(54) 发明名称
镍基热喷涂粉末和涂层及其制备方法

(57) 摘要
一个实施方案中提供的包括通过热喷涂工艺施加时在基材上提供耐磨损和耐腐蚀涂层的完全多合金化的粉末。该涂层在适用于宽范围的温度的非常致密的涂层中展现了所需的硬度、韧性和结合特性。该实施方案提供了形成涂层的方法，该方法包括：提供基材；以及在基材上布置涂层，该涂层包含：包含合金的包含粉末组合物，该合金包含含有镍的固溶体和含有至少一种过渡金属元素和至少一种非金属元素的第一组分。
1. 一种涂层，其包含：
包含合金的组合物，该合金包含含有镍的固溶体，和
含有至少一种过渡金属元素和至少一种非金属元素的第一组分。
2. 权利要求 1 的涂层，其中该合金由下式表示：
\[(\text{Ni}_x\text{Cr}_y)_z\text{M}_w\text{N}_v\]
其中：
M 表示第一组分中的过渡金属元素；
N 表示第一组分中的非金属元素；
a、b 和 c 中每个均大于 0 并且独立地表示重量百分比；并且
x 和 y 中每个均大于 0 并且独立地表示含 Ni 的固溶体的重量百分比。
3. 权利要求 2 的涂层，其中
a 为约 85~约 95，
b 为约 0.1~约 10，
c 为约 5~约 10，并且
x 和 y 的比值为约 0.5~约 1.9。
4. 权利要求 1 的涂层，还包含粘合剂。
5. 权利要求 1 的涂层，其中所述涂层基本上由所述组合物组成。
6. 权利要求 1 的涂层，其中非金属元素为 F、C、Br、I、At、O、S、Se、Te、Po、N、P、As、
Sb、Bi、C、Si、Ge、Sn、Pb 和 B 中的一种。
7. 权利要求 1 的涂层，其中过渡金属元素为 Sc、Y、La、Ac、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Mn、Te、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd 和 Hg 中的一种。
8. 权利要求 1 的涂层，其中第一组分包含二元化合物、三元化合物或两者。
9. 权利要求 1 的涂层，其中该溶体包含镍 - 铬固溶体。
10. 权利要求 1 的涂层，其中第一组分包含(i) 碳化物和(ii) 碳化物中的至少一种。
11. 权利要求 1 的涂层，还包含含有至少一种过渡金属元素和至少一种非金属元素的
第二组分。
12. 权利要求 1 的涂层，还包含含有至少一种过渡金属元素和至少一种非金属元素的
第二组分，其中过渡金属元素为小于或等于合金组合物的约 10 重量 %。
13. 权利要求 1 的涂层，其中该合金为至少部分晶态的。
14. 权利要求 1 的涂层，其中该合金为至少部分非晶态的。
15. 权利要求 1 的涂层，其中该合金至少基本上不是非晶态的。
16. 权利要求 1 的涂层，其中该涂层具有至少约 450HV-100gm 的维氏硬度。
17. 权利要求 1 的涂层，其中该涂层为耐腐蚀的。
18. 权利要求 1 的涂层，其中该组合物基本上由该合金组成。
19. 一种装置，包含权利要求 1 的涂层，其中该装置为洋基干燥机、引擎活塞、泵轴、泵
套、泵密封、泵叶轮、泵盖体、泵柱塞、部件、Wankel 引擎、引擎壳体、引擎端板、工业机器、机
器气缸套、机器活塞、机器阀杆、机器液压柱塞或其组合。
20. 一种电子装置，其包含权利要求 1 的涂层。
21. 一种含粉末组合物，其包含由下式表示的合金：
(Ni, Cr)_x (M, N)_y

其中：
M 表示第一组分中的过渡金属元素；
N 表示第一组分中的非金属元素；
a, b 和 c 中每个均大于 0 且独立地表示重量百分比；并且
x 和 y 中每个均大于 0 且独立地表示含 Ni 的固溶体的重量百分比。

22. 权利要求 21 的含粉末组合物，其中
a 为约 85~95，
b 为约 0.1~10，
c 为约 5~10，并且
x 和 y 的比值为约 0.5~1.9。

23. 权利要求 21 的含粉末组合物，其中该合金包含
约 33~37 重量 %Cr，
约 3.3~3.5 重量 %Si，
约 4~4.5 重量 %B，
约 48~54 重量 %Ni，
约 1 重量 %C，并且
余量为 Fe。

24. 权利要求 21 的含粉末组合物，其中该合金包含
约 33~35 重量 %Cr，
约 1~2 重量 %Ti，
约 3.3~3.5 重量 %Si，
约 4~4.5 重量 %B，
约 48~54 重量 %Ni，
约 1 重量 %C，并且
余量为 Fe。

25. 权利要求 21 的含粉末组合物，其中该含粉末组合物包含具有约 15 微米至约 45 微米的平均直径的合金颗粒。

26. 一种电子装置，其包含权利要求 21 的含粉末组合物。

27. 一种形成涂层的方法，其包括：
提供基材；
在基材上布置合金的含粉末组合物，该合金包含含有镍的固溶体和含有至少一种过渡金属元素和至少一种非金属元素的第一组分；以及
形成涂层。

28. 权利要求 27 的方法，其中该合金由下式表示：
(Ni, Cr)_x (M, N)_y

其中：
M 表示第一组分中的过渡金属元素；
N 表示第一组分中的非金属元素；
a、b 和 c 中每个均大于 0 并且独立地表示重量百分比，并且
x 和 y 中每个均大于 0 并且独立地表示固溶体的重量百分比。
29. 权利要求 28 的方法，其中
a 为约 85~约 95，
b 为约 0.1~约 10，
c 为约 5~约 10，并且
x 和 y 的比值为约 0.5~约 1.9。
30. 权利要求 27 的方法，其中基材包含金属或非金属。
31. 权利要求 27 的方法，其中通过热喷涂进行布置步骤。
32. 权利要求 27 的方法，其中非金属元素为 F、Cl、Br、I、At、O、S、Se、Te、Po、N、P、As、
Sb、Bi、C、Si、Ge、Sn、Pb 和 B 中的一种。
33. 权利要求 27 的方法，其中过渡金属元素为 Sc、Y、La、Ac、Ti、Zr、Hf、V、Nb、Ta、Cr、
Mo、W、Mn、Te、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd 和 Hg 中的一种。
34. 权利要求 27 的方法，其中第一组分包含二元化合物、三元化合物或两者。
35. 权利要求 27 的方法，其中该溶体包含镍-铬固溶体。
36. 权利要求 27 的方法，其中第一组分包含(i) 增加物和(ii) 碳化物中的至少一种。
37. 一种形成涂层的方法，其包括：
提供包含镍、至少一种不是镍的过渡金属元素和至少一种非金属元素的混合物；
使混合物形成含粉末组合物，其中该组合物包含合金，该合金包含含有镍的固溶体和
含有过渡金属元素和非金属元素的第一组分；以及
在基材上布置组合物以形成涂层。
38. 权利要求 37 的方法，其中该合金由下式表示：
\((\text{Ni},\text{Cr})_a(\text{M},\text{N})_b\)
其中：
M 表示第一组分中的过渡金属元素；
N 表示第一组分中的非金属元素；
a、b 和 c 中每个独立地表示重量百分比；
x 和 y 每个独立地表示含固溶体的重量百分比，并且
a 为约 85~约 95，
b 为约 0.1~约 10，
c 为约 5~约 10，并且
x 和 y 的比值为约 0.5~约 1.9。
39. 权利要求 37 的方法，其中通过雾化进行形成步骤。
40. 权利要求 37 的方法，其中通过热喷涂进行布置步骤。
41. 权利要求 37 的方法，其中该粉末包含具有约 15 微米~约 45 微米的平均直径的颗
粒。
42. 权利要求 37 的方法，还包含含有至少一种过渡金属元素和至少一种非金属元素的
第二组分。
43. 权利要求 37 的方法，还包含含有至少一种过渡金属元素和至少一种非金属元素的
第二组分，其中过渡金属元素为小于或等于合金组合物的约 10 重量%。

