operate as a cache.

