03/102778 A2

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

11 December 2003 (11.12.2003) PCT WO 03/102778 A2
(51) International Patent Classification’: GO6F 12/00 HEPPER, Stefan [DE/DE]; Dorfackerstrasse 24, 72074
Tuebingen (DE). MERK, Lothar [DE/DE]; Kirchwiesen-
(21) International Application Number: PCT/EP03/03529 strasse 5, 71093 Weil im Schonbuch (DE). STOBER,

(22) International Filing Date: 4 April 2003 (04.04.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
02012080.4 31 May 2002 (31.05.2002) EP
(71) Applicant (for all designated States except LU, US):
INTERNATIONAL BUSINESS MACHINES COR-
PORATION [US/US]; New Orchard Road, Armonk, NY

10504 (US).

(71) Applicant (for LU only): IBM DEUTSCHLAND GMBH
[DE/DE]; Pascalstrasse 100, 70569 Stuttgart (DE).

(72) Inventors; and
(75) Inventors/Applicants (for US only): HANSMANN,
Uwe [DE/DE]; Birkenstrasse 30/1, 71155 Altdorf (DE).

Thomas [DE/DE]; Schubartweg 8, 71032 Boeblingen
(DE).

Agent: KLEIN, Hans-Jorg; IBM Deutschland GmbH, In-
tellectual Property, 70548 Stuttgart (DE).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

74

81

34

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR ACCESSING DIFFERENT TYPES OF BACK END DATA STORES

2

\

Client A
\ ’/8
4\\ Gate- |

/ way

A 4

Client B

6

Sync | '
Server gzmi:ne N

20

. 22 '28 24

Content

12 § Adapter | a1t
s DS1 Back End
E |Content Data Store 1

L |Adapter |~g_|

<<3 DS2 -

30 2
Back End
Data Etope 2

(57) Abstract: The present discloses a framework that allows a synchronization engine to synchronize data between a mobile device
and Back End data stores independently from the architecture and data formats of that Back End data store. The framework introduces
content adapters, which access synchronization data from backend data systems. These adapters convert the data into a Back End
data store independent representation, which can be used by all applications or modules which need to access different back-ends in
a generic manner. A generic synchronization engine for the purpose of conflict detection and resolution is one example for a module
of this kind. Other applications that could use the content adapter are Notification Frameworks or Portals and all other applications

aggregating data.

WO 03/102778 A2 | NNI) 0 AOHRON 00RO A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 03/102778 PCT/EP03/03529

DESCRIPTION

System and method for accessing different types

of Back End data stores

The present invention relates to a method and system for
exchange or synchronization of data between different clients,
and in particular to synchronization of data between clients
by using a central synchronization server linked with

different types of Backend data store.

Synchronization can be defined as keeping data consistent
between different clients, e.g. a Notebook calendar and
Personal Digital Assistant (PDA) calendar, and storing at
these clients data into different data formats with different
identifiers. The synchronization data can also consist of

complete computer programs or parts of these programs.

Frequently, a central synchronization server is used through
which data can be exchanged between different clients (see
FIG.1). The central synchronization server can either store
all data locally (i.e. when using a proprietary data format),
which is normally used by carriers (e.g. Yahoo) with high
loads, or can directly access Backend data stores like DB2,

Domino, or Exchange (see FIG.2).

Back End data stores have their own protocols and mechanisms
to access and store information. Although relational databases
use ODBC as a common interface, for instance databases storing
Personal Information Management (PIM) data are usually
accessed in a proprietary way and rely on very specific data
structures of the content. This results in a dependency of

Web-Server based applications on the specific databases and

WO 03/102778 PCT/EP03/03529

the particular types of the accessed content. It requires big
efforts when adopting new databases and new types of content

for an existing software.

