
A method and system that provides secure modules that can address Java platform 

weaknesses and protect Java bytecode during execution time. The secure modules are 

implemented in C/C++ as an example. Because implementation of the security modules 

is made in C/C++, this enables use of security technology that secures C/C++ software 

code. 



We Claim: 

1. A system for increasing tamper-resistance of Java bytecode, comprising: 

a protection tool for applying a protection mechanism to Java bytecode during 

build-time, and generating deployable and secured Java bytecode; 

a Java Virtual Machine (JVM) for launching said secured Java bytecode at 

mn-time, execution of said secured Java bytecode making a call to a local, tamper-

resistant security module; 

said tamper-resistant security module interfacing with said JVM and effecting 

execution of said secured Java bytecode in view of said protection mechanism; 

said protection mechanism defending against static and dynamic attacks on 

said Java bytecode. 

2. The system of claim 1, wherein said tamper-resistant security module 

prevents execution of said Java bytecode in its entirety, on said JVM, in an 

unprotected fomnat. 

3. The system of claim 1, wherein said tamper-resistant security module 

interfaces with said JVM via two-way communication. 

4. A system for increasing tamper-resistance of Java bytecode, comprising: 

a protection tool for applying a protection mechanism to Java bytecode during 

build-time, and generating deployable and secured Java bytecode; 

a tamper-resistant security module interfacing with a JVM, and supporting and 

effecting the execution of said secured Java bytecode in view of said protection 

mechanism; 

said protection mechanism including a set of secured execution dependencies 

interlocking JVM execution with said tamper-resistant security module at mn-time and 
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thereby providing secured execution of said secured Java bytecode on said Java 

Virtual Machine (JViVI); 

said protection mechanism resisting static and dynamic attacks on said Java 

bytecode by managing, controlling, monitoring and performing said secured execution 

of said secured Java bytecode, on said JVM. 

5. A system for increasing tamper-resistance of Java bytecode, comprising: 

a protection tool for applying a protection mechanism to Java bytecode during 

build-time, and generating deployable and secured Java bytecode; 

a tamper-resistant security module providing a trustworthy zone and 

expanding the trustworthy zone into a Java Virtual Machine (JVM) by interfacing with 

said JVM, and by supporting and effecting the execution of said secured Java 

bytecode in view of said protection mechanism; 

a set of secured execution dependencies ensuring secured execution of said 

secured Java bytecode on said JVM, interfacing and execution interlocking with a 

local tamper-resistant security module at run-time; 

said protection mechanism resisting and thwarting static and dynamic attacks 

effectively on said Java bytecode by managing and controlling said secured 

execution of said secured Java bytecode in its entirety, on said JVM with extended 

execution on said tamper-resistant security module. 

6. The system as claimed in any one of Claims 1 to 5 wherein said Java 

bytecode Is broken into multiple parts by said protection tool during build-time, said 

multiple parts being executed on different ones of said JVM and said tamper-resistant 

security module during run time. 

7. The system as claimed in any one of Claims 1 to 5 wherein said secured Java 

bytecode includes a protected Java application bytecode stub, a protected application 
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payload, and an encrypted class bytecode frame, each being generated by said 

protection tool during build-time. 

8. Tlie system as claimed in Claim 7 wherein said protection tool includes a 

mechanism requiring that said protected application payload is launched by starting 

said protected Java application bytecode stub via invoking the tamper-resistant 

security module during run-time. 

9. The system as claimed in either one of Claims 7 and 8 wherein: 

said security module includes a protected bytecode class loader; and 

said protection tool includes a mechanism to dictate that said protected 

application payload is launched via said encrypted class bytecode frame using said 

protected bytecode class loader. 

10. The system as claimed in any one of Claims 1 to 9 wherein: 

said security module is distributed independently as a functional extension to 

a Java virtual machine environment to provide a root of trust of protected Java 

applications, and 

said secured Java bytecode is distributed separately as per user needs. 

11. The system as claimed in any one of Claims 1 to 10 wherein said security 

module is written in a native programming language which applies local hardware-

based protection techniques and systems. 

12. The system as claimed in any one of Claims 1 to 10 wherein said security 

module is written in a native programming language which applies local native 

software-based protection techniques and systems. 



13. The system as daimed in any one of Claims 1 to 10 wherein said security 

module is written in a programming language which must be protected and trusted 

strongly and comprehensively, including C and C++. 

14. The system as claimed in any one of Claims 1 to 10 wherein said security 

module is protected using white-box security techniques. 

15. The system as claimed any one of Claims 1 to 14 wherein parameters of said 

protection mechanism are configurable according to user preferences, and said 

protection toot generates secured Java bytecode in accordance with said user 

preferences. 

16. The system as claimed in Claim 15 wherein said protection mechanism moves 

part of execution of said Java bytecode into said security module, whereby said JVM 

will not execute all of said Java bytecode during run-time, so original Java bytecode 

will not be observable fully on the JVM. 

17. The system as claimed in Claim 15 wherein said protection mechanism 

translates selected methods in said Java bytecode into functions in a native fomi 

which are not directly visible to the JVM and can only be invoked by the security 

module. 

18. The system as claimed in Claim 15 wherein said protection mechanism 

performs data flow transfonnations on said Java bytecode, transforming code 

structure of said Java bytecode without changing functionality. 
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19. The system as claimed in Claim 15 wherein said protection mechanism 

perfomis control flow transfonnations on said Java bytecode, transforming code 

structure of said Java bytecode without changing functionality. 

20. The system as claimed in Claim 15 wherein said tamper-resistant security 

module loads and restores Java bytecode to be executed, in a workspace of the JVM, 

just-in-time, and then removes the restored Java bytecode after execution. 

21. The system as claimed in any one of Claims 1 to 15 wherein said protection 

mechanism perfomns anti-debugging monitoring. 

22. The system as claimed in Claim 21 wherein said protection mechanism: 

periodically checks its own process map from the Kernel; and 

responds to libraries related to the debugging of Java, for example JDPA 

(Java Platform Debug Architecture) or JVMTI (Java Virtual Machine Tool Interface) 

being loaded into its memory space by triggering a defensive action. 

23. The system as claimed in Claim 21 wherein said step of responding 

comprises: 

responding to libraries related to the JDPA (Java Platform Debug Architecture) 

being loaded into its memory space by triggering a defensive action. 

24. The system as claimed in Claim 21 wherein said step of responding 

comprises: 

responding to libraries related to the JVMTI (Java Virtual Machine Tool 

Interface) being loaded into its memory space by triggering a defensive action. 
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25. The system as claimed in Claim 21 wherein said protection mechanism: 

listens for launching of debugging threads; and 

responds to debugging threads being launched by triggering a defensive 

action. 

26. The system as claimed in Claim 21 wherein said protection mechanism: 

listens for line break messages effected by a debugging tool; and 

responds to detection of line break messages by triggering a defensive action. 

27. The system as claimed in anyone of Claims 1 to 15 further comprising a 

whitebox (W6) static security handler for accepting cryptographic information 

including cryptographic keys from a user to generate: 

WB encryption key data used by said protection tool at build-time; and 

WB decryption key data and a WB security module utility, used by said 

tamper-resistant security module at run-time. 

28. The system as claimed in any one of Claims 1 to 15 wherein said protection 

mechanism comprises a bytecode integrity verification (BIV) system and: 

said protection tool calculates hash values of said secured Java bytecode at 

build-time, and 

said tamper-resistant security module detennines whether said build-time 

hash value is equal to said hash values calculated at run-time, said tamper-resistant 

security module invoking tampering countemneasures in response to a verification 

failure. 

29. The system as claimed in Claim 28 wherein said tamper-resistant security 

module is operable to: 
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obtain Java bytecode via an interface with said JVM; 

compute a dynamic hash value of said Java bytecode; 

detemnine whether said build-time hash value is equal to said hash value 

calculated at ain-time, and if not, invoke tampering countenneasures. 

30. The system as claimed in Claim 29 wherein said hash value verification is 

perfonned by a tamper-resistant gate Iceeper. 

31. The system as claimed in Claim 29 wherein said hash value verification is 

performed without explicitly comparing the build-time and run-time hash values, 

32. The system as claimed in Claim 30 wherein said hash value verification is only 

performed on selected classes and methods of said Java bytecode. 

33. The system as claimed in Claim 32 wherein data related to said hash value 

verification, and selected classes and methods, is encrypted. 

34. The system as claimed in Claim 32 wherein static hash values are encrypted 

by a WB cipher using different key data. 

35. The system as claimed in Claim 32 wherein on closing of the BIV system, the 

secure module cleans the related memory space and other Infomnation used by the 

BIV system. 

