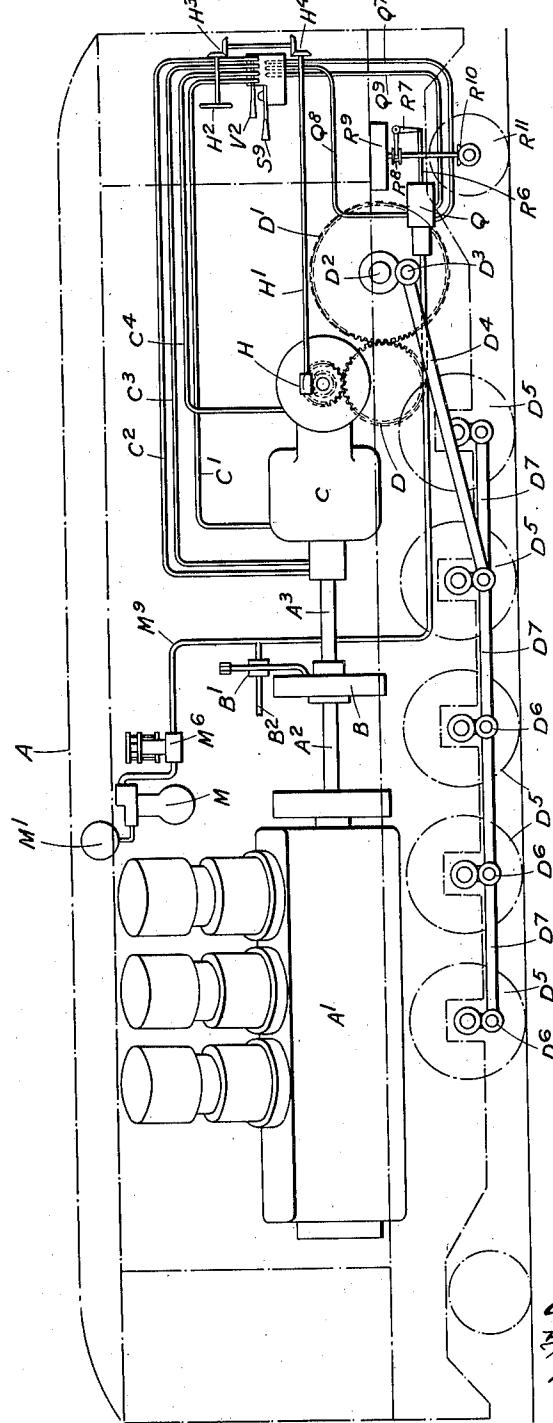


March 1, 1927.


1,619,705

A. E. L. CHORLTON

INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925.

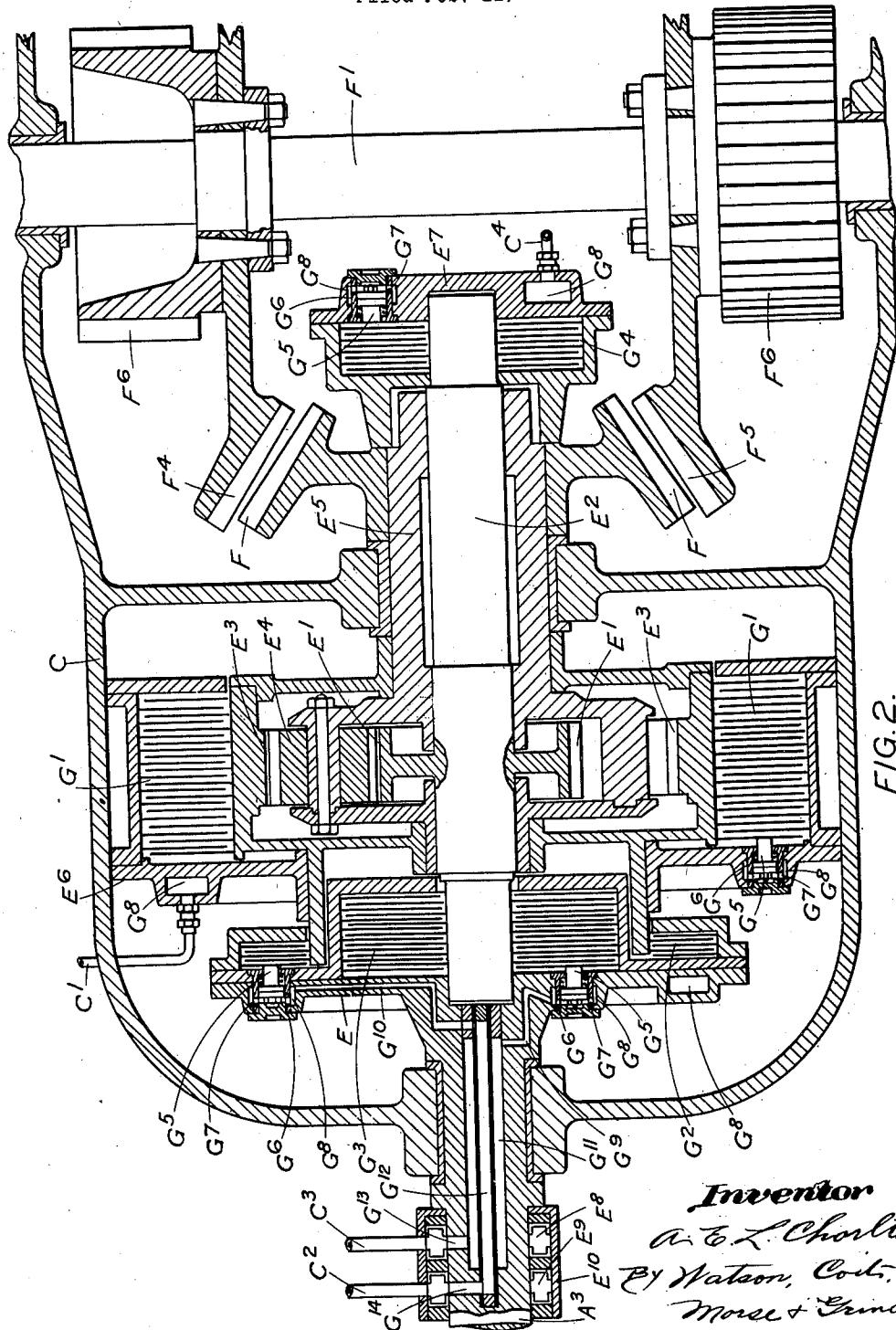
7 Sheets-Sheet 1

F/G. I.

Inventor
A. E. L. Charlton,
By
Watson, Cott.,
Morse + Grindle.

Atty's.

March 1, 1927.


1,619,705

A. E. L. CHORLTON

INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925

7 Sheets-Sheet 2

Inventor

*A. E. L. Charlton,
By Watson, Cols.
Morse & Grundy.*

Atlys.

March 1, 1927.

1,619,705

A. E. L. CHORLTON

INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925

7 Sheets-Sheet 3

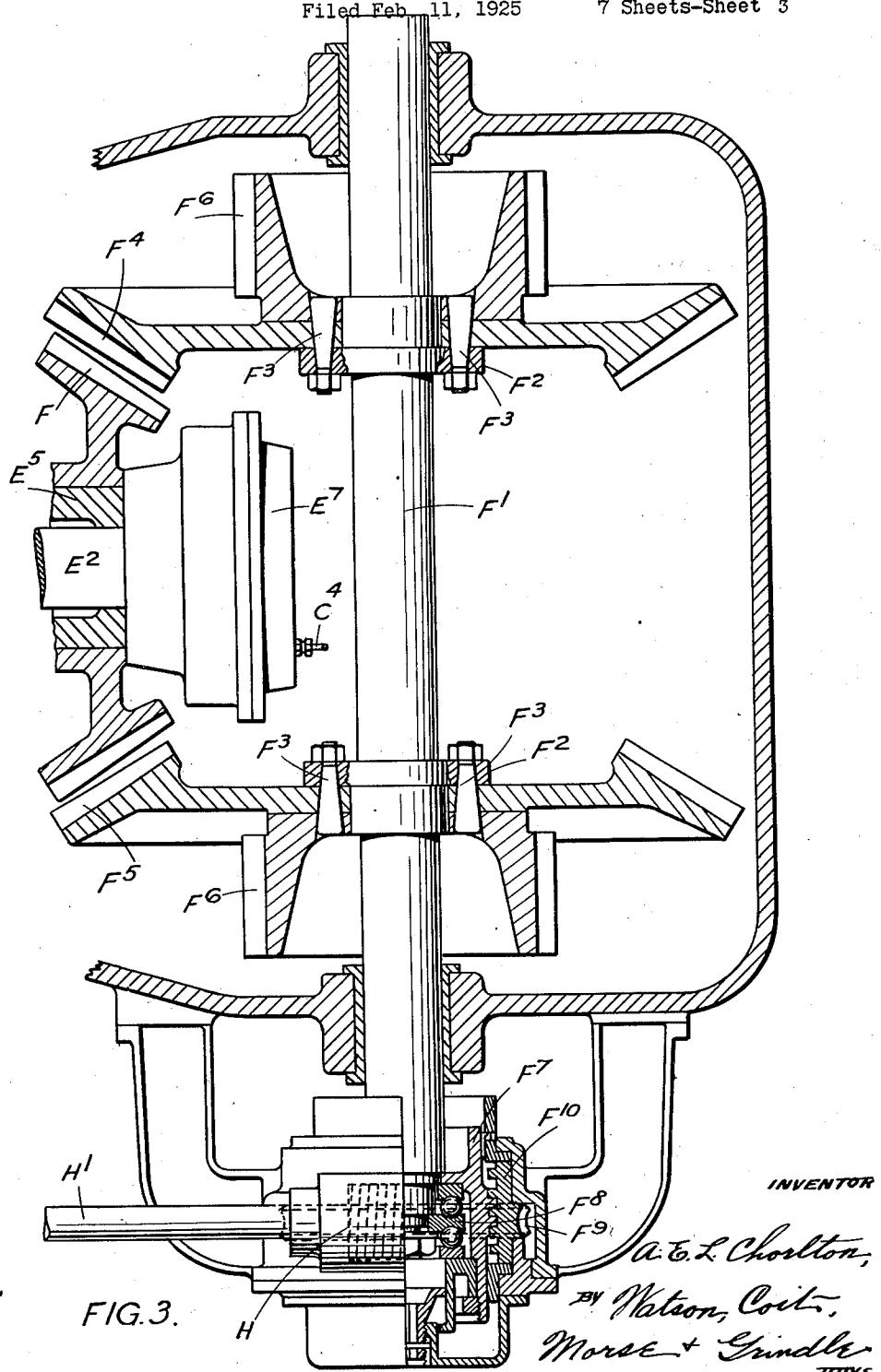
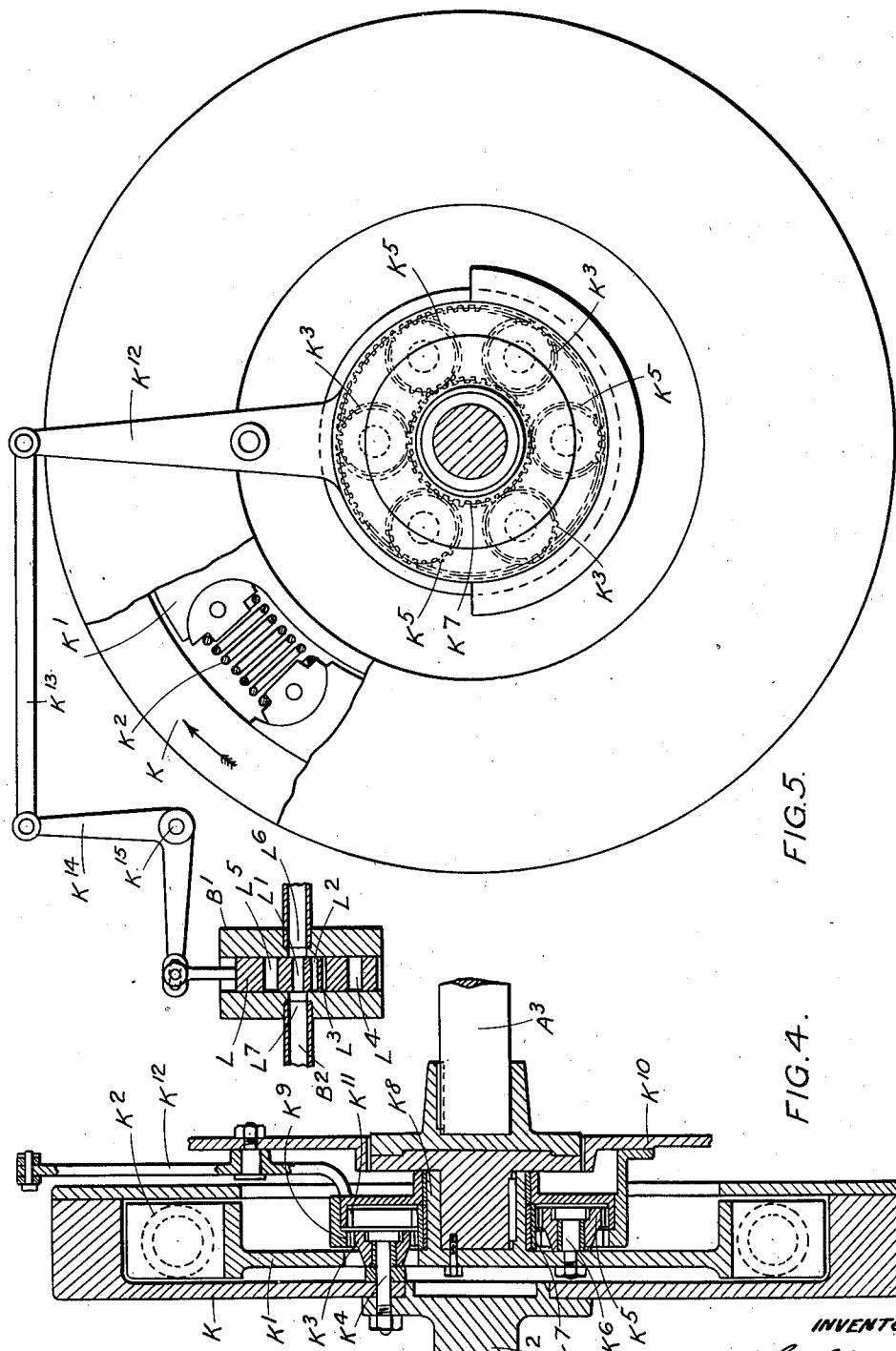