44. 权利要求 37 的方法，其中该合金包含
约 33-约 37 重量%Cr，
约 3.3-约 3.5 重量%Si，
约 4-约 4.5 重量%B，
约 48-约 54 重量%Ni，
约 1 重量%C，并且
余量为 Fe。

45. 权利要求 37 的方法，其中该合金包含
约 33-约 35 重量%Cr，
约 1-约 2 重量%Ti，
约 3.3-约 3.5 重量%Si，
约 4-约 4.5 重量%B，
约 48-约 54 重量%Ni，
约 1 重量%C，并且
余量为 Fe。

46. 权利要求 37 的方法，其中在电子装置上形成该涂层。

47. 一种形成涂层的方法，其包括：
在基材上布置由下式表示的合金的含粉末组合物：(Ni₄Crₓ)(M₈N₉)ₐ
其中：
M 表示第一组分中的过渡金属元素；
N 表示第一组分中的非金属元素；
a、b 和 c 中每个独立地表示重量百分比；
x 和 y 每个独立地表示含镍的固溶体的重量百分比，并且
(i) a 为约 85-约 95，
(ii) b 为约 0.1-约 10，
(iii) c 为约 5-约 10，并且
(iv) x 和 y 的比值为约 0.5-约 1.9。

48. 权利要求 47 的方法，其中该合金为至少部分晶态的。

49. 权利要求 47 的方法，其中该涂层基本上由该组合物组成。

50. 权利要求 47 的方法，其中该涂层具有至少约 450HV-100g㎡的维氏硬度。

51. 权利要求 47 的方法，其中该涂层为耐腐蚀的。

52. 权利要求 47 的方法，其中该涂层具有小于约 5 体积% 的孔隙率。
镍基热喷涂粉末和涂层及其制备方法

【0001】相关申请
【0002】本申请要求2010年2月1日提交的美国临时申请序列号No.61/300,381的优先权，通过引用以其全文并入本文。
【0003】通过引用将本说明书中引用的所有出版物、专利和专利申请以其全部内容并入本文。

背景技术
【0004】通常将热喷涂工艺称为使用热将熔化或半熔化的材料沉积到基材上以保护基材免受磨损和腐蚀的工艺。在热喷涂工艺中例如以粉末形式供应待沉积的材料。这样的粉末包括小颗粒例如100目美国标准筛号(149微米)和约2微米之间。
【0005】热喷涂工艺通常包括三个不同的步骤，第一步是将材料熔化，第二步使材料雾化，并且第三步是将材料沉积到基材上。例如，电弧喷涂工艺使用电弧将材料熔化并且使用压缩气体将材料雾化并沉积到基材上。
【0006】可使用之为表面硬化合金的材料用于例如通过热喷涂制备的涂层。通常，合金涂层用于表面硬化以提供耐磨性，特别是在需要所需的表面光洁度的地方。然而，设计在提高的温度下操作并且提供耐磨和磨削性能的很多涂层经常由于涂层厚度而失效，这导致到基材并且造成剥落的腐蚀性物质。例如，设计用于磨削保护的复合涂层经常由于基体冲蚀而失效，导致复合物表面的损伤。因此，存在对热喷涂涂层中使用的改进材料的需求。
【0007】概述
【0008】一些实施方案所提供的包括使用完全合金化的粉末通过热喷涂工艺在基材上形成耐磨损和耐腐蚀的涂层来涂覆基材的方法和目前描述的方法所得的涂层。
【0009】一个实施方案提供了一种涂层，其包含：合金的含粉末组合物，该合金包含含有镍的固溶体相和含有至少一种过渡金属元素和至少一种非金属元素的第一组分相。
【0010】替代性的实施方案提供了含粉末组合物，其包含由式：(Ni_xCr_y)_z(M_N) 表示的合金，其中：M表示第一组分中的过渡金属元素；N表示第一组分中的非金属元素；a、b和c每个均大于0并且独立地表示重量百分比，并且x和y每个大于0并且独立地表示含有Ni的固溶体相的重量百分比。在一些实施方案中，a为约85-95，b为约0.1-10，c为约5-10，并且x和y的比值为0.5-1.9。
【0011】一个实施方案提供了形成涂层的方法，该方法包括：提供基材；并且在基材上布置涂层，该涂层包含：合金的含粉末组合物，该合金包含含有镍的固溶体相和含有至少一种过渡金属元素和至少一种非金属元素的第一组分相。
【0012】另一个实施方案提供了形成涂层的方法，其包括：提供包含镍、至少一种不是镍的过渡金属元素和至少一种非金属元素的混合物；使混合物形成含粉末组合物，其中该组合物包含合金，该合金包含含有镍的固溶体相和含有过渡金属元素和非金属元素的第一组分相；以及将含粉末组合物布置到基材上以形成涂层。
替代性的实施方案提供了形成涂层的方法。该方法包括：在基材上沉积涂层，该涂层包含：包含合金的含粉末组合物，该合金由式：\((\text{Ni}_x\text{Cr}_y)_{(\text{M}_z\text{N}_w)}\) 表示，其中，\(\text{M}\) 表示第一组分相中的过渡金属元素；\(\text{N}\) 表示第一组分相中的非金属元素；\(a, b\) 和 \(c\) 独立地表示重量百分比；并且 \(x\) 和 \(y\) 每个独立地表示含有镍的固溶体相的重量百分比；并且 (i) \(a\) 为约 85–95，(ii) \(b\) 为约 0.1–10，(iii) \(c\) 为约 5–10，并且 (iv) \(x\) 和 \(y\) 的比值为约 0.5–1.9。

附图说明
[0014] 图 1 显示了高速氧燃料（HVOF）工艺的示意图。
[0015] 图 2 显示了电弧丝热喷涂工艺的示意图。
[0016] 图 3 显示了等离子热喷涂工艺的示意图。
[0017] 图 4 显示了根据一个实施方案的涂层横截面的 SEM 显微照片。

具体实施方式
[0018] 一种实施方案提供了涂层，该涂层包含具有合金的含粉末组合物，该合金具有含有镍的固溶体相和含有至少一种过渡金属和至少一种非金属的第一组分。可将该组合物施加至基材以形成涂层。在一个实施方案中，该合金可由式：\((\text{Ni}_x\text{Cr}_y)_{(\text{M}_z\text{N}_w)}\) 表示，其中，\(\text{M}\) 表示第一组分相中的过渡金属元素；\(\text{N}\) 表示第一组分相中的非金属元素；\(a, b\) 和 \(c\) 每个均大于 0 并且独立地表示重量百分比；并且 \(x\) 和 \(y\) 每个均大于 0 并且独立地表示 \text{Ni–Cr} 固溶体相的重量百分比。在一个实施方案中，\(a\) 可为约 85–95，\(b\) 可为约 0.1–10，\(c\) 可为约 5–10，并且 \(x\) 和 \(y\) 的比值可为 0.5–1.9。
[0019] 含粉末组合物
[0020] 术语“含粉末组合物”意指其中包含粉末的任何组合物。术语“粉末”意指包含研磨、粉碎或以其它形式细分散的固体颗粒的物质。
[0021] 相
[0022] 本文中的术语“相”可以指在热动力学相图中可发现的相。相是在其中材料所有的物理性质基本上是均匀的空间（热动力学系统）区域。物理性质的例子包括密度、折射率、化学组成和晶格周期性。简单的描述是，相为化学上均匀、物理上独特并且（经常）机械可分离的材料区域。例如，在玻璃罐中由冰和水组成的系统中，方冰块是一种相，水是第二相，并且水上方的潮湿空气是第三相。罐子玻璃是另一种单独的相。相可意指固溶体，其可为二元、三元、四元或更多元的溶体或化合物，如金属间化合物。
[0023] 虽然本文中描述的合金化的含粉末组合物可为单相，但需要使组合物为多相的。例如，该组合物可具有至少两种相、至少三种相、至少四种相或更多种相。在一个实施方案中，该合金组合物可包含金属固溶体相以及额外相，该额外相可为另一种金属固溶体相或不是金属固溶体的相。例如，该额外相可为化合物相。金属固溶体相可为任何类型的金属固溶体，这取决于溶体的化学组成。例如，其可为金属基溶体，该金属为过渡金属，例如镍。在一个实施方案中，金属溶体可包括镍–铬（Ni–Cr）金属溶体。
[0024] 第二相可为例如化合物相。该化合物可为二元化合物、三元化合物、四元化合物或具有多于四种元素的化合物。参考上述式子，化合物可为金属–非金属化合物（例如 MN）。M 可表示金属，例如过渡金属，而 N 可表示非金属。还如上描述的，该化合物可具有多种 M 和 /
在一个实施方式中，取决于化学组成，特别是取决于N，额外的相可为例如碳化物、硼化物或两者。因此，第二相可为碳化物化合物，且第三相如果存在，则可为硼化物，或反之亦然。或者，第二和第三相可以是碳化物或硼化物。在其中一个方案中，(一种或多种)额外的相可包括化合物，硼化镍、碳化铬、硼化铬或其组合。

