wo 20187223196 A1 | 000000 AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
13 December 2018 (13.12.2018)

(10) International Publication Number

WO 2018/223196 Al

WIPO I PCT

(51) International Patent Classification:

GO6F 15/18 (2006.01)
(21) International Application Number:
PCT/AU2018/050573
(22) International Filing Date:
08 June 2018 (08.06.2018)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
2017902213 09 June 2017 (09.06.2017) AU

(71) Applicant: E & K ESCOTT HOLDINGS PTY LTD
[AU/AU]; C/- Michael Buck IP, PO Box 78, Red Hill, Bris-
bane, Queensland 4059 (AU).

(72) Inventor: ESCOTT, Eban Peter; C/- Michael Buck IP, PO
Box 78, Red Hill, Brisbane, Queensland 4059 (AU).

(74) Agent: MICHAEL BUCK IP; PO Box 78, Red Hill, Bris-
bane, Queensland 4059 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(54) Title: IMPROVEMENTS TO ARTIFICIALLY INTELLIGENT AGENTS

700

Answary

T, well maybe | can help with
youl with something else?

Adist ol options for the wyser, = === ===

l Gontact ” Suppost |

| Comminity ” Academy |

Question
Anzwers

701

fo build some software?

~
8

————————— A fist of optiors for the user.

Yes | | Mo

Guestion .
that your softwarg is for?

———————— =Adist of options for the user.

Agrinuiture || ining “ Manufacturing |

|| Censtruction ”

Energy Heaith |

FIG. 13

(57) Abstract: A system and method are provided for building computer software applications. More specifically the present invention
relates to an artificially intelligent software agent or bot, which is able to read and update the underlying model utilised to build the
software application. The bot includes a model comprising a representation of the target software, the bot then conducts a conversation
with a human modeller according to a conversation tree to elicit a requirements specification from the modeller for the target software.
Based on the requirements elicited through the conversation process the bot modities the model for the target software accordingly.

[Continued on next page]

WO 2018/223196 A1 {100 0 O

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
1

IMPROVEMENTS TO ARTIFICIALLY INTELLIGENT AGENTS

TECHNICAL FIELD

The present disclosure relates to systems, methods, and apparatus for
enabling an artificially intelligent software agent (or “bot”) to communicate with
a human for the purpose of enabling the bot to read and update a software

model for a model-based software application.

BACKGROUND

Any references to methods, apparatus or documents of the prior art are not to
be taken as constituting any evidence or admission that they formed, or form
part of the common general knowledge.

Building computer applications typically involves many stakeholders of varying
expertise; such as domain experts, software engineers, user experience
designers, business analysts, end users, and project managers. A key
challenge of building a successful application is collecting the requirements of
the application from the various stakeholders and representing them in a way
that is understandable to each stakeholder. Traditionally, software engineers
are responsible for translating the requirements into code.

Computer applications are commonly built using software patterns. Software
patterns are descriptions or templates for solutions to problems that
commonly must be addressed when developing software and which can be
used in many different situations. Software written for applications such as
mobile applications, web-based systems, embedded systems, and enterprise
applications, use software patterns to solve problems and deliver a solution.
Traditionally, programming languages like Java, C++, Python and the like are
used to write source code for a target application by a software developer.
Writing these applications is a time intensive task and carries a high risk of
error. The source code is ultimately compiled to executable code which can

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
2

be read and acted upon by one or more microprocessors of a computer.
Under control of the application the microprocessor processes data from
sensors such as keyboards, touch screen, mouse, camera and possibly
industrial sensors such as temperature and pressure transducers and the like.
The microprocessor acts upon the received data from the sensors and
operates various actuators in accordance with the application. The various
actuators may include one or more display screens but also almost any other
kind of machine controllable actuator, such as solenoids for example.

The Human software engineers can accomplish these tasks, though much of
what they do may be considered infrastructure in that it involves reusing
prebuilt code. More recently, it has been known for software to be designed
and built using computer implemented modelling environments whereby some

of the source code for a target application can be automatically generated.

Model-based applications can be used to represent a software system either
graphically, textually or with a hybrid approach. The models can be used to
generate large portions of the software system that leads to many tangible

benefits.

Computer software can be created updated and read using model based
representations. Unlike traditional source code, the model is a high-level
representation of the source code. Code generators, i.e. specially
programmed software executed on computers, can be used to write code for
target software from the model, instead of the code being written by a human.
The models can be graphical, textual or a hybrid but they must allow the
modeller to express the requirements that the resultant target software
application is required to meet. Graphical models, presented by way of a
graphical user interface on a display screen of a computer, usually allow
shapes to be rendered, moved and connected, with other elements to
represent the software. Textual models like Domain-Specific Languages
(DSLs) can look like natural language and are ideal for some problem
scenarios. A hybrid approach uses both graphical and textual notations. A
table or spreadsheet could be considered a hybrid approach and used as a

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
3

model of the software application and a way for the modeller to express the
intent of their desired target software.

Model-Driven Engineering (MDE) is an advanced approach to software
engineering that uses models in the software development life cycle. As an
example, Figure 1 is a diagram showing a meta-model 10, model 12, XML
representation of the model 14, code generator 16 and output application
code 18. An example of the output of an example application code 18 is
shown in box 119.