For instance, developing a big scale synchronization solution,
which involves many different database manufacturers and
multiple multimedia content is quite difficult under these
circumstances: The synchronization engine, which includes the
logic for synchronizing multiple client devices, needs to be
adapted for each supported type of content and each connected
database. In fact, today’s synchronization engines depend
strongly on the backend store, which contains the data.
Significant investments for implementing a sophisticated sync
engine is for the benefit of one or few backend systems only

(see FIG.3)

The same problem appears if a Notification System wants to
inform a user by sending data which is collected and stored in
different backend systems. Also portals which aggregate data
from different systems need a system independent method to

access the information.

US Patent 5,974,238 describes an apparatus for performing
dynamic synchronization between data stored in a handheld
computer and a host computer, each having a plurality of data
sets including at least one common data set, each computer
having a copy of the common data set. The handheld computer
has a processor, a communication port, and a data
synchronization engine. The data synchronization engine has a
pseudo-cache and one or more tags connected to the pseudo
cache. Data is synchronized whenever data is written to main
memory and/or when the associated pseudo-cache tag is

invalidated. By strict adherence to a set of protocols, data

WO 03/102778 PCT/EP03/03529

coherency 1s achieved because the system always knows who owns
the data, who has a copy of the data, and who has modified the
data. The data synchronization engine resolves any differences
in the copies and allows the storage of identical copies of
the common data set in the host computer and in the handheld

computer.

This prior art patent is not directed to a synchronization
architecture using a Back End data store. Therefore, the
above mentioned problems related to the Back End data store

are neither dealt nor solved by that patent.

It is therefore object of the present invention to provide a
new method and system for exchange or synchronization of data
in an architecture using a central synchronization server
linked to different Back End data store types however

avolding the disadvantages of the prior art solutions.

That object is solved by the features of the independent

claims. PFurther preferred embodiments are laid down in the

dependent claims.

The present invention discloses a framework that allows a
synchronization engine to synchronize data between a mobile
device and Back End data stores independently from the
architecture and data formats of that back-end store. The
framework introduces content adapters, which access
synchronization data from Back End data stores. These adapters
convert the data into a Back End data store independent
representation, which can be used by all applications or
modules which need to access different back-ends in a generic
manner. A generic synchronization engine for the purpose of

conflict detection and resolution is one example for a module

WO 03/102778 PCT/EP03/03529

of this kind. Other applications that could use the content
adapter are Notification Frameworks or Portals and all other
applications aggregating data. Any Back End data store
specific issues are handled by the Back End dependent part of
the content adapters, which can easily provided by third

parties and plugged into the framework.

The present invention will be described in more detail with

the accompanying drawings in which:

FIG.1 shows a simplified synchronization architecture on which

the present invention may be based,

FIG.2 shows the prior art synchronization architecture with

direct access to the Back End data store,

FIG.3 shows the prior art synchronization architecture with

different Back End data stores,

FIG.4 shows the SyncML communication protocol which may be

preferably implemented by the present invention,

FIG.5 shows the basic architecture of the inventive content

I

adapter framework (CAF),

FIG.6 shows a preferred implementation of the CAF,

FIG.7 shows the CAF interfaces,

FIG.8 shows a communication flow between client, sync engine,

CAF and backend-system with session authentication,

FIG.9 shows the inheritance model as used by the CAF, and

WO 03/102778 PCT/EP03/03529

FIG.10 shows the CAF specific process flow.

Synchronization between different clients using a central
synchronization server is based on a synchronization protocol

which typically consist of the following steps:

Pre-Synchronization: To prepare the actual synchronization
some action must be taken before this can happen. These
actions fall into the following groups: authentication,
authorization, and determine client capabilities.
Authentication ensures that the server is who it claims to be,
and that the client is, who it claims to be. Authorization
checks, whether the client is allowed to perform the requested
action (e.g. delete, update, or only create new entries).
Finally the server determines the device capabilities (e.g.

maximum buffer size) to optimize the data flow to the client.

Synchronization: This is the part, where the synchronization
data is exchanged. Between two synchronization partners all
local IDs of data entries are mapped to global IDs known to
both partners. Every partner therefore has a mapping table, to
map local to global IDs. Then only the updated, new or deleted
entries are exchanged. If both partners update the same data
entry there will be a conflict. This update conflict can be
resolved in different ways: try to merge the updates,
duplicate the entries, let one entry win over the other, or
simply do nothing and report the conflict so that the user can

solve it.