金属、过渡金属和非金属

术语“金属”意指指电正性的化学元素。本说明书中的术语“元素”通常指在元素周期表中可找到的元素。物理上，处于基态的金属原子包含具有接近于所占据的空态的填充带。化学上，在进入溶体时，金属原子释放电子变成正离子。术语“过渡金属”是元素周期表中3-12族中具有不完整的内电子壳层并且充当一系列元素中最少和最少电正性的过渡连接的任何金属元素。过渡金属的特征是多种化合价、着色的化合物和形成稳定的络合离子的能力。术语“非金属”意指不具有丢失电子并形成正离子能力的化学元素。

符号N代表一种或多种非金属元素。取决于应用，可使用任何合适的非金属元素或其组合。该合金组合物还可包含多种非金属元素，例如至少两种、至少三种、至少四种或更多种的非金属元素。在该情况下，符号“N”表示并且包括多种非金属元素，并且化学式可具有N1、N2、N3等。非金属元素可为元素周期表中13-17族中发现的任何元素。例如，非金属元素可为F、Cl、Br、I、At、O、S、Se、Te、Po、N、P、As、Sb、Bi、C、Si、Ge、Sn、Pb 和B中的任一种。有非金属元素还可指13-17族中的一些类金属（例如B、Si、Ge、As、Sb、Te 和Po）。在一个实施方案中，非金属元素可包括B、Si、C、P 或其组合。因此，所述合金组合物包含硼化物、碳化物或两者。

符号M表示一种或多种过渡金属元素。例如，M可为Pt、Ir、Rh、Mn、Fe、Co、Ni、Cu、Zn、Cd、Hg和Sn中的任意一种。在多个实施方式中，M可表示Sc、Y、La、Ac、Th、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Te、Re、Fe、Ru、Os、Rh、Ir、Ni、Pd、Pt、Au、Ag、As、Sb、Te和Po中的至少一种。取决于应用，可使用任何合适的过渡金属元素或其组合。所述合金组合物可包含多种过渡金属元素，例如至少两种、至少三种、至少四种或更多种的过渡金属元素。在该情况下，符号“M”表示并且包括多种过渡金属元素，并且化学式可包含M1、M2、M3等。在一个实施方案中，过渡金属元素包括Fe、Ti、Zr或其组合。

粉末组合物中的合金可为任何形状或尺寸，例如，合金可具有颗粒的形状，其可具有例如球形、椭球形、线形、杆形、片形、薄片形的形状或不规则的形状。该粒料可具有任何合适的尺寸。例如，其可具有约1微米-约100微米、如约5微米-约80微米、如约10微米-约60微米、如约15微米-约50微米、如约15微米-约45微米、如约20微米-约40微米、如约25微米-约35微米的平均直径。在一些实施方案中，可使用较小的粒料如处于纳米范围的那些或较大的粒料如大于100微米的那些。

固体体

术语“固体”意指固体形式的溶体。术语“固体”意指两种或更多种物质的混合物，其可为固体、液体、气体或这些的混合物。该混合物可为均质或非均质的。术语“混合物”是彼此结合并且通常能够分离的两种或更多种物质的组合物。通常地，不将两种或更多种物质彼此化学结合。
[0032] 合金
[0033] 在一些实施方案中，可将本文中描述合金化的含粉末组合物完全合金化。“合金”
意指两种或更多种金属的均质混合物，或固溶体。一种金属的原子取代或占据其它金属的原子
之间的间隙位置，例如，合金是镍和铜的合金。不同于合金，合金可意指金属基体中一种
或多种元素部分或完全的固溶体，如金属基体中一种或多种化合物。本文中的术语合金可
同时意指可给出单一固体相显微组织的完全固溶体合金和可给出两种或更多种相的部分
溶体。
[0034] 因而，完全合金化的合金可具有均匀分布的组分，为其固溶体相，化合物相或两
者。本文中使用的术语“完全合金化”可代表误差容限内的小变化。例如，其可意指至少
90%合金化的，例如至少95%合金化的，例如至少99%合金化的，例如至少99.5%合金化的，例
如至少99.9%合金化的。本文中的百分比意指体积百分比或重量百分比，这取决于上下文。
这些百分比可由杂质平衡，其就组成和相而言，可能不是合金一部分。
[0035] 非晶态或非晶态固体
[0036] “非晶态”或“非晶态固体”是缺乏晶体特性的晶格周期性的固体。如本文中使用
的，“非晶态固体”包括“玻璃”，其是在加热时通过玻璃化转化而转化成液体的非晶态固体。
其它类型的非晶态固体包括凝胶、膜和纳米结构材料。通常地，尽管非晶态材料因化学键
的性质而在原子尺度下具有一些短程有序，但是它们缺乏晶体的长程有序特性。基于
通过结构表征技术如X射线衍射和透射电子显微镜法确定的晶格周期性，可得出非晶态
固体和晶态固体之间的区别。
[0037] 术语“有序”和“无序”指定了多颗粒系统中一些对称性或相关性存在的存在或不存在。
术语“长程有序”和“短程有序”在基于长度尺度的材料中区分秩序。
[0038] 固体中最严格的短程时空是晶格周期性：不重复一箱的样本（晶胞中的原子配
置）以形成平移不变的空间点阵（tiling）。这是晶体的定义性质。可能的对称性分为14个
布拉维格晶格和230个空间群。
[0039] 晶格周期性暗示长程有序。如果仅已知一个晶胞，则通过平移对称性可准确地预
测在任意距离处的所有原子位置。反过来通常是正确的，除了在具有完美确定性点阵
但不具有晶格周期性的准晶体中。
[0040] 长程有序表征其中相同样品的遥远部分展现相关行为的物理系统。
[0041] 这可表示为相关性函数，即自旋-自旋相关性函数\(s(s(x), s(x')) \)。
[0042] 在上面的函数中，s 为自旋量子数并且 x 为特定系统中的位置。
[0043] 当 x=x' 时该函数等于 1 并且随着距离 |x-x'| 增加而减小。通常地，其在较大距
离处指数衰减至零，并且认为该系统为无序的。然而，如果相关性函数在大的 |x-x'| 处衰
减变化常数值，则认为该系统具有长程有序。如果其作为距离的幂 (power) 衰减至零，则称其
为准长程有序。注意到形式 |x-x'| 的应加适当的系数。
[0044] 当定义其行为的一些参数为随时间变化的随机变量时，据说系统呈现淬火无序
(quenched disorder)，即它们是淬火或冷冻的，例如自旋玻璃。当允许随机变量自身变化
时，其与退火无序相反。本文中的实施方案包括包含淬火无序的系统。
[0045] 本文中描述的合金化的含粉末组合物可为晶态、部分晶态、非晶态，或基本上非晶
态。例如，合金化的粉末可包括至少一些结晶度，具有处于纳米/或微米范围内的尺寸的
晶粒 / 晶体。作为替代，合金化的粉末可为基本上非晶态的，例如完全非晶态的。在一个实施方案中，合金化的含粉末组合物至少基本上不是非晶态的，例如为基本上晶态的，例如为完全晶态的。

