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SYSTEM AND METHOD TO PROTECT JAVA BYTECODE CODE
AGAINST STATIC AND DYNAMIC ATTACKS WITHIN HOSTILE
EXECUTION ENVIRONMENTS

Abstract of the Invention

A method and system that provides secure modules that can address Java platform
weaknesses and protect Java bytecode during execution time. The secure modules arf
implemented in C/C++ as an example. Because implementation of the security modules
is rr;gde in C/C++, this enables use of security technology that secures C/C++ software
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We Claim:

1. A system for increasing tamper-resistance of Java bytecode, comprising:

a protection tool for applying a protection mechanism to Java bytecode during
build-time, and generating deployable and secured Java bytecode;

a Java Virtual Machine (JVM) for launching said secured Java bytecode at
run-time, execution of said secured Java bytecode making a call to a local, tamper-
resistant security module;

said tamper-resistant security module interfacing with said JVM and effecting
execution of said secured Java bytecode in view of said protection mechanism;

said protection mechanism defending against static and dynamic attacks on
said Java bytecode.

2. The system of claim 1, wherein said tamper-resistant security module
prevents execution of said Java bytecode in its entirety, on said JVM, in an
unprotected format.

3. The system of claim 1, wherein said tamper-resistant security module
interfaces with said JVM via two-way communication.

4, A system for increasing tamper-resistance of Java bytecode, comprising:

a protection tool for applying a protection mechanism to Java bytecode during
build-time, and generating deployable and secured Java bytecode,

a tamper-resistant security module interfacing with a JVM, and supporting and

effecting the execution of said secured Java bytecode in view of said protection
mechanism;

said protection mechanism including a set of secured execution dependencies
interlocking JVM execution with said tamper-resistant security module at run-time and



thereby providing secured execution of said secured Java bytecode on said Java
Virtual Machine (JVM);

said protection mechanism resisting static and dynamic attacks on 'said Java
bytecode by managing, controlling, monitoring and performing said secured execution
of said secured Java bytecode, on said JVM.

5. A system for increasing tamper-resistance of Java bytecode, comprising:

a protection tool for applying a protection mechanism to Java bytecode during
build-time, and generating deployable and secured Java bytecode;

a tamper-resistant security module providing a trustworthy zone and
expanding the trustworthy zone into a Java Virtual Machine (JVM) by interfacing with
said JVM, and by supporting and effecting the execution of said secured Java
bytecode in view of said protection mechanism;

a set of secured execution dependencies ensuring secured execution of said
secured Java bytecode on said JVM, interfacing and execution interlocking with a
local tamper-resistant security module at run-time;

said protection mechanism resisting and thwarting static and dynamic attacks
effectively on said Java bytecode by managing and controlling said secured
execution of said secured Java bytecode in its entirety, on said JVM with extended
execution on said tamper-resistant security module.

6. The system as claimed in any one of Claims 1 to 5 wherein said Java
bytecode is broken into multiple parts by said protection tool during build-time, said
multiple parts being executed on different ones of said JVM and said tamper-resistant
security module during run time,

7. The system as claimed in any one of Claims 1 to 5 wherein sald secured Java
bytecode includes a protected Java application bytecode stub, a protected application
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payload, and an encrypted class bytecode frame, each being generated by said
protection tool during build-time.

8. The system as claimed in Claim 7 wherein said protection tool includes a
mechanism requiring that said protected application payload is launched by starting
said protected Java application bytecode stub via invoking the tamper-resistant
security module during run-time.

9. The system as claimed in either one of Claims 7 and 8 wherein:
said security module includes a protected bytecode class loader; and

said protection too! includes a mechanism to dictate that said protected
application payload is launched via said encrypted class bytecode frame using said
protected bytecode class loader.

10.  The system as claimed in any one of Claims 1 to 8 wherein:

said security module is distributed independently as a functional extension to
a Java virtual machine environment to provide a root of trust of protected Java
applications, and

said secured Java bytecode is distributed separately as per user needs.

11.  The system as claimed in any one of Claims 1 to 10 wherein said security
‘module is written in a native programming language which applies loca! hardware-
based protection techniques and systems.

12.  The system as claimed in any one of Claims 1 to 10 wherein said security
module is written in a native programming language which applies local native
software-based protection techniques and systems.



13.  The system as claimed in any one of Claims 1 to 10 wherein said security
module is written in a programming language which must be protected and trusted
strongly and comprehensively, including C and C++.

14.  The system as claimed in any one of Claims 1 to 10 wherein said security
module is protected using white-box security techniques.

15.  The system as claimed any one of Claims 1 to 14 wherein parameters of said
protection mechanism are configurable according to user preferences, and said
protection tool generates secured Java bytecode in accordance with said user
preferences.

16.  The system as claimed in Claim 15 wherein said protection mechanism moves
part of execution of said Java bytecode into said security module, whereby said JVM
will not execute all of said Java bytecode during run-time, so original Java bytecode
will not be observable fully on the JVM.

17. The system as claimed in Claim 15 wherein said protection mechanism
translates selected methods in said Java bytecode into functions in a native form
which are not directly visible to the JVM and can only be invoked by the security
module.

18.  The system as claimed in Claim 15 wherein said protection mechanism
performs data flow transformations on said Java bytecods, transforming code
structure of said Java bytecode without changing functionality.
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19.  The system as claimed in Claim 15 wherein said protection mechanism
performs control flow transformations on said Java bytecode, transforming code
structure of said Java bytecode without changing functionality.

20. The system as claimed in Claim 15 wherein said tamper-resistant security
module loads and restores Java bytecode to be executed, in a workspace of the JVM,
just-in-time, and then removes the restored Java bytecode after execution.

21.  The system as claimed in any one of Claims 1 to 15 wherein said protection
mechanism petforms anti-debugging monitoring.

22.  The system as claimed in Claim 21 wherein said protection mechanism:
periodically checks its own process map from the Kemel; and

responds to libraries related to the debugging of Java, for example JOPA
(Java Platform Debug Architecture) or JVMT! (Java Virtual Machine Tool interface)
being loaded into its memory space by triggering a defensive action.

23. The system as claimed in Claim 21 wherein said step of responding
comprises:

responding to libraries related to the JDPA (Java Platform Debug Architecture)
being loaded into its memory space by triggering a defensive action.

24. The system as claimed in Claim 21 wherein said step of responding
comprises:

responding to libraries related to the JVMTI (Java Virtual Machine Tool
Interface) being loaded into its memory space by triggering a defensive action.
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25.  The system as claimed in Claim 21 wherein said protection mechanism:
listens for launching of debugging threads; and

responds to debugging threads being launched by triggering a defensive
action.

26.  The system as claimed in Claim 21 wherein said protection mechanism:
listens for line break messages effected by a debugging tool; and

responds to detection of line break messages by triggering a defensive action.

27.  The system as climed in anyone of Claims 1 to 15 further comprising a
whitebox (WB) static security handler for accepting cryptographic information
including cryptographic keys from a user to generate:

WB encryption key data used by said protection tool at build-time; and

WB decryption key data and a WB security module utility, used by said
tamper-resistant security module at run-time,

28.  The system as claimed in any one of Claims 1 to 15 wherein said protection
mechanism comprises a bytecode integrity verification (BIV) system and:

said protection tool calculates hash values of said secured Java bytecode at
build-time, and

said tamper-resistant security module determines whether said build-time
hash value is equal to said hash values calculated at run-time, said tamper-resistant
security module invoking tampering countermeasures in response to a verification
faiture,

29.  The system as claimed in Claim 28 wherein said tamper-resistant security
module is operable to:
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obtain Java bytecode via an interface with said JVM;
compute a dynamic hash value of said Java bytecode;

determine whether said build-time hash value is equal to said hash value
calculated at run-time, and if not, invoke tampering countermeasures.

30. The system as claimed in Claim 29 wherein said hash value verification is
performed by a tamper-resistant gate keeper.

31.  The system as claimed in Claim 28 wherein said hash value verification is
performed without explicitly comparing the build-time and run-time hash values.

32.  The system as claimed in Claim 30 wherein said hash value verification is only
performed on selected classes and methods of said Java bytecode.

33. The system as claimed in Claim 32 wherein data related to said hash value
verification, and selected classes and methods, is encrypted.