Post-synchronization: At post-synchronization all the cleanup
tasks are performed, like updating the mapping tables, report

unresolved conflicts, and so on.

WO 03/102778 PCT/EP03/03529

A widely used synchronization protocol is SyncML. SyncML
provides an XML-based transport protocol for synchronization
that is independent of the transport protocol. Each
synchronization Message is a XML-document. A typical SyncML
system is shown in FIG.4 where Application B (e.g. Personal
Digital Assistant) is sending synchronization data wvia its
Client Sync Engine to the SyncML Framework. The SyncML
Framework translates the API calls (e.g. Update, Create) and
the data into a valid SyncML document and sends it to the
Server. On the Server side the SyncML Framework receives the
document, parses it, and then sends the command and data to
the Server Sync Engine, which then talks to the Application A

(e.g. Lotus Notes Calendar of a notebook).

FIG.5 shows the basic architecture of the inventive content
adapter framework (CAF) used in a communication architecture
between mobile clients and different Back End data store

types.

The different mobile Clients 2,4,6 access the Sync Engine 12
via a wireless or wired gateway 8 and through a Web Server 10
and the Sync Engine 12 talks via CAF 20 to the different Back
End data store types 24,26. The CAF 20 provides the
infrastructure to access data of different Back End data
stores 24,26 through a single backend neutral interface (CAF-
‘interface 22) and to easily add new Back End data stores. The
CAF 20 consists of at least a single CAF-interface 22 and one

or more content adapters 28,30.

The CAF-interface 22 represents a single interface for the

Sync Server 10 to access Back End data and therefore separates

WO 03/102778 PCT/EP03/03529

the content retrieval from the Sync Server. Through the CAF-
interface 22 a Sync Engine 12 is able to access content
independently from a specific Back End data store 24,26. For
the data exchange between CAF-interface 22 and Sync Server 10

preferably Data Objects are used as data format.

Basically the content adapter provides all data store specific

dependencies.

In preferred embodiment of the present invention each content
adapter 28,30 includes an abstract Back End independent part
and a Back End dependent part. The Back End dependent part
contains all data store specific dependencies. It implements
access to the synchronized Back End data and creates a data
store independent representation of that data, which is
provided to the Sync Engine 12 or application layer using the
CAF interface 22. The CAF specific process flow is managed by
the Back End independent part of the content adapter 28,30.
Back End independent part provides the functionality common to
all Back End data stores, e.g. queuing mechanism,

communication handling.

ITn order to include semantic informatioﬁ, which can be used by
the application (e.g. sync engine), a class hierarchy of
common data objects is defined: Special subclasses of data
objects describe the typical properties of the supported types
of data, e.g. address, calendar, multimedia information,
relational data bases, etc. The properties describing a data
object for a particular kind of information can be taken from
common standards, such as vCard (standard format for
exchanging business card information) for address book

information or vCal (standard format for exchanging calendar

WO 03/102778 PCT/EP03/03529

information) for calendar entries. Applying XML allows even
representing customer specific databases independent from a

particular database.

Finally the framework 20 provides the infrastructure to easily
integrate a caching mechanism between the Sync Engine 12 and
the Back End data stores 24,26 for high volume systems or slow

back-end systems (see FIG. 6)

The content adapter provide fast read/write access, adaptable
to different backend systems (e.g. Domino, DB2, Exchange),
support multiple SyncML messages, always have consistent data,

and adaptable to different content formats.

The method carried out by the basic architecture of CAF may be
briefly summarized as follows: Client requests sync session
with Sync Server. Server authenticates client and accepts sync
session. Client sends update to server. Sync server creates
data objects and fills in the update received from the client.
Sync server calls then CAF interface and hands over data
objects. CAF selects the appropriate Back End specific part of

the content adapter.

CAF calls the Back End specific part ana passes the data
objects to it. Back End specific part of the content adapter
transforms data objects in a Back End specific format and
calls Back End specific API (application programming

interface).

