METHOD OF CREATING VARIABLE ELECTRICAL RESISTANCE AND MEANS FOR CREATING THE SAME

ABSTRACT: A variable magnetic resistor comprising a layer of high permeability magnetic alloy formed into a helix with a layer of insulation material in between each convolution of the helix, and an electrical terminal secured to opposite ends of the layer of alloy. The method of creating variable resistance by passing a current of sufficient magnitude through said alloy material that the current passing through the alloy will be forced to the side edges thereof by the magnetic field around each convolution of the helix, whereby the resistance of the alloy will be increased as current moves away from a normal low-voltage path through the broad expanse of the entire cross-sectional area of the coil to a more confined path at the side edges of the coil.
METHOD OF CREATING VARIABLE ELECTRICAL RESISTANCE AND MEANS FOR CREATING THE SAME

This is a divisional application of my copending application Ser. No. 593,998 filed Nov. 14, 1966, now U.S. Pat. No. 3,480,832 dated Nov. 25, 1969.

This invention relates to an electrical surge arrester and in particular to a protector unit which will react quickly to protect a load in the circuit from high surges of voltage from transient voltages such as lightning charges or the like.

A protector that uses a spark gap-type arrester does not fire as rapidly as desired when fast rising voltage transients are applied to the input terminals of the arrester and therefore the equipment attached to the output terminals of the circuit are frequently damaged by the surges of high voltage.

This invention involves a surge arrester circuit having a spark gap arrester connected across the input and being in parallel with a breakdown voltage regulator diode. The output of the surge arrester is then connected directly to the input with the two devices in parallel with one another across the input and output. This circuit allows the diode to filter or clamp the voltages appearing on the output of the breakdown voltage of the diode. This tends to filter out the spurt of voltage that would appear across the output due to the fact that the arrester does not fire instantaneously. The breakdown of the main electrodes of the arrester shorts out the transmission line and the voltage across the output terminals is essentially reduced to zero, and as a consequence, protection of the equipment connected to the output is provided.

This invention further involves the use of a pulse transformer where the primary coil of the transformer is connected in series with the Zener diodes and the secondary coil is connected to the third element of the surge arrester. The surge arrester's main electrodes will then be initiated by the small breakdown occurring between the third element and one of the main electrodes caused by the pulse of voltage coming from the pulse transformer when the Zener diodes break down.

Preferred breakdown regulator diode used in the surge arrester circuit is a Zener diode that has a characteristic of maintaining very small current flow through it until the breakdown or Zener voltage has been reached, whereupon the diode starts conducting and continues to conduct while the voltage across the diode remains substantially constant. This sharp rising current through the pulse transformer causes a pulse of voltage to appear across the main electrode and the third electrode of the surge arrester which causes breakdown, which in turn causes the ionization of the main gap in the arrester.

This invention further involves the use of a variable resistor for protecting the breakdown voltage diode whereby upon the voltage across the diode reaching the breakdown level a sharp rise in the current through the variable resistor occurs which causes an increase in the resistance of the variable resistor. The variable resistor offers little resistance to constant value currents but increases substantially in resistance as the rate of change of current increases. The increase in energy then stored in the resistor is dissipated and thus protects the diode. Accordingly, the variable resistor which is preferably a magnetic resistor permits DC current or low frequency AC current to flow through the arrester without appreciable voltage drop, but prevents voltage drop to appear across the magnetic resistor during the time the diode is passing current.

The variable magnetic resistor employed preferably involves a coil of conductive permeable material having terminals at opposite ends of the conductive sheet material whereby upon the passage of current therethrough the phenomenon of skin effect occurs which involves the current being forced to the outer edges of the sheet material when there is a high rate of change in the current level. The faster the change of current the faster the change of the magnetic field in the resistor and thus the greater the resistance to flow of current since the current is forced to the outer edges of the sheet material. The operation of the variable magnetic resistor is somewhat similar to an inductor except that the resistor does not store the energy to be later applied to the circuit but rather dissipates it within the resistor.