FIG. 3.

INVENTOR
A. E. L. Chorlton,
By Watson, Curtis,
Morse + Grindler
H. M. S.

March 1, 1927.


1,619,705

A. E. L. CHORLTON

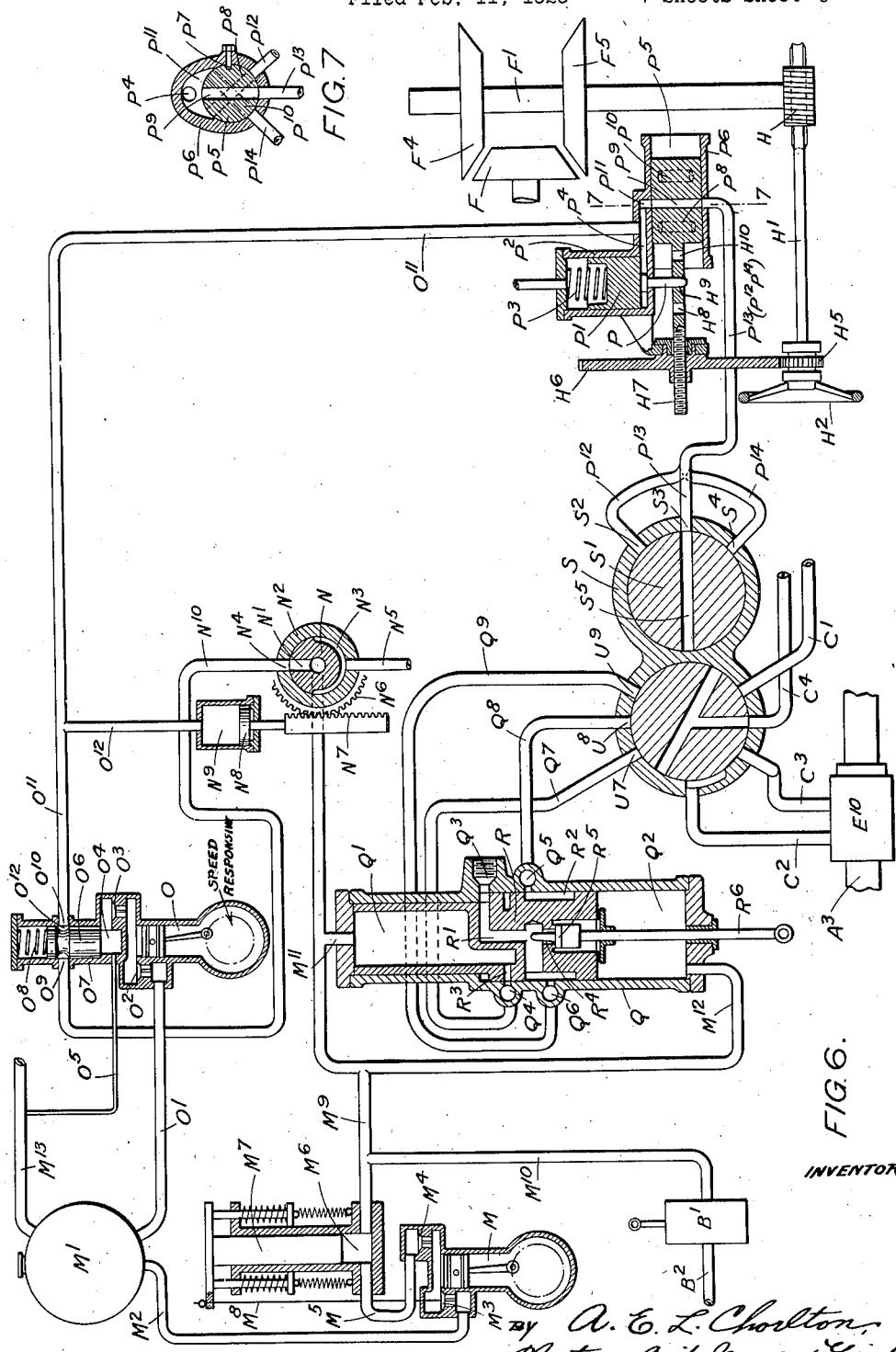
INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925

7 Sheets-Sheet 4

INVENTOR
A. E. L. Chorlton,
Watson, Cook, Moore & Grundy
Attys.

March 1, 1927.


1,619,705

A. E. L. CHORLTON

INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925

7 Sheets-Sheet 5

1,619,705

March 1, 1927.

A. E. L. CHORLTON

INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925

7 Sheets-Sheet 6

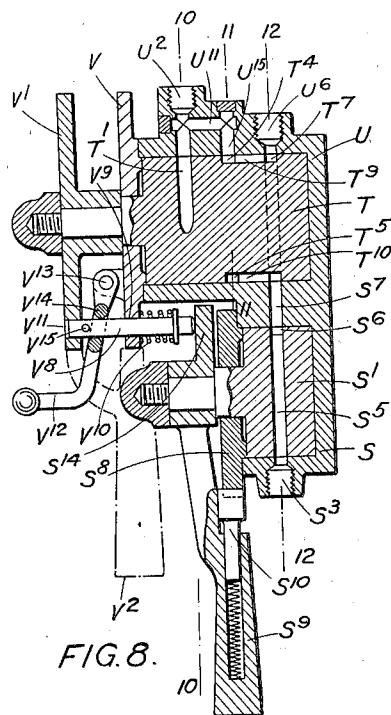


FIG. 8.

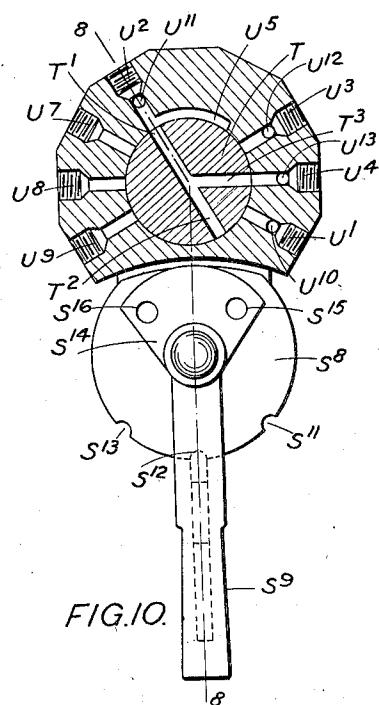


FIG. 10.

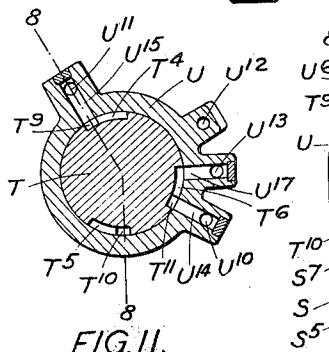


FIG. 11.