One of the main advantages of the present invention compared
with the prior art is making the access specific back-end

databases independent from the calling application. CAF

WO 03/102778 PCT/EP03/03529

integrates components from different database providers and
offers access to their database functionality through a high-

level interface.

By using common interfaces, the content adapters ensure
interoperability of application with multiple Back End
systems. A Sync Engine, for example, does not depend on
proprietary commands of a particular database. Additionally,
the components hide the complexity of the content, which is
exchanged between a database and an application. This
significantly reduces the programming efforts and the
complexity of solutions. Also CAF allows the backend end
system provider to just develop one interface for different
applications accessing that backend data store. This saves
both parties (the application provider and the backend
supplier) a hugh amount of time and money.
CAF allows:
e sync engines to talk to different back-end systems using
the same protocol and API
e back-end system providers to create their own content
adapter tailored towards their back-end system
¢ provides a session between sync engine, CAF and the back-
end system handling the authentication to re-use back-end
connections for efficiency '
¢ allows the usage of a caching system to achieve low
latency time for the communication sync engine - CAF
e allows for load-balancing and fail-save distribution of

components

FIG.6 shows a preferred implementation of the CAF. The CAF 100
comprises a CAF-interface 22, a Content Manager 30, and a

caching mechanism.

WO 03/102778 PCT/EP03/03529

- 10 -

The CAF interface 22 provides a single interface for the Sync
Server to access Back End data stores 24 and therefore

separates the content retrieval from the Sync Server 10.

The Content Manager 30 forwards authentication and backend
management requests (e.g. get a sync anchor) to the Back End
Manager 80, writes new data to the cache 50 using the
Persistent Store 40, and gets updates from the cache 50
through the Persistent Store 40. Search and execute commands

are performed on the Back End.

The caching mechanism provides a permanent cache 50 and a
mechanism for buffering of updates into the cache 50 and
synchronizing buffered updates with the respective clients.
The permanent cache 50 may be a relational data base like
Oracle or IBM DB2 and may be accessed for example via JDBC
calls. The caching mechanism preferably consists of a Cache
Monitor 70, a Backend Monitor 60, a Back End Manager 80, and a
persistent store 40. The Backend End Manger 80 includes an
abstract Backend End Manager 80'’ with its Back End specific
parts 80’ (Content Adapter), the Cache Monitor 70 includes an
abstract Cache Monitor 70’ with its Back End specific Cache
Monitor parts 70’ (Content Adapter), and the Backend Monitor
60 includes an abstract Backend Monitor. 60’’ with its Back End

specific Backend Monitor parts 60’ (Content Adapter).

The Cache Monitor 70 is primarily used to replicate all new
data from the cache to the back end data store. Depending on
the Back End requirements different replication strategies,
such as batch or trickle may be adopted. If the primary
objective is to better support sync clients instead of regular
back end clients the batch mode is preferred. The Back End

dependent part 70’ of the Cache Monitor 70 is specific for

WO 03/102778 PCT/EP03/03529

- 11 -

each Back End data store and must exploit the features of the
Back End data store (e.g. DB2, Domino). It also translates
Sync Objects into a content storage specific format (e.g.

Lotus Domino or MS Exchange) .

The Back End Monitor 60 trickles updates that occur in the
Back End data store 24 from outside the sync server (e.g. a
regular Lotus Notes client updating a database) into the cache
50. This allows sync Clients to synchronize always with the
latest back end data without requiring the overhead of a full
replication for each sync session. The Back End specific part
60’ of the Back End Monitor 60 is specific for each Back End
data store and translates the content storage specific format

(e.g. Lotus Domino or MS Exchange) into CAF Sync Objects.

The Back End Monitor can have different update policies,
including aggressive or lazy updates, to optimize the overall

system performance.

The Back End Manager 80 provides access to administrative
functionality of the Back End data store. The following
functionality preferably offered for supporting the CAF:
validation of user authentication, retrieval of access
permissions for authenticated users, retrieval of the current
back end specific timestamp (current “sync anchor”), and
adding/removing the URIs CAF wants to monitor for changes. The
Back End specific part 80’ of the Back End Manager 80 is
specific for each Back End data store and translates'the
content storage specific format (e.g. Lotus Domino or MS

Exchange) into CAF Sync Objects.