34.  The system as claimed in Claim 32 wherein static hash values are encrypted
by a WB cipher using different key data.

35.  The system as claimed in Claim 32 wherein on closing of the BIV system, the
secure module cleans the related memory space and other information used by the
BIV system.

36.  The system as claimed in any one of Claims 1 to 15, wherein:
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said protection tool includes a secure loading bytecode (SLB) tool for
generating during build-time: a protected Java application bytecode stub, a protected
application payload, and an encrypted class bytecode frame, and

said tamper-resistant security module includes an SLB dynamic security
handier for:

loading into a memory buffer said encrypted class bytecode frame
corresponding to said secured Java application bytecode,

decrypting each encrypted class contained within said encrypted class
bytecode frame via white-box-protected decryption key data corresponding to
said encrypted class, and

loading each decrypted class bytecode into an application work space
via a tamper-resistant security module class loader to execute said Java
application bytecode within said application work space.

37.  The system as claimed in any one of Claims 1 to 15, wherein:

said protection tool is operable to encrypt a method bytecode during build-
time; and |

said tamper-resistant security module is operable to respond to said encrypted
method bytecode being invoked by a running Java program by:

decrypting said encrypted method bytecode;
invaking the unencrypted method; and

after execution, removing the unencrypted class and instance from the
JVM. '

38.  The system as claimed in Claim 37, wherein when an encrypted Java method
is invoked while executing a secured Java bytecode on the JVM:

a method stub is first executed; and then
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a down call, method boot strapping, is invoked with the tamper-resistant
security module, which identifies and decrypts the encrypted method from the
encrypted method bytecode frame, restoring the real bytecode to the JVM.

39. The system as claimed in Claim 38, wherein once the method invocation is
complete the tamper—resistant security module:

restores the real state from the unencrypted class instance to the encrypted
instance; and

control is retumned to the originating down call method.

40. A system for increasing tamper-resistance of a software application
comprising:

a protection tool for applying a protection mechanism to bytecode during build-
time and generating deployable, secure bytecode;

a Virtual Machine (VM) for launching said secure bytecode at run-time,
execution of said secure bytecode making a call to a local, tamper-resistant security
module; ‘

said tamper-resistant security module interfacing with said VM and effecting
execution of said secure bytecode in view of said protection mechanism;

said protection mechanism countering static and dynamic attacks on said
bytecode by preventing execution of the entirety of said bytecode on said VM in an
unprotected format. ’

41.  The system as claimed in Claim 40 wherein said secured bytecode includes a
protected non-native application stub and a protected application payload, both being
generated by said protection tootl during build-time.
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42,  The system as claimed in Claim 40 wherein said secured bytecode includes a
protected application stub and a protected non-native appiication function, both being
generated by said protection tool during build-time.

43.  The system as claimed in Claim 4Q wherein said secured bytecode includes a
protected application stub and a protected native application payload, both being
generated by said protection tool during build-time.

44. A method for increasing tamper-resistance of Java bytecode, comprising:

applying a protection mechanism to Java bytecode during build-time, using a
protection tool, and generating deployable and secured Java bytecode;

launching said secured Java bytecode at run-time, using a JVM, execution of
said secured Java bytecode making a call to a local, tamper-resistant security
module;

said tamper-resistant security module interfacing with said JVM and effecting
execution of said secured Java bytecode in view of said protection mechanism,;

said protection mechanism defending against static and dynamic attacks on
said Java bytecode.

45. A method for increasing tamper-resistance of Java bytecode, comprising:

applying a protection mechanism to Java bytecode during build-time, using a
protection tool, and generating deployable and secured Java bytecode; '

a tamper-resistant security module interfacing with a JVM, and supporting and
effecting the execution of said secured Java bytecode in view of said protection
mechanism;

said protection mechanism including a set of secured execution dependencies
interlocking JVM execution with said tamper-resistant security module at run-time and
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thereby providing secured execution of said secured Java bytecode on said Java
Virtual Machine (JVM);

said protection mechanism resisting static and dynamic attacks on said Java
bytecode by managing, controlling, monitoring and performing said secured execution
of said secured Java bytecode, on said JVM.

46. A method for increasing tamper-resistance of Java bytecode, comprising:

applying a protection mechanism to Java bytecode during build-time, using a
protection tool, and generating deployable and secured Java bytecode;

providing a trustworthy zbne using a tamper-resistant security module, and
expanding the trustworthy zone into a Java Virtual Machine (JVM) by interfacing with
said JVM, and by supporting and effecting the execution of said secured Java
bytecode in view of said protection mechanism; and

employing a set of secured execution dependencies to ensure secured
execution of said secured Java bytecode on said JVM, interfacing and execution
interlocking with a local tamper-resistant security module at run-time;

said protection mechanism resisting and thwarting static and dynamic attacks
effectively on said Java bytecode by managing and controling said secured
execution of said secured Java bytecode in its entirety, on said JVM with extended
execution on said tamper-resistant security module.

Dated this the 21st Day of March, 2012
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FIELD OF THE INVENTION

The present invention relates generally to computer software, and more
specifically, to a method and system of making computer software resistant to static
and dynamic attacks within a hostile execution environment.

BACKGROUND OF THE INVENTION

Within the computer programming industry, the Java programming language is
used in every major industry segment and has a presence in a wide range of devices,
computers, and networks. Java applications are written in the Java programming
language and compiled into machine-independent bytecodes that are executed on a
Java Virtual Machine (JVM), which is deployed on a host Operating System (OS) and
the host Computer Processing Unit (CPU) Instruction Set Architecture (ISA). Java
technology's versatility, efficiency, platform portability, and security make it the ideal
technology for network computing. The Java programming language is found -
everywhere from laptops to datacenters, game consoles to scientific supercomputers,
and cell phones to the Intemet. Indeed, portability, extensibility. generality, and
reliability are key Java strengths. However, such ubiquity aiso provides ample
opportunity for hackers and related computer attacks.

To provide protection in the event of an attack and to resist unauthorized
access to the Java environment from un-trusted applications, Java technology includes
the Java sand-box security model for protecting the execution environment of the host
machine or device where compromised software such as viruses or malware may be
downioaded or installed illegally. Resistance to such attacks is fundamental in highly
protected environments and systems such as telecommunication systems,
transportation' systems, defense systems, industrial automation systems, and power



management systems. Each year, more and more such critical systems are designed
and implemented using the Java programming language.

Likewise, the consumer electronics industry is entering a new age where
advanced technologies and products, rapid demand on media digitalization, and the
continuously falling prices of consumer electronics taken together with increasing
disposable income from emerging markets have spurred growth in the consumer
electronics market at a speed and scope without precedent. Many such consumer
electronics products rely on software applications to function. Certain Java
programming language strengths (such as portability, extensibility, generality,
reliability, and simplicity) reduces overall development and deployment cost of
consumer electronics products, thereby ensuring more and more Java- based
platforms and applications are deployed to new consumer products.

Almost all consumer electronics devices require functioning in an un- trusted
‘environment. [n un-trusted environments, software within consumer electronics devices
can be directly accessed for different purposes ranging from a beneficial reason (e.g.,
to get needed services) to undesirable reasons (e.g., to hack the devices). As a resuilt,
more and more computer applications execute in a relatively hostile environment than
ever before. For example, hand-held devices (such as portable media players or smart
phones), home networking (such as set- top boxes, media players, or personal
computers), and web-based environments are areas where attackers often spend large
amounts of time and resources. Therefore, the protection of legitimate software against
attacking software is becoming an escalating arms race. Moreover, high performance

hardware and sophisticated attack tools provide the intruders with many new
advantages.

Software distributors must be sure that their software is robust and resistant to
attack. However, the given platform and software are often well known to an attacker
who has time, resources, tools, and all the experts on the web at the disposal of the
attacker. This hostile attack landscape is often termed a "white box" environment,
where all the content is in plain sight and therefore subject to direct access and
tampering. This is the opposite of a "black-box" environment which is, in the other



words, a trusted and protected environment where content is hidden or otherwise
protected from attack. In the prevailing hostile landscape of a white box environment,
preventing or stopping direct and automated attacks to software systems is becoming
one of the most demanding security challenges. Moreover, strong defenses for white
box attacks must be achieved to ensure proper and secure device function. The Java
programming language is not adequately designed to tackle such security problems
and challenges. In this respect, certain Java strengths actually cause security
weaknesses when compared to programming in C or C++.