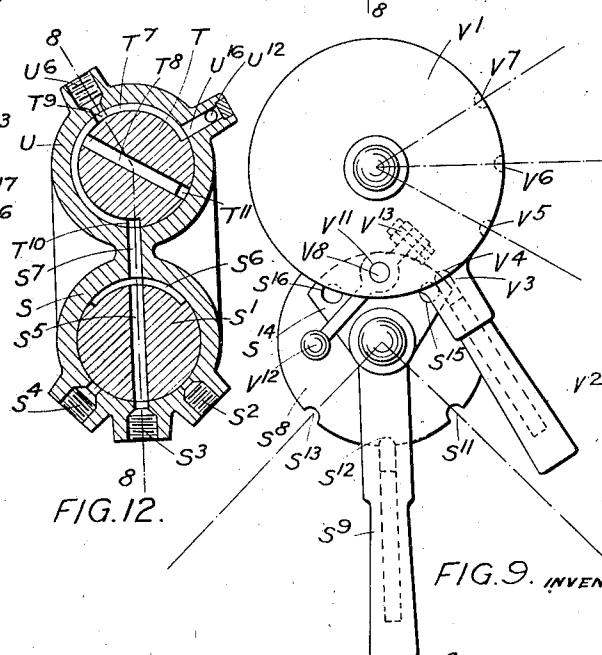
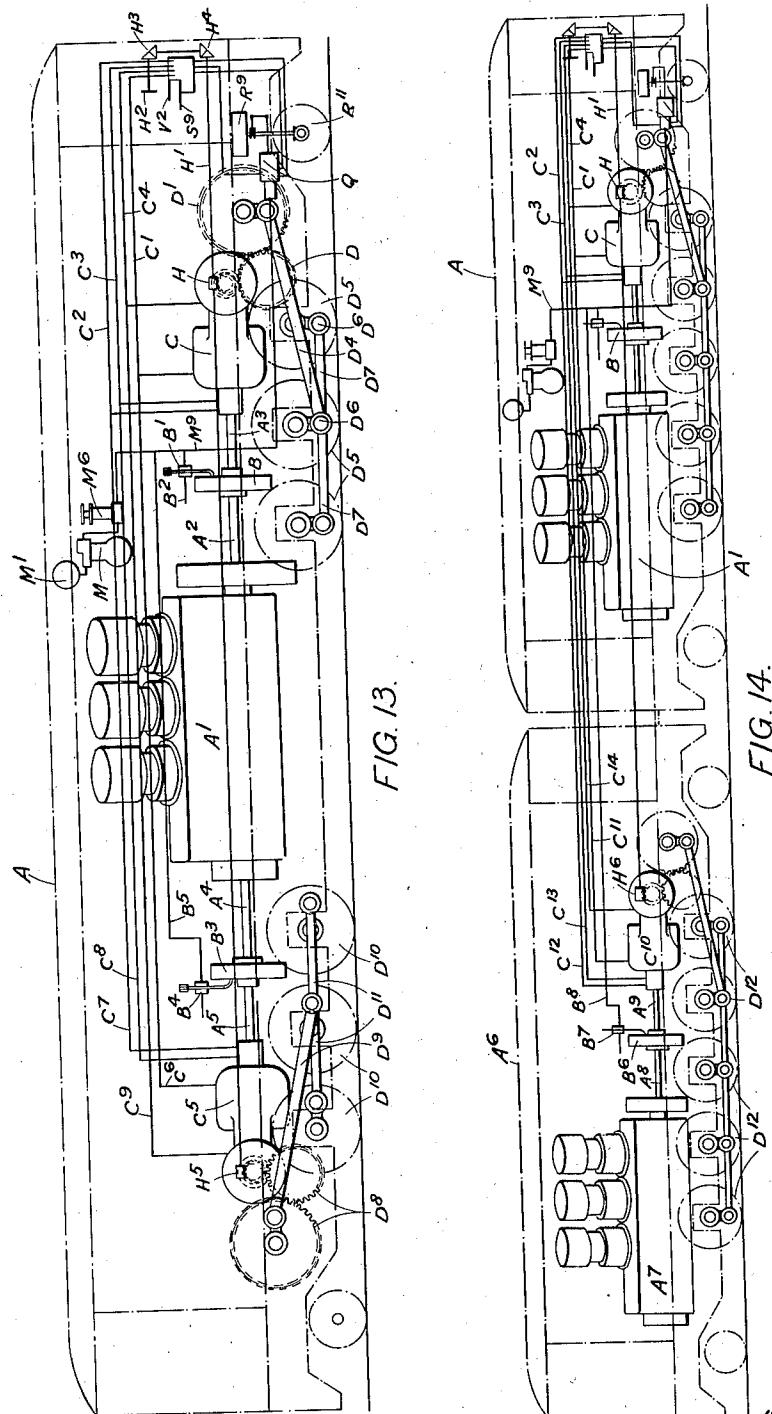


FIG. 12.

FIG. 9. INVENTOR

A. E. L. Chorlton,
By Watson, Cort, Morse & Grindell,
ATTYS.

March 1, 1927.


1,619,705

A. E. L. CHORLTON

INTERNAL COMBUSTION ENGINE LOCOMOTIVE

Filed Feb. 11, 1925

7 Sheets-Sheet 7

INVENTORS.

BY A. E. L. Charlton,
Watwood, Const. Morse & Grundy.
ATTYS.

UNITED STATES PATENT OFFICE.

ALAN ERNEST LEOFRIK CHORLTON, OF LONDON, ENGLAND.

INTERNAL-COMBUSTION-ENGINE LOCOMOTIVE.

Application filed February 11, 1925, Serial No. 8,591, and in Canada November 29, 1923.

This invention relates to rail locomotives propelled by internal combustion engines of the heavy oil type.

The primary object of the invention is to provide such a combination of driving and transmission elements as will enable locomotives of large power to be constructed in such a manner that they will efficiently carry out their work and can be controlled by a single crew.

A further object is so to arrange the locomotive that very high power can be obtained with the desired flexibility of wheel base without exceeding the limits of size imposed by the loading gauge.

Another object is to provide transmission elements which will enable the locomotive to be driven in either direction at speeds variable within wide limits and yet will be capable of withstanding the heavy strains resulting from the high power to be transmitted. Thus in a preferred arrangement the two chief transmission elements are the epicyclic variable speed gear controlled by plate clutches and the bevel reversing mechanism which respectively form the subject of the present applicant's prior applications for Letters Patent of the United States of America Serial No. 724,719 filed 7th July, 1924, and Serial No. 749,500 filed 12th November, 1924.

A still further object is to control the transmission elements in such a manner as to minimize risk of damage to the parts of the locomotive, and for this purpose a fluid pressure control system such as is described in the present applicant's prior application for Letters Patent of the United States of America Serial No. 657, filed 5th January, 1925, may be employed.

Yet another object is to protect the driving and transmission system from undue stresses due for example to overloads or sudden shocks by means for example of the device described in the present applicant's prior application for Letters Patent of the United States of America Serial No. 752,748 filed 28th November, 1924.

Another object is to combine all these elements together into a single high power internal combustion engine locomotive system wherein all the parts are as far as possible protected from damage.

Still further objects will be apparent from the following description of the accompanying drawings and from the appended claims. In these drawings,

Figure 1 is a diagrammatic general view of a preferred arrangement of locomotive according to the invention,

Figure 2 is a section through a preferred form of epicyclic variable speed gear,

Figure 3 is a section through a preferred form of bevel reversing mechanism,

Figures 4 and 5 are respectively a central section and an end view of a protective device employed in the transmission system;

Figure 6 is a general diagrammatic view of one form of fluid pressure control system,

Figure 7 is a section on the line 7—7 of 70 part of Figure 6,

Fig. 8 is a central vertical section taken on the line 8—8 of Figure 10 showing in detail certain control valves shown in Figures 11 and 12;

Fig. 9 is a front elevation of the mechanism shown in Figure 8;

Fig. 10 is a section taken on line 10—10 of Figure 8;

Fig. 11 is a section taken on line 11—11 80 of Figure 8;

Fig. 12 is a section taken on line 12—12 of Figure 8, and

Figures 13 and 14 are views similar to Figure 1 of alternative arrangements by 85 means of which higher power can be obtained.

With reference first to Figure 1 the locomotive frame is indicated in chain line at A. Within this frame is mounted an internal 90 combustion engine A' of the V-type operating on heavy oil. This engine A' drives a driving shaft A² the other end of which is connected to a protective device indicated at B. This device B is illustrated in detail in Figures 4 and 5 and will be described fully with reference to those figures. From the device B an intermediate shaft A³ leads to an epicyclic variable speed gear contained within a casing C, which also contains a bevel 100 reversing mechanism. The gear and the reversing mechanism will be described in detail with reference to Figures 2 and 3. The drive is transmitted through pinions forming part of the reversing mechanism and pinions D to gear wheels D' mounted on a

transverse shaft D². This shaft D² carries at its ends cranks D³ to each of which is pivoted one end of a connecting rod D⁴. Each connecting rod D⁴ drives a set of driving wheels D⁵ which are coupled together by means of cranks D⁶ and coupling rods D⁷. The variable speed gear is controlled by means of a fluid pressure system which will be described in detail (together with the controlling devices for the reversing mechanism) with reference to Figures 6-12. The main parts of the fluid pressure system are shown diagrammatically in Figure 1 and such parts are indicated by the same reference letters as are employed in Figure 6.

A preferred form of epicyclic variable speed gear is illustrated in Figure 2 and comprises a driving member E mounted on the end of the shaft A³, a sun wheel E' carried on a shaft E² coaxial with the shaft A³, an annulus E³ and planet pinions E⁴ rotatably mounted on a sleeve E⁵ surrounding the shaft E², the sleeve E⁵ carrying a bevel pinion F which forms the driving member of the bevel reversing mechanism. The gear is mounted within the casing C which also contains the reversing mechanism. The gear is controlled from the fluid pressure system by means of four plate clutches G' G² G³ G⁴, which serve respectively for clutching the annulus E³ to a fixed bracket E⁶ carried by the casing C, the annulus E³ to the driving member E, the shaft E² to the driving member E, and the shaft E² to a fixed bracket E⁷ carried by the casing C. Each of the clutches G' G² G³ G⁴ is controlled by means of a plunger G⁵ working within a cylinder G⁶ provided with ports G⁷ in its wall. These ports G⁷ communicate with a fluid chamber G⁸. The two fluid chambers G⁸ for the clutches G' and G⁴ are disposed respectively in the fixed brackets E⁶ and E⁷ and are supplied with the operating fluid through pipes C' and C⁴. The other two fluid chambers G⁸ for the clutches G² G³ are disposed within the driving member E and are supplied with fluid respectively through passages G⁹ G¹⁰ within this member. The two passages G⁹ G¹⁰ communicate respectively with the outer and inner of two concentric passages G¹¹ G¹² within the shaft A³, the other ends of these passages G¹¹ G¹² being in communication through ports G¹³ G¹⁴ within two annular chambers E⁸ E⁹ in a fixed sleeve E¹⁰ surrounding the shaft A³. Fluid is supplied to the annular chambers E⁸ E⁹ respectively from pipes C² C³.

Thus when fluid is supplied under pressure through the pipes C' C³, the clutches G' G³ are caused to engage, and the gear is brought into its first speed position in which the annulus E³ is held stationary and the sun wheel E' is clutched to the driving member E. If the pressure on the clutches G' G³ is relieved and fluid is supplied through the pipes C² C⁴ the gear will be brought into its second speed position, in which the annulus E³ is clutched to the driving member E by means of the clutch G² and the sun wheel E' is held stationary by means of the clutch G⁴. In the direct drive position the clutches G² G³ are engaged by means of fluid supplied through the pipes C² C³ so that the annulus E³ and the sun wheel E' are both clutched to the driving member E.