WO 03/102778 PCT/EP03/03529

- 12 -

The data to be synchronized can either be stored directly in
the remote content store (backend) or can be cached
persistently on the server (locally) for performance reasons.
The Persistent Store 40 uses a persistent storage medium as a
cache to optimize read/write access to the Back End data
store, however, the architecture does not prevent that the
Persistent Store directly connects to the backend data store

via the Cache 50 and Back End Monitor.

The communication flow within above CAF implementation may be

briefly summarized as follows:

The Content Manager 30 receives the requests from the Sync
Engine 12 and forwards them either to the persistent store 40,
if data needs to be retrieved or stored, or to the Back End
Manager 80, if a timestamp is needed or authentication is
requested. The Back End Registry, if available, contains all
available Back End Managers 80 and Monitors 60,70 and is
accessed from Content Manager 30 and Persistent Store 40. The
Cache Monitor 70 gets updated data from the Persistent Store
40, translates these to the Back End format, and forwards the
data to the Back End data store 24 by using the Back End
dependent part 70’ of the Cache Monitor.. The Back End
dependent part 60’ of the Back End Monitor 60 receives the
updates from the Back End data store 24, translates them to
Data Objects, and forwards them to the Persistent Store 40.

In case the cache is not available or for a given database a
direct access to the Back End 24 is specified, the Content
Manager 30 forwards the getUpdates call to the Back End
Monitor 60 and the items to be updated to the Cache Monitor

WO 03/102778 PCT/EP03/03529

- 13 -

70. Both monitors will use the provided user ID and password

to access the backend.

Authentication Sync Engine with CAF

The sync engine has two options for authentication its
requests to CAF
1. provide for each command the required backend user ID and

password

2. request an authentication token from CAF for one backend by
providing a user ID and a password. Each subsequent command
to CAF for this sync session can be authenticate with this
token (similar to a LTPA token). The following token types may
be supported: read-only access, read/write access, or
unrestricted read access, but write must be authenticated each

time at the Back End.

Authentication CAF to Back End data store

The required authentication level to the Back End data store
is stored in Access Control Lists for each Back End data store
and checked by the Sync Adapter. Dependent on this list, CAF
authenticates itself to the Back End data store either with a
group user and group password valid fof’all user that update

their data through the sync server or on a per user basis.

FIG.7 shows the interfaces (I/F) of the CAF in the preferred

implementation of FIG.6. A

The Sync Engine 12 uses the CAF interface 22 to access the
Back End data stores in a generic way. To efficiently exchange

data between generic Sync Engine 12 and CAF interface 22, CAF

WO 03/102778 PCT/EP03/03529

- 14 -

interface 22 preferably uses the raw value binary encoding
scheme for data exchange. These raw data are embedded as
ActionData object in the SyncObj together with the CAF Meta
data.

CAF Meta data are:

e Timestamp represents the current sync anchor of the
Syncobj. It is stored as object of the class
java.sgl.Timestamp.

¢ ActionType represents the data action type of the
SyncObj. Possible values are defined in class constants
(CREATE, UPDATE, DELETE). It is stored as short value.

e GUID represents the backend specific global 1d of the
SyncObj. It is stored as java.lang.String value.

e CUID represents the CAF specific cache id of the SyncObj.
It is stored as java.lang.String value.

e databaseURI represents the URI of the backend database to
which the SyncObj belongs to. It is stored as object of
the class com.ibm.caf.URI.

e userID represents the user id of the client that
initiated the synchronization to which the Sync0bj

belongs to. It is stored as java.lang.String value.
The interfaces of the CAF specific process flow

The Abstract Monitor Class offers basic functionality for the
integration of Back End specific Monitors into the CAF
architecture. Two abstract classes called Abstract Cache
Monitor and Abstract Backend Monitor are provided that can be
used via inheritance for the creation of new Monitor classes

(see FIG.8).