36. The system as claimed in any one of Claims 1 to 15, wherein: 



said protection tool includes a secure loading bytecode (SL6) tool for 

generating during build-time: a protected Java application bytecode stub, a protected 

application payload, and an encrypted class bytecode frame, and 

said tamper-resistant security module includes an SLB dynamic security 

handler for 

loading into a memory buffer said encrypted class bytecode frame 

corresponding to said secured Java application bytecode, 

decrypting each encrypted class contained within said encrypted class 

bytecode frame via white-box-protected decryption key data corresponding to 

said encrypted class, and 

loading each decrypted class bytecode into an application work space 

via a tamper-resistant security module class loader to execute said Java 

application bytecode within said application work space. 

37. The system as claimed in any one of Claims 1 to 15, wherein: 

said protection tool is operable to encrypt a method bytecode during build-

time; and 

said tamper-resistant security module is operable to respond to said encrypted 

method bytecode being invoked by a running Java program by: 

decrypting said encrypted method bytecode; 

invoking the unencrypted method; and 

after execution, removing the unencrypted class and instance from the 

JVM. 

38. The system as claimed in Claim 37, wherein when an encrypted Java method 

is invoked while executing a secured Java bytecode on the JVM: 

a method stub Is first executed; and then 
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a down call, method boot strapping, is invoked with the tamper-resistant 

security module, which identifies and decrypts the encrypted method from the 

encrypted method bytecode frame, restoring the real bytecode to the JVM. 

39. The system as claimed in Claim 38, wherein once the method invocation is 

complete the tamper-re^stant security module: 

restores the real state from the unencrypted class instance to the encrypted 

Instance; and 

control is retumed to the originating down call method. 

40. A system for increasing tamper-resistance of a software application 

comprising: 

a protection tool for applying a protection mechanism to bytecode during build-

time and generating deployable, secure bytecode; 

a Virtual Machine (VM) for launching said secure bytecode at run-time, 

execution of said secure bytecode making a call to a local, tamper-resistant security 

module; 

said tamper-resistant security module interfacing with said VM and effecting 

execution of said secure bytecode in view of said protection mechanism; 

sakj protection mechanism countering static and dynamic attacks on said 

bytecode by preventing execution of the entirety of said bytecode on said VM in an 

unprotected fomiat. 

41 . The system as claimed in Claim 40 wherein sakJ secured bytecode includes a 

protected non-native application stub and a protected application payload, both being 

generated by said protection tool during build-time. 



42. The system as claimed in Claim 40 wherein said secured bytecode includes a 

protected application stub and a protected non-native application function, both being 

generated by said protection tool during build-time. 

43. The system as claimed in Claim 40 wherein said secured bytecode includes a 

protected application stub and a protected native application payload, both being 

generated by said protection tool during build-time. 

44. A method for increasing tamper-resistance of Java bytecode, comprising: 

applying a protection mechanism to Java bytecode during build-time, using a 

protection tool, and generating deployable and secured Java bytecode; 

launching said secured Java bytecode at run-time, using a JVM, execution of 

said secured Java bytecode mal<ing a call to a local, tamper-resistant security 

module; 

said tamper-resistant security module interfacing with said JVM and effecting 

execution of said secured Java bytecode in view of said protection mechanism; 

said protection mechanism defending against static and dynamic attacks on 

said Java bytecode. 

45. A method for increasing tamper-resistance of Java bytecode, comprising: 

applying a protection mechanism to Java bytecode during build-time, using a 

protection topi, and generating deployable and secured Java bytecode; 

a tamper-resistant security module interfacing with a JVM, and supporting and 

effecting the execution of said secured Java bytecode in view of said protection 

mechanism; 

said protection mechanism including a set of secured execution dependencies 

interiocl(ing JVM execution with said tamper-resistant security module at run-time and 



thereby providing secured execution of said secured Java bytecode on said Java 

Virtual Machine (JVM); 

said protection mechanism resisting static and dynamic attacks on said Java 

bytecode by managing, controlling, monitoring and performing said secured execution 

of said secured Java bytecode, on said JVM. 

46. A method for increasing tamper-resistance of Java bytecode, comprising: 

applying a protection mechanism to Java bytecode during build-time, using a 

protection tool, and generating deployable and secured Java bytecode; 

providing a trustworthy zone using a tamper-resistant security module, and 

expanding the trustworthy zone into a Java Virtual Machine (JVM) by interfacing with 

said JVM, and by supporting and effecting the execution of said secured Java 

bytecode in view of said protection mechanism; and 

employing a set of secured execution dependencies to ensure secured 

execution of said secured Java bytecode on said JVM, interfacing and execution 

interlocking with a local tamper-resistant security module at mn-time; 

saki protection mechanism resisting and thwarting static and dynamic attacks 

effectively on said Java bytecode by managing and controlling said secured 

execution of said secured Java bytecode in its entirety, on said JVM with extended 

execution on said tamper-resistant security module. 

Dated this the 21 st Day of March, 2012 . 

MANISHA SINGH NAIR 
Agent for the Applicant [IN/PA-740] 
LEX ORBIS IP PRACTICE 







































FIELD OF THE INVENTION 

The present invention relates generally to computer software, and more 

specifically, to a method and system of making computer software resistant to static 

and dynamic attacks within a hostile execution environment. 

BACKGROUND OF THE INVENTION 

Within the computer programming industry, the Java programming language is 

used in every major industry segment and has a presence in a wide range of devices, 

computers, and networks. Java applications are written in the Java programming 

language and compiled into machine-independent bytecodes that are executed on a 

Java Virtual Machine (JVM), which is deployed on a host Operating System (OS) and 

the host Computer Processing Unit (CPU) Instruction Set Architecture (ISA). Java 

technology's versatility, efficiency, platfonn portability, and security make it the ideal 

technology for network computing. The Java programming language is found 

everywhere from laptops to datacenters, game consoles to scientific supercomputers, 

' and cell phones to the Intemet. Indeed, portability, extensibility, generality, and 

reliability are key Java strengths. However, such ubiquity also provides ample 

opportunity for hackers and related computer attacks. 

To provide protection in the event of an attack and to resist unauthorized 

access to the Java environment from un-trusted applications, Java technology includes 

the Java sand-box security model for protecting the execution environment of the host 

machine or device where compromised software such as viruses or malware may be 

downloaded or installed illegally. Resistance to such attacks is fundamental in highly 

protected environments and systems such as telecommunication systems, 

transportation systems, defense systems, industrial automation systems, and power 
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management systems. Each year, more and more such critical systems are designed 

and implemented using the Java programming language. 

Likewise, the consumer electronics industry is entering a new age where 

advanced technologies and products, rapid demand on media digitalization, and the 

continuously falling prices of consumer electronics taken together with increasing 

disposable income from emerging markets have spurred growth in the consumer 

electronics market at a speed and scope without precedent. Many such consumer 

electronics products rely on software applications to function. Certain Java 

programming language strengths (such as portability, extensibility, generality, 

reliability, and simplicity) reduces overall development and deployment cost of 

consumer electronics products, thereby ensuring more and more Java- based 

platforms and applications are deployed to new consumer products. 

Almost all consumer electronics devices require functioning in an un- toisted 

environment, in un-trusted environments, software within consumer electronics devices 

can be directly accessed for different purposes ranging from a beneficial reason (e.g., 

to get needed services) to undesirable reasons (e.g., to hack the devices). As a result, 

more and more computer applications execute in a relatively hostile environment than 

ever before. For example, hand-held devices (such as portable media players or smart 

phones), home networking (such as set- top boxes, media players, or personal 

computers), and web-based environments are areas where attackers often spend large 

• amounts of time and resources. Therefore, the protection of legitimate software against 

attacking software is becoming an escalating amis race. Moreover, high perfomnance 

hardware and sophisticated attack tools provide the intruders with many new 

advantages. 

Software distributors must be sure that their software is robust and resistant to 

attack. However, the given platform and software are often well known to an attacker 

who has time, resources, tools, and all the experts on the web at the disposal of the 

attacker. This hostile attack landscape is often tenned a "white box" environment, 

where all the content is in plain sight and therefore subject to direct access and 

tampering. This is the opposite of a "black-box" environment which is, in the other 
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words, a trusted and protected environment where content is hidden or othenwise 

protected from attack. In the prevailing hostile landscape of a white t>ox environment, 

preventing or stopping direct and automated attacks to software systems is becoming 

one of the most demanding security challenges. Moreover, strong defenses for white 

box attacks must be achieved to ensure proper and secure device function. The Java 

programming language is not adequately designed to tackle such security problems 

and challenges. In this respect, certain Java strengths actually cause security 

weaknesses when compared to programming in C or C++. 