Another feature of the invention is to provide two pairs of diodes connected in parallel with resistors in between the pairs of diodes and the breakdown voltage of the first pair nearest the input and having the primary coil of the pulse transformer therebetween being the highest and the voltage across the second pair of diodes next to the output being the value desired for the output connected to the equipment. Any time the voltage across the load and the second set of diodes reaches the breakdown voltage of the second set of diodes, the diodes fire and thereby maintain the constant predetermined desired voltage. The first set of diodes must fire first and consequently the resistors between the first and second set of diodes causes a voltage drop therebetween assuring that a high voltage is applied across the first set of diodes relative to the voltage across the second set of diodes.

Thus this invention consists in the construction, arrangements, and combination of the various parts of the invention, whereby the purposes contemplated are attained as hereinafter more fully set forth, specifically pointed out in the claims, and illustrated in the accompanying drawings, in which:

FIG. 1 is a schematic drawing of the electrical circuitry of the electrical surge arrester;

FIG. 2 is a plan view of the conductive permeable material of the variable magnetic resistor;

FIG. 3 is a plan view of the insulative material employed in the variable magnetic resistor;

FIG. 4 is an end view of the variable magnetic resistor in a loosely coiled condition;

FIG. 5 is an end view of the assembled magnetic variable resistor; and

FIG. 6 is a side elevation view of the magnetic variable resistor.

The electrical surge arrester circuit includes a pair of input terminals 10 and 12 with leads 14 and 16 connected to an arrester unit 18 having a pair of primary terminals 20 and 22 in spaced apart relationship.

A pair of output terminals 24 and 26 are connected to a load 28. The input terminals 10 and 12 are connected to the output terminals 24 and 26 by conductor lines 30 and 32.

Extending between the conductor lines 30 and 32 are a pair of Zener diodes 34 and 36 having their output sides connected to opposite sides of a primary coil 38 included in a pulse transformer 40. The pulse transformer 40 includes a secondary coil 42 having one lead connected to a third terminal 44 in spaced relationship to the primary terminals 20 and 22 in the arrester unit 18. The other lead 46 of the secondary coil is connected to the line 14.

A pair of magnetic variable resistors 48 and 50 are placed in the lines 30 and 32 between the arrester 18 and the Zener diodes 34 and 36.

A second pair of Zener diodes 52 and 54 interconnected in series are connected across the conductor lines 30 and 32 in parallel relationship to the first set of Zener diodes 34 and 36.

A pair of resistors 56 and 58 are positioned between the two sets of diodes to produce a voltage drop from the first set to the second set.

The magnetic variable resistors 48 and 50 are shown in detail in FIGS. 2, 3, 4, 5 and 6. They each include a sheet of conductive permeable material 60 having terminal pins 62 and 64 at opposite ends thereof as seen in FIG. 2. The material 60 should be a high permeability magnetic alloy, such as soft iron. A sheet of insulative material 66 is shown in FIG. 3 and is coiled with the conductive material 60 as shown in FIG. 4. In FIGS. 5 and 6, the magnetic variable resistor 48 is shown in its completed form relatively tightly wound compared to the loosely wound unit in FIG. 4.

The variable magnetic resistors increase in resistance when the frequency of the current through the resistors increase. This is known as the skin effect and it is enhanced by the shape.
of the resistor and the permeability of the resistor element. When low frequency AC current or direct current is flowing through the resistor there is very little magnetic field produced and therefore the resistance of the resistor is very low. However, as the frequency of the current changes the magnetic field increases thereby forcing the current passing through the resistor to the outer edge of the coil (FIG. 2) where there is a relatively small area compared to the flat surface area of the conductive sheet material 60 and consequently the resistance is substantially increased. The resistor provides no inductive impedance but instead dissipates completely all energy that is stored in it as a result of a change in the current frequency. It is apparent then that as the rate of change of the current increases the resistance value of the resistor will also increase and accordingly the resistance of the resistor is a function of the current frequency.

It should be noted that the layers of material 60 and insulative material 62 are wound helically upon each other. The magnetic fields in one "layer" of material 60 enhance the above-described skin effect in other layers. With normal DC current applied to the resistors, current is spread across the width of material 60. However, when the current is increased, the magnetic buildup in the center of the material forces the current to the edges to create the above-described skin effect, which greatly increases resistance.