The abstract classes provide the following functionality:

WO 03/102778 PCT/EP03/03529
- 15 -

e Queuing mechanisms for different update policies (trickle
/ batch updates)

¢ Registration / Deregistration at the Backend Registry

e Reading und registration for updates at the System
Preferences Component

e Handling of communication with CAF Persistent Store

(Cache)

The CAF specific process flow is managed by the Abstract -
Backend Monitor 60 and the Abstract Cache Monitor 70 through
the interfaces defined in this patent application. The direct
communication with the Back End data store 24 is implemented
in Back End specific components 70/, 60’ that are inherited

from the Abstract Monitor classes (see FIG. 9)

Each Monitor implements an internal gueue that enables
different update and data propagation policies. Dependent on
the usage scenario, it may be necessary to send updated data

in groups to the backend, or in large time intervals.

The Abstract Monitor component implements a configurable

queuing mechanism that offers the following update policies:

Amount Trigger:

The Amount Trigger monitors the size of the internal queue. It
will propagate the collected items when a certain configurable
threshold is reached. This update policy can be used for
configuring a batch (threshold > 1 item) or trickle (threshold

= 1 item) update mechanism in the specific monitor.

Interval Trigger:

The Interval Trigger monitors the time that has been passed

since the last time of propagation. It will send the collected

WO 03/102778 PCT/EP03/03529

- 16 -
items when a certain configurable time interval is reached.

Combined Trigger:

The Combined Trigger utilizes both above-mentioned policies:
It will propagate the collected items whenever one of the

triggers is activated.

Session Handling

The topic of session handling applies primarily to the Cache
Monitor, which is part of the overall CAF processing. Session
handling in the Backend Monitor is completely dependent on the
backend-specific implementation.

There are two different usage patterns for the Cache Monitor:
with and without the CAF Cache. When the Cache is used, no
session handling is supported at all. The updates are
replicated asynchronously from the cache to the backend. Since
access to the backend database is performed'through a admin-
like user account, pooling of connections is possible for all
occurring updates.

In the case that no cache is used, session handling is
performed with the methods beginConnect () and endConnect () .
All updates are grouped on a ‘“per user” basis, which allows
connection pooling for each synchronizing user with the given

credentials.

FIG.8 shows a synchronization flow for a two-way
synchronization with session authentication preferably

applied by the inventive CAF.

A two-way synchronization between Client and Server is
performed where the Client as updated item A,B and F, deleted
C and created a new item D. Via an external client (e.g.Notes

client) E was created on the Back End and B, C and F were

WO 03/102778 PCT/EP03/03529

- 17 -

updated.

Package 1 from client sends the credential for the Back End
data store. The Sync Engine forwards these credentials to.the
CAF for verification. CAF asks the responsible Back End to
verify the credentials and returns an authentication token
valid for a synchronization session to the Sync Engine. This
token needs to be included into any future request to the CAF

for this synchronization session.

In package 3 the clients sends its updates to the Sync server.
The Sync Engine requests the Back End updates from the CAF by
presenting the authentication token. Now the Sync Engine
compares the lists, resolves the conflicts, and populates the
updated entries to the CAF and client. CAF stores these
updates in its cache and replicate these changes later to the

Back End system.

The Sync Engine without interaction of CAF does the handling

of package 5 with mapping table information.

° 7703/ 03529

DE9)

"WO 03/102778 PCT/EP03/03529
- 18 -
CLAIMS
1. System for exchange of data between different clients

(2,4,6) by using a central synchronization server (10) having
a connection to said clients (2,4,6) and a connection to a
Back End data store (24,26), wherein said clients having a
program for creation of data to be synchronized, and a Sync
Engine (12) for performing synchronization with said central
synchronization server (10), wherein said system is

characterized by the further components:

a single Back End neutral interface (CAF- interface; 22)) with

said Sync Engine (12), and

at least one component (content adapter; 28,30) comprising a
Back End dependent part having an interface with said single
Back End neutral interface (22) and said assigned Back End

data store (24, 26).