Unlike C/C++ compilers that compile C/C++ code to a low-level instruction set
which operates on raw binary data and is specific to the target hardware (such as x86
or PowerPC), a Java compiler compiles Java source code to a higher-level portable
bytecode that operates on classes and primitive types that the JVM can interpret during
execution. Platform dependency is encapsulated within JVM and decoupled from the
Java application.

As well, the standard Java compiler does not perform compile-time
optimizations that are commonly and usually found in C/C++ compilers. instead, Java
relies on Just-In-Time (JIT) compilation to perform all optimizations at run time while
taking the éxecution profile into account for performance improvement. Major C/C++
code optimizations are performed at compile time. For example, inline substitution
results in copies of the given (member) function being scattered around the binary
image; use of the preprocessor combined with compile-time evaluation of expressions
may leave no trace of the constants defined in the source code; and 8o on. In general,
sophisticatedly optimized code is more difficult to reverse engineer.

Still further, Java program dependencies are resolved at run time when classes
are loaded. So the name of the class and names of its methods and fields must be
present in a class file, as well as names of all imported classes, called methods, and
accessed fields. On the other hand, C/C++ programs are statically linked. Therefore,
the names of classes, members, and variables need not be present in the compiled
and linked program, except for names exported from dynamic libraries.



Finally, a Java application is delivered as a set of Java Archive (JAR) files. The
JAR format enables muttiple files to be bundled into a single archive file, which are
basically non-encrypted archives and from which it is relatively easy to extract
individual classes. By comparison, a C/C++ application is delivered as a monolithic
executable that may link with a few dynamic libraries, so it is not as easy to identify
program information and individual code.

| Accordingly, the decompitation of Java bytecode to Java source is much simpler
and easier than dissembling C/C++ and can therefore be fully automated. Program
information such as class hierarchy, statements, names of classes, methods and fields
can all be retrieved from the bytecode. Although there are many freeware and
commercial Java obfuscation tools available, none provide protection to prevent a
direct attack to execution of the bytecode. As a result, Java reverse engineering is now
a common practice.

Moreover, a JVM provides an open run time environment for Java applications.
There is very little built-in security to protect the JVM and make the JVM itself robust.
Attaching to a JVM itself or using a JVM to launch attacks is relatively trivial. Therefore,
regardless of the strength of protections applied to Java application code, hackers may
always use the JUM as the weakest link in order to implement white box attacks
because of the JVM's vulnerability. Although a more trusted and robust JVM would
likely protect Java applications and prevent white box attacks, this approach would
require significant changes to the current Java security model and related significant
industry support and adaptation. it would therefore be desirable to have a trusted and
robust component within industrial standard JVM that protects applications within a
white box environment.

SUMMARY OF THE INVENTION

It is an object of the present invention to obviate or mitigate a major
disadvantage of previous Java platform configurations.



This disclosure presents an invention that provides secure modules that can
address Java platform weaknesses and protect Java bytecode during execution time.
The secure modules are implemented in C/C++ as an example. Because
implementation of the inventive security modules is made in C/C++, this enables use of
security technology that secures C/C++ software code. For purposes of the present
invention, suitable security technology is that provided by Cloakware Inc. of Ottawa,
Ontario, Canada. Such suitably intended security technology is described fully within
prior commonly owned United States Patents including: Patent No. 7,508, 177 issued
on 17 MAR 2009 to Chow et al. and titted TAMPER RESISTANT SOFTWARE
ENCODING AND ANALYSIS; Patent No. 7,464,269 issued on 09 DEC 2008 to
Johnson et al. and titted SECURE METHOD AND SYSTEM FOR HANDLING AND
DISTRIBUTING DIGITAL MEDIA; Patent No. 7,397,916 issued on 08 JUL 2008 to
Johnson et al. and titled SYSTEM AND METHOD FOR PROTECTING COMPUTER
SOFTWARE FROM A WHITE BOX ATTACK; Patent No. 7,395,433 issued on 01 JUL
2008 to Chow et al. and titted METHOD AND SYSTEM FOR SUSTAI NABLE DIGITAL
WATERMARKING, Patent No. 7,350,085 issued on 25 MAR 2008 to Johnson et al.
and titled TAMPER RESISTANT SOFTWARE-MASS DATA ENCODING; Patent No.
7,325, 141 issued on 29 JAN 2008 to Chow et al. and titted METHOD AND SYSTEM
FOR SECURE ACCESS; Patent No. 6,842,862 issued on 1 1 JAN 2005 to Chow et al.
and titted TAMPER RESISTANT SOFTWARE ENCODING; Patent No. 6,779, 1 14
issued on 17 AUG 2004 to Chow et al. and titted TAMPER RESISTANT SOFTWARE-
CONTROL FLOW ENCODING; and Patent No. 6,594,761 issued on 15 JUL 2003 to
Chow et al. and titled TAMPER RESISTANT SOFTWARE ENCODING; each of which
patents are herein incorporated in their entirety by such reference made here.

The existing software security technology disclosed in the above- referenced
patents and related products from Cloakware, Inc. are used to protect legitimate
applications along with the functionality and intellectual property of the applications,
which run on hostile (un-trusted) execution environments, in order to prevent white box
attacks to these applications. Such existing software security technology contains
practical source code and binary protection tools that protect applications in C/C++



along with native compiled code and make software and security inseparable by
enhancing traditional application building processes.

In a first embodiment, the present invention provides an apparatus for
increasing tamper-resistance of Java bytecode, including: a protection tool for applying
security to Java bytecode during build-time; a security module accepting secured Java
bytecode from the protection tool and launching the secured Java bytecode during run-
time; and one or more protection mechanisms integrated with the protection tool and
the security module; wherein one or more protection mechanisms operate to counter ’
static and dynamic attacks to the Java bytecode.

In a further embodiment of the present invention, the apparatus also includes a
secured Java bytecode including a protected Java application bytecode stub, a
protected application payload, and an encrypted class bytecode frame, each of which
being formed by said protection tool during build-time.

in another embodiment of t_he present invention, the security module is
distributed independently as a functional extension to a Java virtual machine
environment to provide a root of trustiness of protected Java applications, and the
secured Java bytecode is distributed separately as per user needs.

_ In a further embodiment of the present invention, the protection fool has a
mechanism to dictate that the protected application payload is launched via said
protected Java application bytecode stub.

In a further embodiment of the present invention, the security module includes a
protected bytecode class loader and the protection tool includes a mechanism to
dictate that said protected application payload is faunched via said encrypted class
bytecode frame using the protected bytecode class loader.

In a further embodiment, the apparatus is formed of programming engines
implemented in a programming language inciuding one or more of C, C++, and Java.

In a further embodiment, the apparatus is formed of programming engines

implemented in a programming language capable of interfacing with a Java virtual
machine.



, _ In a further embodiment, one or more of the protection mechanisms are
selectable according to configuration options. These protection mechanisms may also
include static security handlers formed within the protection tool and dynamic security
handlers formed with the security module.

in a further embodiment, the static security handlers may include a whitebox
(WB) static security handler for accepting cryptographic information including
cryptographic keys from a user so as to generate; WB encryption key data used by one
or more of other the static security handlers, and WB decryption key data and a WB
security module utifity, each used by one or more the dynamic security handlers during
dynamic run-time protection of the security module.

in a further embodiment, the static security handlers may include a bytecode
integrity verification (BIV) static security handler for applying hash code protection to
the secured Java bytecode in response to protection marking information, and the
dynamic security handlers includes a BIV dynamic security handler for verifying the
hash code protection at run-time, wherein the security module invokes tampering
countermeasures upon verification failure.

n a further embodiment, the apparatus further includes static security handlers
which may include a secure loading bytecode (SLB) static security handler for forming
during build-time a protected Java application bytecode stub, a protected application
payload, and an encrypted class bytecode frame, and the dynamic security handlers
includes an SLB dynamic security handler for loading into a memory buffer said
encrypted class bytecode frame corresponding to the secured Java application
bytecode, decrypting each of encrypted class contained within the encrypted class
bytecode frame via said WB decryption key data corresponding to the encrypted class,
loading each decrypted class bytecode into an application work space via a security
module class loader so as to execute the Java application bytecode within the
application work space.

