乳猪教槽配合饲料及其制备方法

本发明公开了一种乳猪教槽配合饲料，所述配合饲料中各种原料及其重量百分比为：玉米 13-18%、面粉 23-27%、碎米 10-13%、豆粕 15-20%、大豆油 1.5-2.5%、乳清粉 6-10%、葡萄糖 5-10%、血浆蛋白粉 3-5%、鱼粉 2-5%、蛋氨酸 2-5%、磷酸二氢钙 0.4-0.8%、食盐 0.08-0.15%、丁酸钠 0.05-0.15%、酸化剂 0.2-0.5%、乳化剂 0.05-0.15%、维生素 0.02-0.05%、氯化胆碱 0.03-0.07%、卵磷脂 0.8-1.5%；上述原料的重量百分比之和为 100%。其制备方法包括：按重量百分比称取所有原料，投入粉碎机进行粉碎，粉碎粒度为 30 目；投入混合机，混合均匀。本发明的有益效果是：满足乳猪教槽期的营养需求，适口性好，消化率高，有效防止乳猪断奶掉膘、拉稀及体重不达标。
1. 一种乳猪教槽配合饲料，其特征在于，所述配合饲料中各种原料及其重量百分比为：玉米15－17％，面粉24－26％，碎米10－12％，豆粕16－19％，大豆油2－2.5％，乳清粉8－9％，葡萄糖6－8％，血浆蛋白粉4－5％，鱼粉3－4％，肠膜蛋白2－4％，磷酸二氢钙0.6－0.8％，食盐0.08－0.12％，丁酸钠0.1－0.15％，酸化剂0.2－0.4％，乳化剂0.1－0.15％，微生物0.02－0.04％，氯化胆碱0.04－0.06％，预混料1－1.2％；
 所述酸化剂为苯甲酸、富马酸和DL-羟基蛋氨酸钙中的一种或多种；
 所述乳化剂为大豆磷脂提取物；
 所述微生态为芽孢杆菌和乳酸菌中的一种或两种；
 所述预混料为维生素预混料和微量元素预混料；所述血浆蛋白粉为APC美国蛋白质公司生产的进口血浆蛋白粉；
 所述维生素预混料为维生素A、D3、E、K3、B1、B2、B6、叶酸、泛酸、烟酸中的一种或多种；
 所述微量元素预混料为铜、铁、锰、锌、碘、硒中的一种或多种；
 预混料中的部分元素折算到全价料中的含量分别为：维生素A 10000IU/kg、维生素D3 2000IU/kg 和 / 或维生素E 70IU/kg；以及铜 140mg/kg、铁 120mg/kg、锰 35mg/kg 和 / 或 锌 140mg/kg；
 其制备方法包括：
 按重量百分比称取所有原料，投入粉碎机进行粉碎，粉碎粒度为25－40目；
 投入混合机，混合均匀，混合的均匀度≤5％。

2. 根据权利要求1所述的乳猪教槽配合饲料，其特征在于，所述配合饲料中各种原料及其重量百分比为：玉米15.72％，面粉25％，碎米11％，豆粕18％，大豆油2％，乳清粉8％，葡萄糖8％，血浆蛋白粉4％，鱼粉3％，肠膜蛋白3％，磷酸二氢钙0.6％，食盐0.1％，丁酸钠0.1％，酸化剂0.3％，乳化剂0.1％，微生物0.03％，氯化胆碱0.05％，预混料1％。
乳猪教槽配合饲料及其制备方法

技术领域

本发明涉及乳猪教槽期喂养的配合饲料，特别涉及一种乳猪教槽配合饲料及其制备方法。

背景技术

近年来，随着养殖行业的发展，对乳猪配合饲料的要求越来越高，尤其是乳猪教槽配合饲料。乳猪教槽配合饲料营养水平的高低直接影响着乳猪的断奶体重，而乳猪断奶体重是否达标对猪的最终出栏体重至关重要。

传统乳猪教槽料的缺点是不适用于乳猪的营养需求。乳猪早期肠道功能发育不健全，对油脂的利用率很差，传统乳猪配合饲料制作过程中对上述问题没有从原料和工艺上更多的考究；同时由于原料选择粗放型、制作工艺不规范等原因，传统乳猪配合饲料消化率低，卫生指标差，采食不均匀，不能满足乳猪的营养需求。传统乳猪配合饲料开口晚，断奶日龄推迟且断奶后易拉稀掉膘，断奶体重不达标，远远发挥不了乳猪的生产性能。乳猪教槽料营养水平不够，直接影响到乳猪的断奶日龄及断奶体重，进而影响到最终的出栏体重。