2. System according to claim 1, wherein said

component (28,30) further comprises an abstract Back End
independent part, wherein said abstract’Back End independent
part provides common functionalities fd} use by all the Back

End dependent parts.

3. System according to claim 2, wherein each Back End data

‘store type (24,26) is assigned an own component (28,30) .

4. Server according to claim 1, wherein said exchange of

data is synchronization of data.

5. System according to claim 2, further comprises a cache

@I035 /03529

DES)
WO 03/102778 PCT/EP03/03529

- 19 -

(50) for permanently buffering of updates of said Backend data
store (24) and said Clients, and said component (28,30)
comprises a caching mechanism for controlling and executing
buffering updates into said cache and replicating buffered

updates to sald respective clients and said Backend data store

(24).

6. System according to claim 5, wherein said caching

mechanism having a Back End Monitor (60).

7. System according to claim 5, wherein said caching

mechanism further having a Cache Monitor (70).

8. System according to claim 6, wherein said caching

mechanism further having a Back End Manager (80).

9. System according to claim 6, wherein said caching
mechanism provides for each Back End data store type (24) an
own Back End Monitor, Cache Monitor, and Back End Manager with
its Back End dependent (60’,70’,80’) and its abstract Back End
independent part (60’’,7077,80"").

10. System according to claim 5, wherein said caching

mechanism further comprises a persisteﬁt store (40).

11. System according to claim 7, said Cache Monitor (70)
replicates updates from said cache to the Back End data store

(24) in a batch or a continuous trickle mode.

12. System according to claim 6, wherein said Back . End
Monitor (60) replicates updates between said cache (50) and
the Backend data store (24) in a batch or a continuous trickle

mode.

o %T[E%Z’%/DESZS

DES)
"WO 03/102778 PCT/EP03/03529

- 20 -
13. Systems according to claim 5, wherein said cache (50)
and said Backend data store (24) are databases.

14. System according to claim 1, wherein sald clients are

mobile clients.

15. System according to claim 4, wherein the synchronization

protocol is SyncML.

16. Method for synchronization of data by using a system

according to claim 1-15, comprising the steps of:
Receiving sync session request from said Client,
Authenticating said Client against said Sync Server,
Receiving update from said client,

Authenticating said client against Back End data store via

said CAF interface using Back End Monitor,

Creating of data objects and filling in said update received

from said client by said Sync Server,
Calling said CAF interface and handing over said data objects,

Selecting the appropriate Back End specific part of said

component assigned to said Back End data store,

Transforming said data objects CAF into a Back End specific

format,

o D

DES)

WO 03/102778 PCT/EP03/03529

- 21 -

Executing said updates by calling Back End specific part and

passing the data objects to it.

17. Method according to claim 16, wherein said Back End
specific part is inherited from said abstract Back End

independent part assigned to said Back End data store.

18. Method according to claim 16, wherein said data objects
are used to pass said client regquest to Back End specific

parts.

19. Method according to claim 18, wherein said data objects

contain meta data.

20. Method according to claim 16, wherein synchronization
protocol used between said clients and said central
synchronization server is SyncML and said updates received by
said central synchronization server are presented as XML

documents.

21. Computer program product stored in the internal memory
of a digital computer, containing parts of software code to
execute the method in accordance with claims 16 to 20 if the

product is run on the computer.

® | g@?]E@@3/03529

WO 03/102778

1/6

Sync Client

Sync Client

Sync Client <& |Sync Server

Sync Client

Sync Client

F

-¢—| Sync Client

PCT/EP03/03529

Sync Client

I

Sync Client

1G. 1

Sync Server

SyncML

Adapter I

Sync

Engine

N

Client A

Client B

o

FIG. 2

Back End

Data Store

i

Application

Outside

WO 03/102778

PCT/EP03/03529

Back End
Data Store 1

Back End
Data Store 2

Appl.B

2/6
Client A Sync Engine |
\ Data Store 1
Gateway |¢—p| Sync
Server
Client B /
Sync Engine
Data Store 2
Client C
FIG. 3
Appl.A
: SyncML Framework
I
' SyncML
: Representation
Server | Protocol —
| L]
S _ |SyncML SyncML E _
SynC -0 O - — — — - O
Engine < Adapter Adapter U«%q:
I o

e —
< >

Transport Layer

(e.g. HTTP/OBEX/WTP)