【0046】非晶态合金或非晶态金属

【0047】“非晶态合金”为具有大于 50 体积 % 的非晶态含量、优选大于 90 体积 % 的非晶态含量、更多优选大于 95 体积 % 的非晶态含量、并且最优选大于 99 体积 % 至几乎 100 体积 % 的非晶态含量。“非晶态金属”为具有无序的原子尺度结构的非晶态金属材料。与为晶态并且因此具有高度有序的原子排列的大多数金属相比，非晶态合金为非结晶的。将在其中由冷却期间的液体状态直接制备的这样的无序结构的材料称为“玻璃”并且因而通常将非晶态合金称为“金属玻璃”或“玻璃金属”。然而，除了其中可制备非晶态金属的极快速冷却以外还存在几种方法，包括物理气相沉积、固态反应、离子辐照、熔融纱丝和机械合金化。不管非晶态合金是如何制备的，它们为单一材料。

【0048】通过各种快速冷却方法可制备非晶态金属。例如，通过将熔化的金属溅射到自旋金属盘上可制备非晶态金属。快速的冷却，在上百万度每秒的级别上，对于晶体形成来说太快并且将材料“锁定”在玻璃态。此外，用低的足以使厚层 (超过 1 毫米) 中非晶态结构形成的高度冷却速率可制备非晶态金属；这些被称为块体金属玻璃 (BMG)。

【0049】除了纯金属以外，非晶态金属可为合金。该合金可包含显著不同尺寸的原子，导致熔化状态中低自由体积 (并且因此达到比其它金属和合金中更高数量级的粘度)。粘度防止原子跃移移动以形成有序的晶格。材料组成可导致冷却期间的低收缩率和对塑性变形的抵抗性。晶界的不存在，晶态材料的热变可导致对磨损和腐蚀较好的抵抗性。非晶态金属 (同时技术上为玻璃) 还可比氧化物玻璃和陶瓷更坚韧并且不那么脆。

【0050】非晶态材料的导热率可低于晶体的导热率。为了甚至在较缓慢冷却期间仍完成非晶态组织的形成，该合金可由三种或更多种组合组成，导致具有较高势能和较低形成几率的复杂晶胞。非晶态合金的形成取决于几个因素：合金的组合成分；组合的原子半径必须为显著不同的 (超过 12%)，以获得高堆积密度和低自由体积；组合的组合应该具有负的混合热，抑制了晶态形成并且延长了熔化的金属停留在过冷状态下的时间。然而，为非晶态合金的形成基于很多不同的变量，所以几乎不可能事先确定合金组合物是否会形成非晶态合金。

【0051】例如，具有磁性金属 (铁、钴、镍) 的硼、硅、磷和其它玻璃形成剂的非晶态合金可为磁性的，具有低矫顽磁力和高电阻。高阻抗导致在经受可变磁场时因涡流所致的低损耗，例如作为变压器磁芯的有用性质。

【0052】非晶态合金可具有多个潜在有用的性质。特别是，它们倾向于比类似化学组成的晶态合金更硬，并且它们可维保持晶态合金更大的可逆 (“弹性”) 变形。非晶态合金的强度直接源于它们的非晶态组织，它不具有限制晶态合金的任何缺陷 (例如位错) 中。一种现代非晶态金属，称为 Vitreloy，具有几乎为高级铁两倍的拉伸强度。然而，室温下的金属玻璃是不可延展的并且当拉伸加载时倾向于突然失效，这限制了在可靠性 - 临界应用中的材料可应用性，因为突然失效是不可见的。因此，存在制造由包含可延展的晶态金属的枝晶颗粒或纤维的金属玻璃基体组成的金属基体复合材料的大量兴趣。

【0053】块体非晶态合金的另一个有用性质是它们为纯玻璃，这意味着它们在加热时软化
并且流动。这允许溶液的简单加工，例如通过注射成型，以与聚合物很相同样式进行。
结果，非晶态合金可用于制备运动装置、医疗装置、电子部件及装备和薄膜。经过高速氧燃料技术可沉积非晶态金属薄膜作为保护性涂层。

【0054】非晶态金属或非晶态合金可能仅展现短程有序的含有金属元素材料。本申请中的术语“元素”意指元素周期表中找到的元素。由于短程有序，非晶态材料可有时描述为“玻璃态”。因而，如上面解释的，有时可将非晶态金属或合金称为“金属玻璃”或“块体金属玻璃”（BMG）。

【0055】材料可具有非晶态相、晶态相或多者。非晶态和晶态相可具有相同的化学组成并且仅在显微组织中不同。即一者为非晶态而另一者为晶态。显微组织定义为显微镜在25倍放大倍数下所揭示的材料组织。作为替代，两种相可具有不同的化学组成和显微组织。例如，一种组合物可以为部分非晶态、基本上非晶态或完全非晶态的。部分非晶态组合物可意指其至少约5体积%是非晶态相的组合物，例如至少约10重量%、例如至少约20体积%、例如至少约40体积%、例如至少约60体积%、例如至少约80体积%、例如至少约90体积%。已经在本申请的其它地方定义了术语“基本上”和“约”。因此，至少基本上为非晶态的组合物可意指至少约90体积%为非晶态的组合物，例如至少约95体积%、例如至少约98体积%、例如至少约99体积%、例如至少约99.5体积%、例如至少约99.8体积%、例如至少约99.9体积%。在一个实施方案中，基本上非晶态的组合物可具有一些相同、不显著的晶态相存在于其中。

【0056】在一个实施方案中，非晶态合金组合物关为非晶态相可为均质的。组成上均匀的物质是均质的。这与为非均质的物质形成对比。术语“均质”意指物质中的化学组成和/或显微组织。当物质体积划分成两半时并且两半均具有基本上相同的组成时，物质是均质的。例如当一定体积的粒子悬浮液划分成两半并且两半均具有基本上相同体积的颗粒时，粒子悬浮液为均质的。然而，在显微镜下可看到单独的颗粒。另一种均质物质是空气，尽管可单独分析空气中的颗粒，气体和液体或将其从空气分离，但是其中的不同组分等悬浮。

【0057】关于非晶态合金为均质的组合物意指在其显微组织中具有基本上均匀分布的非晶态相的组合物。换而言之，该组合物宏观上包含在组合物中基本上均匀分布的非晶态合金。在作为替代的实施方案中，该组合物可为具有非晶态相的复合物，该非晶态相中具有非-非晶态相。非-非晶态相可为晶体或多个晶体。晶体可为任何形状例如球形、椭球形、线形、杆形、片形、薄片形或不规则的形状的粒料形式。在一个实施方案中，它可具有枝晶形式。例如，至少部分非晶态的复合组合物可具有分散于非晶态相基体中的枝晶形状的晶态相；该分散体可为均匀或非均匀的，并且该非晶态相和晶态相可具有相同或不同的化学组成。在一个实施方案中，它们基本上具有相同的化学组成。

【0058】本文中描述的方法可应用于任何类型的非晶态合金。类似地，本文中描述的非晶态合金作为组合物或制品的组分可为任何形状。非晶态合金可包含元素Zr、Hf、Ti、Cu、Ni、Pt、Pd、Fe、Mg、Au、La、Ag、Al、Mo、Nb或其组合。即，该合金可包括这些元素以其化学式或化学组成的任何组合。元素可在不同的重量或体积百分比下存在。例如，铁“基”合金可意指具有显著的质量或体积的铁见于其中的合金，该重量百分比可为例如至少约10重量%、例如至少约20重量%、例如至少约40重量%、例如至少约50重量%、例如至少约60重量%。作为替代，在一个实施方案中，取代重量百分比，上述的百分比可为体积百分比。因
此，非晶态合金可为锆基、钛基、铂基、钯基、金基、银基、铜基、铁基、镍基、铝基、钼基等。在一些实施方案中，该合金或包含合金的复合物可基本不含镍、铝或钼或其组合。在一个实施方案中，该合金或复合物完全不含镍、铝或钼或其组合。