In the meta-model 10 elements and associations between elements are
defined. In the model layer a model is stored that, in this example, includes
two entities, each being an instance of an element that is defined in the meta-
model layer 10. The two entities of the model 12 are related by a relationship
that is an instance of an association defined in the meta-model 10. The model
12 can be represented in a number of ways, for example it can be
represented graphically as shown in Figure 1 or textually. The XML document
14 captures all of the instances of elements and associations of the model.
The XML document 14 can be applied to a software application known as a
code generator 16. The output from the code generator 16 comprises a target
software application 18 for execution by a computer. Consequently, it will be
understood that modification of the model 12 and in some circumstances also
of the meta-model 10 will result in modification of the target software
application 18. Conversely, for a given software application it is possible to
define a corresponding model and also a corresponding meta-model.

It will therefore be realised that a model, such as model 12 of Figure 1, is a
high level representation of a software application. The model can undergo
model-to-model (M2M) and model-to-text (M2T) transformations that results in
some - not necessarily all - of the source code of the target application being
automatically generated. Some examples of well-known modelling
environments include the Unified Modelling Language (UML), Business
Process Modelling Notation (BPMN), and Business Process Execution
Language (BPEL).

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
4

The meta-model 10 defines what can be found in the model 12. For example,
if the meta-model has an element such as a class called Entity, then the
modeller can add as many instances of the Entity to the model as required
and label them accordingly.

A well-known example is the Meta-Object Facility (MOF) in which four layers
are defined as follows; real world, model, meta-model and meta-meta-model.
Each layer defines what is allowed in the layer above but there is no mandate
to use MOF or restriction on the number of layers that may be used.

The process of reading and editing models in an intuitive way is the subject of
ongoing research. Traditional computer implemented model-based
environments provide the modeller with a set of tools so that he or she can
use shapes, lines, text, colours, shades, and other visual elements to

manipulate the model.

Artificial Intelligence (Al) is the study of intelligence in computing machines. In
general, an agent (or “bot”) is a software agent (or more concisely simply an
“Al agent”) which receives information about its environment from sensors and
is able to control actuators that act upon the environment. Figure 2 depicts a
simple bot 190 that has been built according to a very basic Al architecture
which is referred to as a “reactive architecture”. Bot architectures, like
software architectures, are formally a description of the elements from which a
system is built and the manner in which they communicate. Furthermore,
these elements can be defined from patterns with specific constraints. In the
reactive architecture of Figure 2, bot 190 exhibits behaviour that is simply a
mapping between stimulus and response. The bot 190 has no decision-
making skills. Sensors 202 are provided for the bot to observe the
environment 201 and actuators 203 for the bot to act on the environment 201.
The input 205 and output 206 data is represented using a semi-structured
format such as JSON or XML. The mapping engine 204 matches the input
data to the output data. A known example of this architecture is Alicebot,
which is based on the Artificial Intelligence Markup Language (AIML). The use

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
5

of categories, patterns, templates, and the principle of reductionism can result
in an Al that scores highly on the Turing test.

A more complex Al architecture is the Procedural Reasoning System (PRS)
Architecture. An example of a bot 195 according to the PRS Architecture is
illustrated in Figure 3. The PRS is a general purpose architecture that is ideal
for reasoning environments where actions can be defined by predetermined
procedures (action sequences). PRS is a Belief-Desire-Intention (BDI)

architecture mimicking a theory of human reasoning.

PRS Architecture integrates both reactive and goal-directed deliberative
processing in an architecture that has a clear separation of concerns. The
belief 210 represents the bots view of the world, desires are the goals 212 the
bot uses as a heuristic, the plans 213 are actions that the bots can take, and
the intentions 214 specify one or more actions. The interpreter 211 is
responsible for controlling the bot. PRS is a useful architecture when planning

is more about selection than search or generation.

To build a bot a software development process, which the present Inventor
has previously co-conceived, is followed as depicted in Figure 4. At the start
of the iteration 100 a set of requirements are prioritised from the product
backlog and these are implemented in the first iteration. At 102 it is
determined if the bot is able to implement the requirements without the help of
a human. If the bot cannot implement the requirement in a satisfactory way,
then a human software developer will begin the process of expanding out
what requirements the bot can implement. This is achieved by the human
writing the source code that fulfils the requirement (using traditional software
development) and this is called the reference implementation 104.

Creating the reference implementation 104 is an important step, as the
reference implementation represents how the bot will write source code so it
will be human readable and considered best practice as it was originally
implemented by a human expert. The next steps 105 and 106, which are
implemented by the human modeller are where the reference implementation

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
6

is abstracted to the transformations, meta-model and model. At this point the
meta-model is expanded for two purposes; firstly, the meta-model definition
may need to support new elements in the model. Secondly, the meta-model
definition is marked to support dialogue data and communication for a chat
interface of the bot. Once the reference implementation and the generated
application are comparable (107, 108, and 109), the modeller is able to
complete the requirement by updating the model 111, generating the
application 114, checking the outcome 116 and ending the iteration 118.

By following the build process in Figure 4 the human and bot cooperate to
iteratively evolve the bot so that the bot can comply with more and more
requirements. As the bot becomes more advanced, some requirements will
not require changes to the bot as the bot will be able to implement the
requirements as depicted in Figure 5. However, there are some requirements
that are too complex, or a one off, and changes to the bot are not warranted.
So, as depicted in Figure 6, a decision is made at 121 that a manual update
from a human software developer 123 is warranted. Since the bot has written
code that is human readable, this is achievable by the software developer

manually adding code to the target application.

Whether or not it is possible to improve the bot’s intelligence in a specific
domain largely depends on the extent to which the bot is able to understand

the model and communicate with the human modeller.