Unlike C/C++ compilers that compile C/C++ code to a low-level instruction set 

which operates on raw binary data and is specific to the target hardware (such as x86 

or PowerPC), a Java compiler compiles Java source code to a higher-level portable 

bytecode that operates on classes and primitive types that the JVM can interpret during 

execution. Platform dependency is encapsulated within JVM and decoupled fi'om the 

Java application. 

As well, the standard Java compiler does not perfomi compile-time 

optimizations that are commonly and usually found in C/C++ compilers. Instead, Java 

relies on Just-ln-Time (JIT) compilation to perfonn all optimizations at run time while 

taking the execution profile into account for perfonmance improvement. Major C/C++ 

code optimizations are performed at compile time. For example, inline substitution 

results in copies of the given (member) function being scattered around the binary 

image; use of the preprocessor combined with compile-time evaluation of expressions 

may leave no trace of the constants defined in the source code; and so on. In general, 

sophisticatedly optimized code is more difficult to reverse engineer. 

Still further, Java program dependencies are resolved at mn time when classes 

are loaded. So the name of the class and names of its methods and fields must be 

present in a class file, as well as names of all imported classes, called methods, and 

accessed fields. On the other hand, C/C++ programs are statically linked. Therefore, 

the names of classes, members, and variables need not be present in the compiled 

and linked program, except for names exported from dynamic libraries. 



Finally, a Java application is delivered as a set of Java Archive (JAR) files. Tiie 

JAR forniat enables multiple files to be bundled into a single archive file, which are 

basically non-encrypted archives and from which it is relatively easy to extract 

individual classes. By comparison, a C/C++ application is delivered as a monolithic 

executable that may linl̂  with a few dynamic libraries, so it Is not as easy to identify 

program information and individual code. 

I Accordingly, the decompilation of Java bytecode to Java source is much simpler 

and easier than dissembling C/C++ and can therefore be fully automated. Program 

infomnation such as class hierarchy, statements, names of classes, methods and fields 

can all be retrieved from the bytecode. Although there are many freeware and 

commercial Java obfuscation tools available, none provide protection to prevent a 

direct attack to execution of the bytecode. As a result, Java reverse engineering is now 

a common practice. 

Moreover, a JVM provides an open run time environment for Java applications. 

There is very little built-in security to protect the JVM and make the JVM itself robust. 

Attaching to a JVM itself or using a JVM to launch attacks is relatively trivial, Therefore, 

regardless of the strength of protections applied to Java application code, hackers may 

always use the JVM as the weakest link in order to implement white box attacks 

because of the JVM's vulnerability. Although a more trusted and robust JVM would 

likely protect Java applications and prevent white box attacks, this approach would 

require significant changes to the cun-ent Java security model and related significant 

industry support and adaptation. It would therefore be desirable to have a trusted and 

robust component within industrial standard JVM that protects applications within a 

white box environment. 

SUMIMARY OF THE INVENTION 

It is an object of the present invention to obviate or mitigate a major 

disadvantage of previous Java platfomi configurations. 



This disclosure presents an invention that provides secure modules that can 

address Java platform weaknesses and protect Java bytecode during execution time. 

The secure modules are implemented in C/C++ as an example. Because 

implementation of the inventive security modules is made in C/C++, this enables use of 

security technology that secures C/C++ software code. For purposes of the present 

invention, suitable securKy technology is that provided by Cloakware Inc. of Ottawa, 

Ontario, Canada. Such suitably intended security technology is described fully within 

prior commonly owned United States Patents including: Patent No. 7,506,177 issued 

on 17 MAR 2009 to Chow et al. and titled TAMPER RESISTANT SOFTWARE 

ENCODING AND ANALYSIS; Patent No. 7,464,269 issued on 09 DEC 2008 to 

Johnson et al. and titled SECURE METHOD AND SYSTEM FOR HANDLING AND 

DISTRIBUTING DIGITAL MEDIA; Patent No. 7,397,916 issued on 08 JUL 2008 to 

Johnson et al. and titled SYSTEM AND METHOD FOR PROTECTING COMPUTER 

SOFTWARE FROM A WHITE BOX ATTACK; Patent No. 7,395,433 issued on 01 JUL 

2008 to Chow et al. and titled METHOD AND SYSTEM FOR SUSTAI NABLE DIGITAL 

WATERMARKING; Patent No. 7,350,085 issued on 25 MAR 2008 to Johnson et al. 

and titled TAMPER RESISTANT SOFTWARE-MASS DATA ENCODING; Patent No. 

7,325,141 issued on 29 JAN 2008 to Chow et al. and titled METHOD AND SYSTEM 

FOR SECURE ACCESS; Patent No. 6,842,862 issued on 1 1 JAN 2005 to Chow et al. 

and titled TAMPER RESISTANT SOFTWARE ENCODING; Patent No. 6,779, 1 14 

issued on 17 AUG 2004 to Chow et al. and titled TAMPER RESISTANT SOFTWARE-

CONTROL FLOW ENCODING; and Patent No. 6,594.761 issued on 15 JUL 2003 to 

Chow et al. and titled TAMPER RESISTANT SOFTWARE ENCODING; each of which 

patents are herein incorporated in their entirety by such reference made here. 

The existing software security technology disclosed in the above- referenced 

patents and related products from Cloakware, Inc. are used to protect legitimate 

applications along with the functionality and intellectual property of the applications, 

which run on hostile (un-trusted) execution environments, in order to prevent white box 

attacks to these applications. Such existing software security technology contains 

practical source code and binary protection tools that protect applications in C/C++ 
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along with native compiled code and make software and security inseparable by 

enhancing traditional application building processes. 

In a first embodiment, the present invention provides an apparatus for 

increasing tamper-resistance of Java bytecode, including: a protection tool for applying 

security to Java bytecode during build-time; a security module accepting secured Java 

bytecode from the protection tool and launching the secured Java bytecode during run­

time; and one or more protection mechanisms integrated with the protection tool and 

the security module; wherein one or more protection mechanisms operate to counter 

static and dynamic attacks to the Java bytecode. 

In a further embodiment of the present invention, the apparatus also includes a 

secured Java bytecode including a protected Java application bytecode stub, a 

protected application payload, and an encrypted class bytecode frame, each of which 

being formed by said protection tool during build-time. 

In another embodiment of the present invention, the security module is 

distributed independently as a functional extension to a Java virtual machine 

environment to provide a root of trustiness of protected Java applk:ations, and the 

secured Java bytecode is distributed separately as per user needs. 

. In a further embodiment of the present invention, the protection tool has a 

mechanism to dictate that the protected application payload is launched via said 

protected Java application bytecode stub. 

In a further embodiment of the present invention, the security module includes a 

protected bytecode class loader and the protection tool includes a mechanism to 

dictate that said protected application payload is launched via said encrypted dass 

bytecode frame using the protected bytecode class loader. 

In a further embodiment, the apparatus is fonmed of programming engines 

implemented in a programming language including one or more of C, C++, and Java. 

In a further embodiment, the apparatus is fornied of programming engines 

implemented in a programming language capable of interfacing with a Java virtual 

machine. 
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In a further embodiment, one or more of the protection mechanisms are 

selectable according to configuration options. These protection mechanisms may also 

include static security handlers fomned within the protection tool and dynamic security 

handlers formed with the security module. 

In a further embodiment, the static security handlers may include a whitebox 

(WB) static security handler for accepting cryptographic infonnation including 

cryptographic keys from a user so as to generate: WB encryption key data used by one 

or more of other the static security handlers, and WB decryption key data and a WB 

security module utility, each used by one or more the dynamic security handlers during 

dynamic run-time protection of the security module. 

In a further embodiment, the static security handlers may include a bytecode 

integrity verification (BIV) static security handler for applying hash code protection to 

the secured Java bytecode in response to protection mari<ing infonnation, and the 

dynamic security handlers includes a BIV dynamic security handler for verifying the 

hash code protection at run-time, wherein the security module invokes tampering 

countemieasures upon verification failure. 

In a further embodiment, the apparatus further includes static security handlers 

which may include a secure loading bytecode (SLB) static security handler for forming 

during build-time a protected Java application bytecode stub, a protected application 

payload, and an encrypted class bytecode frame, and the dynamic security handlers 

includes an SLB dynamic security handler for loading into a memory buffer said 

encrypted class bytecode frame con^sponding to the secured Java application 

bytecode, decrypting each of encrypted class contained within the encrypted class 

bytecode frame via said WB decryption key data con'esponding to the encrypted dass, 

loading each decrypted class bytecode into an application work space via a security 

module class loader so as to execute the Java application bytecode within the 

application wori< space. 