[0059] 例如，非晶态合金可具有式 (Zr, Ti)\textsubscript{a}(Ni, Cu, Fe)\textsubscript{b}(Be, Al, Si, B)\textsubscript{c}，其中 a、b 和 c 中每个均表示重量或原子百分比。在一个实施方案中，以原子百分比计，a 为 30–75，b 为 5–60，并且 c 为 0–50。作为替代，非晶态合金可具有式 (Zr, Ti)\textsubscript{a}(Ni, Cu)\textsubscript{b}(Be)\textsubscript{c}，其中 a 和 c 中每个均表示重量或原子百分比。在一个实施方案中，以原子百分比计，a 为 40–75，b 为 5–50，并且 c 为 5–50。该合金还可以具有式 (Zr, Ti)\textsubscript{a}(Ni, Cu)\textsubscript{b}(Be)\textsubscript{c}，其中 a 和 c 中每个均表示重量或原子百分比。在一个实施方案中，以原子百分比计，a 为 45–65，b 为 7.5–35，并且 c 为 10–37.5。作为替代，该合金可具有式 (Zr)\textsubscript{a}(Nb, Ti)\textsubscript{b}(Ni, Cu)\textsubscript{c}(Al)\textsubscript{d}，其中 a、b、c 和 d 中每个均表示重量或原子百分比。在一个实施方案中，以原子百分比计，a 为 45–65，b 为 0–10，c 为 20–40 并且 d 为 7.5–15。前述合金系统的一个示例性实施方案为由 Liquidmetal Technologies, CA, USA 制造的以商品名 Vitreloy 如 Vitreloy-1 和 Vitreloy-101 下的 Zr-Ti-Ni-Cu-Be 基非晶态合金。在表 1 中提供了不同系统的非晶态合金的一些实例。

[0060] 非晶态合金还可为铁基合金，例如 (Fe, Ni, Co) 基合金。这样的组合物的实例公开于美国专利 No s. 6, 325, 868; 5, 288, 344; 5, 368, 659; 5, 618, 359 和 5, 735, 975; Inoue 等, Appl. Phys. Lett., Volume 71, p464 (1997); Shen 等, Mater. Trans., JIM, Volume 42, p2136 (2001) 和日本专利申请 No. 200126277（公开 No. 2001303218A）。一个示例性组合物为 Fe\textsubscript{79}Al\textsubscript{12}Ga\textsubscript{5}P\textsubscript{1}C\textsubscript{1}B\textsubscript{3}。另一个实例是 Fe\textsubscript{79}Al\textsubscript{12}Zr\textsubscript{10}Mo\textsubscript{1}W\textsubscript{15}。US2010/0084052 公开了可用于本文涂层中的另一种铁基合金系统，其中非晶态金属包含例如锰 (1–3 原子％)、钇 (0.1–10 原子％)、和硅 (0.3–3.1 原子％)，组成范围在括号内给出；并且包含以下元素；钴 (15–20 原子％)、铝 (5–15 原子％)、镍 (5–16 原子％)，并且余量为铁，组成范围在括号内给出。

[0061] 表 1. 示例性的非晶态合金组合物

<table>
<thead>
<tr>
<th>合金</th>
<th>原子％</th>
<th>原子％</th>
<th>原子％</th>
<th>原子％</th>
<th>原子％</th>
<th>原子％</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Ni</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.20%</td>
<td>13.80%</td>
<td>12.50%</td>
<td>10.00%</td>
<td>22.50%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Ni</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.00%</td>
<td>11.00%</td>
<td>10.00%</td>
<td>10.00%</td>
<td>25.00%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Ni</td>
<td>Nb</td>
<td>Be</td>
</tr>
<tr>
<td></td>
<td>56.25%</td>
<td>11.25%</td>
<td>6.88%</td>
<td>5.63%</td>
<td>7.50%</td>
<td>12.50%</td>
</tr>
<tr>
<td>4</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Ni</td>
<td>Al</td>
<td>Be</td>
</tr>
<tr>
<td></td>
<td>64.75%</td>
<td>5.60%</td>
<td>14.90%</td>
<td>11.15%</td>
<td>2.60%</td>
<td>1.00%</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>5</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Ni</td>
<td>Al</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.50%</td>
<td>5.00%</td>
<td>17.90%</td>
<td>14.60%</td>
<td>10.00%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Zr</td>
<td>Nb</td>
<td>Cu</td>
<td>Ni</td>
<td>Al</td>
<td>Sn</td>
</tr>
<tr>
<td></td>
<td>57.00%</td>
<td>5.00%</td>
<td>15.40%</td>
<td>12.60%</td>
<td>10.00%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Zr</td>
<td>Cu</td>
<td>Ni</td>
<td>Al</td>
<td>Sn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.75%</td>
<td>36.23%</td>
<td>4.03%</td>
<td>9.00%</td>
<td>0.50%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Ni</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46.75%</td>
<td>8.25%</td>
<td>7.50%</td>
<td>10.00%</td>
<td>27.50%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Zr</td>
<td>Ti</td>
<td>Ni</td>
<td>Be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.87%</td>
<td>43.33%</td>
<td>7.50%</td>
<td>27.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Zr</td>
<td>Ti</td>
<td>Cu</td>
<td>Be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.00%</td>
<td>30.00%</td>
<td>7.50%</td>
<td>27.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Zr</td>
<td>Ti</td>
<td>Co</td>
<td>Be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.00%</td>
<td>30.00%</td>
<td>6.00%</td>
<td>29.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Au</td>
<td>Ag</td>
<td>Pd</td>
<td>Cu</td>
<td>Si</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.00%</td>
<td>5.50%</td>
<td>2.30%</td>
<td>26.90%</td>
<td>16.30%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Au</td>
<td>Ag</td>
<td>Pd</td>
<td>Cu</td>
<td>Si</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.90%</td>
<td>3.00%</td>
<td>2.30%</td>
<td>27.80%</td>
<td>16.00%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Pt</td>
<td>Cu</td>
<td>Ni</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57.50%</td>
<td>14.70%</td>
<td>5.30%</td>
<td>22.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zr</td>
<td>Ti</td>
<td>Nb</td>
<td>Cu</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.60%</td>
<td>31.40%</td>
<td>7.00%</td>
<td>5.90%</td>
<td>19.10%</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Zr</td>
<td>Ti</td>
<td>Nb</td>
<td>Cu</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.30%</td>
<td>32.90%</td>
<td>7.30%</td>
<td>6.20%</td>
<td>15.30%</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Zr</td>
<td>Ti</td>
<td>Nb</td>
<td>Cu</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>39.60%</td>
<td>33.90%</td>
<td>7.60%</td>
<td>6.40%</td>
<td>12.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Cu</td>
<td>Ti</td>
<td>Zr</td>
<td>Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.00%</td>
<td>34.00%</td>
<td>11.00%</td>
<td>8.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Zr</td>
<td>Co</td>
<td>Al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.00%</td>
<td>25.00%</td>
<td>20.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0063] 前述的非晶态合金系统还可包含额外的元素，例如额外的过渡金属元素，包括 Nb、Cr、V、Co。额外的元素可以以小于或等于约 30% 重量%，如小于或等于约 20% 重量%，如小于或等于约 10% 重量%，如小于或等于约 5% 重量% 存在。

[0064] 在一些实施方案中，具有非晶态合金的组合物可包含少量的杂质。可特意添加杂质元素以改变组合物的性质，例如改善机械性质（例如硬度、强度、断裂机制等）和/或改善耐腐蚀性。作为替代，杂质可以以不可避免的偶存杂质如作为加工和制造副产物获得的那些而存在。杂质可小于或等于约 10% 重量%，如约 5% 重量%，如约 2% 重量%。如小于约 1% 重量%，如约 0.5% 重量%，如约 0.1% 重量%。在一些实施方案中，取代重量百分比，这些百分比可为体积百分比。在一个实施方案中，该组合物基本上由非晶态合金组成（仅具有少量的偶存杂质）。在另一个实施方案中，该组合物由非晶态合金组成（具有不可观察到的痕量杂质）。