The process of reading and editing models in an intuitive way is the subject of
ongoing research. Traditional model-based environments provide the human
modeller with a set of tools where they can use shapes, lines, text, colours,
shades, and other visual elements to manipulate the model. While these
approaches provide the modeller with a set of fine grained tools to manipulate
the model it would be advantageous if the burden on the human modeller

could be reduced further.

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573

SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided a method
for evolving an artificial intelligence (Al) software agent hosted on an
electronic computer, the method comprising:

providing an Al agent comprising a mapping assembly (which may be
referred to as an “intermediate assembly” or an “interpreter assembly”)
responsive to one or more sensors and arranged for control of one or more
actuators wherein the mapping assembly includes a model comprising a
representation of a target software;

operating the computer to conduct a conversation with a human
modeler according to a conversation tree to elicit requirements for the target
software; and

modifying the model based upon information obtained from the

conversation with the modeler.

In a preferred embodiment of the invention the step of providing the mapping
assembly includes providing said assembly including a meta-model in

association with the model.

It is preferred that the step of providing the mapping assembly further includes
providing said assembly with a map such as a corpus database disposed

between the meta model and the model.

Preferably the method further includes providing the Al software agent with a
code generator assembly whereby the model is applied to the code generator

assembly to produce the target software.

It is preferable that the method includes testing the target software for
compliance with current requirements of the modeler and, in the event of the
target software being non-compliant, iteratively further operating the electronic
computer to conduct the conversation with the human modeler and further
modifying the model based upon information obtained from the conversation
to thereby create a further iteration of the Al agent.

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573

In a preferred embodiment of the invention the method further includes storing
a dialog forest in association with the Al agent, the dialog forest representing
past conversations to assist the Al agent to determine a plan based on prior

successful conversations.

According to a further embodiment of the present invention there is provided a
computer programmed with instructions comprising an artificial intelligence
(Al) software agent hosted upon the computer, the Al agent comprising:

a mapping assembly responsive to one or more sensors and arranged
for control of one or more actuators wherein the mapping assembly includes a
model comprising a representation of a target software; and

a conversation tree accessible to the mapping assembly for enabling
the computer to conduct a conversation with a human modeler;

wherein the mapping assembly is responsive to the conversation tree
and is arranged to modify the model based upon information obtained from

the conversation with the human modeler.

Preferably the instructions further comprise a code generator module
arranged to generate the target software based upon the model.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features, embodiments and variations of the invention may be
discerned from the following Detailed Description which provides sufficient
information for those skilled in the art to perform the invention. The Detailed
Description is not to be regarded as limiting the scope of the preceding
Summary of the Invention in any way. The Detailed Description will make

reference to a number of drawings as follows:

Figure 1 is a diagram illustrating an exemplary meta-model, model and target
software application.

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
9

Figure 2 depicts a bot according to a prior art reactive architecture where the
behaviours are simply a mapping between stimulus and response. The bot

has no decision-making skills.

Figure 3 depicts a bot according to a Procedural Reasoning System (PRS)
architecture where the bot follows a theory of human reasoning. Belief
represents the view of the world, Desires are the goals, and Intentions specify
the use of belief and desires to choose one or more actions.

Figure 4 is a flowchart depicting a build process of a bot. The process
illustrated in the figure is evolutionary as the bot is improved each iteration as

new requirements are considered.

Figure 5 is a flowchart depicting a build process when no improvements to the

bot are needed to satisfy the requirements.

Figure 6 is a flowchart depicting a build process when manual intervention by
a software engineer is preferable over improving the bot.

Figure 7A depicts a computer system according to a preferred embodiment of

the present invention.

Figure 7B depicts a bot according to a first embodiment of the present
invention according to a reactive architecture with a model, meta-model and
corpus database providing mapping between stimulus and response.

Figure 8 depicts a bot according to a PRS architecture with a model, meta-
model and corpus database providing the interpreter with a framework for the
bots beliefs, goals, plans, and intentions.

Figure 9 is a conceptual chat interface for the bot on a mobile-app device.

Figure 10 is a conceptual chat interface for the bot on a tablet device.

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
10

Figure 11 is a conceptual chat interface for the bot on a desktop computer.

Figure 12 is a high-level conversation tree according to a preferred method of
the present invention and demonstrates how the answer from one question

leads to the next question in the tree.

Figure 13 is a detail of an example of a conversation tree wherein the bot asks
a human modeller questions about the software application.

Figure 14 is an architectural diagram of an operational environment to show
how an end user interacts with a bot and source code repository in a cloud-

based environment.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Figure 7A is a block diagram of an exemplary computer system 21 for carrying
out a method according to an embodiment of the invention that will be

described.

The computer system 21 includes a main board 23 which includes circuitry for
powering and interfacing to at least one onboard Central Processing Unit
(CPU) 25. The at least one onboard processor 25 may comprise two or more

discrete processors or processors with multiple processing cores.

The main board 23 acts as an interface between CPU 25 and secondary
memory storage 27. The secondary memory 27 may comprise one or more
optical or magnetic, or solid state, drives. The secondary memory 27 stores
instructions for an operating system 29. The main board 3 includes busses by
which the CPU is able to communicate with random access memory (RAM)
31, read only memory (ROM) 33 and various peripheral circuits. The ROM 33
typically stores instructions for a Basic Input Output System (BIOS) which the
CPU 25 accesses upon start up and which preps the CPU 25 for loading of
the operating system 29.

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
11

The main board 23 also interfaces with a graphics processor unit (GPU) 35. It
will be understood that in some systems the graphics processor unit 35 is
integrated into the main board 23. The GPU 15 drives a display 37 which

includes a rectangular screen comprising an array of pixels.