Other aspects and features of the present invention will become apparent to
those ordinarily skilled in the art upon review of the following description of specific
embodiments of the invention in conjunction with the accompanying figures.



BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by way of example
only, with reference to the attached Figures, wherein:

FIGURE 1 is a diagram illustrating a known overview of the JNI bridging a Java
application with native code.

FIGURE 2 is a diagram illustrating the known mechanism of static attacks to
Java application bytecodes.

FIGURE 3 is a diagram illustrating the known mechanism of dynamic attacks to
Java application bytecodes.

FIGURE 4 is a diagram illustrating an overview of the Java bytecode protection
system in accordance with the present invention.

FIGURE 5 is a diagram illustrating the build-time process, as shown in the top
portion of FIGURE 4, to protect Java application bytecodes at build-time in accordance
with the present invention.

FIGURE 6 is a diagram iflustrating the run-time process, as shown in the bottom
portion of FIGURE 4, to protect Java application bytecodes at run-time in accordance
with the present invention.

FIGURE 7 is a diagram illustrating the anti-debug capability at startup and run-
time in accordance with the present invention.

FIGURE 8 is a diagram illustrating the external white box (WB) cryptographic
ibrary in accordance with the present invention.

FIGURE 9 is a diagram illustrating the internal WB cryptographic facility in
accordance with the present invention.

FIGURE 10 is a diagram illustrating the pre-process of the bytecode protection
tool in accordance with the present invention.



FIGURE 11 is a diagram illustrating the work flow of the Bytecode Integrity
Verification (BIV) static security handler in accordance with the present invention.

FIGURE 12 is a diagram illustrating the work flow of the BIV dynamic security
handler in accordance with the present invention.

FIGURE 13 is a diagram illustrating the work flow of the Secure Loading
Bytecode (SLB) static security handler in accordance with the present invention.

FIGURE 14 is a diagram illustrating the work flow of the SLB dynamic security
handler in accordance with the present invention.

FIGURE 15 is a diagram iflustrating the bootstrap interface and secure loading
of a cloaked java application in accordance with the present invention.

FIGURE 16 is a diagram illustrating the work flow of the Dynamic Bytecode
Decryption (DBD) static security handler in accordance with the present invention.

FIGURE 17 is a diagram illustrating a DBD sequence diagram in accordance
with the present invention.

FIGURE 18 is a diagram illustrating the work flow of the DBD dynamic security
handler in accordance with the present invention.

DETAILED DESCRIPTION

As seen by way of FIGURE 1 , the Java platform 100 additionally includes a
Java Native Interface (JNI) 102 that provides a facility to bridge two- way
interoperations and interactions between the Java world (which includes a JVM 104,
Java applications 106, and libraries 108 in bytecode loaded within the JVM) and the
native code world 110 (which applications or shared libraries are written in other
languages, such as C/C++/assembler, and compiled into the host CPU ISA). By using
a JNI Application Programming Interface (API) in Java programming language and
C/C++/assembler code, C/C++/assembler native binary code can be callable from Java
and also can invoke Java bytecodes. There are two kinds of interactions: "down-calls”
when a Java application code calls a native method and "up-calls” when a native
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method accesses data or invokes methods of the given Java application via a JNI
environment.

At the run-time, the security modules of the present invention can co-execute
within the JVM via the JN| so that the given Java application can invoke secure
operations within the inventive security module where such secure operations can
access the Java application and other Java library code loaded within the JVM and
perform protections.

The approach of the present invention is effectively a security addon to an
existing JVM by introducing a security module that is fully protected and trusted within
the JVM via the JNI mechanism. At run-time, the security module acts as the root of
the trust and as a protection "trampoline and engine” within the JVM to launch and
perform the various protections to Java bytecode. In this way, the present invention
does not require any global changes to the existing Java platform. Rather, both existing
and newly deployed systems and devices can benefit from this solution immediately. In
the other words, the present invention may be treated as a security extension to
existing Java infrastructure to address security problems faced by current Java
applications. Thus, the present invention provides a Java bytecode protection security
module that leverages the ability of the JNI to access bytecode during run-time and
perform a set of protection methods to Java bytecode in response to static and
dynamic attacks to the Java application.

The present invention . provides a highly trusted protection tool and security
module within a Java bytecode protection system. The present invention does not rely
upon Java application protection based only on the JVM and Java security. Rather, the
present invention introduces a Java bytecode protection security module (SM) being a
trusted zone that can work with the JVM via the JNI to launch, perform, and manage
Java bytecode protection during run-time. The trustworthiness of the security module is
provided by applying known effective security protection to ‘C/C++ code in which
programming language the protection tool and security module are written. With such a
trusted SM, trustworthiness is expanded from the SM to the Java applications and the
JVM by certain protections provided by the SM discussed further herein.

[l



| With regard to FIGURES 2 and 3, typical static and dynamic attacks to java
bytecode are illustrated. In general, any given Java application is developed in Java
source form 202 and is then compiled into Java bytecode 204 by a Java compiler 208,
which is stored on an archive file 208 (i.e., JAR file) by using an archiver utility 210
prior to distribution. Such distribution may take many forms including media such as a
Compact Disc (CD) or downloadable files.

A static attacker 212 normally uses reverse engineering tools (e.g. , a Java
decompiler) to extract valuable intellectual property information 214 (i.e., proprietary
data or software algorithms) from the code from the distribution media. In doing so, the
attacker may then make illegal changes to the code or otherwise compromise the
underlying code 216. In order to prevent such static attacks to Java bytecode during
the distribution of the given Java application, the present invention applies a level of
protection to application bytecode. This protection is provided before distribution to
ensure that static attacks become extremely difficult tasks. After applying effective
protection by way of the present invention, the intellectual property embedded within
the application bytecode is not easily reverse engineered and any tampering of the
protected bytecode becomes an impractical exercise. Moreover, the static protection of
the present invention is advantageous because any tampered bytecode cannot be
loaded and run by a legitimate JVM.

In comparigon to static attacks to an application bytecode, a dynamic attacker
302 can implement attacks to Java bytecode by using dynamic attack tools while a
JVM is loading and running the Java application. By using dynamic attack tools and
methods, an attacker can access the JVM 304 and application bytecode 306, observe
and modify the bytecode 308 directly to understand or/and change original designated
behavior and important values for their attack purpose. Moreover, the attacker can
ascertain valuable intellectual property 310 and secrets from the bytecode including
lifting original bytecode 306. In order to prevent such dynamic attacks to Java code
during run-time, the present invention forms and implants protection to the application
bytecode before distribution. Moreover, the present invention implements those
protections during run-time to ensure any dynamic attacks are impractical. The present
invention serves to not only prevent dynamic attacks, but also adds the ability to the
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protected application to detect dynamic attacks and be able to mitigate dynamic
attacks as well as making such attacks very expensive efforts in terms of time and
resources for any prospective attacker.

_ FIGURE 4 is an overview of a bytecode protection system 400 and related
methods in accordance with the present invention. Here, the Java bytecode protection
system includes two parts: a build-time protection tool 402 and a run-time security
module 404. As mentioned, the bytecode protection system and related methods are
implemented in C/C++ using technology available from Cloakware Inc. of Ottawa,
Ontario, Canada as discussed above.

The Java bytecode protection tool 402 is used to apply security (i.e., "cloak")
the Java bytecode 406 prior to deployment. This Java bytecode protection tool 402
allows the security settings and protection mechanisms to be specified during build
time. This tool takes as input the original Java application bytecode 406, security
specifications, and the WB cryptographic keys, and generates "cloaked” Java bytecode
that is run in conjunction with the Java bytecode protection security module 404. The
Java bytecode protection tool 402 includes options for specifying how bytecode is
launched (e.g., via a Protected Application Bytecode Stub or a Protected Byetcode
Class Loader), as well as options for specifying security techniques for the deployed
secured Java bytecode. The cloaked bytecode of the Java application is distributed in
two parts: 1 ) protected Java application bytecode stub 408, which is loaded into the
target JVM environment 410, and 2) protected data files 412 and white box security
module (WB SM) utility 414, which will be loaded and accessed by the SM during run-
time, separately. The inventive Java bytecode protection security module 404 can be
distributed with these two parts or independently up to application provisioning
approaches. In general, the security module 404 is generic in the sense that it can be
instalied once and applied to the cloaked bytecode of any Java application.