发明内容

为了满足乳猪教槽期的营养需求，防止乳猪断奶掉膘、拉稀及体重不达标，本发明提供了一种乳猪教槽配合饲料及其制备方法。

为了解决上述发明目的，本发明提供了一种乳猪教槽配合饲料，其特征在于，所述配合饲料中各种原料及其重量百分比如下：玉米 13-18%，面粉 23-27%，碎米 10-13%，豆粕 15-20%，大豆油 1.5-2.5%，乳清粉 6-10%，葡萄糖 5-10%，血浆蛋白粉 3-5%，鱼粉 2-5%，肠膜蛋白 2-5%，磷酸氢钙 0.4-0.8%，食盐 0.08-0.15%，丁酸钠 0.06-0.15%，酸化剂 0.2-0.5%，乳化剂 0.05-0.15%，微生物 0.02-0.05%，氯化胆碱 0.03-0.07%，预混料 0.8-1.5%；上述原料的重量百分比之和为 100%。

所述配合饲料中各种原料及其重量百分比还可以优选为：玉米 13-16%，面粉 23-25%，碎米 11-12%，豆粕 15-18%，大豆油 1.5-2%，乳清粉 6-8%，葡萄糖 8-10%，血浆蛋白粉 3-4%，鱼粉 2-3%，肠膜蛋白 3-5%，磷酸氢钙 0.4-0.6%，食盐 0.1-0.15%，丁酸钠 0.06-0.1%，酸化剂 0.3-0.5%，乳化剂 0.05-0.1%，微生物 0.03-0.05%，氯化胆碱 0.05-0.07%，预混料 0.8-1%。

所述配合饲料中各种原料及其重量百分比也可以优选为：玉米 15-17%，面粉 24-26%，碎米 10-12%，豆粕 16-19%，大豆油 2-2.5%，乳清粉 8-9%，葡萄糖 6-8%，血浆蛋白粉 4-5%，鱼粉 3-4%，肠膜蛋白 2-4%，磷酸氢钙 0.6-0.8%，食盐 0.08-0.12%，丁酸钠 0.1-0.15%，酸化剂 0.2-0.4%，乳化剂 0.1-0.15%，微生物 0.02-0.04%，氯化胆碱 0.04-0.06%，预混料 1-1.2%。

所述配合饲料中各种原料及其重量百分比又可以优选为：玉米 15.72%，面粉 25%，碎米 11%，豆粉 18%，大豆油 2%，乳清粉 8%，葡萄糖 8%，血浆蛋白粉 4%，鱼粉 3%，肠膜蛋白
3%磷酸二氢钙 0.6%、食盐 0.1%、丁酸钠 0.1%、酸化剂 0.3%、乳化剂 0.1%、微生态 0.03%、氯化胆碱 0.05%、预混料 1%。
[0009]所述酸化剂可以为苯甲酸、富马酸和 DL- 丙基氨酸钙中的一种或多种。
[0010]所述乳化剂可以为大豆磷脂提取物。
[0011]所述微生态可以为芽孢杆菌和乳酸菌中的一种或两种。
[0012]所述预混料为维生素预混料和微量元素预混料;所述血浆蛋白粉为 APC 美国蛋白质公司生产的进口血浆蛋白粉。
[0013]所述维生素预混料为维生素 A、D3、E、K3、B1、B2、B6、叶酸、泛酸、烟酸中的一种或多种;所述微量元素预混料为铜、铁、镁、锌、碘、硒中的一种或多种。
[0014]为了更好的实现上述发明目的，本发明还提供了一种乳猪教槽配合饲料的制备方法，其制备方法包括：
[0015]按重量百分比称取所有原料，投入粉碎机进行粉碎，粉碎粒度为 25—40 目。
[0016]投入混合机，混合均匀。
[0017]所述粉碎的粉碎粒度优选为 30 目。
[0018]所述混合的均匀度优选为 ≤ 5%。
[0019]本发明实施例提供的技术方案带来的有益效果是：满足乳猪教槽期的营养需求，适口性好，消化率高，模仿母乳成分，能够使乳猪在 21 日龄全部顺利断奶；其中：添加血浆蛋白粉，为乳猪提供免疫球蛋白，提高乳猪的抗病力；添加乳化剂，使油脂在饲料中分布更加均匀，有利于脂肪的消化吸收，提高对油脂的利用率；添加丁酸钠，促进小肠绒毛生长，促进肠道发育，提高肠道重量；添加酸化剂，确保肠道的酸碱平衡，降低腹泻；添加微生态，抑制病原菌生长，维持肠道菌群健康，降低免疫应激，提高生长速度，降低死亡率。使乳猪断奶及断奶后一周龄不掉膘、不拉稀、生长快，断奶体重大，使乳猪的断奶体重超过传统标准体重，充分发挥乳猪的生产能力，为乳猪的整个生长期发挥高产性能奠定基础，且特别适合于乳猪 7 日龄至 35 日龄的营养需求。
[0020]具体实施方式
[0021]针对传统乳猪料不适用于乳猪保育期的营养需求的问题，本发明提供了一种满足乳猪保育期营养需求的乳猪教槽配合饲料，配合饲料中各原料及其重量百分比为：玉米 15.72%、面粉 25%、碎米 11%、豆粕 18%、大豆油 2%、乳清粉 8%、葡萄糖 8%、血浆蛋白粉 4%、酵粉 3%、肠膜蛋白 3%、磷酸二氢钙 0.6%、食盐 0.1%、丁酸钠 0.1%、酸化剂 0.3%、乳化剂 0.1%、微生态 0.03%、氯化胆碱 0.05%、预混料 1%。
[0022]其中，酸化剂有效成分为苯甲酸、富马酸和 DL- 丙基氨酸钙；乳化剂有效成分为大豆磷脂提取物，即溶卵磷脂；微生物有效成分为芽孢杆菌和乳酸菌；预混料为维生素预混料和微量元素预混料，维生素预混料为维生素 A、D3、E、K3、B1、B2、B6、叶酸、泛酸、烟酸中的一种或多种；微量元素预混料为铜、铁、镁、锌、碘、硒中的一种或多种；血浆蛋白粉为 APC 美国蛋白质公司生产的进口血浆蛋白粉。
[0023]预混料中的部分元素折算到全价料中的含量分别优选为：维生素 A 10000 IU/kg、维生素 D3 2000 IU/kg 和 / 或维生素 E 70 IU/kg；以及铜 140 mg/kg、铁 120 mg/kg、锌 35 mg/kg 和 / 或硒 140 mg/kg。
[0024]同时还提供了一种乳猪教槽配合饲料的制备方法，其制备方法包括：
按重量百分比称取所有原料，投入粉碎机进行粉碎，粉碎后全部要求通过 30 目筛，即粉碎粒度为 30 目；