The main board 23 will typically include a communications adapter, for
example a LAN adaptor or a modem, either wired or wireless, that is able to
put the computer system 21 in data communication with a computer network

such as the Internet 45 via port 43.

A user 34 of the computer system 21 interfaces with it by means of keyboard

39, mouse 41 and the display 37.

The user 34 of system 21 may command the operating system 29 to load
software product 49 which contains instructions comprising an artificial
intelligence (Al) software agent 200 for hosting upon the computer system 21.
The software product 49 may be provided as tangible instructions borne upon
a computer readable media such as optical disk 47 for reading by disk
reader/writer 42. Alternatively it might also be downloaded via port 43 from a

remote data source via data network 45.

As will be discussed, the Al software agent 200 includes a mapping assembly
responsive to one or more sensors and arranged for control of one or more
actuators. The mapping assembly includes a model comprising a
representation of a target software and a conversation tree accessible to the
mapping assembly for enabling the computer system 21 to conduct a
conversation with a human modeller, e.g. user 34 using the interface provided
by screen 37, keyboard 39 and mouse 41. As will be further explained, in use
the mapping assembly is responsive to the conversation tree and is arranged
to modify the model based upon information obtained from the conversation
with the modeller 34.

The software product 49 also includes machine readable instructions
comprising a code generator assembly 214b to produce the target software

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
12

50. For example the target software 50 may be output as one or more files
comprising tangible machine readable instructions on a magnetic or optical
disk 52 or alternatively it may be transmitted in the form of machine readble
files to a remote location via port 43 and data network 45.

The bot 200 of Figure 7A is illustrated in Figure 7B. Bot 200 is constructed
according to an extension of the reactive architecture of the bot of Figure 2.
With reference to Figure 7B, a mapping engine 204 is provided that is
composed of a model 207, meta-model 208 and a corpus database 209. In
the presently described embodiment of the invention the corpus database 209
stores a conversation tree 209a that enables the bot 200 to converse with a
human. The corpus database 209 also records conversations that the bot 200
has with a human by means of the conversation tree. The model 207 is the
representation of a target software application (e.g. application 18 of Figure
1). It can be graphical, textual or a hybrid model. The meta-model 208 defines
the elements that can be added to the model. Furthermore, the meta-model is
used to define the corpus database that contains the input 205 and output 206
data. As will be discussed, by utilising the meta-model 208 a domain specific
language (DSL) can be formed that allows communication between the
human 34 and the bot 200 with a shared understanding of the model 207.

A bot 200a according to further embodiment of the present invention is
depicted in Figure 8. The bot 200a of Figure 8 is configured according to a
model-based extension to the PRS architecture of Figure 6. The Beliefs are
represented by dialogue data 210a that is received from the end user. Direct
commands 210b can be invoked depending on where the user currently is in
the conversation tree 209. The conversation tree 209a is a data structure that
is stored in the corpus database 209. The interpreter 211 comprises a
mapping assembly that has a similar internal structure to the mapping
assembly 204 of the bot 200 according to the embodiment of Figure 7B.
However the interpreter 211 of Figure 8 uses algorithms based on the goals
212a and plans 212b to determine the intentions 214. The project context
212a uses categories, patterns, templates, and the principle of reductionism
(similar to AIML) to simplify a range of natural language inputs and keep

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
13

context for personalised responses. The snippet models 212b are linked to
Epics and User Stories so that the interpreter 211 can make large changes to
the model 207 by either copying the snippets or making comparisons between

its own model and the snippet.

Epics and User Stories are employed to capture requirements in an Agile
software development process. An Epic captures a large body of work and is
a broad requirement. An example format of an Epic is: As a [type of user] |
want to [do something] so that [reason for task] A User Story is a specific
requirement and are grouped into Epics, i.e. an Epic has many User Stories.
An example format of a User Story is: As a [type of user] like [persona] at
[environment]. | want to [do something] using [device] so that [reason for task].

This will [user goall.

For the bot to be intelligent in a specific domain, i.e. the domain for the target
software, the bot must be able to understand the model 207 and communicate
with the modeller 34. According to a preferred embodiment of the present
invention, the bot’s understanding of the model 207 is achieved by extending
the Reactive and PRS architectures to arrive at the model based bot
embodiments 200, 200a shown in Figures 7B and 8. The communication with
the modeller 34 (a human) is preferably achieved using a chat interface, i.e.
screens as depicted in Figures 9 through 11 that are displayed on the screen
37 of a machine, e.g. computer system 21, hosting the bot. In the presently
described embodiment the bot’s conversation tree is based on the model 207

and its meta-model 208.

The chat interface can be adapted for different devices like the mobile-app
(300 and 301) depicted in Figure 9, tablet (400 and 401) depicted in Figure
10, and the desktop (500 and 501) depicted in Figure 11. Figure 12 is a high
level diagram of a conversation tree whereas Figure 13 drills down to show
parts of the tree of Figure 11 in detail. Figure 12 depicts an exemplary
conversation tree at a high-level and demonstrates how the answer from one
question (e.g. node 600) leads (via link 602) to the next question in the tree
and ultimately to a final question 601.The human 34 and bot 200

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
14

communicate using a structured DSL (domain specific language) based on
the conversation tree 209a. The human is presented with options (304 and
305) to direct the bot to carry out tasks on the model e.g. model 207 of Figure
7B and Figure 8. Some of the advanced tasks will save significant time
compared to traditional model-based environments where the human is
required to make many changes across the model to achieve an intended

outcome.