[0065] 非晶态合金系统可展现几个所需的性质。例如，它们可具有高硬度和/或硬度；铁基非晶态合金可具有特别高的屈服强度和硬度。在一个实施方案中，非晶态合金可具有约 200ksi 或更高，例如约 250ksi 或更高，例如约 400ksi 或更高，例如约 500ksi 或更高，例如约 600ksi 或更高的屈服强度。关于硬度，在一个实施方案中，非晶态合金可具有约 400 维氏 -100mg，如约 450 维氏 -100mg，如约 500 维氏 -100mg，如约 600 维氏 -100mg，如约 800 维氏 -100mg，如约 1000 维氏 -100mg，如约 1200 维氏 -100mg。非晶态合金还可具有非晶态的硬度值。非晶态合金还可具有非常高的弹性应变限制，如至少约 1.2%，如至少约 1.5%，如至少约 1.6%，如至少约 1.8%，如至少约 2.0%。非晶态合金还可展现出高的强度重量比，特别是在例如 Ti 基和 Fe 基合金的情况下。它们还可具有对腐蚀的高抵抗性和高的环境持久性，特别是例如 Zr 基和 Ti 基合金。

[0066] 化学组成

[0067] 取决于涉及的工艺和所需的应用，可改变合金化的含粉末组合物的化学组成。例如，在一个实施方案中，该组合物可具有三种相，一种为固溶体相，并且剩余两种相为其它的组分相，例如第一组分相和第二组分相。第二组分相在化学组成方面可与第一组分相相同或不同。在一个实施方案中，第二组分相包含至少一种过渡金属元素和至少一种非金属元素，任何一个元素可与第一组分相中的那些相同或不同。所述元素还可以以任何所需量存在。例如，在一个实施方案中，过渡金属元素可为小于或等于约 20% 重量%，如小于或等于
约 15 重量 %，如小于或等于约 10 重量 %，如小于或等于约 5 重量 % 的总合金组成。

[0068] 在另一个实施方案中，合金化的粉末还可具有三种相，但是不同于上述描述的三种相。该粉末可具有约 0.01-约 20 重量 %，如约 0.05-约 15 重量 %，如约 0.1-约 10 重量 % 的一种或多种过渡金属（即 M）；约 1-约 20 重量 %，如约 2-约 15 重量 %，如约 5-约 10 重量 % 的一种或多种非金属元素（即 N），并且 Ni 和 Cr 为余量，其中 Ni 和 Cr 的重量比为约 0.1-约 2.5，如约 0.5-约 1.9，如约 0.6-约 1.5。由于化学组成还可包含一些少量的杂质，由此包含合金化的粉末组合物的组合物可由合金化的粉末组合物组合。杂质含量可例如小于 10 重量 %，如小于 5 重量 %，如小于 2 重量 %，如小于 1 重量 %，如小于 0.5 重量 %，如小于 0.2 重量 %，如小于 0.1 重量 %。在一个实施方案中，化学组合物可以由合金化的粉末组合物组成。

[0069] 当使用合金化的粉末组合物来制造产品如涂层时，可任选加入额外的材料。例如，在其中一个使用合金化粉末在基材上制造涂层的一个实施方案中，可以以少量如小于 15 重量 %，如小于 10 重量 %，如小于 5 重量 % 添加一些任选的元素。这些元素可包括例如钴、镍、锆、钼、钨、钛等，或其组合。这些元素可单独或组合地形成化合物如碳化物以进一步改进耐磨蚀性能。

[0070] 可添加一些其它的任选元素来改变所制造的涂层的其它性质。例如，可添加元素如磷、锗、砷或其组合来降低组合物的熔点。可以以少量如小于 10 重量 %，如小于 5 重量 %，如小于 2 重量 %，如小于 1 重量 %，如小于 0.5 重量 % 添加这些元素。

[0071] 在一个实施方案中，合金配制剂可由以下式表示：(Ni_i,Cr_j)_kN_L，其中 N 选自一种或多种非金属元素，包括 B、Si、C、P；M 选自一种或多种过渡金属元素；并且 x、y、a、b、c 均为重量百分比，其中：

[0072] O a 为约 85-约 95，
[0073] O b 为约 0.1-约 10，
[0074] O c 为约 5-约 10，并且
[0075] O x 和 y 的比值为约 0.5-约 1.9。

[0076] 在一个替代性的实施方案中，M 为 Fe，并且 N 包含至少两种非金属元素。

[0077] 在一个替代性的实施方案中，M 为 Fe，并且 N 包含至少三种非金属元素。

[0078] 在一个替代性的实施方案中，M 为 Fe，并且 N 为 B、Si 和 C。

[0079] 在一个替代性的实施方案中，M 为 Ti，并且 N 包含至少两种非金属元素。

[0080] 在一个替代性的实施方案中，M 为 Ti，并且 N 包含至少三种非金属元素。

[0081] 在一个替代性的实施方案中，M 为 Ti，并且 N 为 B、Si 和 C。在替代性的实施方案中，Zr，并且 N 包含至少两种非金属元素。

[0082] 在一个替代性的实施方案中，M 为 Zr，并且 N 包含至少三种非金属元素。

[0083] 在一个替代性的实施方案中，M 为 Zr，并且 N 包含至少三种非金属元素。

[0084] 在一个替代性的实施方案中，M 为 Zr，并且 N 为 B、Si 和 C。

[0085] 在一个替代性的实施方案中，将涂层混合物预合金化并且将其加工成粉末形式的混合物。

[0086] 在一个替代性的实施方案中，第二和第三相组分包含一种或多种以下的化合物：NiB、CrC、CrB。

[0087] 在一个替代性的实施方案中，至少基本上完全合金化的粉末可具有式：(Ni_i,Cr_j)
Fe₃N₅，其具有如上所述相同的重量百分比，其中N包含至少两种或至少三种非金属元素。在这样的一种实施方案中，三种非金属元素为B、Si和C。

[0088] 在一个替代性的实施方案中，至少基本上完全合金化的粉末可具有式：(Ni，Cr，)
Fe₃N₅，其具有如上所述相同的重量百分比，其中N包含至少两种或至少三种非金属元素。在这样的一种实施方案中，三种非金属元素为B、Si和C。

[0089] 在一个替代性的实施方案中，至少基本上完全合金化的粉末可具有式：(Ni，Cr，)
Zr₃N₅，其具有如上所述相同的重量百分比，其中N包含至少两种或至少三种非金属元素。在这样的一种实施方案中，三种非金属元素为B、Si和C。

[0090] 在一个示例性的实施方案中，合金化的含粉末组合物包含约33-37重量%Cr，约
3-3.5重量%Si，约4-4.5重量%B，约48-54重量%Ni，约1重量%C，并且余量为Fe。作为替代，在一些组合物中，一些Cr可由其它材料如Ti所取代。在一个这样的实施方案中，合金化的含粉末组合物包含约33-35重量%Cr，约1-2重量%Ti，约3-3.3-3.5重量%Si，约4-4.5重量%B，约48-54重量%Ni，约1重量%C，并且余量为Fe。此外，在一些实施方案中，伴随成比例减少的Ni，可添加至约5重量%B，如至多约4重量%B，如至多约3重量%B，如至
多约2重量%B。任选地，该组合物可具有Zr来取代Fe。

[0091] 涂层

[0092] 术语“涂层”意指覆盖层例如施加到物体（通常称为基材）表面上的材料层。在一个实施方案中，将合金化的含粉末组合物施加至基材上以形成涂层。基材可为任何类型的合适基材，如金属基材、陶瓷基材或其他组合。由于目前描述的合金化的含粉末组合物的性质，由此制得的涂层可具有优异的性质。例如，该涂层可具有高硬度。在一个实施方案中，该涂层可包含至少约300HV-100gm，如至少约450HV-100gm，如至少约500HV-100gm，如至少约600HV-100gm的维氏硬度。

[0093] 该涂层为耐磨和/或耐腐蚀的。腐蚀是由于与其周围环境的化学反应所致的工程材料分裂成其分组原子。这意味着金属与氧化剂如氧反应的电化学氧化。因固体中的金属原子氧化所致的金属氧化物的形成为生锈（电化学腐蚀术语）的实例。该类型的损害通常产生原始金属的（一种或多种）氧化物和/或（一种或多种）盐。腐蚀还可意指金属以外的其它材料，如陶瓷或聚合物，尽管在该背景中，术语劣化为更常用的。换而言之，腐蚀为由化学反应所致的金属磨损。