A variety of methods for the inventive bytecode protection are enabled for use in '
conjunction with the instant Java bytecode protection system 400. Each such bytecode
protection method addresses static and dynamic attacks to Java application in
bytecode form.
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One method of bytecode protection includes White box cryptographic, or "WB
cryptographic,” which is a unique cryptographic technology that protects cryptographic
algorithms so that their operations can execute within a hostile environment without
leaking a cryptographic key and other cryptographic values. in other words, the WB
cryptographic method can be executed against direct attacks, The present invention
incorporates two kinds of WB cryptographic technology including the external WB
cryptographic library and the internal WB cryptographic facility.

The external WB cryptographic library is implemented in C and protected with
tampering resistance property by a hidden cryptographic key and other cryptographic
information so that WB cryptographic operation can be used by protected Java
applications and performed without releasing any valuable information including the
key. The inventive internal WB cryptographic facility is a functional component of the
build-time protection tool 402 that accepts cryptographic information and keys, and
generates WB key data and utilities for the inventive protection tool and security

module 404 to use to encrypt and decrypt different forms of java application bytecodes
and relevant information.

Another inventive method of bytecode protection includes Bytecode Integrity
Verification (BIV). Protection via BIV can detect and mitigate static and dynamic
tampering attacks to Java class or method code while loading a class or running Java
methods. At build time, the inventive method calculates static hash values of JAR files,
class, and method bytecodes from the original application archive file. During loading
and run-time, the inventive method calculates dynamic hash values by addressing
class and method bytecode loaded with the JVM 410 and makes the integrity
verification by checking the dynamic hash values against the static ones.

Another inventive method of bytecode protection includes Anti- Debug (AD)
which is shown and described later in regard to FIGURE 7. AD is one of the dynamic
security handlers 416 as shown in FIGURE 4. AD protection can prevent and detect
dynamic attacks performed using debuggers during run-time. AD consists of
techniques that detect attacks by monitoring the internal and extemal state of the
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system environment at startup and during runtime. Appropriate countermeasures are
invoked once the anti-debug attacks are detected.

Another inventive method of bytecode protection is Secure Loading Bytecode
(SLB). This SLB protection method prevents and detects static reverse engineering
and tampering attacks to archive file and Java class code before loading into the JVM
410. At build time, the SLB protection method encrypts JAR files and selected class
bytecodes from the original application archive file, and introduces an application stub
class. When a JVM 410 loads the protected application, the JVM 410 first loads the
application stub class and then triggers loading of the protected application. An SLB
dynamic security handler 418 described further herein below is a functional component
of the inventive Java bytecode protection security module 404 that is connected with
the JVM 410 via JNI 418 during run-time exscution, The SLB dynamic security handler
416 manages and controls loading a protected Java application bytecode into the work
space in the JVM 410,

Another inventive method of bytecode protection is Dynamic Bytecode
Decryption (DBD). The DBD protection method prevents and mitigates dynamic attacks
to Java class or method code during run-time.

Another set of inventive methods of bytecode protection includes both transfer-
execution and partial execution. Both of these protection methods move part of original
execution into the security module 404 and make sure that only part of execution can
be exposed within the JVM 410 so as to prevent and mitigate dynamic code lifting
attacks during run-time. For example, certain Java bytecode can be converted into C
code (J2C) that can be protected and executed within the security module 404,

Another inventive method of bytecode protection includes bytecode
transformation. This kind of protection can be achieved by techniques including data
flow transformations and control flow transformations. Bytecode transformation can
transform original bytecode into different code structure while still preserving the

original functionality. The transformed bytecode becomes much harder to be reverse
engineered and tamper resistant.
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Referring to FIGURE 5, the Java bytecode protection tool 402 applies different
protection techniques to original application bytecode. The Java bytecode protection
tool 402 thus generates protected bytecode and relevant data and utilities that work
with the Java bytecode security module during run-time to implement those designated
protection techniques to Java bytecode. The Java bytecode protection tool 402 accepts
the three inputs of cryptographic info and keys 502, original JAR files 504, and
configuration options 506 via the user interface 518 and performs the three kinds of
operations.

The first basic operation includes generation of WB key data and utilities. Using
cryptographic info and keys 502, the WB static handler 508 generates WB encryption
key data 510 that are used by different static security handlers (each described in more
detail herein below) and the tool itself. Also, the build-time process of the protection
tool 402 generates WB decryption key data that is stored as part of run-time data 512
in a data protection folder 514, A WB Security Module (SM) utility 516 is provided to
perform WB decryption operations invoked by the dynamic security handlers during
run-time by using the WB decryption key data.

The second basic operation includes application of protection techniques.
According to configuration options, the Java bytecode protection tool 402 applies
different static security handlers to modify application bytecode from the original form
to protected forms. In doing so, this operation generates protected Java application
bytecode stub 408 and relevant protection data files that contain protected application
bytecode in various protection forms and important run-time data.

The third basic operation includes packaging a deployable form of the protected
Java bytecode. At the end of the process, the Java bytecode protection tool 402 will
structure and pack all output files properly so that the Java application bytecode stub
408 can be loaded by the JVM 410. This Java application bytecode stub 408 is an
entry point to lfaunching the cloaked Java application and may take various forms
including: a class file that can be launched by an external program, a class file that is
launched by another Java class, or a Java class loader. The Java bytecode protection
tool 402 will also structure and pack all output files properly so that the WB[ SM utility
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516 can be invoked by functional components of the Java bytecode security module.
Still further, the Java bytecode protection tool 402 will also structure and pack all output
files properly so that all protection data files can be accessed by certain functional
components of the Java bytecode security module 404.

FIGURE 5 shows an overview of the aforementioned build-time process to
protect Java application bytecodes. With regard to FIGURE 5, the major functional
components and data files will now be described.

The Java bytecode protection tool 402 includes a user interface 518 for
interfacing with a user in order to accept user commands and major inputs. The
commands and inputs may include: cryptographic info and keys 502 including
cryptographic algorithm selection, and originai key materials; original application
bytecode archive fite 504 which includes unprotected bytecode to be protected, and
configuration options 506 which include user options to conduct the Java bytecode
protection tool 402 on what and how to protect the application bytecode - e.g., a user
can specify particular Java classes and methods whether to be protected or not.

The Java bytecode protection tool 402 also includes a protection manager 520.
The protection manager 520 is provided to interpret configuration options 506, and
coordinate different protection techniques in a dependent order so as to interlock them
such that the resulting overall protection is much stronger than each individual
protection. Also, the manager 520 contains utilities commonly used by other functional
components of the Java bytecode protection tool 402.

The Java bytecode protection tool 402 also includes static security handlers
522. Each individual static handler is invoked by the protection manager 520 to perform
a respective predetermined protection technique. In the illustrated embodiment, a WB-
static handler 508, a BIV static handier 524, an AD static handler 526, a SLB static
handler 528, a DBD static handier 530, a transfer- execution static handler 532, a
partial-execution static handler 534 and a code transformation tool 536 are shown.
Each such static security handler is described in detail in later sections herein below.
The protection manager 520 and static security handlers 522 are designed such that
they work together to provide a plug- in mechanism to add and extend security



capability and new protection by easily integrating further new security handlers with
the protection tool.

The Java bytecode protection tool 402 also includes WB encryption key data
510 generated by the WB static security handler 508. The WB encryption key data 510
is used by the manager 520 and static security handlers 522 to encrypt certain forms of
bytecode and protection data.

The Java bytecode protection tool 402 aiso includes a WB SM utility 516
generated by the WB static security handier 510. The WB SM utility 516 is used by

dynamic security handlers (described further herein below) within the security module
404.

The Java bytecode protection tool 402 also includes a protected Java
application bytecode stub 408. The stub 408 only contains a boot-strap of the protected
Java appiication for the JVM 410 to load first and then trigger a secure bytecode loader
function to load real protected bytecode from protection data files.

The Java bytecode protection tool 402 also includes a protected J2C library 538
generated by the tool. The protected J2C library 538 contains various protected code in
C that has been converted from Java bytecode. This library is dynamically linked and
invoked by the Java bytecode security module.

| The Java bytecode protection tool 402 also includes protected bytecode data
540. This protected bytecode data 540 is one kind of protection data file generated by
the tool and contains various protected bytecode.