Referring again to Figure 8, the dialog forest 213a represents all the
conversations that the bot has with the end users so that it can double check
based on previous questions. This coupled with a machine learning algorithm
213b allows the bot to determine a plan based on previous successful
conversations. The language response 214a is the selection from the
conversation tree made by the interpreter. The code generator 214b is
invoked for the bot to write target software 50. The code generator 214b uses
the model 207 as the basis for what it writes. So, as the interpreter makes
changes to the model from the beliefs 210, goals 212, and the plans 213, the
bot will be able write the code for the target software that is up to date with the

current conversation with the end user 34.

Consequently due to interaction with the human modeler the model can be
updated so that the bot evolves and is able to comply with more and more

requirements.

The enhanced Reactive and PRS architecture embodiments of Figures 7B
and 8, according to embodiments of the invention, can be used to implement
different bots. The bots must subsequently be deployed into an environment
and bought online for the end user. A deployment system is illustrated in
Figure 14.

With reference to Figure 14, the end user (identified as item 800a in Figure
14) will use the chat interface on their machine 800. The conversation will be
submitted to a typical web application (801 and 802) and the application will
delegate the conversation to one of bots 804-808 depending on the nature of

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
15

the technology stack (e.g. hardware/operating system platform) that the target
software is to run on. For example, if the target software is intended to run on
a Linux Apache MySQL PHP platform then the LAMP bot will be selected, via
a Controllerbot 803. The particular delegated bot 804-808 will write code and
commit it to the source repository 809. To further allow the human and bot to
work alongside each other, the end user 800a, via machine 800, can also
have access to the source repository 809. In the system of Figure 14 the
relational database service (RDS) 811 stores data for use by the controllerbot
803 and each of the bots 804-808. In particular, conversation trees and
dialogue forests may be stored in the RDS and be accessible to each of the
bots 804-808.

Implementations of the invention can be realized as one or more computer
program products, i.e., one or more modules of computer program instructions
encoded on a computer readable medium for execution by, or to control the
operation of, data processing apparatus. The computer readable medium can
be a machine-readable storage device, a machine-readable storage
substrate, a memory device, a composition of matter affecting a machine-
readable propagated signal, or a combination of one or more of them. The
term "computer system" encompasses all apparatus, devices, and machines
for processing data, including by way of example a programmable processor,
a computer, or multiple processors or computers. The apparatus can include,
in addition to hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes processor firmware,
a protocol stack, a database management system, an operating system, or a

combination of one or more of them.

A computer program (also known as a program, software, software
application, script, or code) can be written in any form of programming
language, including compiled or interpreted languages, and it can be
deployed in any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily correspond to a file in

a file system. A program can be stored in a portion of a file that holds other

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
16

programs or data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules, sub programs, or
portions of code). A computer program can be deployed to be executed on
one computer or on multiple computers that are located at one site or
distributed across multiple sites and interconnected by a communication

network.

The processes and logic flows described in this disclosure can be performed
by one or more programmable processors executing one or more computer
programs to perform functions by operating on input data and generating
output. The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic circuitry, e.g.,
an FPGA (field programmable gate array) or an ASIC (application specific

integrated circuit).

Processors suitable for the execution of a computer program include, by way
of example, both general and special purpose microprocessors, and any one
or more processors of any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a random access
memory or both. The essential elements of a computer are a processor for
performing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be
operatively coupled to receive data from or transfer data to, or both, one or
more mass storage devices for storing data, e.g., magnetic, magneto optical
disks, or optical disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device, e.g., a mobile
telephone, a personal digital assistant (PDA), a mobile audio player, a Global
Positioning System (GPS) receiver, to name just a few. Computer readable
media suitable for storing computer program instructions and data include all
forms of non-volatile memory, media and memory devices, including by way
of example semiconductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard disks or removable
disks; magneto optical disks; and CD ROM and DVD-ROM disks. The

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
17

processor and the memory can be supplemented by, or incorporated in,
special purpose logic circuitry.

To provide for interaction with a user, implementations of the invention can be
implemented on a computer having a display device, e.g., a CRT (cathode ray
tube) or LCD (liquid crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback, e.g., visual
feedback, auditory feedback, or tactile feedback; and input from the user can

be received in any form, including acoustic, speech, or tactile input.

Implementations of the present disclosure can be realized in a computing
system that includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server, or that includes
a front end component, e.g., a client computer having a graphical user
interface or a Web browser through which a user can interact with an
implementation of the present disclosure, or any combination of one or more
such back end, middleware, or front end components. The components of the
system can be interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples of communication
networks include a local area network ("LAN") and a wide area network
("WAN"), e.g., the Internet.

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a
communication network. The relationship of client and server arises by virtue
of computer programs running on the respective computers and having a

client-server relationship to each other.

While this disclosure contains many specifics, these should not be construed
as limitations on the scope of the disclosure or of what may be claimed, but
rather as descriptions of features specific to particular implementations of the

10

15

20

25

30

WO 2018/223196 PCT/AU2018/050573
18

disclosure. Certain features that are described in this disclosure in the context
of separate implementations can also be provided in combination in a single
implementation. Conversely, various features that are described in the context
of a single implementation can also be provided in multiple implementations
separately or in any suitable sub-combination. Moreover, although features
may be described above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed combination can in
some cases be excised from the combination, and the claimed combination

may be directed to a sub-combination or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in a particular order,
this should not be understood as requiring that such operations be performed
in the particular order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In certain
circumstances, multitasking and parallel processing may be advantageous.
Moreover, the separation of various system components in the
implementations described above should not be understood as requiring such
separation in all implementations, and it should be understood that the
described program components and systems can generally be integrated
together in a single software product or packaged into multiple software

products.