Other aspects and features of the present invention will become apparent to 

those ordinarily skilled in the art upon review of the following description of specific 

embodiments of the invention in conjunction with the accompanying figures. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

Embodiments of the present invention will now be described, by way of example 

only, with reference to the attached Figures, wherein: 

FIGURE 1 is a diagram illustrating a known overview of the JNI bridging a Java 

application with native code. 

FIGURE 2 is a diagram illustrating the known mechanism of static attacks to 

Java application bytecodes. 

FIGURE 3 is a diagram illustrating the known mechanism of dynamic attacks to 

Java application bytecodes. 

FIGURE 4 is a diagram illustrating an oven/iew of the Java bytecode protection 

system in accordance with the present invention. 

FIGURE 5 is a diagram illustrating the build-time process, as shown in the top 

portion of FIGURE 4, to protect Java application bytecodes at build-time in accordance 

with the present invention. 

FIGURE 6 is a diagram illustrating the run-time process, as shown in the bottom 

portion of FIGURE 4, to protect Java application bytecodes at run-time in accordance 

with the present invention. 

FIGURE 7 is a diagram illustrating the anti-debug capability at startup and run­

time in acconjance with the present invention. 

FIGURE 8 is a diagram illustrating the external white box (WB) cryptographic 

library in accordance with the present invention. 

FIGURE 9 is a diagram illustrating the internal WB cryptographic facility in 

accordance with the present invention. 

FIGURE 10 is a diagram illustrating the pre-process of the bytecode protection 

tool in accordance with the present invention. 



FIGURE 11 is a diagram illustrating the work flow of the Bytecode Integrity 

Verification (BIV) static security handler in accordance with the present invention. 

FIGURE 12 is a diagram illustrating the work flow of the BIV dynamic security 

handler in accordance with the present invention. 

FIGURE 13 is a diagram illustrating the work flow of the Secure Loading 

Bytecode (SLB) static security handler in accordance with the present invention. 

FIGURE 14 is a diagram illustrating the wort< flow of the SLB dynamic security 

handler in accordance with the present invention. 

FIGURE 15 is a diagram illustrating the bootstrap interface and secure loading 

of a cloaked Java application in accordance with the present invention. 

FIGURE 16 is a diagram illustrating the worit flow of the Dynamic Bytecode 

Decryption (DBD) static security handler in accordance with the present invention. 

FIGURE 17 is a diagram illustrating a DBD sequence diagram in accordance 

with the present invention. 

FIGURE 18 is a diagram illustrating the wori( flow of the DBD dynamic security 

handler in accordance with the present invention. 

DETAILED DESCRIPTION 

As seen by way of FIGURE 1 , the Java platform 100 additionally includes a 

Java Native Interface (JNI) 102 that provides a facility to bridge two- way 

interoperations and Interactions between the Java worid (which includes a JVM 104, 

Java applications 106, and libraries 108 in bytecode loaded within the JVM) and the 

native code worid 110 (which applications or shared libraries are written in other 

languages, such as C/C+-<-/assembler, and compiled into the host CPU ISA). By using 

a JNI Application Programming Interface (API) in Java programming language and 

C/C++/assembler code, C/C++/assembler native binary code can be callable from Java 

and also can invoke Java bytecodes. There are two kinds of interactions: "down-calls" 

when a Java application code calls a native method and "up-calls" when a native 
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method accesses data or invokes methods of the given Java application via a JNI 

environment. 

At the run-time, the security modules of the present invention can co-execute 

within the JVM via the JNI so that the given Java application can invoke secure 

operations within the inventive security module where such secure operations can 

access the Java application and other Java library code loaded within the JVM and 

perform protections. 

The approach of the present invention is effectively a security addon to an 

existing JVM by introducing a security module that is fully protected and trusted within 

the JVM via the JNI mechanism. At run-time, the security module acts as the root of 

the trust and as a protection "trampoline and engine" within the JVM to launch and 

perform the various protections to Java bytecode. In this way, the present invention 

does not require any global changes to the existing Java platfomi. Rather, both existing 

and newly deployed systems and devices can benefit from this solution immediately. In 

the other words, the present invention may be treated as a security extension to 

existing Java infrastructure to address security problems faced by cun^nt Java 

applications. Thus, the present invention provides a Java bytecode protection security 

module that leverages the ability of the JNI to access bytecode during run-time and 

perform a set of protection methods to Java bytecode in response to static and 

dynamic attacks to the Java application. 

The present invention provides a highly trusted protection tool and security 

module within a Java bytecode protection system. The present invention does not rely 

upon Java application protection based only on the JVM and Java security. Rather, the 

present invention introduces a Java bytecode protection security module (SM) being a 

trusted zone that can work with the JVM via the JNI to launch, perfomn, and manage 

Java bytecode protection during mn-time. The trustworthiness of the security module is 

provided by applying known effective security protection to C/C++ code in which 

programming language the protection tool and security module are written. With such a 

trusted SM, tnjstworthiness is expanded fi'om the SM to the Java applications and the 

JVM by certain protections provided by the SM discussed fijrther herein. 



! With regard to FIGURES 2 and 3, typical static and dynamic attacks to java 

bytecode are Illustrated. In general, any given Java application is developed in Java 

source form 202 and is then complied into Java bytecode 204 by a Java compiler 206, 

which is stored on an archive file 208 (i.e., JAR file) by using an archiver utility 210 

prior to distribution. Such distribution may take many forms including media such as a 

Compact Disc (CO) or downloadable files. 

A static attacker 212 nomially uses reverse engineering tools (e.g. , a Java 

decompiler) to extract valuable Intellectual property infonnation 214 (i.e., proprietary 

data or software algorithms) from the code from the distribution media. In doing so, the 

attacker may then make illegal changes to the code or othenvise compromise the 

underlying code 216. In order to prevent such static attacks to Java bytecode during 

the distribution of the given Java application, the present invention applies a level of 

protection to application bytecode. This protection is provteled before distribution to 

ensure that static attacks become extremely difficult tasks. After applying effective 

protection by way of the present invention, the intellectual property embedded within 

the application bytecode is not easily reverse engineered and any tampering of the 

protected bytecode becomes an impractical exercise. Moreover, the static protection of 

the present invention is advantageous because any tampered bytecode cannot be 

loaded and run by a legitimate JVM. 

In comparison to static attacks to an application bytecode, a dynamic attacker 

302 can implement attacks to Java bytecode by using dynamic attack tools while a 

JVM is loading and running the Java application. By using dynamic attack tools and 

methods, an attacker can access the JVM 304 and applk;ation bytecode 306, observe 

and modify the bytecode 308 directly to understand or/and change original designated 

behavior and important values for their attack purpose. Moreover, the attacker can 

ascertain valuable intellectual property 310 and secrets from the bytecode including 

lifting original bytecode 306. In order to prevent such dynamic attacks to Java code 

during run-time, the present invention fomis and implants protection to the application 

bytecode before distribution. Moreover, the present invention implements those 

protections during run-time to ensure any dynamic attacks are impractical. The present 

invention serves to not only prevent dynamic attacks, but also adds the ability to the 



protected application to detect dynamic attacks and be able to mitigate dynamic 

attacl^s as well as making such attacks very expensive efforts in terms of time and 

resources for any prospective attacker. 

FIGURE 4 is an overview of a bytecode protection system 400 and related 

methods in accordance with the present invention. Here, the Java bytecode protection 

system includes two parts: a build-time protectkin tool 402 and a run-time security 

module 404. As mentioned, the bytecode protection system and related methods are 

implemented in C/C++ using technology available from Cloakware Inc. of Ottawa. 

Ontario, Canada as discussed above. 

The Java bytecode protection tool 402 is used to apply security (i.e., "cloak") 

the Java bytecode 406 prior to deployment. This Java bytecode protection tool 402 

allows the security settings and protection mechanisms to be specified during build 

time. This tool takes as input the original Java application bytecode 406, security 

specifications, and the WB cryptographic keys, and generates "cloaked" Java bytecode 

that is run in conjunction with the Java bytecode protection security module 404. The 

Java bytecode protection tool 402 includes options for specifying how bytecode is 

launched (e.g., via a Protected Application Bytecode Stub or a Protected Byetcode 

Class Loader), as well as options for specifying security techniques for the deployed 

secured Java bytecode. The cloaked bytecode of the Java application is distributed in 

two parts: 1 ) protected Java application bytecode stub 406, which is loaded into the 

target JVM environment 410, and 2) protected data files 412 and white box security 

module (WB SM) utility 414, which will be loaded and accessed by the SM during run­

time, separately. The inventive Java bytecode protection security module 404 can be 

distributed with these two parts or independently up to application provisioning 

approaches. In general, the security module 404 is generic in the sense that it can be 

installed once and applied to the cloaked bytecode of any Java application. 