The operation of the electrical surge arrestor circuit involves the following sequence. The normal voltage for the load 28 is applied to the input terminals 10 and 12. The object of the surge arrestor circuit is to protect the load 28 by maintaining a constant voltage across the terminals 24 and 26 at the load 28. When a transient voltage such as a charge of lightning or the like appears across the input terminals 10 and 12, the Zener diodes 34 and 36 will break down when this transient voltage exceeds the breakdown voltage of these diodes. At the breakdown voltage of the diodes a heavy current is drawn through the diodes and the primary coil 38 of the pulse transformer 40 and the magnetic resistors. The rise time of this current is relatively fast due to the sharp knee in the voltage characteristics of the Zener diodes. This sharp rise in current through the pulse transformer causes a pulse or voltage to appear across the two resistors 34 and 22 of the arrestor 18. This voltage causes these two resistors to break down thereby ionizing the gap between the two terminals 20 and 22 because the voltage across the arrestor at this time is high enough to sustain the arc between the two main electrodes 20 and 22. This breakdown of the main electrodes 20 and 22 essentially shorts out the transmission lines 30 and 32 and thus causes the voltage across the output terminals 24 and 26 to be reduced to zero thereby providing the protection for the load unit 28 that is desired.

The magnetic resistors 48 and 50 allow the DC current or low frequency AC current to flow through the arrestor without appreciable voltage drop, but yet allow a high voltage drop to appear across them during the time the Zener diodes 34 and 36 are fired. The increase in energy then stored in the variable resistors 48 and 50 is dissipated in the increased resistance caused by the skin effect. And thereby the diodes 34 and 36 are protected against damage from the transient voltage applied to the input terminals 10 and 12. It is to be noted that an inductor if substituted for the variable resistors 48 and 50 would only hold the energy and later discharge it thereby causing the undesired damage to the Zener diodes 34 and 36.

The Zener diodes 52 and 54 are connected across the output terminals 24 and 26 to insure that the voltage at the output terminals never exceeds the rated voltage that the load unit 28 connected to the output terminals 24 and 26 can withstand. These are required because the voltages that will appear across the first set of Zener diodes 34 and 36 will be slightly higher than the breakdown voltages of the second set of Zener diodes 52 and 54 because of the primary coil 38 of the pulse transformer 40 causing a small voltage drop. This pulse that will appear across the first set of Zener diodes 34 and 36 will be of low magnitude and of short duration and will easily be dissipated by the Zener diodes 52 and 54. The Zener diodes 52 and 54 must have a slightly lower breakdown voltage than the Zener diodes 34 and 36, however, the Zener diodes 34 and 36 must break down before the Zener diodes 52 and 54. Accordingly, it is necessary to have the resistors 56 and 58 to insure this occurrence. The second set of Zener diodes 52 and 54 would be selected on the basis of having a breakdown voltage equal to the desired voltage across the output terminals 24 and 26 such that when the breakdown voltage is reached the voltage will not be increased due to the firing of the diodes and consequently maintaining the constant voltage across the diodes and the output terminals.

I claim:

1. A magnetic variable resistor, a first layer of a high permeability magnetic material, a second layer of insulative material, said layers being relatively thin with respect to their length and width, and being wound upon each other in helical fashion so that one end of said layers will appear at the substantial center of the resulting helix and the other ends of said layers will appear at the outer periphery of said resulting helix,

and means on the ends of said first layer for making electrical connections thereto whereby a voltage on said helix through said electrical connections in sufficient magnitude that the current passing through said helix will be forced to the side edges thereof by the magnetic field around each convolution of the helix and the remainder of the helix will be increased as the current moves away from a normal low-voltage path through the broad expansion of the entire cross-sectional area of the helix to a more confined path at the side edges of the helix.

2. The resistor of claim 1 wherein said first layer is comprised of soft iron.

3. A method for creating variable electrical resistance in an electrical circuit comprising,

coiling a thin elongated strip of high permeability magnetic alloy having two ends and two side edges into a helical coil with an insulative material between each convolution of said coil,

connecting a terminal lead to one end of said strip at the center of said coil and another terminal lead to the other end of said coil at the outer periphery of said coil;

connecting said terminal leads into an electrical circuit having an electrical power source adapted to pass electrical current through said coil; and

varying the magnitude of current introduced to said coil by said power source whereby said coil will increase in resistance at a rate proportional to the rate of variance of said current and will dissipate a substantial amount of the energy stored therein as a result of said variance of said current.