Thus, particular implementations of the present disclosure have been
described. Other implementations are within the scope of the following claims.
For example, the actions recited in the claims can be performed in a different
order and still achieve desirable results.

In compliance with the statute, the invention has been described in language
more or less specific to structural or methodical features. The term
“comprises” and its variations, such as “comprising” and “comprised of” is
used throughout in an inclusive sense and not to the exclusion of any
additional features. It is to be understood that the invention is not limited to
specific features shown or described since the means herein described
comprises preferred forms of putting the invention into effect.

10

WO 2018/223196 PCT/AU2018/050573
19

The invention is, therefore, claimed in any of its forms or modifications within
the proper scope of the appended claims appropriately interpreted by those
skilled in the art.

Throughout the specification and claims (if present), unless the context
requires otherwise, the term "substantially" or "about" will be understood to
not be limited to the value for the range qualified by the terms.

Any embodiment of the invention is meant to be illustrative only and is not
meant to be limiting to the invention. Therefore, it should be appreciated that
various other changes and modifications can be made to any embodiment

described without departing from the spirit and scope of the invention.

WO 2018/223196 PCT/AU2018/050573
20

CLAIMS:

1. A method for evolving an artificial intelligence (Al) software agent
hosted on an electronic computer, the method comprising:

providing an Al agent comprising a mapping assembly responsive to
one or more sensors and arranged for control of one or more actuators
wherein the mapping assembly includes a model comprising a representation
of a target software;

providing a conversation tree software procedure executable by the
electronic computer;

operating the computer to conduct a conversation with a human
modeler according to the conversation tree to elicit requirements for the target
software; and

operating the computer to modify the model based upon information
obtained from the conversation with the modeler.

2. A method according to claim 1, wherein the step of providing the
mapping assembly includes providing said assembly including a meta-model
in association with the model.

3. A method according to claim 2, wherein the step of providing the
mapping assembly further includes providing said assembly with a corpus

database responsive to the meta model and accessible by the model.

4. A method according to any one of the preceding claims, including
applying the model to a code generator assembly to produce the target

software.

5. A method according to claim 4, including testing the target software for
compliance with current requirements of the modeler and, in the event of the
target software being non-compliant, iteratively further operating the electronic
computer to conduct the conversation with the human modeler and further
modifying the model based upon information obtained from the conversation
to thereby create a further iteration of the Al agent.

WO 2018/223196 PCT/AU2018/050573
21

6. A method according to any one of the preceding claims, including
storing a dialog forest in association with the Al agent, the dialog forest
representing past conversations to assist the Al agent to determine a plan

based on prior successful conversations.

7. A computer programmed with instructions comprising an artificial
intelligence (Al) software agent hosted upon the computer, the Al agent
comprising:

a mapping assembly responsive to one or more sensors and arranged
for control of one or more actuators wherein the mapping assembly includes a
model comprising a representation of a target software; and

a conversation tree accessible to the mapping assembly for enabling
the computer to conduct a conversation with a human modeler;

wherein the mapping assembly is responsive to the conversation tree
and is arranged to modify the model based upon information obtained from

the conversation with the human modeler.

8. A computer programmed with instructions comprising an artificial
intelligence (Al) software agent hosted upon the computer, according to claim
7 wherein the instructions further comprise a code generator module arranged
to generate the target software based upon the model.

9. A computer programmed with instructions comprising an artificial
intelligence (Al) software agent hosted upon the computer, according to claim
7 or claim 8 wherein the mapping assembly includes a meta-model in

association with the model.

10. A computer programmed with instructions comprising an artificial
intelligence (Al) software agent hosted upon the computer, according to claim
9 wherein the mapping assembly further includes a corpus database
responsive to the meta model and accessible by the model.

PCT/AU2018/050573

WO 2018/223196

1/15

6l oM ofjsH,
:9p09 Jable |
pajnogaxa jo IndinQo

w F QUOO
Jobie |

9l
lojelsuan) apo)

<|wx/>

< eydy, = saweu Ajuas>
<|wx>

l "OId

Anu3g

¢ ———————

uoljelossy
\
\
\
\
\
\
\
\
\
\
||||||| [W 4
\ 7/
V\
7\
/7 \
\\ \
/ /
d \
¥
one.gq

eydly

ol

[°PON EISIN

Iopon

¢l

PCT/AU2018/050573

WO 2018/223196

2/15

(Wy Joud)
Z 9Ol

5J01BNIOY

SJ0SUSS

A

90

k9]
¢
A

Buiddep

“yoe

- 061

PCT/AU2018/050573

WO 2018/223196

3/15

1UBWUOHAUT

oz 202
$101BN0Y S10suas
% ““““ 902 % - s0e
SUOIIUBIUY sioleq
rig” / \ Cose
Jeeidisiug
11z
{salisaq)
sueld S0
elz” iz

(U Joud)
€ 9Ol

T G661

PCT/AU2018/050573

4/15

WO 2018/223196

0t

(Ly Joud)
¥ 9l

;uoneoidde pereisush
syl 01 ssedwod uoprustueidul
80U8l8}8] 8L} S80(

oLt

R
™~
T

bl
: JOL— sieleushb
ou

gii
I
suoneliiofsuel]

siepop ndu) ping pue jepoul -
ndul 0} JoelsayY

uonesiddy <
fleisusy sressush

* 159}

iSiusweninbal
sy Ajsiies uoneoidde
paleleusd syl ss80Q

o)
<
T~

R

L
T

GOt~ - | leensge opy

Luswaiinbsid
10} papssu sadhiy
1oBisuE MaU By

uoneuswsidy
sousiniey ping

uonReisy
DLUS

ucleisl
s

PCT/AU2018/050573

WO 2018/223196

5/15

(Wy Joud)