The Java bytecode protection tool 402 also includes run-time data 512. This
run-time data 512 contains various kinds of security related information, such as, but
not limited to, WB decryption key data, integrity verification static hash values,
protected class and method information and tables.

| It should also be understood that the Java bytecode protection tool 402 exhibits
downloadability. As such, all outputs (including the protected java application bytecode
stub 408, protected J2C library 538, protected bytecode data 540 and run-time data
512) from this protection tool are downloadable during run- time.
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in FIGURE 6, there is illustrated an overview of the run-time process to protect
Java application bytecodes in accordance with the present invention in terms of the
Java bytecode protection security module 404 shown in FIGURE 4. As previously
mentioned, the Java bytecode protection security module 404 is developed in the C
programming language and itself protected by tamper resistance techniques, such as
those provided by Cloakware Inc. of Ottawa, Ontario, Canada, so as to be robust and
tamper resistant. it should be understood that the programming engines underlying the
Java bytecode protection tool 402 and security module 404 may be engines developed
in other programming languages. In fact, the security module 404 underlying this
invention can be developed in other programming languages so long as such
languages are capable of interfacing with the Java Virtual Machine.

Upon initiating run-time, the JVM 410 loads the protected Java application
bytecode stub 408 as it would in loading any normal Java application. This triggers the
Java application bytecode stub 408 to bootstrap trusted and protected Java application
bytecade by interacting with the security module 404 via the JNI 602. During the run-
time, the security module 404 serves to manage and control data flow so as to secure
and protect the Java application bytecode and the execution thereby preventing
dynamic attacks to the bytecode and the execution.

With further regard to FIGURE 8, the major functional components and data
files will now be described. Data and flow control to and from the security module 404
is via the Java application bytecode work space 604. The work space 604 is a virtual
work space for the Java application within the JVM 410. At different states of run-time,
which include loading and executing the application, the actual application bytecode
residing in the JVM 410 is managed differently. Each state of the work space contains
legitimate and fully-functional application bytecodes, but not complete application
bytecodes. Optionally, certain portions of these bytecodes may always be kept in their
protected forms depending on build time configuration settings - e.g., enabling transfer
execution with Java and C execution options. When the portion of bytecodes is
required to be executed, the security module 404 will load and restore them within the
work space into the JVM 410 just-in-time and then remove them after the execution.
Also, certain original method bytecodes have been translated into C functions which
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- are not directly visible from the JUM 410 and can only be invoked by the security
module 404. In this approach, an attacker is only able to see pieces of the original
application bytecodes at any given moment during run-time which makes it extremely
difficult to reverse engineer an entire application bytecode.

The security module 404 (SM) also includes a bridge mechanism referred to in
FIGURE 6 as the JNI SM bridge 418. The JNI SM bridge 418 is an interaction
component that makes connection and co-function possible via the JNI 602 between
the JVM 410 and the security module 404. Sub-components of the JNI SM bridge 418
include the JNI 602 to provide the sole mechanism of interactions between the JVM
410 and native code. Also included in the subcomponents is a down-call stub 612 and
up-call stub 608. These stubs provide the application programming interface to redirect
down-calls from the Java application bytecode work space 604 of the JVM 410 to the
dynamic security handlers 611 via the security module 404 in native programming
code, and redirect up-calls from the security module 404 to the JVM 610. The third
subcomponent shown is the SM manager 610. The SM manager 610 is a controller
and coordinator for the security module 404. It not only manages and maintains various
designated protections to the Java application bytecode, but also to the security
module 404 itself. It also contains utilities commonly used by other functional
components of the security module 404.

The security module 404 also includes a plurality of dynamic security handlers
611. Each individual dynamic security handler 611 is invoked to perform a unique
protection technique. As shown, the dynamic security handlers according to certain
embodiments can include a WB dynamic security handler 614, a Bytecode Integrity
Verification dynamic security handler 616, an anti- debugging dynamic security handler
618, an SLB dynamic security handler 620, a DBD dynamic security handler 622, a
transfer execution dynamic security handler 624, a partial execution dynamic security
handler 626 and a code transformation 628. The details of the dynamic security
handlers 611 are described later herein below.

Coordinating with the build-time Java bytecode protection tool 402, the SM
manager 610 and dynamic security handlers 611 are also designed such that they



work together to provide a plug-in mechanism to add and extend security capability
and new protection by easily integrating additional new dynamic security handler with
the security module,

In FIGURE 7, ohe embodiment of the inventive method for external anti-debug
monitoring is illustrated. Here, Java Platform Debug Architecture (JPDA) facilitates the
capability of debugging the Java application. The inventive method focuses on
detecting debug enabling and its subsequent debugging activities based on the JPDA.
A multilayer defense strategy is used to maximize the chance of capturing the
debugging activities both statically and dynamically within a running JVM process as
shown. The three agents illustrated in the AD method shown in FIGURE 7 can be
configurable to allow normal or legal debugging activity to be performed. The three
agents include a Kemel Monitor Agent (KMA) 702, a Debugger Attachment Monitor
Agent (DAMA) 710, and a Debugging Procedure Monitor Agent (DPMA) 718.

In regard to the KMA 702 accessing kemel space 701 , it is required that the
JVM process load a debugging library 705 into its memory space before any
debugging function can be performed. The KMA 702 is spawned when the Java
application starts. The KMA 702 periodically checks its own process map 703 from the
Kernel to determine if libraries reiated to JDPA are loaded into its memory space. The
appropriate related action is taken should these libraries be found.

In regard to the DAMA 710, this agent serves the second line of defense. DAMA
710 is facifitated with Java Virtual Machine Tool Interface (JVMTI) capabilities and is
loaded when JVM starts 700. A call back function is provided to constantly monitor
thread-start screens for every thread created during the runtime. Activities of any
attached JOPA debugger in the Java application can be captured whenever the JVM
loads certain threads deemed to be necessary to perform debugging. In this regard,
DAMA 710 enables the thread start listener 707, detects a new thread start 709 and
detects a JDPA related thread 711 .

In regard to the DPMA 718, this agent is provided as a third line of defense. The
DPMA 718 also operates under the JVMT! environment. A call back function
monitoring the debugging procedure (e.g., hitting a break point line) will be triggered
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whenever such action is taken. Detailed messages such as the thread and its location
of the breaking point can be collected. In this regard, the DMPA 718 enables a line
break listener 713, detects debugging activities 715 and report any thread and method

information 717. Each of the KMA 702, DAMA 710 and DPMA 718 can trigger an
action and disable JVM 726.

The aforementioned static and dynamic security handlers will now be described
in further detail. The WB security handler includes an extemal WB cryptographic library

as shown in FIGURE 8 and an internal WB cryptographic facility as shown in FIGURE
9.

The external WB cryptographic library in FIGURE 8 provided by the WB
dynamic security handler 614 provides a library that is used by the Java application for
WB encryption and decryption functions via the JNI security module interface 804. The
WB static handler 508 accepts cryptographic information and original keys 502 from a
user, and generates WB key data 803 that can be distributed and rolled as needed,
which the cryptographic library can then use for secure cryptographic operations.

The internal WB cryptographic facility contains a WB static handler 508 and a
number of static and dynamic components are illustrated in FIGURE 9. The WB static
handler 508 accepts cryptographic information and original keys 502 from a user, and
generates WB encryption key data 904, which other static security handlers 906 then
use for encryption operations to different forms of application bytecodes as part of
different protection techniques. The WB static handler 508 also generates WB
decryption key data 908 and provides a WB security module utility 630 that are each
used by dynamic security handlers 611 to perform decryption operations while the
security module 914 performs dynamic protections.

The Java bytecode protection tool 402 also includes a pre- processing method
as shown in FIGURE 10. This pre-process tool 1001 accepts the original Java
application bytecode archive files 1005 and translates them into an internal
Representation (I R) of the original application bytecode. Particular classes and
methods are then marked for protection and their manner of protection‘according fo
user options 1003. Protection mark information 1004 is thereby generated. Both the
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original application bytecode in | R form 1000 and protection mark information 1004 are
used by each static security handlers 522 for desired protections.