投入混合机，混合均匀，混合的均匀度 ≤ 5%。

混合后的饲料即可直接供给猪投食，也可以将混合后的饲料在 65°温度下制粒，使其熟化度达到 90%—95%，再投入破碎机内进行破碎，破碎后全部要求通过 10—20 目筛，即破碎粒度为 10—20 目。

按照上述重量百分比和制备方法得到的本发明乳猪饲料，经实验分析，其营养成分的保证值是：粗蛋白 ≥ 20.0%，粗纤维 ≤ 4.0%，粗灰分 ≤ 8.0%，水分 ≤ 14.0%、钙 0.5%-1.1%、总磷 ≥ 0.5%、盐 0.4—0.8%、赖氨酸 ≥ 1.5%。

对比实验：

将本发明实施例的乳猪饲料（实施例组）和传统的猪饲料（对照组），分别喂养 100 头乳猪进行对比实验，喂养至 21 天断奶和 30 天时，分别称取体重后，计算得出平均体重，结果如表 1 和表 2 所示：

表 1：21 日龄平均体重对照表

<table>
<thead>
<tr>
<th>组别</th>
<th>平均体重（kg）</th>
<th>成活乳猪</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例组</td>
<td>6.5</td>
<td>99</td>
</tr>
<tr>
<td>对照组</td>
<td>5.7</td>
<td>98</td>
</tr>
</tbody>
</table>

从表 1 的数据可知，使用本发明实施例的乳猪饲料喂养的乳猪，喂养至 21 天断奶时，其平均体重比传统饲料喂养的乳猪高 0.8kg，成活率高 1%。

表 2：30 日龄平均体重对照表

<table>
<thead>
<tr>
<th>组别</th>
<th>平均体重（kg）</th>
<th>成活乳猪</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例组</td>
<td>8.7</td>
<td>99</td>
</tr>
<tr>
<td>对照组</td>
<td>7.5</td>
<td>97</td>
</tr>
</tbody>
</table>

从表 2 的数据可知，使用本发明实施例的乳猪饲料喂养的乳猪，喂养至 30 天时，其平均体重比传统饲料喂养的乳猪高 1.2kg，成活率高 2%。

通过对比实验可知，本发明实施例配比的乳猪饲料喂养的乳猪平均体重和成活率均优于传统乳猪饲料，且实施例组的整齐度也明显优于对照组，即本发明实施例的配合饲料能够很好地满足乳猪教槽期的营养需求，特别适用于乳猪 7 日龄至 35 日龄的营养需求。

以上所述仅为本发明的较佳实施例，并不用以限制本发明，凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。