£l ¢ Old 011
|
|
‘ gl
o ™ i 4
uoneoyddy
‘ s{apo 1ndul pun
R18UsD - pe—" [8poW | piing
e i >, .
whwai.‘ﬁ_wmmw il

.mEmEmm:wQ
10} pspesu sadA}
_10oBJalE MaU Bty

¢ Siuswainbal
syl Ajsnes uoneoydde
pajesausb syl $20Qg

uoiesay
ues

- .

811 001

PCT/AU2018/050573

WO 2018/223196

6/15

801

(Uy Joud)
9 'Ol

i uoheaidde peielsush
ey} o} ereduwon uonesuredul
80UBI88) 8L} 580(]

ot
st Y
N . seisuah ‘
| eit - ou
; % SUCHBUWIOISURY
cnmzmom»ma,q < ; sepop 1ndul ping pue jspou .
SHIERELS sleieush ~ du 0} oelsay 804
sht EEH Zi- GoL- - | IORASqE aoi

Justusinbsi
10 pepasu sadh)
1OBISHE fABU 8y

iswisuwmsnnbe
syt Asites uoiiroydde
peyeisusb sy seoq

uonesweidul
aousiBieY piing

A
” ogi FOt
uonesy uonesayl
- e seh
G R e iz
e zzi
|
/,j8POoLL 8L} Ul
uolieoiddy pajeisusn | il
srepdn Ajenuepy - ou 1uswennbal eyl epnoul

O] DoluUBIIeM B S)

PCT/AU2018/050573

WO 2018/223196

715

00¢

¥4

avic

Ly

[A*]

nun
cz— Buissaosoid
\Nv |enuan
> anuQ pieoq
s
%8s uepw |~ €z
NN/ 5
abelo)g
Alepuooag WOH WV
S \
€€ I
wie)sAg Bunesadp 62 NdoO
/
Ge

44

s

CoJbecJCo It Ju

L€

1994

ve

Joulau|

114

V. Old

PCT/AU2018/050573

WO 2018/223196

8/15

d. Old

UBWUONAUT

€0z eoe
Si01EnidY SIOsuUag
A
I1OPON BI8W |- - — 802
» °9l] qu_w.mmn_ml\,:oo
. e6oz” (esegeleqg /
T " sndion) depy e
902 : S0e
: 607
<
[epoRN - = =L0Z
Buiddey S
“yoz

.4

WO 2018/223196 PCT/AU2018/050573
9/15
Goals Plans
2i2a 212h 2134 213h
Project Snippet Dialogue Machine
Context Models Forest Learning
211
N\ | /
2127 ei3
Interpreter
207~ = = - Model
209 :
200a - - hE ;
Map (Corpus
Database) 209a
________ Ve ’
Conversation Tree *
N
\\
205 - — | Meta Model
210 214
Beliefs Intentions
210a 210b 214a 214b
Dialogue Direct Language Code
Data Command Response | | Generator
25 o
Sensors Actuators
208" 208

Environment

201

FIG. 8

PCT/AU2018/050573

WO 2018/223196

10/15

mam.

D
D

6 Ol

YO8

2007

vy,
o vy,

D
222227 """ "

N
06/

| poe

£

PCT/AU2018/050573

WO 2018/223196

11/15

Y

S

BRI

Y

TSI T

LOY

0l ©Id

ooy

PCT/AU2018/050573

12/15

WO 2018/223196

L1 "Old

T

Iy

Y

G

A

V77772

VAP

i _

”§§§§§§§§§§§§§§§sn

ERaRgoka g ot

BHYMLIE R

109 00s

WO 2018/223196 PCT/AU2018/050573
13/15

FIG. 12

601

OO O O O

PCT/AU2018/050573

WO 2018/223196

14/15

YieaH

GBOROISUC]D

ABisuz

Buniosinuspy

Buuy

aiminauby

1asT a4 10} SUoRD JO 18 Y = = = — o

2I01 51 SieMI0S Mok 1By

4
»
.
D
v
<
»
¥
.
«

SIoMSLY

UORSeNn

LONSeny

O

S84,

1951 31U 40} SUDHC 0 15K Y-

£ BIBMI0S BILDS PING O]

= en e or o ar e ™ ™

auem nod 6@ Jogehon B we | M

Awapeoy

Aunuiwon

yoddng

DBIINT

esh a4y 1oy suondo 0 sy

29518 BUINBWINS UM NoA
e disy uBeD | agABIY Ham U

WO 2018/223196

PCT/AU2018/050573

15/15

-1

e PILICTE

P 1

L 0 —

8

- —~

- e Ay - A

N,
)
y}

w0
i
G

"
S
%

wgiusdwon

|

R G o T

F 3

—'lll;'u'n'

1oquUBSiy

<C 0

r-—--- -

1OGBOIAIBS 00NN

< D o

—ls&tct&t:}tl.l

1ogdureT

e g o

| R .