Within each static security handler of the Java protection tool 402, there is
provided Bytecode Integrity Verification (BIV). FIGURE 11 illustrates the work flow of
the BIV static security handler 524, As well, FIGURE 12 illustrates the work flow of the
BIV dynamic security handler 616, Here, BIV provides unique tamper resistance
protection by introducing a dynamic integrity verification capability to Java bytecodes
during run-time. In general, at build-time a tool is used to sign classes and methods
that require BIV protection where the BIV data 1202 is generated and then protected
and BIV actions build into the Java bytecode. At run-time, BIV actions are triggered via
the Java bytecode protection security module 404 for BIV protected classes and
methods, where dynamic secure hash values are just-in-time calculated for their
respective bytecode. Both static and dynamic secure hash values are represented in a
secure form and feed into the Tamper Resistance Gate Keeper (TRGK) 1216 with
success and/or failure call-back functions. The TRGK 1216 determines whether a BIV
check is successful or failed without explicitly comparing the static and dynamic secure
hash values. This can be accomplished via an appropriate algorithm in the form of a
specifically designed mathematic computation. If the static and dynamic secure hash
values are the same, this generally indicates that the BIV check passes and a success
call-back function can be invoked. Otherwise, if the static and dynamic secure hash
values are not the same, this indicates that tampering of a particular class or method is
detected and the BIV check has failed. Thus, a failure call-back function can be
invoked. Those call-back functions are user- defined countermeasures to detected
tampering attacks.

in the present invention, the process of computing dynamic secure hash values
1214 of Java bytecode differs from typical processing of computations on normal native
binary code in which the computation merely needs to pick native code directly from
the memaory allocated for the executable. Normally, application code cannot gef a code
segment directly from the memory at Java run-time. Instead, application code obtains a
class or method bytecode through the JVM 410 mechanism. In this invention, the
security module leverages this ability and the JNI interface by using an up-call to the

2.0



JVM 410 to retrieve bytecodes and then computing the secure dynamic hash values
1214 and performing an integrity verification check of the retrieved bytecode against
the pre- registered hash value.

With regard to FIGURE 11 , the bytecode integrity verification static security
handler 524 is seen to include bytecode signing. One of the major functions of the BIV
static security handler 524 is to walk through application bytecodes and check each of
the classes and methods using protection mark information 1105 to determine which
class or method needs the BIV protection. If a class or method requires the BIV
protection, a specific hash value is computed by applying a secure hash calculation to
the particular class or method bytecode 1106, 1107. In general, a secure hash
calculation algorithm as known in the computing art is commonly used. These resultant
hash values are stored as BIV data 1108 in an organized and structured way so that
they can be used effectively during run-time.

: The BIV data 1108 of the bytecode integrity verification static security handler is
a data container that contains data of class and method static hash values and other
information such as WB BIV decryption key data. Such data is used at run-time by the
dynamic BIV security handler. in order to be used more effectively, BIV data 1108 is
structured with corresponding information on each of the classes and methods to be
protected and their static hash values.

The bytecode integrity verification static security handler 524 also serves to
transform and encrypt BIV data 1108. The integrity of the BIV data 1108 is very
important to maintain. BIV data can be transferred or download via networks.
Accordingly, the present invention applies transformation and encryption to them as
part of packing them for use. Without such protection, any tampering of the BIV data
can be a step to break BIV protection. During packaging time, the BIV static security
handler performs double protections to the BIV data so as to prevent static attacks to
sensitive BIV data. First, the BIV static security handler 524 performs the data
transformation to the static hash values so that these values can be operated in
transformed form at run-time by the dynamic BIV security handler 616. This serves to
ensure that the real plain values are never exposed. Secondly, the BIV static security
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handler 524 then performs encryption of these transformed values so as to prevent any
tampering occurring to these transformed values before being dynamically used.

it should be understood that the BIV data 1108 is one kind of runtime data that
are used at run-time by the dynamic security handlers 611. Run- time data can be
organized and stored into a single file or multiple files according to user options. There
are some advantages to the form of multiple run-time data files, such as that the data
information can be updated and downloaded in a more fine grain. For example, BIV
data 1108 can be structured for each of the Java classes to be protected. In this
manner, BIV protection can be performed more feasibly on each class base.

The bytecode integrity verification static security handler 524 also provides
uhique BIV triggering. Two approaches to trigger BIV at run-time are provided via an
external BIV APl and an intemal BIV trigger. As a first approach that is part of the
designated system under this invention, a set of external BIV APIs are provided for
users to use them in proper places within their Java code where a user has a clear
idea to perform a BIV check. The user can indicate which Java class or method needs
a BIV check. The user will have full control of mitigating actions by using call-back
functions. The other approach is an alternative to triggering by a user invoking external
APls. Instead, BIV triggers can be pre-built within certain functions of the Java
bytecode protection security module. Each time the Java application invokes those
functions, the internal BIV actions can be triggered in a pre-arranged fashion. Certain
mitigating actions are pre-defined and taken by the security module internally.
However, a user will stili have partial control on the mitigating actions. This is enabled
by providing a pre- setting AP| for a user to pre-set mitigating actions taken by the
security module so that it will act accordingly to the setting. In general, users have full
control on whether and where to use the external BIV API, and have indirect control on
whether to use the intemal BIV triggers at build-time. Users do not have any control
where to trigger the internal BIV as that is hidden and controlled by the security
module.

With regard to FIGURE 12, the bytecode integrity verification dynamic security
handler 616 is seen to include BIV initialization. BIV initialization
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is provided to load secure static BIV data 1202 and decrypt them using the WB BIV
decryption key data 1203, and thereafter load them into the memory in secure form.
BIV initialization can be implemented in two ways: as part of security module
initialization or on demand during dynamic BIV. In regard to the first way, this can be
done once as part of SM initialization when loading the protected Java application. In
regard to the second way, this can be accomplished by loading what is needed on
demand during dynamic BIV. This can be done when the BIV is required for a class.
BIV data files can be organized at the class level. For a particular class, BIV data is
loaded and decrypted for this class only. This second approach can provide more

flexibility to users to leverage small changes required to BIV data if the class bytecode
changes.

| The bytecode integrity verification dynamic security handler also performs
dynamic BIV 1210. As discussed above, the dynamic BIV of a class or method can be
launched by either external BIV API calls or other functional calls from the protected
Java application to the security module that contains a prearranged internal BIV trigger.
Performing dynamic BIV includes at least the following key actions: getting the latest
bytecode, computing the dynamic secure hash value, and providing a tamper
resistance gate keeper (TRGK) 1216.

Getting the latest Bytecode occurs via an up-call. In order to calculate the
secure dynamic hash value securely for a class or method within the security module,
the latest bytecode of a class or method has to be obtained via an up-cail to the JVM
410 via the JNI. The same bytecode itself should be interpreted or compiled into binary
while executing this class or method loaded to the JVM 410. If there are not any
tampering attacks to the bytecode, the bytecode should be the same bytecode to which
the static secure hash value has been calculated. '

[00104] The action of dynamic secure hash value computation involves classic known
hashing computation, but the resultant value is in protected form and will be used in
protected form.

[00105] Providing the TRGK 1216 involves two inputs. The TRGK 1216 uses both
static and dynamic secure hash values (SSHV 1212, DSHV 1214) for a particular class
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or method to verify whether the integrity of the bytecode of the class or method is
compromised. If any tampering happens to the bytecode, its DSHV 1214 cannot be the
same as its SSHV 1212. The TRGK 1216 can detect any tampering to the bytecode. If
the BIV verification passes, TRGK 1216 will trigger a success call-back function or to
return to the original BIV trigger; otherwise, the TRGK 1218 will trigger a failure call-
back function as the user's mitigating action.

The bytecode integrity verification dynamic security handler 616 also includes
a termination step in the form of the BIV close. The BIV close as part of the security
module performs cleaning up of the memory space and the other information used by
BIV dynamic secure handler.

With regard to FIGURE 13, the Secure Loading Bytecode (SLB) static security
handler 528 is shown, The SLB static security handler 528 receives the internal
representation of the original Java application bytecode 1301 along with the WB
encryption 1302 and decryption key data 1304 and the protection marking information
1306.