A variety of methods for the inventive bytecode protection are enabled for use in 

conjunction with the instant Java bytecode protection system 400. Each such bytecode 

protection method addresses static and dynamic attacks to Java application in 

bytecode form. 



One method of bytecode protection includes Whit© box cryptographic, or "WB 

cryptographic," which is a unique cryptographic technology that protects cryptographic 

algorithms so that their operations can execute within a hostile environment without 

leaking a cryptographic key and other cryptographic values. In other words, the WB 

cryptographic method can be executed against direct attacks. The present invention 

incorporates two kinds of WB cryptographic technology including the external WB 

cryptographic library and the internal WB cryptographic facility. 

The external WB cryptographic library is implemented In C and protected with 

tampering resistance property by a hidden cryptographic key and other cryptographic 

information so that WB cryptographic operation can be used by protected Java 

applications and performed without releasing any valuable information including the 

key. The inventive internal WB cryptographic facility is a functional component of the 

build-time protection tool 402 that accepts cryptographic information and keys, and 

generates WB key data and utilities for the inventive protection tool and security 

module 404 to use to encrypt and decrypt different forms of Java application bytecodes 

and relevant information. 

Another inventive method of bytecode protection includes Bytecode Integrity 

Verification (BIV). Protection via BIV can detect and mitigate static and dynamic 

tampering attacks to Java class or method code while loading a class or running Java 

methods. At build time, the inventive method calculates static hash values of JAR files, 

class, and method bytecodes from the original application archive file. During loading 

and run-time, the Inventive method calculates dynamic hash values by addressing 

class and method bytecode loaded with the JVM 410 and makes the integrity 

verification by checking the dynamic hash values against the static ones. 

Another inventive method of bytecode protection includes Anti- Debug (AD) 

which is shown and described later in regard to FIGURE 7. AD is one of the dynamic 

security handlers 416 as shown in FIGURE 4. AD protection can prevent and detect 

dynamic attacks perfomied using debuggers during run-time. AD consists of 

techniques that detect attacks by monitoring the internal and external state of the 



system environment at startup and during runtime. Appropriate countenneasures are 

invoked once ttie anti-debug attacks are detected. 

Anotiier inventive method of bytecode protection is Secure Loading Bytecode 

(SLB). This SLB protection method prevents and detects static reverse engineering 

and tampering attacks to archive file and Java class code before loading into the JVM 

410. At build time, the SLB protection method encrypts JAR files and selected class 

bytecodes from the original application archive file, and introduces an application stub 

class. When a JVM 410 loads the protected application, the JVM 410 first loads the 

application stub class and then triggers loading of the protected application. An SLB 

dynamic security handler 416 described further herein belovi/ is a functional component 

of the inventive Java bytecode protection security module 404 that is connected with 

the JVM 410 via JNI418 during run-time execution. The SLB dynamic security handler 

416 manages and controls loading a protected Java application bytecode into the woric 

space in the JVM 410. 

Another inventive method of bytecode protection is Dynamic Bytecode 

Decryption (DBD). The DBD protection method prevents and mitigates dynamic attacks 

to Java class or method code during run-time. 

Another set of inventive methods of bytecode protection Includes both transfer-

execution and partial execution. Both of these protection methods move part of original 

execution into the security module 404 and make sure that only part of execution can 

be exposed within the JVM 410 so as to prevent and mitigate dynamic code lifting 

attacks during run-time. For example, certain Java bytecode can be converted into C 

code (J2C) that can be protected and executed within the security module 404. 

Another inventive method of bytecode protection includes bytecode 

transfomnation. This kind of protection can be achieved by techniques including data 

flow transformations and control flow transfonnations. Bytecode transfomiation can 

transfomi original bytecode into different code structure vyhile still preserving the 

original functionality. The transformed bytecode becomes much harder to be reverse 

engineered and tamper resistant. 



Referring to FIGURE 5, the Java bytecode protection tool 402 applies different 

protection techniques to original application bytecode. The Java bytecode protection 

tool 402 thus generates protected bytecode and relevant data and utilities that worl( 

with the Java bytecode security module during run-time to implement those designated 

protection techniques to Java bytecode. The Java bytecode protection tool 402 accepts 

the three inputs of cryptographic info and l<eys 502, original JAR files 504, and 

configuration options 506 via the user interface 518 and perfomns the three kinds of 

operations. 

The first basic operation includes generation of WB key data and utilities. Using 

cryptographic info and keys 502, the WB static handler 508 generates WB encryption 

key data 510 that are used by different static security handlers (each described in more 

detail herein below) and the tool itself. Also, the build-time process of the protection 

tool 402 generates WB decryption key data that is stored as part of run-time data 512 

in a data protection folder 514. A WB Security Module (SM) utility 516 is provided to 

perfonn WB decryption operations invoked by the dynamic security handlers during 

run-time by using the WB decryption key data. 

The second basic operation includes application of protection techniques. 

According to configuration options, the Java bytecode protection tool 402 applies 

different static security handlers to modify application bytecode from the original fonn 

to protected forms. In doing so, this operation generates protected Java application 

bytecode stub 408 and relevant protection data files that contain protected application 

bytecode in various protection forms and important run-time data. 

The third basic operatton includes packaging a deployable fomn of the protected 

Java bytecode. At the end of the process, the Java bytecode protection tool 402 will 

structure and pack all output files property so that the Java application bytecode stub 

408 can be loaded by the JVM 410. This Java application bytecode stub 408 is an 

entry point to launching the cloaked Java application and may take various forms 

including: a class file that can be launched by an external program, a class file that is 

launched by another Java class, or a Java class loader. The Java bytecode protection 

tool 402 will also structure and pack all output files property so that the WB SM utility 



516 can be invoked by functional components of the Java bytecode security module. 

Still further, the Java bytecode protection tool 402 will also structure and pack all output 

files properly so that all protection data files can be accessed by certain functional 

components of the Java bytecode security module 404. 

FIGURE 5 shows an overview of the aforementioned build-time process to 

protect Java application bytecodes. With regard to FIGURE 5, the major functional 

components and data files will now be described. 

The Java bytecode protection tool 402 includes a user interface 518 for 

interfacing with a user in order to accept user commands and major inputs. The 

commands and inputs may include: cryptographic info and keys 502 including 

cryptographic algorithm selection, and original key materials; original application 

bytecode archive file 504 which includes unprotected bytecode to be protected; and 

configuration options 506 which include user options to conduct the Java bytecode 

protection tool 402 on what and how to protect the application bytecode - e.g., a user 

can specify particular Java classes and methods whether to be protected or not. 

The Java bytecode protection tool 402 also includes a protection manager 520. 

The protection manager 520 is provkied to interpret configuration options 506, and 

coordinate different protection techniques in a dependent order so as to interlock them 

such that the resulting overall protection is much stronger than each individual 

protection. Also, the manager 520 contains utilities commonly used by other functional 

components of the Java bytecode protection tool 402. 

The Java bytecode protection tool 402 also includes static security handlers 

522. Each individual static handler is invoked by the protection manager 520 to perform 

a respective predetennined protection technique. In the illustrated embodiment, a WB-

static handler 508, a BIV static handler 524, an AD static handler 526, a SLB static 

handler 528, a DBD static handler 530, a transfer- execution static handler 532, a 

partial-execution static handler 534 and a code transfomnation tool 536 are shown. 

Each such static security handler is described in detail in later sections herein below. 

The protection manager 520 and static security handlers 522 are designed such that 

they wori< together to provide a plug- in mechanism to add and extend security 
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capability and new protection by easily integrating further new security handlers with 

the protection tool. 

The Java bytecode protection tool 402 also includes WB encryption key data 

510 generated by the WB static security handler 508. The WB encryption key data 510 

is used by the manager 520 and static security handlers 522 to encrypt certain forms of 

bytecode and protection data. 

The Java bytecode protection tool 402 also includes a WB SM utility 516 

generated by the WB static security handler 510. The WB SM utility 516 is used by 

dynamic security handlers (described further herein below) within the security module 

404. 

The Java bytecode protection tool 402 also includes a protected Java 

application bytecode stub 408. The stub 408 only contains a boot-strap of the protected 

Java application for the JVM 410 to load f rst and then trigger a secure bytecode loader 

function to load real protected bytecode from protection data files. 

The Java bytecode protection tool 402 also includes a protected J2C library 538 

generated by the tool. The protected J2C library 538 contains various protected code in 

C that has been converted from Java bytecode. This library is dynamically linked and 

invoked by the Java bytecode security module. 

I The Java bytecode protection tool 402 also includes protected bytecode data 

540. This protected bytecode data 540 is one kind of protection data file generated by 

the tool and contains various protected bytecode. 