[0094] 金属和合金可仅因暴露到空气中的湿气中而腐蚀，但是该过程可受到暴露到某些物质如盐的强烈影响。腐蚀可局部集中以形成坑点或裂纹，或其可穿过宽区域延伸或多或少均匀地腐蚀表面。因为腐蚀是扩散控制的过程，所以其在暴露的表面上发生。因此，降低暴露的表面的活性，例如涂覆、钝化和铬酸盐转化的方法可提高材料的耐腐蚀性。

[0095] 在本文中的实施方案的关于涂层上下文中术语“耐腐蚀”意味着当暴露于环境时具有涂层的材料比没有涂层的相同材料暴露于相同环境时具有显著更少的腐蚀。

[0096] 由目前描述的合金化的含粉末组合物制造商的涂层可展现所需的硬度、韧性和结合特性。该涂层还可完全致密并且适用于在发电站锅炉中经受的非常宽的温度范围。该涂层可为至少部分非晶态的，例如至少部分非晶态或完全非晶态。例如，该涂层的至少50%的体积可为非晶态的，如至少60%、如至少80%、如至少90%、如至少95%、如至少99%为非晶态的。

[0097] 通过本文中描述的方法和组合物制备的涂层可为致密的。例如，其可具有小于或
等于约 10 体积%的孔隙率，如小于或等于约 5% 的孔隙率，如小于或等于约 2% 的孔隙率，
如小于或等于约 1% 的孔隙率、如小于或等于约 0.5% 的孔隙率。取决于上下文，取
代体积百分比，前述的百分比可为重量百分比。涂层的典型厚度可为约 0.001”-约 0.1”
，优选约 0.005”-约 0.05”并且最优选约 0.01”-约 0.030”。

【0098】 具有目前描述的组合物的合金，特别是涂层形式的那些，例如通过焊接或热喷涂
工艺制备的那些，甚至当在空气中制备时氧化物含量可出乎意料地低。它们具有对擦伤磨
耗、疲劳（滑动）磨损和腐蚀的抗抵抗性，这可为特别有用的。一种示意性涂覆可具有约
33-37 重量%Cr、约 3-3.5 重量%Si、约 4-4.5 重量%B、约 48-54 重量%Ni、约 1 重量%C，
并且余量为 Fe。

【0099】 该涂层可包括如上所述的任何合金化的含粉末型组合物。除了合金化的含粉末
组合物以外，该涂层可包括额外的元素或材料，例如来自粘合剂的那些。术语“粘合剂”意
用于粘合其它材料的材料。该涂层还可包括特意添加的任何添加剂或偶存杂质。在一个实
施方案中，该涂层基本上由合金化的含粉末组合物组成，由合金化的含粉末组合物组成。

【0100】 由于优异的机械性质和对腐蚀的抵抗性，目前描述的涂层可用于各种应用中。例
如，可使用该涂层作为支撑和耐磨损表面，特别是存在腐蚀条件的地方。还可使用该涂层例
用于涂覆洋基（yankee）干燥机；汽车和柴油机引擎活塞环；泵部件如轴、套、密封、叶轮、壳
体区域、泵柱塞；Wankel 引擎部件如壳体、端板；和/或机器元件如气缸套、活塞、阀杆和液压
活塞。该涂层可为洋基干燥机、引擎活塞；泵轴、泵套、泵密封、泵叶轮；泵盖体、泵柱塞、部
件；Wankel 引擎、引擎壳体、引擎端板、工业机器、机器气缸套、机器活塞、机器阀杆、机器液压
活塞或其组合。还可在任何消费者电子装置例如手机、台式电脑、笔记本电脑和/或便携
式音乐播放器中使用该涂层。以下进一步描述了一种电子装置。

【0101】 此外，本文中实施方案的涂层存在几个优点。例如，该涂层将保持其完整性而硬粒
料不脱落。此外，其可承受高温并且可为比常规涂层更可延展的、抗疲劳。

【0102】 涂覆方法

【0103】 在一个实施方案中，形成这样的涂层的方法可包括将涂层布置到基材上。在一个
实施方案中，该方法还可进一步包括制备合金化的含粉末组合物的步骤。可使用各种技术
来制造合金化的含粉末组合物。一种这样的技术为雾化。

【0104】 雾化是放置本文中实施方案的涂层的一种方法。雾化的一个实例如可为气体雾化，
这可意指其中通过迅速移动的惰性气体流将熔化的金属破碎成较小颗粒的方法。气体流可
包括（一种或多种）非反应性的气体，例如惰性气体，包括氩或氮。虽然在涂覆前可将各种组
分物理混合或掺合到一起，但是在一些实施方案中，优选雾化例如气体雾化。

【0105】 在一个实施方案中，涂覆的方法，包括形成合金化的含粉末组合物的步骤，包括可
提供包含镍、至少一种不是镍的过渡金属元素和至少一种非金属元素的混合物；使混合物
形成含粉末组合物，其中该组合物包含合金，该合金包含含有镍的固体相和含有过渡金
属元素和非金属元素的第一组分相；并且将含粉末组合物布置到基材上形成涂层。该组合
物可为任何前述的组合物。可预混合各种元素包含镍的混合物，或可在额外的步骤中将它
们混合。混合物中的元素可包括合金化的含粉末组合物的任何元素。

【0106】 随后可将合金化的含粉末组合物布置到基材上，可使用任何合适的布置技术。例
如，可使用热喷覆。热喷覆技术可包括冷喷覆、爆炸喷覆、火焰喷覆、高速氧燃料涂层喷覆
（HVOF）、等离子喷涂、暖（warm）喷涂、线材电弧喷涂或其组合。可在多个操作步骤中进行热喷涂。

【0107】热喷涂可意指这样的涂层方法，其中将熔化（或加热）的材料喷涂到表面上。通过例如电（等离子或电弧）或化学手段（燃烧火焰）可加热“原料”（涂层前体）。与其它涂层方法相比，热喷涂在大面积内以高沉积速率提供涂层（例如约 20 微米或更大的厚度范围，例如毫米范围）。可以以粉末或线材形式将原料供给至系统中，加热至熔化或半熔化状态，随后以微米尺寸颗粒形式射向基材加速。可使用燃烧或电弧放电作为用于热喷涂的能量源。通过多个喷射的颗粒的沉积可制得所的涂层。因为该表面可能不能显著加热，所以热喷涂涂层可具有使易燃物质涂覆的制导。

【0108】该组合物可包括任一前述的含粉末或组合物。经过任何合适的技术例如喷涂如热喷涂可进行布置步骤。可以以多种（完全或基本上完全）合金化的形式如铸造、烧结或喷射形式或如淬火的粉末或带材来使用目前描述的合金化的含粉末组合物。该组合物对于作为通过热喷涂制备的涂层的应用可为特别合适的。可使用任何类型的热喷涂，例如等离子、火焰、电弧—等离子、电弧和燃烧和氧化氢燃料（HVOF）。在一个实施方案中，使用高速热喷涂工艺例如 HVOF。

【0109】在图 2 中显示了 HVOF 工艺的一个实施方案。HVOF 热喷涂工艺基本上与燃烧粉末喷涂工艺 (LVOF) 相同，区别在于发展该工艺以产生极其高的喷涂速度。有多于 HVOF 枪，其使用不同的方法来获得高速喷涂。一种方法主要是高压水冷燃烧室和长喷嘴。将燃料（煤油、乙炔、丙烯和氧）和空气供给进入室中，燃烧产生热的高压火焰，将其流入喷嘴增加其速度。在高压下可将粉末轴向供入燃烧室中或其中通过压力较低的拉瓦尔喷嘴侧面供给。另一种方法使用高压燃烧喷嘴和空气帽的较简单的系统。在高压下燃烧气体（乙炔、丙烯或氧）和氧，燃烧发生在喷嘴外但是在供应有压缩空气的空气帽中。压缩空气收缩并加速火焰并且充当枪的冷却剂。在高压下从喷嘴中心轴向供给粉末。