A,
\\\\ o,

%

i]
\ \\\\\\\\\\\\\\\

i
m
m
i
m
;

Rt

\\\\\\

Li8

o me a A

| IR

i
)

]
d
b4

4

10G48)0IIUON

o

" ADGRMIAISSOIIA

joqduey

qBiio

1 Old

\\\\\\\\\\\\\\\\\\
’,

SR

\.\\ R
\\\\\\\\\\\\\\\\\\

\mm\\\\

RN

Z
%

w7
\\\\\\\\\\\\\3\\\

Pt ecetstiettons,,,

e

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2018/050573

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 15/18 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PATENW:Classmarks:TPC&CPC(GO6F15/18,GO6NS5/00/1ow,GO6F 17/50/1ow,GO6F8/20,G06F 8/30,GO6F8/31,G06F8/33,G10L15/22);Keywords(
artificial, intelligence, Al, bot, agent, machine, learning, heuristic, regression, neural ,network, deep, belief conversation, dialog, chat, talk, tree,
node, branch, relation, UML, BPEL, XML, generate, write, author, code, program, application, instruction, app, model, adapt, change, modify,
requirement, specification, evolve, grow, teach, map, transform, hierarchy and like terms)

Google/Google Patents/Google Scholar/the Lens websites: Similar keywords as above also(conversation based user interface, agent conversation
human software development, agent conversation tree, software development requirements conversation dialogue, bot for writing code, Al
programmer creating software, conversation oriented software writing, Artificially intelligent program coding, and like terms)

Applicant/Inventor name search: Google Patents website, AUSPAT & internal databases

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.

Documents are listed in the continuation of Box C

Further documents are listed in the continuation of Box C See patent family annex
* Special categories of cited documents:
"A" document defining the general state of the art whichisnot ~ "T" later document published after the international filing date or priority date and not in
considered to be of particular relevance conflict with the application but cited to understand the principle or theory
underlying the invention
"E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention cannot be considered novel
international filing date or cannot be considered to involve an inventive step when the document is taken
alone
"L" document which may throw doubts on priority claim(s) or ~ "Y" document of particular relevance; the claimed invention cannot be considered to
which is cited to establish the publication date of another involve an inventive step when the document is combined with one or more other
citation or other special reason (as specified) such documents, such combination being obvious to a person skilled in the art
"o" document referring to an oral disclosure, use, exhibition o .
or other means & document member of the same patent family
"p" document published prior to the international filing date
but later than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
1 August 2018 01 August 2018
Name and mailing address of the ISA/AU Authorised officer
AUSTRALIAN PATENT OFFICE Neil Miller
PO BOX 200, WODEN ACT 2606, AUSTRALIA AUSTRALIAN PATENT OFFICE
Email address: pct@ipaustralia.gov.au (ISO 9001 Quality Certified Service)
Telephone No. +61262104089

Form PCT/ISA/210 (fifth sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT PCT/AU2018/050573

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2007/0168480 A1 (BIGGS et al.} 19 July 2007
paras [0014]-[0037], Figs 2-6

US 2015/0142704 A1 (LONDON) 21 May 2015

Abstract, paras [0057]-[0058], [0090]-[0101], [0122], [0139]-[0141], [0159]-[0176], Fig
3A

Zhang, J et al. "Model-based development of dynamically adaptive software." In
Proceedings of the 28th international conference on Software engineering, pp. 371-380.
ACM, 2006. [retrieved from internet on 22 May 2018].

< URL:http://www.irisa.fr/lande/lande/icse-proceedings/icse/p37 1 .pdf>
Sections 4 and 5

1,7

Gascuena, J.M. et al. "Model-driven engineering techniques for the development of
multi-agent systems." Engineering Applications of Artificial Intelligence 25, no. 1
(2012): 159-173. [retrieved from internet on 14 May 2018].

<URL:https://www.researchgate.net/profile/Antonio_Fernandez-
Caballero/publication/220118917 Model-
driven_engineering_techniques for the development of multi-
agent_systems/links/Ofcfd502e4c6ed1ced000000.pdf>

Section 4

2,9

Ross, R et al. "Using generalized dialogue models to constrain information state based
dialogue systems." Proceedings of the Symposium on Dialogue Modelling and
Generation 2005.[retrieved from internet on 22 May 2018].

<URL:
https://pdfs.semanticscholar.org/a07{/9bbca2 7fe74968¢255a8548658a49947295a.pdf. >

Whole document

Balog M. et al "Deepcoder: Learning to write programs.” arXiv preprint
arXiv:1611.01989. 7 November 2016. [retrieved from internet on 17 May 2018].

<URL:https://arxiv.org/pdf/1611.01989.pdf>
Whole document

P.A

Becker, K et al. "Al Programmer: Autonomously Creating Software Programs Using
Genetic Algorithms." arXiv preprint arXiv:1709.05703 (2017).[retrieved from internet
on 15 May 2018].

<URL:https://arxiv.org/pdf/1709.05703.pdf>
Whole document

P.A

Machiraju, S., & Modi, R. (2018). Conversations as Platforms. In Developing Bots with
Microsoft Bots Framework, 2018, pp. 1-17, Apress, Berkeley, CA. Springer 17/5
Whole document

Form PCT/ISA/210 (fifth sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/AU2018/050573

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search
report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document/s Cited in Search Report

Patent Family Member/s

Publication Number Publication Date Publication Number Publication Date

US 2007/0168480 Al 19 July 2007 US 2007168480 Al 19 Jul 2007

US 2015/0142704 Al 21 May 2015 US 2015142704 A1l 21 May 2015
US 9189742 B2 17 Nov 2015
US 2016117593 Al 28 Apr 2016
WO 2015077398 Al 28 May 2015

End of Annex

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

Form PCT/ISA/210 (Family Annex)(January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report