The Java bytecode protection tool 402 also includes run-time data 512. This 

run-time data 512 contains various kinds of security related information, such as, but 

not limited to, WB decryption key data, integrity verification static hash values, 

protected class and method infomiation and tables. 

I it should also be understood that the Java bytecode protection tool 402 exhibits 

downioadability. As such, all outputs (including the protected java application bytecode 

stub 408, protected J2C library 538, protected bytecode data 540 and run-time data 

512) from this protection tool are downloadable during run- time. 



In FIGURE 6, there is illustrated an overview of the run-time process to protect 

Java application bytecodes in accordance witli the present invention in temris of the 

Java bytecode protection security module 404 shown in FIGURE 4. As previously 

mentioned, the Java bytecode protection security module 404 is developed in the C 

programming language and itself protected by tamper resistance techniques, such as 

those provided by Cloakware Inc. of Ottawa, Ontario, Canada, so as to be robust and 

tamper resistant. It should be understood that the programming engines underlying the 

Java bytecode protection tool 402 and security module 404 may be engines developed 

in other programming languages. In fact, the security module 404 underlying this 

invention can be developed in other programming languages so long as such 

languages are capable of interfacing with the Java Virtual Machine. 

Upon initiating run-time, the JVM 410 loads the protected Java application 

bytecode stub 408 as it would in loading any normal Java application. This triggers the 

Java application bytecode stub 408 to bootstrap trusted and protected Java application 

bytecode by interacting with the security module 404 via the JNI 602. During the run­

time, the security module 404 serves to manage and control data flow so as to secure 

and protect the Java application bytecode and the execution thereby preventing 

dynamic attacks to the bytecode and the execution. 

With further regard to FIGURE 6, the major functional components and data 

files will now be described. Data and flow control to and from the security module 404 

is via the Java application bytecode work space 604, The work space 604 is a virtual 

work space for the Java application within the JVM 410. At different states of run-time, 

which include loading and executing the application, the actual application bytecode 

residing in the JVM 410 is managed differently. Each state of the work space contains 

legitimate and fully-functional application bytecodes, but not complete application 

bytecodes. Optionally, certain portions of these bytecodes may always be kept in their 

protected fomns depending on build time configuration settings - e.g., enabling transfer 

execution with Java and C execution options. When the portion of bytecodes is 

required to be executed, the security module 404 will load and restore them within the 

work space into the JVM 410 just-in-time and then remove them after the execution. 

Also, certain original method bytecodes have been translated into C functions which 
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• are not directly visible from the JVM 410 and can only be invoked by the security 

module 404. In this approach, an attacker is only able to see pieces of the original 

application bytecodes at any given moment during run-time which makes it extremely 

difficult to reverse engineer an entire application bytecode. 

The security module 404 (SM) also includes a bridge mechanism referred to in 

FIGURE 6 as the JNI SM bridge 418. The JNI SM bridge 418 is an interaction 

component that makes connection and co-function possible via the JNI 602 between 

the JVM 410 and the security module 404. Sub-components of the JNI SM bridge 418 

include the JNI 602 to provide the sole mechanism of interactions between the JVM 

410 and native code. Also included in the subcomponents Is a dovm-call stub 612 and 

up-call stub 608. These stubs provide the application programming interface to redirect 

down-calls from the Java application bytecode work space 604 of the JVM 410 to the 

dynamic security handlers 611 via the security module 404 in native programming 

code, and redirect up-calls from the security module 404 to the JVM 610. The third 

subcomponent shown is the SM manager 610. The SM manager 610 is a controller 

and coordinator for the security module 404. It not only manages and maintains various 

designated protections to the Java application bytecode, but also to the security 

module 404 itself. It also contains utilities commonly used by other functional 

components of the security module 404. 

The security module 404 also includes a plurality of dynamic security handlers 

611. Each individual dynamk; security handier 611 is invoked to perform a unique 

protection technique. As shown, the dynamic security handlers according to certain 

embodiments can include a WB dynamic security handler 614, a Bytecode Integrity 

Verification dynamic security handler 616, an anti- debugging dynamic security handler 

618, an SLB dynamic security handler 620, a DBD dynamic security handler 622, a 

transfer execution dynamic security handler 624, a partial execution dynamic security 

handler 626 and a code transfomiation 628. The details of the dynamic security 

handlers 611 are described later herein below. 

Coordinating with the build-time Java bytecode protection tool 402, the SM 

manager 610 and dynamic security handlers 611 are also designed such that they 
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work together to provide a plug-in mechanism to add and extend security capability 

and new protection by easily integrating additional new dynamic security handler with 

the security module. 

In FIGURE 7, one embodiment of the inventive method for external anti-debug 

monitoring is illustrated. Here, Java Platfonn Debug Architecture (JPDA) facilitates the 

capability of debugging the Java application. The inventive method focuses on 

detecting debug enabling and its subsequent debugging activities based on the JPDA. 

A multilayer defense strategy is used to maximize the chance of capturing the 

debugging activities both statically and dynamically within a running JVM process as 

shown. The three agents illustrated in the AD method shown in FIGURE 7 can be 

configurable to allow nomnal or legal debugging activity to be perfonned. The three 

agents include a Kernel Monitor Agent (KMA) 702, a Debugger Attachment Monitor 

Agent (DAMA) 710, and a Debugging Procedure Monitor Agent (DPMA) 718. 

In regard to the KMA 702 accessing kernel space 701 , it is required that the 

JVM process load a debugging library 705 into its memory space before any 

debugging function can be perfomied. The KMA 702 is spawned when the Java 

application starts. The KMA 702 periodically checks its own process map 703 from the 

Kernel to determine if libraries related to JDPA are loaded into its memory space. The 

appropriate related action is taken should these libraries be found. 

In regard to the DAMA 710, this agent serves the second line of defense. DAMA 

710 is facilitated with Java Virtual Machine Tool Interface (JVMTI) capabilities and is 

loaded when JVM starts 700. A call back function is provided to constantly monitor 

thread-start screens for every thread created during the runtime. Activities of any 

attached JDPA debugger in the Java application can be captured whenever the JVM 

loads certain threads deemed to be necessary to perfonm debugging. In this regard, 

DAMA 710 enables the thread start listener 707, detects a new thread start 709 and 

detects a JDPA related thread 7 1 1 . 

In regard to the DPMA 718, this agent is provided as a third line of defense. The 

DPMA 718 also operates under the JVMTI environment. A call back function 

monitoring the debugging procedure (e.g., hitting a break point line) will be triggered 
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whenever such action is taken. Detailed messages such as the thread and its location 

of the breal<ing point can be collected. In this regard, the DMPA 718 enables a line 

break listener 713, detects debugging activities 715 and report any thread and method 

information 717. Each of the KMA 702, DAMA 710 and DPMA 718 can trigger an 

action and disable JVM 726. 

The aforementioned static and dynamic security handlers will now be described 

in further detail. The WB security handler includes an external WB cryptographic library 

as shown in FIGURE 8 and an internal WB cryptographic facility as shown In FIGURE 

9. 

The external WB cryptographic library in FIGURE 8 provided by the WB 

dynamic security handler 614 provides a library that is used by the Java application for 

WB encryption and decryption functions via the JNI security module interface 804. The 

WB static handler 508 accepts cryptographic information and original keys 502 from a 

user, and generates WB key data 803 that can be distributed and roiled as needed, 

which the cryptographic library can then use for secure cryptographic operations. 

The internal WB cryptographic facility contains a WB static handler 508 and a 

number of static and dynamic components are illustrated in FIGURE 9. The WB static 

handler 508 accepts cryptographic information and original keys 502 from a user, and 

generates WB encryption key data 904, which other static security handlers 906 then 

use for encryption operations to different fonns of application bytecodes as part of 

different protection techniques. The WB static handler 508 also generates WB 

decryption key data 908 and provides a WB security module utility 630 that are each 

used by dynamic security handlers 611 to perfonn decryption operations while the 

security module 914 perfonns dynamic protections. 

The Java bytecode protection tool 402 also includes a pre- processing method 

as shown in FIGURE 10. This pre-process tool 1001 accepts the original Java 

application bytecode archive files 1005 and translates them into an Internal 

Representation (t R) of the original application bytecode. Particular classes and 

methods are then merited for protection and their manner of protection according to 

user options 1003. Protection mari< infonnation 1004 is thereby generated. Both the 



original application bytecode in I R form 1000 and protection mark information 1004 are 

used by each static security handlers 522 for desired protections. 