As has been mentioned the casing C which encloses the gear also contains the bevel reversing mechanism. This mechanism, part 80 of which is shown on the right hand side of Figure 2, is illustrated in Figure 3, and comprises a transverse shaft F' having two flanges F², to each of which is secured by means of bolts F³ a bevel pinion F⁴ or F⁵ and a spur wheel F⁶. The shaft F' is movable in the direction of its length and the two bevel pinions F⁴ F⁵ are so spaced apart that either of them can be brought into engagement with the bevel wheel F when the shaft is moved. In the position shown the reversing mechanism is in its neutral position in which neither bevel pinion is in mesh with the wheel F. The spur wheels F⁶ serve to transmit the drive to the pinions D (Figure 1) and are made of such width as to engage with these pinions throughout the axial movement of the shaft.

The mechanism for moving the shaft F' axially comprises a sleeve F⁷ which is connected to one end of the shaft by means of double thrust bearings F⁸ and is held against rotation whilst yet being free to move axially with the shaft. The sleeve F⁷ is screw-threaded externally to engage with a nut member F¹⁰ which carries a worm wheel F⁹. The worm wheel F⁹ is operated by means of a worm H on a shaft H'. Thus when the shaft H' is rotated in one direction it will cause the nut member F¹⁰ to rotate and thereby to move the sleeve F⁷ and the shaft F' axially so as to bring the bevel pinion F⁴ into engagement with the bevel wheel F. This corresponds to the forward drive position. Similarly rotation of the shaft H' in the other direction will bring the mechanism into the reverse drive position in which the bevel pinion F⁵ engages with the bevel wheel F.

Other constructions of variable speed gear and reversing mechanism may be employed, but it is to be noted that the particular constructions illustrated in Figures 2 and 3 are specially designed to withstand the stresses caused by the high powers to be transmitted. Thus the employment of plate clutches which allow a variable degree of slip between the clutch members for controlling the gear, and also the employment of bevel pinions rigidly mounted on an axially mov-

able shaft in the reversing mechanism greatly increase the strength of the system.

It is desirable, however, to provide means for protecting the transmission system from undue stresses resulting for example from overloads or sudden shocks and for this purpose a torque limiting device is included in the system. This device is indicated by the reference letter B in Figure 1 and is shown 10 in detail in Figures 4 and 5. The device comprises two coaxial wheels K K' which are connected together by springs K² and are mounted respectively on the driving shaft A² and the intermediate shaft A³ which leads to 15 the variable speed gear. Mounted on spindles K⁴ journaled in the wheel K are a set of planet pinions K³, a similar set of planet pinions K⁵ being carried on spindles K⁶ journaled in the wheel K'. Both sets of planet 20 pinions K³ K⁵ mesh with a common sun wheel K⁷ which is freely rotatable on the hub K⁸ of the wheel K'. A toothed annulus K⁹ meshes with the planet pinions K³ and is carried by a fixed bracket K¹⁰, whilst the 25 other planet pinions K⁵ mesh with a second toothed annulus K¹¹ carried by an arm K¹² connected at its outer end by means of a link K¹³ to one arm of a lever K¹⁴ pivoted at K¹⁵, the other arm of this lever K¹⁴ serving to 30 operate a valve B'. It will be seen that variations in the torque transmitted will cause relative rotation between the wheels K K', which will in turn cause movement of the arm K¹² owing to the differential arrangement of the mechanism.

The valve B' controls a relief passage B² in the fluid pressure system and consists of a piston valve L provided with a series of ports L' L² L³ L⁴ L⁵ which register with ports L⁶ L⁷ in the containing cylinder B'. The ports L' L² L³ L⁴ L⁵ are of varying sizes and register in turn with the ports L⁶ L⁷ as the valve is moved. The port L' registers with the ports L⁶ L⁷ when the wheels K K' are in their no-torque or zero position, this port being of such a size as to allow only a partial relief of the fluid pressure. Thus when the locomotive is at rest the piston L will be in the position shown and when it is desired to start the locomotive a certain amount of fluid pressure is allowed to pass to operate the gear (in the manner to be described later), this pressure being sufficient to cause a partial engagement of the plate clutches whilst a certain amount of slipping is allowed to occur between the individual plates of the clutch. This partial engagement allows a relatively small amount of torque to be transmitted and this torque in turn causes a small amount of relative rotation between the wheels K K', which will move the piston valve L until the port L² is in register with the ports L⁶ L⁷. This port L² is of smaller diameter than the port L' and the fluid pressure is consequently re-

lieved less, so that the clutches of the gear engage somewhat more tightly. This further engagement allows still further torque to be transmitted and the consequent further relative rotation of the wheels K K' brings 70 the still smaller port L³ into register with the ports L⁶ L⁷. The degree of engagement of the plates of the clutches is thus still further increased with a corresponding increase in the torque, until finally the piston L 75 moves far enough to close the ports L⁶ L⁷ altogether and the clutches are subjected to full pressure. It will be seen that with this arrangement the gradual progressive engagement of the clutches is ensured. If the locomotive is subjected to an overload or a sudden shock which causes a sudden increase in the torque beyond a predetermined maximum value, the piston valve L will move over until the port L⁴ registers with the 80 ports L⁶ L⁷. This port L⁴ is of full diameter and causes the complete relief of the fluid pressure in the system thereby disengaging any clutches of the gear which may be engaged and cutting out the gear. If on the other hand the torque is reversed due to the shaft A³ tending to drive the shaft A², the wheel K' over-runs the wheel K, and if this reverse torque exceeds a predetermined limit 85 the piston valve L will move until the port L⁵ is brought into register with the ports L⁶ L⁷, thus again relieving the fluid pressure in the system and cutting out the gear.

The general arrangement of the fluid pressure control system illustrated in Figure 6 and also in part in Figure 1 will now be described. A reciprocating pump M draws fluid from a supply tank M' through a pipe M² and a suction valve M³ and delivers it under pressure past a delivery valve M⁴ into a pipe M⁵ leading to a cylinder M⁶ which forms part of a pressure regulating device. Within this cylinder M⁶ is a spring-controlled piston M⁷ which acts on a rod M⁸ connected to the suction valve M³. If the fluid pressure in the pipe M⁵ exceeds a predetermined value dependent upon the tension of the springs controlling the piston M⁷, this piston will rise in its cylinder and will open the suction valve M³. So long as the valve M³ is held open no fluid will be delivered through the valve M⁴ and the pressure in the pipe M⁵ will fall again, thus causing the piston M⁷ to return to its normal 105 position and to allow the suction valve M³ 110 to close.

From the cylinder M⁶ the fluid is supplied under pressure through a pipe M⁹ to an internal passage N' in a rotary valve N rotatable within a casing N². The pipe M⁹ has also three branch pipes M¹⁰ M¹¹ M¹² of which the first M¹⁰ leads to the valve B' controlled by the torque limiting device, whilst the other two M¹¹ M¹² lead to a valve device to be described later. The rotary valve 125 130

4
 N is provided with a recess N³ extending part of the way round the valve, and the passage N' and the recess N³ cooperate with ports N⁴ N⁵ in the casing N². The valve N carries 5 a toothed sector N⁶ engaging with a toothed rack N⁷ connected to a piston N⁸ which can move in a cylinder N⁹. The rack N⁷ is also connected to some part of the mechanism (not shown) for actuating the locomotive 10 brakes and occupies the position shown when the brakes are applied. In this position the pressure fluid is supplied through the passage N' to the port N⁴, whilst when the brakes are released, the rack N⁷ moves to its 15 uppermost position and rotates the valve N until the port N⁴ is opened through the recess N³ to the relief port N⁵.

The port N⁴ communicates with a pipe N¹⁰ which leads to a device which prevents the 20 flow of fluid through this pipe except when the locomotive is at rest. This device consists of a reciprocating pump O driven in accordance with the road speed of the locomotive. The pump O draws fluid from the 25 reservoir M' through a pipe O' and a suction valve O², and delivers it past a delivery valve O³ into a chamber O⁴ from which a by-pass passage O⁵ leads back to the reservoir M'. The pressure set up in the chamber O⁴ acts on a piston O⁶ moving in a cylinder O⁷ against the action of a spring O⁸. The pipe N¹⁰ leads to a port O⁹ in the cylinder wall, this port being disposed opposite to 30 an outlet port O¹⁰ which communicates with a pipe O¹¹. The piston O⁶ has an annular recess O¹² which registers with the two ports O⁹ O¹⁰ when the locomotive is at rest.

Thus as soon as the locomotive starts to move the pump O will deliver fluid under 40 pressure to the chamber O⁴, this pressure acting to raise the piston O⁶ and cut off communication between the ports O⁹ O¹⁰. The fluid will leak slowly through the by-pass passage O⁵, and as the locomotive speed increases the fluid will be forced at increasing 45 velocity through this by-pass. The pressure of the spring O⁸ and the cross-section of the by-pass passage are such that even very slow motion of the locomotive will be sufficient to raise the piston O⁶ and to close the ports O⁹ O¹⁰. When the locomotive road speed falls the pressure in the chamber O⁴ will also fall, until finally when the locomotive comes practically to rest the recess O¹² 50 will open communication between the ports O⁹ O¹⁰ and will allow fluid to pass through into the pipe O¹¹.

The pipe O¹¹, which has a branch pipe O¹² leading into the cylinder N⁹, leads to an interlocking device for the reversing mechanism. This mechanism as has been described above is operated by means of a worm H on a shaft H'. This shaft H' is rotated by means of a hand wheel H² either 60 directly as shown in Figure 6 or through 65

bevel gearing H³ H⁴ as shown in Figure 1. The hand wheel H² carries a pinion H⁵ meshing with a gear wheel H⁶, the hub of which is internally screwthreaded to engage with the screwthreaded end of a rod H⁷.⁷⁰ The rod H⁷ has three holes H⁸ H⁹ H¹⁰ one or another of which is adapted to receive a locking pin P carried by a piston P' which is moved in a cylinder P² against the action of a spring P³ by the pressure in a chamber P⁴ into which the pipe O¹¹ opens. The rod H⁷ also carries a piston P⁵ which can move in a cylinder P⁶ and is held against rotation by means of a key P⁷ (see Figure 7). The piston P⁵ has three suitably disposed internal passages P⁸ P⁹ P¹⁰, one or another of which registers at one end with a recess P¹¹ in the cylinder wall communicating with the chamber P⁴. In the position shown (which corresponds to the neutral position of the reversing mechanism) the passage P⁹ is in register with the recess P¹¹ and its other end registers with the end of a pipe P¹³. When the piston P⁵ is moved to the right and the pin P is in the hole H⁸, the passage P⁸ connects the recess P¹¹ with a pipe P¹², and a corresponding movement to the left brings the passage P¹⁰ into register with the recess P¹¹ and the end of a pipe P¹⁴. These two positions correspond respectively to the forward drive and the reverse drive positions of the reversing mechanism. The other ends of the pipes P¹² P¹³ P¹⁴ are controlled by a reversing valve to be described later.⁸⁵

Thus if the reversing mechanism is in its neutral position and the locomotive is at rest with the brakes applied, fluid is forced through the pipe O¹¹ and will enter the chamber P⁴, which is in communication with the pipe P¹³ through the passage P⁹. If the other end of this pipe P¹³ is closed the fluid will raise the piston P' in the cylinder P² thereby withdrawing the pin P from the hole H⁸ with which it is in engagement. The rod H' is now free to move and the hand wheel H² is rotated to bring the reversing mechanism into the forward (or reverse) drive position. This brings the hole H⁸ (or H¹⁰) under the pin P and also the passage P⁸ (or P¹⁰) into register with the recess P¹¹ and the end of the pipe P¹² (or P¹⁴). By this time as will be explained later the other end of the pipe P¹² (or P¹⁴) has been opened to relief, and consequently the pressure in the chamber P⁴ will be relieved and the piston P' will fall bringing the pin P into the hole H⁸ (or H¹⁰).⁹⁰

It will be noticed that when fluid passes through the pipe O¹¹ to raise the piston P', it will also flow into the cylinder N⁹ and will hold the piston N⁸ in its lowermost position. This prevents the locomotive brakes from being released until the pressure in the pipe O¹¹ is relieved, i. e. until the reversing mechanism has been fully operated. It will¹¹⁰

also be noticed that fluid cannot pass into the pipe O^{11} to allow the operation of the reversing mechanism until the brakes have been applied (in order to bring the passage 5 N' into register with the port N^4) and until the locomotive has come to rest.