【0110】在 HVOF 中，当气体或液体燃料和氧的混合物供给进入燃烧室中，其中将它们连续点燃并燃烧。在接近 1MPa 压力下所得的热气体通过收敛—扩散喷嘴扩散并且穿行通过笔直部分。燃料可为气体（氨、甲烷、丙烷、乙炔或天然气等）或液体（煤油等）。在桶的出口处的喷射速度（>1000m/s）超过声速。将粉末原料注入气流，这使粉末加速达到 800m/s。将热气体和粉末导向待涂层的表面。粉末在该流中部分熔化，并且在基材上沉积。所得的涂层具有低孔隙率和高结合强度。

【0111】HVOF 涂层可为 12mm（1/2”）厚。通常使用它在材料上沉积耐磨耐腐蚀的涂层，如陶瓷和金属层。常用的粉末包括 WC-Co、碳化铬、MCrALY 和氧化铝。该工艺最为成功，可用于沉积金属陶瓷材料（WC-Co等）和其它耐腐蚀的粉末（不锈钢、镍基合金、铝、用于医疗移植的羟磷灰石等）。

【0112】本文中的实施方案的制备涂层的另一种方法是通过如图 2 中所示的电弧线材热喷涂工艺。在电弧喷涂工艺中通过电弧将一对导电的线材熔化。通过压缩空气将熔化的材料雾化并推向基材表面。基材上冲击的熔化颗粒迅速凝固形成涂层。将正确进行的该工艺称为“冷工艺”（相对于正在涂层的基材材料），因为基材温度在加工期间可保持为低的，避免了对基材材料的损伤、冶金改变和畸变。

【0113】本文中的实施方案的制备涂层的又一种方法是通过如图 3 中所示的等离子热喷
涂工艺。等离子喷涂工艺基本上为熔化或加速软化的材料喷涂到表面上以提供涂层。将粉末的材料注入非常高温的等离子火焰中，在火焰中其迅速加热并且加速至高速。热的材料冲击基材表面并且迅速冷却形成涂层。正确进行的该工艺称为“冷工艺”（相对于正在涂层的基材材料），因为基材温度在加工期间可保持为低的，避免了对基材材料的损坏、合金改变和畸变。

[0114] 等离子枪包含钨阳极和钨阴极，两者均为水冷的。等离子气体（氢，氮，氢，氨）在阴极周围流动并且通过形状为收缩型的阳极。通过高压放电引发等离子，其造成局部离子化和在阴极和阳极之间形成 DC 弧的导电路径。源自电弧的电阻加热使气体达到极致温度，分解并离子化而形成等离子。等离子离开阳极喷嘴作为自由或中性等离子火焰（不携带电流的等离子），其非常不同于等离子转移电弧涂覆工艺，其中电弧延伸至待涂覆的表面。当等离子稳定并且已经用于喷涂时，电弧向下延伸至喷嘴，而不是短路至阳极喷嘴的最近边缘。电弧的伸长是由热收缩效应所致。围绕水冷阳极喷嘴表面的冷气体（非导电性的）限制了等离子弧，提高了温度和速度。最常由以安装在阳极喷嘴出口附近的外部粉末端口将粉末供给进入等离子火焰中。将粉末如此迅速的加热并加速使得喷涂距离可为约 25–150mm。

[0115] 在一个使用该组合物作为热喷涂材料的实施方案中，该组合物需要为合金形式（与组分的复合物相对）。虽然不希望为任何特定理论所束缚，但是当使喷涂组合物的均匀性最大时即作为合金（与复合物相对）时，在热喷涂期间可获得所需的效率。事实上，适用于热喷涂的合金化粉末的尺寸和流动性可提供这样的均匀性最大化的发生地。粉末颗粒可以采取任何形状，例如球形颗粒、椭球形颗粒、不规则形状的颗粒或薄片形或扁平薄片形。在一个实施方案中，合金化粉末可具有落入 100 目（美国标准筛号 – 即 149 微米）至约 2 微米的范围内的颗粒尺寸。此外，可使用的热喷涂材料就是或例如作为掺合有至少一种其它热喷涂粉末如碳化钨的粉末。

[0116] 在一些实施方案中，用作热喷涂材料一部分的含粉末组合物需要完全合金化，或至少基本上合金化。因而，该工艺还可包括在布置步骤预合金化并且将至少一些合金化的粉末组合物加工成粉末形式的步骤。合金化的含粉末组合物不需要为非晶态形式。该组合物例如可具有至少一些结晶度，例如为完全晶态的或可为至少部分非晶态的，例如基本上非晶态或完全非晶态的。虽然不希望受任何特定理论所束缚，但是一些结晶度可源自于预先存在的合金化粉末制备步骤中的正常冷却速率。换而言之，通过随着源自熔体的雾化和在周围条件下如在空气中冷却滴状物的这样标准方法可制备热喷涂粉末。在一个实施方案中，合金化粉末可通过使用例如非反应性气体如氮或氢的雾化的方法制备。使用这样的方法显示了合金化方法发展了第二相。热喷涂后可熔化颗粒，这可淬火在涂覆的表面，从而提供可为基本上或完全为非晶态的涂层。

[0117] 通过使用本文中公开的制造工序，热喷涂的合金化粉末的制备可保持为相对简单和成本最小化的。本文中描述的方法可具有用于形成复合物粉末涂层作为围绕额外材料（包括在喷涂时不合金化的金属陶瓷类材料）核心的外层的优点。在该工艺期间，可使用常规技术例如用粉末型热喷枪喷涂粉末。作为替代，还可将其结合入使用塑料或类似粘合剂的复合线材或杆材，其可在枪的加热区域中分解。粘合剂可为例如聚乙烯或聚氯乙烯。合金杆材或线材还可用于线材热喷涂工艺中。在一个实施方案中，杆材或线材可具有用于火焰
喷涂线材的尺寸和准确容差，并且因而例如可在 6.4mm 和 20 口径（gauge）之间改变。

[0118] 实施例

[0119] 在金属基材上沉积镍基合金的涂层。使用通过 HVOF 施加的镍基粉末制备该涂层样品。涂层的组成大约为：35Cr、53Ni、3.3Si、4.5B、0.9C，以及一些来自高温喷涂的夹杂物。分析了该涂层并且对于镍基涂层有一些数据：硬度（显微硬度）600–850HV，100gm 载荷（硬度范围是由多相组织所致）；DSC 熔点为 2150 °F；X 射线衍射显示多相组织中的晶态组织。在图 4 中显示了涂层样品的横截面 SEM 图像，其显示多相组织。

[0120] 本文中使用冠词“a（一个）”和“an（一种）”来意指一种或多于一种（即至少一种）的符合文法的制品物体。例如，“聚合物树脂”意味着一种聚合物树脂或多于一种聚合物树脂。本文中引用的任何范围是包含端点的。使用本说明书中使用的术语“基本上”和“约”来描述和解释小的波动。例如，它们可意指小于或等于 ±5%、如小于或等于 ±2%、如小于或等于 ±1%、如小于或等于 ±0.5%、如小于或等于 ±0.2%、如小于或等于 ±0.1%、如小于或等于 ±0.05%。

[0121] 实施方案的应用

[0122] 作为替代，其可为电子装置的一部分，例如装置壳体或其电子互连的一部分。例如，在一个实施方案中，可使用界面层或密封来连接和粘合两部分电子装置壳体并且产生对流体不可透的密封，有效地使装置为防水和气密的，使得流体不能进入装置内部。

[0123] 本文中的电子装置可意指任何电子装置。例如，其可为电话、如手机和 / 或陆地电话或任何通讯装置如智能电话，包括例如 iPhone™和电子邮件收 / 发装置。其可为显示器的一部分，如数字显示器、TV 显示器、电子书阅读器、便携式网络浏览器（例如 iPad™）和电脑显示器。其还可为娱乐装置，包括便携式 DVD 播放器、DVD 播放器、蓝光碟片播放器、视频游戏控制台、音乐播放器如便携式音乐播放器（例如 iPod™）等。其还可为提供控制的装置的一部分，例如控制图像、视频、声音流（例如 Apple TV™），或其可为用于电子装置的远程控制。其可为电脑或其附件的一部分，例如硬盘塔外壳或壳体、手提电脑外壳、手提电脑键盘、手提电脑轨触摸板、台式电脑键盘、鼠标、和扬声器。还可向装置例如手表或钟表施加该涂层。