Within each static security handler of the Java protection tool 402, there is 

provided Bytecode Integrity Verification (BIV). FIGURE 11 illustrates the work flow of 

the BIV static security handler 524. As well, FIGURE 12 Illustrates the work flow of the 

BIV dynamic security handler 616. Here, BIV provides unique tamper resistance 

protection by introducing a dynamic integrity verification capability to Java bytecodes 

during run-time. In general, at build-time a tool is used to sign classes and methods 

that require BIV protection where the BIV data 1202 is generated and then protected 

and BIV actions build into the Java bytecode. At run-time, BIV actions are triggered via 

the Java bytecode protection security module 404 for BIV protected classes and 

methods, where dynamic secure hash values are just-in-time calculated for their 

respective bytecode. Both static and dynamic secure hash values are represented in a 

secure fomi and feed into the Tamper Resistance Gate Keeper (TRGK) 1216 with 

success and/or failure call-back functions. The TRGK 1216 determines whether a BIV 

check is successful or failed without explicitly comparing the static and dynamic secure 

hash values. This can be accomplished via an appropriate algorithm in the forni of a 

specifically designed mathematic computation. If the static and dynamic secure hash 

values are the same, this generally indicates that the BIV check passes and a success 

call-back function can be invoked. OthenMse, if the static and dynamic secure hash 

values are not the same, this indicates that tampering of a particular class or method is 

detected and the BIV check has failed. Thus, a failure call-back function can be 

invoked. Those call-back functions are user- defined countermeasures to detected 

tampering attacks. 

In the present invention, the process of computing dynamic secure hash values 

1214 of Java bytecode differs from typical processing of computations on normal native 

binary code in which the computation merely needs to pick native code directly from 

the memory allocated for the executable. Normally, application code cannot get a code 

segment directly from the memory at Java mn-time. Instead, application code obtains a 

class or method bytecode through the JVM 410 mechanism. In this invention, the 

security module leverages this ability and the JNI interface by using an up-call to the 



JVM 410 to retrieve bytecodes and then computing the secure dynamic hash values 

1214 and performing an integrity verification check of the retrieved bytecode against 

the pre- registered hash value. 

With regard to FIGURE 11 , the bytecode integrity verification static security 

handler 524 is seen to include bytecode signing. One of the major functions of the BIV 

static security handler 524 is to walk through application bytecodes and check each of 

the classes and methods using protection mark infonnation 1105 to determine which 

class or method needs the BIV protection. If a class or method requires the BIV 

protection, a specific hash value is computed by applying a secure hash calculation to 

the particular class or method bytecode 1106, 1107. In general, a secure hash 

calculation algorithm as known in the computing art is commonly used. These resultant 

hash values are stored as BIV data 1108 in an organized and structured way so that 

they can be used effectively during run-time. 

I The BIV data 1108 of the bytecode integrity verification static security handler is 

a data container that contains data of class and method static hash values and other 

infomiation such as WB BIV decryption key data. Such data is used at run-time by the 

dynamic BIV security handler. In order to be used more effectively, BIV data 1108 is 

structured with con'esponding information on each of the classes and methods to be 

protected and their static hash values. 

The bytecode integrity verification static security handler 524 also serves to 

transfomi and encrypt BIV data 1108. The integrity of the BIV data 1108 is very 

important to maintain. BIV data can be transfen^d or download via networtts. 

Accordingly, the present invention applies transformation and encryption to them as 

part of packing them for use. Without such protection, any tampering of the BIV data 

can be a step to break BIV protection. During packaging time, the BIV static security 

handler perfomis double protections to the BIV data so as to prevent static attacks to 

sensitive BIV data. First, the BIV static security handler 524 performs the data 

transformation to the static hash values so that these values can be operated in 

transformed form at run-time by the dynamic BIV security handler 616. This serves to 

ensure that the real plain values are never exposed. Secondly, the BIV static security 



handler 524 then performs encryption of these transfonnried values so as to prevent any 

tampering occun'ing to these transformed values twfore t)eing dynamically used. 

It should be understood that the BIV data 1108 is one kind of runtime data that 

are used at mn-time by the dynamic security handlers 611. Run- time data can be 

organized and stored into a single file or multiple files according to user options. There 

are some advantages to the form of multiple run-time data files, such as that the data 

infonnation can be updated and downloaded in a more fine grain. For example, BIV 

data 1108 can be stmctured for each of the Java classes to be protected. In this 

manner, BIV protection can be perfomied more feasibly on each class base. 

The bytecode integrity verification static security handler 524 also provides 

unique BIV triggering. Two approaches to trigger BIV at run-time are provided via an 

external BIV API and an intemal BIV trigger. As a first approach that is part of the 

designated system under this invention, a set of external BIV APIs are provided for 

users to use them in proper places within their Java code where a user has a clear 

idea to perform a BIV check. The user can indicate which Java class or method needs 

a BIV check. The user will have full control of mitigating actions by using call-back 

functions. The other approach is an alternative to triggering by a user invoking external 

APIs. Instead, BIV triggers can be pre-built within certain functions of the Java 

bytecode protection security module. Each time the Java application invokes those 

functions, the intemal BIV actions can be triggered in a pre-an-anged fashion, Certain 

mitigating actions are pre-defined and taken by the security module internally. 

However, a user will still have partial control on the mitigating actions. This is enabled 

by providing a pre- setting API for a user to pre-set mitigating actions taken by the 

security module so that it will act accordingly to the setting. In general, users have full 

control on wrtiether and where to use the external BIV API, and have indirect control on 

whether to use the intemal BIV triggers at build-time. Users do not have any control 

where to trigger the internal BIV as that is hidden and controlled by the security 

module. 

With regard to FIGURE 12, the bytecode integrity verification dynamic security 

handler 616 is seen to include BIV initialization. BIV initialization 



is provided to load secure static BIV data 1202 and decrypt tiiem using tlie WB BIV 

decryption key data 1203, and ttiereafter load them into the memory in secure form. 

BIV initialization can be implemented in two ways: as part of security module 

Initialization or on demand during dynamic BIV. In regard to the first way, this can be 

done once as part of SM initialization when loading the protected Java application. In 

regard to the second way, this can be accomplished by loading what is needed on 

demand during dynamic BIV. This can be done when the BIV is required for a class. 

BIV data files can be organized at the class level. For a particular class, BIV data is 

loaded and decrypted for this class only, This second approach can provide more 

flexibility to users to leverage small changes required to BIV data if the class bytecode 

changes. 

I The bytecode integrity verification dynamic security handler also perfomns 

dynamic BIV 1210. As discussed above, the dynamic BIV of a class or method can be 

launched by either external BIV API calls or other functional calls from the protected 

Java application to the security module that contains a prearranged internal BIV trigger. 

Perfonning dynamic BIV includes at least the following key actions: getting the latest 

bytecode, computing the dynamic secure hash value, and provkling a tamper 

resistance gate keeper (TRGK) 1216. 

Getting the latest Bytecode occurs via an up-call. In order to calculate the 

secure dynamic hash value securely for a class or method within the security module, 

the latest bytecode of a class or method has to be obtained via an up-call to the JVM 

410 via the JNI. The same bytecode itself should be interpreted or compiled into binary 

while executing this class or method loaded to the JVM 410. If there are not any 

tampering attacks to the bytecode, the bytecode should be the same bytecode to which 

the static secure hash value has been calculated. 

[00104] The action of dynamic secure hash value computation involves classic known 

hashing computation, but the resultant value is In protected fonn and will be used in 

protected form. 

[00105] Providing the TRGK 1216 involves two inputs. The TRGK 1216 uses both 

static and dynamic secure hash values (SSHV1212, DSHV1214) for a particular class 
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or method to verify whether the integrity of the bytecode of the class or method is 

compromised. If any tampering happens to the bytecode, its DSHV1214 cannot be the 

same as its SSHV1212. The TRGK 1216 can detect any tampering to the bytecode. If 

the BIV verification passes, TRGK 1216 will trigger a success call-back function or to 

return to the original BIV trigger; otherwise, the TRGK 1216 will trigger a failure call­

back function as the user's mitigating action. 

The bytecode integrity verification dynamic security handler 616 also includes 

a termination step in the form of the BIV close. The BIV close as part of the security 

module performs cleaning up of the memory space and the other information used by 

BIV dynamic secure handler. 

i/Vith regard to FIGURE 13, the Secure Loading Bytecode (SLB) static security 

handler 528 is shovm. The SLB static security handler 528 receives the internal 

representation of the original Java application bytecode 1301 along with the WB 

encryption 1302 and decryption key data 1304 and the protection maridng infonnation 

1306. 