An important output of the SLB static security handler 528 is the application
stub 1308. The application stub 1308 contains a bootstrapping class to launch a
loading process via the security module during run-time. The application stub 1308 is
loaded by the JVM. 410 The application stub 1308 contains each external public API
necessary to enable the application to be launched independently or via another Java
application. The application stub 1308 contains methods that invoke down-call
functions to the security module, which in turn will decrypt and load the Java
application into the JVM for execution.

To prepare the application stub, the SLB static security handler 528 includes
an application bytecode work frame 1310 and an encrypted application bytecode work
frame 1312, The application bytecode work frame 1310 is different from the original
application bytecode 1301. In general, a class within the application bytecode work
frame 1310 does not require protecting so it will be the same as the original one. If a
class needs to load securely, a class stub replaces the original class bytecode and
thus the class bytecode is the original bytecode. The encrypted frame 1312 is obtained
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by encrypting the application bytecode work frame 1310 using the application WB
encryption key data 1302 via the static security handler 528 during build-time, and is

decrypted using application WB decryption key data 1304 via the dynamic security
handler 620 during run-time.

In addition to the application stub 1308, the application payload 1314 is
generated. The application payload 1314 contains the encrypted application work
frame 1312 and the application WB decryption key data 1316. The application WB
decryption key data 1316 in the protected application payload is the key data
generated by the WB static security handler 508 and passed to the SLB static security
handler 528 as part of the WB decryption key data 1302. At run-time, it is used to
decrypt the encrypted application bytecode work frame 1312.

As shown in FIGURE 13, the underlying code may be formed as class
bytecode 1318, class stubs 1320, or encrypted class bytecode 1322. Class bytecode
1318 is original bytecode. The class stub 1320 contains a bootstrapping method to
launch a trusted class loading process via the security module during run-time to load
the encrypted class bytecode 1322 when necessary. During the packaging time, the
class bytecode 1318 is analyzed. Marked methods are replaced by methods that
invoke down-call methods to the security module, where the security module invokes
the original bytecode functionality via a security handler method designated at
packaging time. The encrypted class bytecode 1322 is obtained by encrypting class
bytecode 1318 using the class WB encryption key data 1302 via the static security
handler 528 during build-time, and is decrypted using the ciass WB decryption key data
via the dynamic security handler 620 during run-time.

An encrypted class bytecode frame 1324 is also generated by the SLB static
security handler 528. It contains encrypted class bytecode and class WB decryption
keys for one or more classes., Users have the option to control how many classes a
frame can contain within their encrypted class bytecode 1322. The user has the option
to load them together or separately during runtime. Class WB decryption key data is
generated by the WB static security handler 508 and passes to the SLB static security
handler 528 as part of the WB decryption key data 1304. At run-time, the class WB



decryption key data 1304 is used to decrypt the encrypted class bytecode 1322. The
user has the option whether generate one or multiple class WB encryption and
decryption keys.

In regard to FIGURE 14, the work flow of an SLB dynamic security handler
620 is shown. The SLB dynamic security handler 620 is a functional component of the
security module that is connected with the JVM 410 via JNI during bytecode execution.
The SLB dynamic security handier 620 manages and controls loading of a protected
Java application bytecode into the work space in the JVM 410. Advantageously, this
capability can ensure that an original Java application bytecode is protected and
likewise distributed in a protected form so as to prevent any static attacks to the
application bytecode occurring before loading the application bytecode to the JVM 410.
The SLB D-handler 620 contains two main functional components including secure
application loading and secure class loading.

Secure application loading involves the protected application stub 1404 which
is located in the class path and loaded normally by a JVM 410. A main bootstrapping
method is executed after the loading, and then an application bootstrapping method
1403 is invoked through a down-call API via the JNI SM bridge 418. This triggers the
following application loading actions of the SLB dynamic security handier 620. First, the
protected application payload 1408 is loaded from the protection data folder. This
includes loading the encrypted application bytecode work frame 1410 from the payload
1408 into memory buffer, and then decrypting the encrypted application bytecode work
frame 1410 just-in- memory by using the application WB decryption key data 1304.
Next, the decrypted application bytecode work frame 1412 is walked through to load
each class bytecode and class stubs from the work frame into the application work
space by using a special SM class loader 1414. The SM class loader 1414 utilizes the
security module to load encrypted bytecode, and decrypt and load the bytecode into
the JVM 410. Additional security checks may be incorporated to add BIV protection to
the SM class loader 1414 and also checks on class loader hierarchy and integrity
during load and run time. Finally, execution is passed to the main method of the main
application class within the work space.



Secure class loading involves the triggering of a class bootstrapping method
as illustrated in FIGURE 15. In general, an encrypted class bytecode frame can be pre-
installed or downloaded on the device before executing the protected application, or
downloaded on the device during its execution. This depends on the functional nature
of the application. When classes with class stubs are required during the execution of
the protected application, a class bootstrapping method is triggered and the following
steps 1500 are executed via the JNI SM bridge to load the required class from the
encrypted class bytecode frame. First, the corresponding encrypted class bytecode
frame is loaded into the memory buffer. Next, each of the encrypted classes contained
in the frame just- in-memory is decrypted by using each of the specific class WB
decryption key data. The decrypted class bytecode is then loaded into the application
work space by using the SM class loader. Thereafter, execution of the application
continues within the work space

It should be noted that, unlike running a native application where all code must
be loaded first, the JVM allows for loading a new class on the fly. This extends
applications dynamically by loading classes only when they are needed. Moreover, this
characteristic of Java provides a good opportunity fo use the SLB secure class loading
against code lifting attacks. Further, after a protected class is SLB securely loaded and
executed, the present invention can provide options to maintain the class in a
protection state by restoring back to its class stub. In such a way, only at just-execution
time is the original bytecode of the class available within the JVM image, while it
remains within protected form for other times.

in genera!l, Dynamic Bytecode Decryption (DBD), invoives decryption of
protected method bytecodes only when the encrypted method is invoked by a running
Java program. This ensures that all of an application's unencrypted bytecode is never
resident in memory at one time.

[00118] In regard to FIGURE 16, the build time workflow of a DBD static security
handler 530 is shown. During build time, each unprotected class bytecode file 1602 is
loaded into an internal buffer and a new class bytecode work frame is constructed for a
class to be protected by DBD using the protection marking information 1306, where

<0



marked methods are replaced with a method stub 1604 that will invoke down call
methods to trigger the invocation of DBD dynamic security.handler 530 at run-time. For
each Java method to be protected, its bytecode is encrypted by using method WB
encryption keys and storing the encrypted method into the encrypted method bytecode
frame 1606 that is packaged along with the WB decryption key data 1608 for
distribution as part of protected bytecode data. The original bytecode class is replaced
by the protected class bytecode work frame 1610 for distribution.

FIGURE 18 shows an execution time workflow of the DBD dynamic security
handler 622. When an encrypted DBD Java method is invoked while executing a
protected Java application on the JVM, the method stub is first executed and then a
down call, method bootstrapping 1802, is invoked within the DBD dynamic security
handler 622. It identifies and decrypts the encrypted method from the encrypted
method bytecode frame 1804 by using WB method decryption key data and restores its
real bytecode to the JVM. An implementation for restoring class bytecode to the JVM
can involve restoring a copy of the class to the JVM, with the class renamed to avoid
naming conflicts within the JVM namespace. An example of this is shown in FIGURE
17 where the partially decrypted class Is loaded into the JVM with a new class name.

In FIGURE 18, if needed, once the original bytecode is restored to the JVM,
the DBD dynamic security handler 622 may copy the class state to the real bytecode
instance, this option is determined at build time. The DBD dynamic security handler
622 then invokes the unencrypted method in the JVM 410. Once the method invocation
is compiete the security handler 622 then restores the real state from the unencrypted
class Instance to the encrypted instance and the control is returned to the originating
down call method. FIGURE 17 shows the sample method invocation and state copy
operations 1700 prior to calling the unencrypted method. Once the unencrypted
method has completed execution, the state is copied back to the class instance with
the protected method stubs by the DBD dynamic security handler 622. The control is
returned to the protected method, whilst the security handler removes the unencrypted
class and instance from the JVM 410.



The above-described embodiments of the present invention are intended to be
examples only. Alterations, modifications and variations may be effected to the
particular embodiments by those of skill in the art without departing from the scope of
the invention, which is defined solely by the claims appended hereto.
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