Returning now to the fluid supply pipe M^9 it will be remembered that this pipe is provided with two branch pipes M^{11} M^{12} . These 10 pipes lead to a device which controls the supply of fluid for the operation of the variable speed gear automatically in accordance with the road speed of the locomotive. This device comprises a stepped cylindrical valve 15 casing Q , to the smaller and larger ends Q' Q^2 of which fluid is supplied respectively through the two pipes M^{11} and M^{12} . The casing Q also contains in its larger part four ports Q^3 Q^4 Q^5 Q^6 , of which the first Q^3 is 20 a relief port whilst the other three Q^4 Q^5 Q^6 are connected to pipes Q^7 Q^8 Q^9 which serve respectively for the supply of fluid to the gear for the first speed position, the second speed position and the third speed or 25 direct drive position. Within the two parts of the cylinder Q is a stepped piston R having an internal passage R' permanently in communication with the relief port Q^3 . The larger part of the piston is 30 so provided with two annular recesses R^2 and R^3 , of which one R^2 is permanently in communication with the internal passage R' , whilst the other R^3 is open to the smaller end Q' of the cylinder. The passage R' 35 communicates through an orifice R^4 with the larger end Q^2 of the cylinder and this orifice is controlled by a pilot valve R^5 the stem R^6 of which is connected to one arm of a crank lever R^7 (see Figure 1). The other 40 arm of the crank lever R^7 engages with the collar R^8 of a centrifugal governor R^9 the shaft of which is driven in accordance with the road speed of the locomotive by means for example of gearing R^{10} driven from a 45 non-driven road wheel R^{11} .

Thus so long as the pilot valve R^5 keeps the orifice R^4 closed the piston R will remain in its end position (as shown) owing to the differential action of the pressures in 50 the two ends of the cylinder Q . In this position the pressure fluid can flow through the recess R^3 and the port Q^4 into the pipe Q^7 , which corresponds to the first speed position of the gear. If now the road speed increases, 55 the governor R^9 acts on the crank lever R^7 and withdraws the pilot valve R^5 a short distance. This opens the orifice R^4 and relieves the pressure in the larger part Q^2 of the cylinder, so that the piston R will move 60 along the cylinder under the action of the pressure in the smaller part Q' until the orifice is again closed or very nearly closed by the pilot valve. A balance of pressures acting on the two sides of the piston will exist when 65 the orifice R^4 is slightly open, the small leak through this orifice being just sufficient to counteract the normal difference of pressures on the two sides of the piston. Thus as the locomotive speed increases the piston R will follow the pilot valve R^5 and will open in 70 turn the ports Q^5 Q^6 which correspond to the second speed and direct drive positions of the gear, the two ports not open to the pressure fluid from the smaller end of the cylinder at any moment being in communication 75 with the relief port Q^3 . A decrease in road speed will cause the pilot valve to close the orifice R^4 and the difference in pressures will move the piston back again until the balance is restored.

This device thus provides an automatic control of the supply of pressure fluid to the gear, and acts in conjunction with a hand-operated distributing valve to control the speed changes in the gear. This distributing 80 valve is combined into a single unit with the reversing valve above referred to, and is illustrated in detail in Figures 8-12 now to be described. Figures 8 and 9 are respectively a central section and a plan of the two 85 valves, and Figures 10, 11 and 12 are horizontal sections on the lines 10-10, 11-11 and 12-12 respectively of Figure 8. For sake of clearness of description the plane of section in Figure 8 is bent and follows the 90 lines 8-8 shown in Figures 10, 11 and 12.

The reversing valve will first be described. This valve comprises a rotary valve member S' disposed within a cylindrical casing S . The casing contains three ports S^2 S^3 S^4 95 which are in communication respectively with the three pipes P^{12} P^{13} P^{14} , and the valve member S' has a passage S^5 which registers at one end with one or another of the ports S^2 S^3 S^4 . At the other end the passage S^5 opens into a recess S^6 in the valve member, this recess being always in communication with a passage S^7 in the casing. This passage S^7 is permanently in communication with a relief port as will be described 100 later. The valve member S' projects through a fixed cover plate S^8 for the cylinder S and carries at its end a reversing hand lever S^9 by means of which the member S' is rotated. This lever S^9 is provided with 105 a spring-controlled detent S^{10} which engages in one or another of three notches S^{11} S^{12} S^{13} in the edge of the cover plate S^8 according to whether the valve member S' is 110 in its forward drive position, its neutral position or its reverse drive position. The valve member S' also carries on the side opposite to the hand lever S^9 a flat plate S^{14} having two holes S^{15} S^{16} . These holes are 115 provided for the purpose of interlocking the reversing lever with the gear lever as will be described later.

The distributing valve comprises a rotary valve member T disposed within a cylindrical casing U which is formed in 120

6 integral with the casing S of the reversing valve. The valve member T and the casing U are provided with a number of passages and ports arranged in three parallel planes, 5 sections through these planes being shown respectively in Figures 10, 11 and 12. The casing U contains eight ports of which four $U' U^2 U^3 U^4$ in the plane of Figure 10 are connected to the four pipes $C' C^2 C^3 C^4$ leading to the plate clutches of the gear, the port U^2 being extended laterally as shown at U^5 in Figure 10. The fifth port U^6 is a relief port and is disposed in the plane of Figure 12, whilst the remaining three ports 10 $U^7 U^8 U^9$ in the plane of Figure 10 communicate respectively with the three pipes $Q' Q^2 Q^3$ leading from the valve device Q . From the ports $U' U^2 U^3 U^4$ longitudinal passages $U^{10} U^{11} U^{12} U^{13}$ lead to four more ports $U^{14} U^{15} U^{16} U^{17}$, of which one U^{16} is disposed in the plane of Figure 12 whilst the other three $U^{14} U^{15} U^{17}$ are disposed 15 in the plane of Figure 11.

15 The rotary valve member T is provided in the plane of Figure 10 with three radial passages $T' T^2 T^3$, of which the first T' is adapted to register with one or another of the ports $U^5 U^7 U^8 U^9$ whilst the other two register selectively with the ports $U' U^2 U^3$ 20 U^4 according to the position of the valve member. The valve member is also provided in the plane of Figure 11 with three recesses $T^4 T^5 T^6$, and in the plane of Figure 12 with a recess T^7 and a passage T^8 , one 25 end of which opens into the recess T^7 . The recess T^7 is permanently open to the relief port U^6 and is of such a length as to register with the passage S' from the reversing valve. The recesses $T^4 T^5 T^6$ are all connected 30 with the recess T^7 by longitudinal passages $T^9 T^{10} T^{11}$ (the last opening into the end of the passage T^8 instead of directly into the recess T^7).

35 In the neutral position shown the passage T' does not register with any of the pressure fluid supply ports $U' U^2 U^3 U^4$, and the four delivery ports $U' U^2 U^3 U^4$ are all open to relief respectively through the passages $U^{10} U^{14} T^6 T^{11} T^8 T^7 U^6$, $U^{11} U^{15} T^4 T^9 T^7 U^6$, $U^{12} U^{16} T^7 U^6$, $U^{13} U^{17} T^6 T^{11} T^8 T^7 U^6$. When the valve member is rotated one step 40 counterclockwise, the passages come into a position corresponding to the first speed position of the gear. The supply port U^7 is now connected through the passages $T' T^3$ with the delivery ports $U' U^8$, the connections from these two ports to the relief port U^6 being broken whilst the ports $U^2 U^4$ 45 are still open to relief. In the second speed position the supply port U^8 is connected to the delivery ports $U^2 U^4$ (the former through the extension U^6) and the relief connections to these two ports are broken, 50 whilst a fresh connection to relief for the ports $U' U^3$ is established respectively by 55 the recess T^5 registering with the port U^{14} and by the passage T^8 registering with the port U^{16} . In the direct drive position the supply port U^9 is connected to the delivery ports $U^2 U^3$, the ports $U' U^4$ being both open to relief through the recess T^6 . The valve member T projects through a fixed cover plate V on the casing U and carries a plate V' on which is mounted a hand lever V^2 . This gear lever V^2 carries a spring-pressed 60 detent indicated at V^3 and arranged in a manner similar to the detent S^{10} in the reversing lever S^9 , the detent V^3 engaging in one or another of four notches $V^4 V^5 V^6 V^7$ in the edge of the cover plate V and thereby holding the member T securely in its four operative positions as described above. 65

70 A mechanical interlock is provided between the gear lever V^2 and the reversing lever S^9 . This consists of a pin V^8 passing through a hole V^9 in the cover plate V and pressed by a spring V^{10} towards the plate S^{14} carried by the reversing lever S^9 . This pin V^8 is in such a position that, when the reversing lever is moved into its forward drive position or its reverse drive position, the spring V^{10} will force the pin into the hole S^{15} or the hole S^{16} so that the reversing lever will be locked in its position. The pin V^8 is of such a length that when it engages in one or another of the holes $S^{15} S^{16}$, its upper end is just clear of the lower surface of the plate V' so that this plate is free to be rotated. When however the pin V^8 is not in one of the holes $S^{15} S^{16}$ its lower end rests on the surface of the plate S^{14} and its upper end then projects into a hole V^{11} in the plate V' , thus locking the gear lever in position. The hole V^{11} is so disposed that when locked the gear lever is in its neutral position. An additional hand lever V^{12} is provided for the purpose of lifting the pin V^8 out of the hole S^{15} (or S^{16}) when it is desired to operate the reversing lever. This lever V^{12} is pivoted at V^{13} to the cover plate V and carries a collar V^{14} surrounding the pin V^8 , this collar engaging with a small projection V^{15} on the pin V^8 . It will be seen that this interlocking mechanism prevents the gear lever from being moved from its neutral position except when the reversing lever is in one or another of its two driving positions, and also prevents the reversing lever from being operated except when the gear lever is in its neutral position. 75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

to operate the reversing mechanism into its forward or reverse drive position. This is effected by moving the reversing lever S^9 round to the desired position, when the pin 5 V^8 will be pressed down into the hole S^{15} or S^{16} so as to release the gear lever V^2 . The movement of the reversing lever brings the reversing valve member S' into such a position that the pipe P^{12} (or P^{14}) is opened to 10 relief through the passage S^5 , the end of the pipe P^{13} being closed. Since the brakes are still applied and the locomotive is at rest, pressure fluid is being forced through to the pipe O^{11} , and consequently as soon as the 15 pipe P^{13} is closed the piston P' will be raised thereby withdrawing the pin P from the hole H^9 . The hand wheel H^2 is now rotated to bring the reversing mechanism into the desired driving position, and this brings the 20 hole H^8 (or H^{10}) under the pin P and also the passage P^8 (or P^{10}) into register with the recess P^{11} and the end of the pipe P^{12} (or P^{14}). Since this pipe is now open to relief 25 owing to the operation of the reversing valve, the piston P' will fall, the pin P falling into the hole H^8 (or H^{10}) and locking the reversing mechanism. At the same time pressure is relieved from the cylinder N^8 , so 30 that the driver is now free to release his brakes.