An important output of the SLB static security handler 528 is the application 

stub 1308. The application stub 1308 contains a bootstrapping class to launch a 

loading process via the security module during run-time. The application stub 1308 is 

loaded by the JVM. 410 The application stub 1308 contains each external public API 

> necessary to enable the application to be launched independently or via another Java 

application. The application stub 1308 contains methods that invoke down-call 

functions to the security module, which in turn will decrypt and load the Java 

application into the JVM for execution. 

To prepare the application stub, the SLB static security handler 528 includes 

an application bytecode wori< frame 1310 and an encrypted application bytecode work 

frame 1312. The application bytecode work frame 1310 is different fî om the original 

application bytecode 1301. In general, a class within the application bytecode wori< 

frame 1310 does not require protecting so it will be the same as the original one. If a 

class needs to load securely, a class stub replaces the original class bytecode and 

I thus the class bytecode is the original bytecode. The encrypted frame 1312 is obtained 
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by encrypting the application bytecode work frame 1310 using the application WB 

encryption key data 1302 via the static security handler 528 during build-time, and is 

decrypted using application WB decryption key data 1304 via the dynamic security 

handler 620 during run-time. 

In addition to the application stub 1308, the application payload 1314 is 

generated. The application payload 1314 contains the encrypted application work 

frame 1312 and the application WB decryption key data 1316. The application WB 

decryption key data 1316 in the protected application payload is the key data 

generated by the WB static security handler 508 and passed to the SLB static security 

handler 528 as part of the WB decryption key data 1302. At run-time, it is used to 

decrypt the encrypted application bytecode work frame 1312. 

As shown in FIGURE 13, the underlying code may be fonned as class 

bytecode 1318, class stubs 1320, or encrypted class bytecode 1322. Class bytecode 

1318 is original bytecode. The class stub 1320 contains a bootstrapping method to 

launch a trusted class loading process Via the security module during mn-time to load 

the encrypted class bytecode 1322 when necessary. During the packaging time, the 

class bytecode 1318 is analyzed. Marked methods are replaced by methods that 

invoke down-call methods to the security module, w/here the security module invokes 

the original bytecode functionality via a security handler method designated at 

packaging time. The encrypted class bytecode 1322 is obtained by encrypting class 

bytecode 1318 using the class WB encryption key data 1302 via the static security 

handler 528 during build-time, and is decrypted using the dass WB decryption key data 

via the dynamic security handler 620 during mn-time. 

An encrypted class bytecode frame 1324 is also generated by the SLB static 

security handler 528. It contains encrypted class bytecode and class WB decryption 

keys for one or more classes. Users have the option to control how many classes a 

frame can contain within their encrypted class bytecode 1322. The user has the option 

to load them together or separately during runtime. Class WB decryption key data is 

generated by the WB static security handler 508 and passes to the SLB static security 

handler 528 as part of the WB decryption key data 1304. At run-time, the class WB 



decryption key data 1304 is used to decrypt tlie encrypted class bytecode 1322. The 

user has the option whether generate one or multiple class WB encryption and 

decryption l<eys. 

In regard to FIGURE 14, the work flow of an SLB dynamic security handler 

620 is shown. The SLB dynamic security handler 620 is a functional component of the 

security module that is connected with the JVM 410 via JNI during bytecode execution. 

The SLB dynamic security handler 620 manages and controls loading of a protected 

Java application bytecode into the work space in the JVM 410. Advantageously, this 

capability can ensure that an original Java application bytecode is protected and 

likewise distributed in a protected form so as to prevent any static attacks to the 

application bytecode occuning before loading the application bytecode to the JVM 410. 

The SLB D-handler 620 contains two main functional components including secure 

application loading and secure class loading. 

Secure application loading involves the protected application stub 1404 which 

is located in the class path and loaded nomially by a JVM 410. A main bootstrapping 

method is executed after the loading, and then an application bootstrapping method 

1403 is invoked through a down-call API via the JNI SM bridge 418. This triggers the 

following application loading actions of the SLB dynamic security handler 620. First, the 

protected application payload 1408 is loaded from the protection data folder. This 

includes loading the encrypted application bytecode work frame 1410 from the payload 

1408 into memory buffer, and then decrypting the encrypted application bytecode wori< 

frame 1410 just-in- memory by using the application WB decryption key data 1304. 

Next, the decrypted application bytecode work frame 1412 is walked through to load 

each class bytecode and class stubs from the woric frame into the application work 

space by using a special SM class loader 1414. The SM class loader 1414 utilizes the 

security module to load encrypted bytecode, and decrypt and load the bytecode into 

the JVM 410. Additional security checks may be incorporated to add BIV protection to 

the SM class loader 1414 and also checks on class loader hierarchy and integrity 

during load and mn time. Finally, execution is passed to the main method of the main 

application class within the wori( space. 



Secure class loading involves the triggering of a class bootstrapping method 

as Illustrated in FIGURE 15. In general, an encrypted class bytecode frame can be pre-

instailed or downloaded on the device before executing the protected application, or 

downloaded on the device during its execution. This depends on the functional nature 

of the application. When classes with class stubs are required during the execution of 

the protected application, a class bootstrapping method is triggered and the following 

steps 1500 are executed via the JNI SM bridge to load the required class from the 

encrypted class bytecode frame. First, the corresponding encrypted class bytecode 

frame Is loaded into the memory buffer. Next, each of the encrypted classes contained 

in the frame just- in-memory is decrypted by using each of the specific class WB 

decryption key data. The decrypted class bytecode is then loaded into the application 

work space by using the SM class loader. Thereafter, execution of the application 

continues within the work space 

It should be noted that, unlike running a native application where all code must 

be loaded first, the JVM allows for loading a new class on the fly. This extends 

applk^ations dynamically by loading classes only when they are needed. Moreover, this 

characteristic of Java provides a good opportunity to use the SLB secure class loading 

against code lifting attacks. Further, after a protected class is SLB securely loaded and 

executed, the present invention can provide options to maintain the dass in a 

protection state by restoring back to its dass stub. In such a way, only at just-execution 

time is the original bytecode of the class available within the JVM image, while it 

remains within protected forni for other times. 

In general. Dynamic Bytecode Decryption (DBD), involves decryption of 

protected method bytecodes only when the encrypted method is invoked by a running 

Java program. This ensures that ail of an application's unencrypted bytecode is never 

resident in memory at one time. 

[00118] In regard to FIGURE 16, the build time workflow of a DBD static security 

handler 530 is shown. During build time, each unprotected class bytecode file 1602 is 

loaded into an internal buffer and a new class bytecode wori< frame is constructed for a 

dass to be protected by DBD using the protection maridng infomiation 1306, where 

so 



marked methods are replaced with a method stub 1604 that will invoke down call 

methods to trigger the invocation of DBD dynamic security handler 530 at run-time. For 

each Java method to be protected, its bytecode is encrypted by using method WB 

encryption keys and storing the encrypted method into the encrypted method bytecode 

frame 1606 that is packaged along with the WB decryption key data 1608 for 

distribution as part of protected bytecode data. The original bytecode class is replaced 

by the protected class bytecode wort< frame 1610 for distribution. 

FIGURE 18 shows an execution time woricflow of the DBD dynamic security 

handler 622. When an encrypted DBD Java method is invoked while executing a 

protected Java application on the SM, the method stub is first executed and then a 

down call, method bootstrapping 1802, is invoked within the DBD dynamic security 

handler 622. It identifies and decrypts the encrypted method from the encrypted 

method bytecode frame 1804 by using WB method decryption key data and restores its 

real bytecode to the JVM. An implementation for restoring class bytecode to the JVM 

can involve restoring a copy of the class to the JVM, with the class renamed to avoid 

naming conflicts within the JVM namespace. An example of this is shown in FIGURE 

17 where the partially decrypted class is loaded into the JVM with a new class name. 

In FIGURE 18, if needed, once the original bytecode is restored to the JVM, 

the DBD dynamic security handler 622 may copy the class state to the real bytecode 

instance, this option is detemiined at buiki time. The DBD dynamic security handler 

622 then invokes the unencrypted method in the JVM 410. Once the method invocation 

is complete the security handler 622 then restores the real state from the unencrypted 

class instance to the encrypted instance and the control is returned to the originating 

down call method. FIGURE 17 shows the sample method invocation and state copy 

operations 1700 prior to calling the unencrypted method. Once the unencrypted 

method has completed execution, the state is copied back to the class instance with 

the protected method stubs by the DBD dynamic security handler 622. The control is 

returned to the protected method, whilst the security handler removes the unencrypted 

class and instance from the JVM 410. 



The above-described embodiments of the present invention are intended to be 

examples only. Alterations, modifications and variations may be effected to the 

particular embodiments by those of skill in the art without departing from the scope of 

the invention, which is defined solely by the claims appended hereto. 
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