FIG. 4

Client
Sync
Engine

WO 03/102778 PCT/EP03/03529
3/6
2 200 22 og 24
') 4
Client A Content
\ 8 10 p2 | | 8|Acapter |at—"
7 7 l
4, Gate- l¢» SSynCr Sync Ll 5 DS1 Back End
) way eve Engine € [Content Data Store 1
Client B L. | Adapter
~-]
S |ps2 . —a
‘6 30 26
. Back End
Client C Data Store 2
FIG. 5 x
L 50 i
RMI/ ! \@ :
OAP i !
RMI I-S_ _______________ ' oo |
Sync Server ! JDBC_ ache '
o I eneric E \ 30 !
= Sync | | | |Sync ync |1, lcontent | __,|Persistent QBJ/
— alServiet [T Adapter ™| Er}qine i Store 4 !
o 12 | :
o Sync ! -
< e |
| | Exchange ohanael | | anis ':
L %%gtp?gr Domino omino || [Domind['|| « !
100 1 DB2 DB2 _|H[DB2 |H I
\i Back End Cache Back End ;
E : Manager[~ | Monitor [| Monitor [R /!
ey T\ SoAR
| 80" go 70 \OB 60 60' !

U
l!mii]lil1

Back End I
Data Store

FIG. 6

24

WO 03/102778 PCT/EP03/03529

4/6

Back End Persistent

Registry / Store
VF . Cache

30
Z
Sync Content
Engine] | | Manager S 50"
12/ VE VE |
abstract abstract abstract | Back End
Back End Cache Back End lindependent
Manager Monitor Monitor parts
o0 Back End Cache Back End |Back End
Manager Monitor Monitor |dependent
p L arts
80" f / \ I/E P
80 4
60 60’

Bapk End
Data Store

FIG. 7

WO 03/102778 PCT/EP03/03529

5/6

Update A,B,F
Delete C
Create D Create E, Update B,C,F

Sync Back

Engine CAF end
Device FW
Package 1 Authentication of user N g{?ﬁlcgaifgifglca’ﬂ bn
credentials CAF AuthTo
e “get sync anchor
Get sync anchor next per db | from back end

Padkage 2 sync anchor -
Pagkage 3

| Get updates (CAF AuthToken, synchAnchors)
B,CEF
Perform conflict resolution

Syn¢ A,B,C,D,F

Updates for client: E

Updates for CAF: A, D

Conflicts: B, C, F ==> B: client wins; C: server wins; F: merge
==> Final update lists:

Updates for client: E, C, F

Updates for CAF: A, D, B, F'

Populate updates (CAF AuthToken, syncAnchor, A, D, B, F)

<Status on updates

‘PEa Séa?:? . write updates A, ID,
Sthtus codes B. F'to back end
Package 5 : -

Mapping Taple

<Pdckage 6

FIG. 8

WO 03/102778

70
\

6/6

Abstract Monitor

5

.

PCT/EP03/03529

60
[

" Abstract Cache

Monitor

Abstract Back End

Monitor

70'
\

1

1

60'

)

Cache Monitor
(e.g. for Exchange)

Back End Monitor
(e.g. for Exchange)

CAF
specific
procegs flow

Communication
over Inheritance

Back End
specific
process flow

FIG. 9

Persistent Store

o

‘ .
Call direction

(Cache) i
2% CAF specific Interface

| ZzF] | I bl |
| [Abstract] | | | pbstract

Back End| , 60"
| | Cache || " l Monitor A
| | Monitor 470 | |
| - | EE 1 e0
| ‘L |« | |
| : ack End :| | 'Back End, I 60"
| Idependent,| 70" I:dependent
| | part ,yl/ |I part |

Back End

FIG. 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