After the brakes have been released the gear lever V^2 is moved over into its first speed position. Since the pipe Q^7 is open to the fluid supply when the piston R is in its 35 zero position, the movement of the gear lever V^2 opens the fluid supply passages to the plate clutches $G' G^3$ of the epicyclic gear. As has already been explained, the wheels $K K'$ of the torque limiting device are at this 40 stage in their no-torque position and the fluid pressure is partially relieved through the port L' , but the pressure of the fluid is still sufficient to cause a partial engagement of the clutches $G' G^3$, a certain amount of 45 slipping occurring between the plates of the clutches. The locomotive consequently begins to move and the torque builds up, so that the wheels $K K'$ of the torque limiting device move relatively to one another and finally close the relief passage. Full pressure is now applied to the clutches $G' G^3$ and the locomotive is now running in first gear.

The driver must now watch his speed indicator and as soon as the locomotive road 55 speed reaches a predetermined value (which corresponds to the value at which the piston R closes the port Q^4 and opens the port Q^5) he must move the gear lever V^2 over to the second speed position. The movement either of the piston R or of the gear lever V^2 will relieve the supply of pressure to the clutches $G' G^3$ and will thus cut out 60 the gear. Whilst the gear is cut out no torque will be transmitted, and consequently 65 the wheels $K K'$ of the torque limiting de-

vice will move to their zero position and partially relieve the pressure in the fluid system. The driver must now reduce the speed of the engine (by means for example of an accelerator pedal) to the value appropriate 70 for the change into second gear. The movement of the piston R and the gear lever V^2 has also opened the fluid supply passages to the clutches $G^2 G^4$, and consequently these clutches will be partially engaged, some slipping being allowed to occur. By the time that the engine speed has been reduced to the desired value the 75 wheels $K K'$ of the torque limiting device will have reached their normal running position with the relief passage closed. Full pressure is now applied to the clutches $G^2 G^4$ and the locomotive is now running in second gear.

The driver must move the gear lever V^2 85 into the direct drive position, when the locomotive road speed reaches the value at which the piston R closes the port Q^5 and opens the port Q^6 . This will transfer the supply of pressure fluid from the clutches 90 $G^2 G^4$ to the clutches $G' G^3$ and the change of gear will be effected in a manner similar to that already described for the change from first gear to second gear.

If the driver fails to move the gear lever 95 V^2 when the speed reaches the appropriate value for the change either into second gear or into direct drive, the movement of the piston R will relieve the pressure on the 100 clutches in engagement and will cut out the gear. The locomotive road speed will then gradually fall until the appropriate fluid supply passages are again opened by the movement of the piston R and the locomotive will then gradually come into gear again. The driver will then have another 105 opportunity of effecting the desired gear change when the speed again reaches the value at which the change should have been made.

If on the other hand the driver moves the gear lever too soon, i. e. before the piston R has moved far enough to open the next port, it will be impossible to effect the change (unless the locomotive happens to be running 115 down hill so that its road speed will increase to the desired value while the gear is cut out) and the gear lever must be moved back to its previous position and kept there until the appropriate speed has been reached.

When the locomotive is running, say, in direct drive and its load increases, as for example when going uphill, the road speed will fall. If the speed falls far enough for the piston R to close the port Q^6 and to open 125 the port Q^5 , the driver must move the gear lever V^2 back to the second gear position. This will first of all cut out the gear and cause the wheels of the torque limiting device to assume their no-torque position, thus 130

partially relieving the fluid pressure in the newly opened supply passages to the clutches G² G⁴. The partial engagement and consequent slipping of these clutches will continue until the engine speed has been raised relative to the road speed to the value appropriate to second gear. A change down to first gear will be effected in a similar manner.

10 If when running in direct drive it is desired to stop the locomotive without passing through the intermediate gears, the driver moves his gear lever right back to the neutral position. This completely removes the pressure on all the clutches and the locomotive will gradually come to rest.

If it is desired to reverse the locomotive, the gear lever V² must be brought to its neutral position and the brakes must be applied.

20 The hand lever V¹² must now be raised so that the locking pin V⁸ is withdrawn from the hole S¹⁵ and passes into the hole V¹¹, the reversing lever S⁹ then being moved round to its reverse drive position. When 25 the hand lever V¹² is released the pin V⁸ will now be forced into the hole S¹⁶ so as to lock the reversing lever against further motion. This movement of the reversing lever has the effect of closing the end of the pipe P¹² and opening the pipe P¹⁴ to relief.

30 The application of the brakes has meanwhile brought the piston N⁸ into its lower position (as shown) in the cylinder N⁹ and has also rotated the valve N so that the pipe N¹⁰ is open to the fluid supply through the passage N'. When the locomotive comes to rest the fluid will flow through to the pipe O¹¹, and since the far end of the pipe P¹² is closed the pressure will raise the piston P' 35 and withdraw the pin P from the hole H⁸.

40 The reversing mechanism can now be adjusted into the reverse drive position by rotating the hand wheel H². When the adjustment is completed the passage P¹⁰ in the

45 piston P⁵ connects the pipe P¹⁴ with the chamber P⁴, and since the end of the pipe P¹⁴ is open to relief, the pressure in the chamber P⁴ will be relieved and the piston P' will fall, the pin P passing into the hole

50 H¹⁰ and thus locking the reversing mechanism in its new position. At the same time the pressure in the cylinder N⁹ will be relieved and it is therefore possible to release the brakes and to start up the locomotive

55 in the reverse direction in the manner above described. The adjustment of the reversing mechanism into the neutral position is effected in a similar manner, but it is to be noted that when this adjustment is made the 60 locking pin V⁸ will remain in the hole V¹¹ and will thus lock the gear lever V² in its neutral position.

It should be mentioned that during any adjustment of the reversing mechanism, the 65 torque limiting device will be in its no-torque

position, since the gear is cut out and the pressure in the system will therefore be partially relieved. The arrangement is however such that this reduced pressure is quite sufficient to operate the piston P'.

70 The operation of the torque limiting device and its action in cutting out the gear when the torque exceeds a predetermined maximum or when the torque is reversed and the reverse torque exceeds a predetermined value has already been described. It will be appreciated that the provision of this device and the various interlocks in the control system together with the employment of slipping plate clutches in the gear 75 minimizes the risk of damage to the parts of the transmission system.

80 To enable higher power to be obtained the transmission system of the locomotive may be duplicated. Such an arrangement is illustrated in Figure 13, which is a diagrammatic view similar to Figure 1 but in which the internal combustion engine is disposed centrally within the locomotive frame and has a complete transmission system at each end. 85 The arrangement of the transmission system at the right hand end is identical with that already described with reference to Figure 1 and the same reference letters are employed, only those parts which differ from 90 Figure 1 being described.

95 In this arrangement the engine A' has a second driving shaft A⁴ at the end remote from the shaft A². This shaft A⁴ leads to a second torque limiting device B³, from which a shaft A⁵ leads to a second epicyclic gear contained within a casing C⁵ which also contains a bevel reversing mechanism. The drive from the reversing mechanism is transmitted through gearing D⁸ and connecting rods D⁹ to sets of driving wheels D¹⁰ coupled together by coupling rods D¹¹. The arrangement of all the elements of the transmission system on the left hand side of the figure is 100 identical with that on the right hand side.

105 The two transmission mechanisms are simultaneously controlled by the same fluid pressure system. For this purpose the only modification necessary to the fluid system is the duplication of certain of the pipes. Thus for the control of the gear contained within the casing C⁵, four pipes C⁶ C⁷ C⁸ C⁹ are provided, these four pipes branching respectively from the four pipes C' C² C³ C⁴ which control the gear in the casing C, so 110 that when for example fluid is supplied through the pipes C' C³ for the actuation of the clutches G' G³, fluid will simultaneously flow through the pipes C⁶ C⁸ and will actuate the corresponding clutches of 115 the second gear.

120 For the control of the second reversing mechanism the shaft H' is extended beyond the worm H and carries a second worm H⁵ which controls the second reversing mecha-

nism in exactly the same manner as the worm H controls the first. Thus rotation of the hand wheel H^2 will simultaneously adjust both reversing mechanisms.

5 The second torque limiting device B^3 serves to actuate a valve B^4 which controls a relief passage B^5 branches from the pipe M^9 . Thus if either torque limiting device comes into action it will relieve the pressure in the whole fluid system.

10 Figure 14 shows an arrangement in which, to obtain higher power and yet keep the size of the locomotive within relatively small limits, the locomotive is divided up into two 15 units each having an internal combustion engine and a complete transmission system. As far as the internal combustion engines and the transmission systems are concerned, each unit is constructed and arranged exactly in the manner described with reference 20 to Figure 1 and the same reference letters are employed for the right-hand unit as in that figure.

25 The left hand unit comprises a frame A^6 within which is mounted an internal combustion engine A^7 driving a shaft A^8 , which in turn drives through a torque limiting device B^6 a shaft A^9 leading to a gear contained within a casing C^{10} which also contains a reversing mechanism. The drive 30 from the reversing mechanism is transmitted to a set of coupled track wheels D^{12} by mechanism exactly corresponding to that described with reference to Figure 1. The internal combustion engine A^7 and the whole 35 transmission system are exactly similar to those employed in the right hand unit and therefore also to those employed in the arrangement shown in Figure 1.

40 The two transmission systems are simultaneously controlled by a single fluid pressure system contained in the right hand unit, and (except for the duplication of certain pipes) this fluid pressure system is identical with that shown in Figure 1. Thus the four pipes $C' C^2 C^3 C^4$ are provided respectively with branch pipes $C^{11} C^{12} C^{13} C^{14}$ which control the gear contained within the casing C^{10} , so that the two gears are similarly and simultaneously controlled. The shaft H' is extended beyond the worm H and carries at its end a worm H^6 controlling the bevel reversing mechanism contained within the casing C^{10} , so that the two reversing mechanisms will be simultaneously actuated. The torque limiting device B^6 actuates a valve B^7 controlling a relief pipe B^8 branched from the pipe M^9 , so that when either torque limiting device comes into action the pressure in the whole fluid system is relieved.

45 It will be understood that the particular arrangements described have been given by way of example only and that modifications

50 may be made without departing from the scope of the invention.

What I claim as my invention and desire to secure by Letters Patent is:—

1. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a bevel reversing mechanism so connected to the gear that the full range of speeds of the gear is available either in the forward or in the reverse direction of motion, a set of coupled track wheels, means for transmitting the drive from the internal combustion engine through the variable speed gear and the reversing mechanism to the track wheels, and a fluid pressure system for controlling the plate clutches of the gear. 75

2. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a plurality of epicyclic variable speed gears, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism associated with each gear, a set of coupled track wheels associated with each gear, means for transmitting the drive from the internal combustion engine to each set of coupled track wheels through its variable speed gear and its reversing mechanism, and a fluid pressure system for simultaneously controlling the plate clutches of all the gears. 90 95

3. An internal combustion engine locomotive, comprising a plurality of internal combustion engines of the heavy oil type, at least one epicyclic variable speed gear connected to each engine, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism associated with each gear, a set of coupled track wheels associated with each gear, means for driving each set of coupled track wheels from an internal combustion engine through its variable speed gear and its reversing mechanism, and a fluid pressure system for simultaneously controlling the plate clutches of all the gears. 100 105 110

4. An internal combustion engine locomotive including in combination a plurality of locomotive units, each unit comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism, a set of coupled track wheels, and means for transmitting the drive from the internal combustion engine to the track wheels through the variable speed gear and the reversing mechanism, and a fluid pressure system for simultaneously controlling the plate clutches of all the variable speed gears. 115 120 125

5. An internal combustion engine locomo-

tive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the

- 5 variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the internal combustion engine through the variable speed gear and the reversing mechanism to
- 10 the track wheels, a fluid pressure system for controlling the plate clutches of the gear, and means whereby the fluid pressure system is controlled partly by hand and partly automatically in accordance with the road
- 15 speed of the locomotive.

6. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the internal combustion engine through the variable speed gear and the reversing mechanism to the track wheels, a fluid pressure operated device for controlling the plate clutches of the gear, a controlling device for the reversing mechanism, and means for interlocking 20 the two controlling devices with one another whereby the reversing mechanism cannot be operated except when the gear is in its neutral position and the gear cannot be adjusted from its neutral position except when the 25 reversing mechanism is in one or other of its operative driving positions.

- 30 7. An internal combustion engine locomotive comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a fluid pressure system for controlling the plate clutches, means for transmitting the drive from the engine to 35 the gear, a set of coupled track wheels, a bevel wheel driven by the gear, a transverse shaft, two bevel pinions fixed rigidly on the transverse shaft and so positioned that either of them can be brought into engagement with the bevel wheel, means for moving the transverse shaft axially, and means for transmitting the drive from the transverse shaft to the track wheels.
- 40 8. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the internal combustion engine through the variable speed gear and the reversing mechanism to the track wheels, a fluid pressure system for 45 controlling the plate clutches of the gear,

a device for actuating the reversing mechanism by hand, and means for locking this actuating device except when the locomotive is at rest.

- 50 9. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a fluid pressure system for controlling the plate clutches, means for transmitting the drive from the engine to the gear, a set of coupled track wheels, a bevel wheel driven by the gear, a transverse shaft, two bevel pinions fixed rigidly on the transverse shaft and so positioned that either of them can be brought into engagement with the bevel wheel, means for transmitting the drive from the transverse shaft to the track wheels, worm gearing by means of which the transverse shaft can be moved axially, a hand-wheel for actuating the worm gearing, and fluid pressure operated means for locking the hand wheel except when the locomotive is at rest.

- 55 10. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the internal combustion engine through the variable speed gear and the reversing mechanism to the track wheels, a fluid pressure system for controlling the plate clutches of the gear, a hand lever for controlling the supply of pressure fluid to the plate clutches, a controlling device for the reversing mechanism, fluid pressure operated locking means for this controlling device, a hand lever for controlling the supply of pressure fluid to the locking means, and means for interlocking 60 the two hand levers with one another whereby the reversing mechanism is locked against operation except when the gear is in its neutral position and the gear cannot be adjusted from its neutral position except when the reversing mechanism is locked in one or another of its operative driving positions.

- 65 11. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the internal combustion engines through the variable speed gear and the reversing mechanism to the track wheels, a fluid pressure system for controlling the plate clutches of the gear, a governor driven in accordance 70 with the road speed of the locomotive, a con-

trol valve actuated by the governor, and a hand-operated distributing valve which operates in conjunction with the control valve to control the fluid pressure system.

5 12. An internal combustion engine locomotive, including in combination an internal combustion engine of the heavy oil type, a transmission unit, a set of coupled track wheels, a driving shaft through which power is supplied from the engine to the transmission unit, and means for transmitting power from the transmission unit to the track wheels, the transmission unit comprising a casing, an epicyclic variable speed gear mounted within the casing and driven from the driving shaft, plate clutches operative on the elements of the gear to control the gear ratio thereof, a bevel wheel mounted on the driven element of the gear and two bevel 20 pinions adapted selectively to engage with the bevel wheel and constituting therewith a reversing mechanism contained within the casing.

13. An internal combustion engine locomotive including in combination an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, a driving shaft through which power is supplied from the engine to the gear, and means for transmitting power from the driven element of the gear through the reversing mechanism to the track wheels, the gear comprising a loose sun wheel, a loose internally toothed annulus, a set of planet pinions meshing with the sun wheel and the annulus, a driven element carrying the planet pinions, and four plate clutches operative to control the gear ratio of the gear, two of these clutches being operative respectively to couple the annulus and the sun wheel to the driving shaft whilst the other two are operative respectively to hold the annulus and the sun wheel against rotation, a fluid pressure system for operating the plate clutches, and a hand-operated distributing valve for selectively controlling the supply of pressure fluid from the system to the four plate clutches.

45 14. An internal combustion engine locomotive including in combination an internal combustion engine of the heavy oil type, a driving shaft through which power is supplied therefrom, an epicyclic variable speed gear train comprising a loose sun wheel, a loose internally toothed annulus, and a set of planet pinions meshing with the sun wheel and the annulus, a driven member carrying the planet pinions of the gear, a bevel reversing mechanism comprising a bevel wheel mounted on the driven member of the gear, a transverse shaft movable in the direction of its axis, and two bevel pinions rigidly fixed on the transverse shaft and adapted to engage selectively with the bevel wheel, a fixed casing containing the gear and the reversing mechanism, four plate clutches contained within the casing and the operative to control the gear ratio of the gear these clutches when operated respectively

acting to couple the sun wheel to the driving shaft, the annulus to the driving shaft, the sun wheel to the fixed casing and the annulus to the fixed casing, a fluid pressure system for selectively controlling the four plate clutches, and means for transmitting the drive from the transverse shaft of the reversing mechanism to the track wheels.

15. An internal combustion engine locomotive including in combination an internal combustion engine of the heavy oil type, a driving shaft through which power is supplied therefrom, an epicyclic variable speed gear train comprising a loose sun wheel, a loose internally toothed annulus, and a set of planet pinions meshing with the sun wheel and the annulus, a driven member carrying the planet pinions of the gear, a bevel reversing mechanism, means for transmitting the drive from the driven member of the gear through the reversing mechanism to the track wheels, four plate clutches operative to control the gear ratio of the gear, two of these clutches being operative respectively to couple the annulus and the sun wheel to the driving shaft whilst the other two are operative respectively to hold the annulus and the sun wheel against rotation, a fluid pressure system for operating the plate clutches, and a hand-operated distributing valve for selectively controlling the supply of pressure fluid from the system to the four plate clutches.

16. An internal combustion engine locomotive including in combination an internal combustion engine of the heavy oil type, a driving shaft through which power is supplied therefrom, an epicyclic variable speed gear train comprising a loose sun wheel, a loose internally toothed annulus, and a set of planet pinions meshing with the sun wheel and the annulus, a driven member carrying the planet pinions of the gear, a bevel reversing mechanism, means for transmitting the drive from the driven member of the gear through the reversing mechanism to the track wheels, four plate clutches operative to control the gear ratio of the gear two of these clutches being operative respectively to couple the annulus and the sun wheel to the driving shaft whilst the other two are operative respectively to hold the annulus and the sun wheel against rotation, a fluid pressure system for selectively operating the four plate clutches, and means whereby the supply of pressure fluid to the clutches is controlled partly by hand and partly automatically in accordance with the road speed of the locomotive.

17. An internal combustion engine locomotive including in combination an internal combustion engine of the heavy oil type, a driving shaft through which power is supplied from the engine, a casing, an epicyclic variable speed gear mounted within the

casing and driven from the driving shaft, plate clutches operative on the elements of the gear to control the gear ratio thereof, a bevel wheel mounted on the driven element of the gear, two bevel pinions adapted selectively to engage with the bevel wheel and constituting therewith a reversing mechanism contained within the casing, a transverse shaft to which the two bevel pinions are rigidly fixed, a hand-operated device for moving the transverse shaft in the direction of its axis whereby either of the bevel pinions can be brought into engagement with the bevel wheel, fluid pressure operated locking means for this device, a hand lever for controlling the supply of pressure fluid to the locking means, a fluid pressure system for controlling the plate clutches of the gear, a hand lever for controlling the supply of pressure fluid to the plate clutches, means for interlocking the two hand levers with one another, a set of coupled track wheels, and means for transmitting the drive from the transverse shaft to the track wheels.

18. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a variable speed gear, a fluid pressure system for controlling the gear ratio of the gear, a reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the engine through the gear and the reversing mechanism to the track wheels, a device connected to one member of the transmission system comprising two parts between which relative movement is produced by variations in the torque transmitted through the member to which the device is connected, and means whereby such relative movement is caused to control the fluid pressure system.

19. An internal combustion engine locomotive comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a driving shaft through which power from the engine is supplied to the gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a fluid pressure system for selectively controlling the plate clutches of the gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the gear through the reversing mechanism to the track wheels, a device connected to the driving shaft comprising two flexibly connected parts between which relative movement is produced by variations in the torque transmitted through the shaft, and means whereby such relative movement is caused to vary the pressure in the fluid pressure system.

20. An internal combustion engine locomotive including in combination an internal combustion engine of the heavy oil type, a variable speed gear, a driving shaft through which power is supplied from the engine to the gear this shaft being divided into two parts, a fluid pressure system for controlling the gear ratio of the gear, a reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the gear through the reversing mechanism to the track wheels, a device forming an operative driving connection between the two parts of the driving shaft and comprising two coaxial wheels carried respectively by these two parts and a spring connection between the two wheels, differential mechanism operated in accordance with the relative movement between the two wheels, and means whereby the differential mechanism is caused to control the fluid pressure system.

21. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, a plurality of plate clutches operative to control the gear ratio of the variable speed gear, a bevel reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the internal combustion engine through the variable speed gear and the reversing mechanism to the track wheels, a fluid pressure system for controlling the plate clutches of the gear, a governor driven in accordance with the road speed of the locomotive, a control valve actuated by the governor, a hand-operated distributing valve which operates in conjunction with the control valve to control the fluid pressure system, a device connected to one member of the transmission system comprising two flexibly connected parts between which relative movement is produced by variations in the torque transmitted through the member to which the device is connected, and means whereby such relative movement is caused to control the pressure in the fluid pressure system.

22. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a plurality of epicyclic variable speed gears, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism associated with each gear, a set of coupled track wheels associated with each gear, means for transmitting the drive from the internal combustion engine to each set of coupled track wheels through its variable speed gear and its reversing mechanism, a fluid pressure system for simultaneously controlling the plate clutches of all the gears, a hand-operated device for simultaneously actuating all the reversing mechanisms, and means for locking this actuating device except when the locomotive is at rest.

23. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a plurality of epicyclic variable speed gears, plate clutches controlling the gear ratio of each gear, a

bevel reversing mechanism associated with each gear, a set of coupled track wheels associated with each gear, means for transmitting the drive from the internal combustion engine to each set of coupled track wheels through its variable speed gear and its reversing mechanism, a fluid pressure system for simultaneously controlling the plate clutches of all the gears, and means whereby the fluid pressure system is controlled partly by hand and partly automatically in accordance with the road speed.

24. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a plurality of epicyclic variable speed gears, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism associated with each gear, a set of coupled track wheels associated with each gear, means for transmitting the drive from the internal combustion engine to each set of coupled track wheels through its variable speed gear and its reversing mechanism, a fluid pressure system for simultaneously controlling the plate clutches of all the gears, a governor driven in accordance with the road speed of the locomotive, a control valve actuated by the governor, a distributing valve which operates in conjunction with the control valve to control the fluid pressure system, a hand lever for actuating the distributing valve, a device for simultaneously actuating all the reversing mechanisms, fluid pressure operated locking means for this actuating device, a hand lever for controlling the supply of pressure fluid to the locking means, and means for interlocking the two hand levers with one another.

25. An internal combustion engine locomotive, including in combination a plurality of locomotive units, each unit comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism, a set of coupled track wheels, and means for transmitting the drive from the internal combustion engine to the track wheels through the variable speed gear and the reversing mechanism, a fluid pressure system for simultaneously controlling the plate clutches of all the variable speed gears, a governor driven in accordance with the road speed of the locomotive, a control valve actuated by the governor, and a hand-actuated distributing valve which operates in conjunction with the control valve to control the fluid pressure system.

26. An internal combustion engine locomotive including in combination a plurality of locomotive units, each unit comprising an internal combustion engine of the heavy oil type, an epicyclic variable speed gear, plate clutches controlling the gear ratio of each gear, a bevel reversing mechanism, a set of coupled track wheels, and means for transmitting the drive from the internal combustion engine to the track wheels through the variable speed gear and the reversing mechanism, a fluid pressure system for simultaneously controlling the plate clutches of all the variable speed gears, a governor driven in accordance with the road speed of the locomotive, a control valve actuated by the governor, and a hand-actuated distributing valve which operates in conjunction with the control valve to control the fluid pressure system.

27. An internal combustion engine locomotive including in combination a plurality of locomotive units, each unit comprising an internal combustion engine of the heavy oil type, a variable speed gear, a driving shaft through which power is supplied from the engine to the gear, a reversing mechanism, a set of coupled track wheels, means for transmitting the drive from the gear through the reversing mechanism to the track wheels, and a torque-limiting device connected to the driving shaft and consisting of two parts between which relative movement is produced by variations in the torque transmitted through the shaft, a fluid pressure system for simultaneously controlling the gear ratios of all the gears, and means whereby relative movement between the parts of any of the torque-limiting devices is caused to control the fluid pressure system.

28. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a variable speed gear, means for transmitting the drive from the engine to the gear, a set of coupled track wheels, a bevel wheel driven by the gear, a transverse shaft, two bevel pinions fixed rigidly on the transverse shaft and so positioned that either of them can be brought into engagement with the bevel wheel, means for transmitting the drive from the transverse shaft to the track wheels, worm gearing by means of which the transverse shaft can be moved axially, a hand-wheel for actuating the worm gearing, a controlling device for locking the hand-wheel against operation, a device for controlling the gear ratio of the variable speed gear, and means for interlocking the two controlling devices with one another.

29. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a variable speed gear, means for transmitting the drive from the engine to the gear, a set of coupled track wheels, a bevel wheel driven by the gear, a transverse shaft, two bevel pinions

ions fixed rigidly on the transverse shaft and so positioned that either of them can be brought into engagement with the bevel wheel, means for transmitting the drive from the transverse shaft to the track wheels, hand-operated means for moving the transverse shaft axially, a device for locking such hand-operated means, a hand-lever for controlling the locking device, a hand-lever for controlling the gear ratio of the variable speed gear, and a mechanical interlock between the two hand-levers.

30. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a variable speed gear, means for transmitting the drive from the engine to the gear, a set of coupled track wheels, a bevel wheel driven by the gear, a transverse shaft, two bevel pinions fixed rigidly on the transverse shaft and so positioned that either of them can be brought into engagement with the bevel wheel, means for transmitting the drive from the transverse shaft to the track wheels, hand-operated means for moving the transverse shaft axially, a controlling device for locking such hand-operated means, a fluid-pressure operated device for controlling the gear-ratio of the variable speed gear, and means for interlocking the two controlling devices with one another.

31. An internal combustion engine locomotive, including in combination an internal combustion engine of the heavy oil type, a transmission unit, a set of coupled track wheels, a driving shaft through which power is transmitted from the engine to the transmission unit, and means for transmitting power from the transmission unit to the track wheels, the transmission unit comprising a casing, a variable speed gear mounted within the casing and driven from the driving shaft, a bevel wheel mounted on the driven element of the gear, two bevel pinions adapted selectively to engage with the bevel wheel and constituting therewith a reversing mechanism contained within the casing, a device for controlling the gear-ratio of the variable speed gear, a controlling device for the reversing mechanism, and means for interlocking the two controlling devices with one another whereby the reversing mechanism cannot be operated except when the gear is in its neutral position and the gear cannot be adjusted from its neutral position except when the reversing mechanism is in one or another of its operative driving positions.

32. An internal combustion engine locomotive, including in combination an internal combustion engine of the heavy oil type, a transmission unit, a set of coupled track wheels, a driving shaft through which power is transmitted from the engine to the transmission unit, and means for transmitting

power from the transmission unit to the track wheels, the transmission unit comprising a casing, an epicyclic variable speed gear train contained within the casing and consisting of a loose sun wheel, a loose internally toothed annulus, and a set of planet pinions meshing with the sun wheel and the annulus, a driven member carrying the planet pinions, two plate clutches operative respectively to couple the sun wheel and the annulus to the driving shaft, two plate clutches operative respectively to hold the sun wheel and the annulus against rotation, a bevel wheel mounted on the driven member of the gear, and two bevel pinions adapted selectively to engage with the bevel wheel and constituting therewith a reversing mechanism contained within the casing.

33. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a variable speed gear, a driving shaft through which power is transmitted from the engine to the gear, a reversing mechanism, a set of coupled track wheels, means for transmitting power from the gear through the reversing mechanism to the track wheels, a device connected to the driving shaft comprising two flexibly connected parts between which relative movement is produced by variations in the torque transmitted through the shaft, and means whereby such relative movement beyond a predetermined maximum is caused to disconnect the gear from the driving shaft.

34. An internal combustion engine locomotive, including in combination an internal combustion engine of the heavy oil type, a driving shaft through which power is supplied therefrom, an epicyclic variable speed gear train comprising a loose sun wheel, a loose internally toothed annulus, and a set of planet pinions meshing with the sun wheel and the annulus, two plate clutches operative respectively to couple the sun wheel and the annulus to the driving shaft, two plate clutches operative respectively to hold the sun wheel and the annulus against rotation, a driven member carrying the planet pinions, a reversing mechanism, a set of coupled track wheels, means for transmitting power from the driven member through the reversing mechanism to the track wheels, a device connected to the driving shaft and comprising two flexibly connected parts between which relative movement is produced by variations in the torque transmitted through the shaft, and means whereby such relative movement is caused to control the amount of slip permitted between the individual plates of the clutches.

35. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a set of coupled track wheels, a transmission system including a variable speed gear, means for trans-

mitting the drive from the engine through the transmission system to the track wheels, means whereby the gear ratio of the variable speed gear is controlled partly by hand and partly automatically in accordance with the road speed of the locomotive, a device connected to one member of the transmission system comprising two parts between which relative movement is caused by variations in the torque transmitted through the member, and means whereby such relative movement beyond a predetermined maximum is caused to cut out the gear and thereby to disconnect the engine from the track wheels.

36. An internal combustion engine locomotive, including in combination an internal combustion engine of the heavy oil type, a plurality of variable speed gears, a bevel reversing mechanism associated with each gear and comprising a bevel wheel driven by the gear, a transverse shaft, two bevel pinions rigidly mounted on the transverse shaft and adapted selectively to engage with the bevel wheel, and worm gearing for moving the transverse shaft axially, a set of coupled track wheels associated with each reversing mechanism, means for transmitting the drive from the engine through the gears and the reversing mechanisms to the track wheels, means for simultaneously controlling the gear ratios of all the gears, and a hand-operated device for actuating the worm gearings whereby all the reversing mechanisms are simultaneously actuated.

37. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a plurality of variable speed gears, a reversing mechanism associated with each gear, a set of coupled track wheels associated with each gear, means for transmitting the drive from the engine through the gears and the reversing mechanisms to the track wheels, a device for simultaneously controlling the gear ratios of all the gears, a device for simultaneously controlling all the reversing mechanisms, and means for interlocking the two controlling devices with one another whereby the reversing mechanisms can not be actuated except when the gears are in their neutral positions and the gears cannot be adjusted from their neutral positions except when the reversing mechanisms are in one or another of their operative positions.

38. An internal combustion engine locomotive, comprising an internal combustion engine of the heavy oil type, a plurality of transmission systems each including a variable speed gear, a set of coupled track wheels associated with each transmission system, means for transmitting the drive from the engine through each transmission system to its track wheels, means for simultaneously controlling the gear ratios of all the variable speed gears, a device connected to one member of a transmission system comprising two parts between which relative movement is caused by variations in the torque transmitted through the member, and means whereby such relative movement beyond a predetermined maximum is caused to cut out all the gears and thereby to disconnect the engine from the track wheels.

In testimony whereof I have signed my name to this specification.

ALAN ERNEST LEOFRIK CHORLTON.