WO 03/088119 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 October 2003 (23.10.2003)

PCT

(10) International Publication Number

WO 03/088119 Al

(51) International Patent Classification”: GOG6F 17/60

(21) International Application Number: PCT/US03/10537

(22) International Filing Date: 7 April 2003 (07.04.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/370,937 8 April 2002 (08.04.2002) US

(71) Applicant: TOPCODER, INC. [US/US]; 703 Hebron
Avenue, Glastonbury, CT 06033 (US).

(72) Inventor: HUGHES, John, M.; 45 Bluebird Lane, Glas-
tonbury, CT 06248 (US).

(74) Agent: HEFFAN, Ira, V.; Testa, Hurwitz & Thibeault,
LLP, High Street Tower, 125 High Street, Boston, MA
02110 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR SOLICITING PROPOSALS FOR SOFTWARE DEVELOPMENT SERVICES

(57) Abstract: This invention relates to a method and apparatus for developing software. In one embodiment, a method for facili-
tating the distributed development of software components includes providing a skill rating for software developers, communicating
specifications for a software component to a subset of the developers, receiving submissions from the developers, scoring the sub-
missions, and selecting one submission to be included in a software repository. In another embodiment, a method for compensating a
software developer includes soliciting software developers for the submission of computer software components, receiving software
components in response to the solicitation from the developers, evaluating the received software components, selecting one or more
of the submissions for potential distribution to the public, and allotting the proceeds from the distribution to the developers.

10

15

20

25

WO 03/088119 PCT/US03/10537

SYSTEM AND METHOD FOR SOLICITING PROPOSALS FOR SOFTWARE DEVELOPMENT SERVICES

Cross-Reference to Related Applications

{0001] This application claims priority to U.S. provisional patent application serial number
60/370,937, filed April 8, 2002.
Technical Field

[0002] This invention relates to computer-based methods and systems for developing and

distributing software and, more particularly, to methods and systems facilitating the distributed

development of software.

Background Information

[0003] In the United States and elsewhere, computers have become part of people's everyday
lives, both in the workplace and in personal endeavors. This is because a general-purpose
computer can be programmed to run a variety of software programs each providing different
processing and networking functions. Computer programmers develop computer code. Some
companies hire large numbers of computer programmers to develop code on the company's
behalf.

[0004] One approach is to hire large numbers of programmers and develop software “in
house.” While this affords significant control over the programming staff, finding, hiring, and
maintaining such a staff can be cost prohibitive. Furthermore, as individual programmers leave
the company, much of the technical and industrial knowledge is also lost. Alternatively, many
companies “outsource” their programming through consulting firms, or contract employees.
This approach relieves the company of the burdens of managing individual employees, however
the quality of the work is often suspect, and the challenges of integrating work from numerous
outside vendors can be significant.

Summary of the Invention

[0005] There is a need for ways for organizations to obtain high-quality software without
maintaining a large, permanent software development organization. Techniques that have been
suggested to improve software development are code re-use and component-based design. But
even if organizations adopt such techniques, they still need to obtain high-quality components in

an affordable manner.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-2 -
[0006] In general, the invention relates to motivating a group of distributed software
developers, otherwise unrelated to each other, to participate in the distributed development of
high-quality software. Generally, the motivation for the developers results from financial and
competitive incentives. The independence of the developers allows for enforcement of rigorous
design and quality analysis, which in turn results in very high quality (e.g., enterprise quality)
software.
[0007] In one aspect, a product manager communicates a specification for a software
program to the group of developers, who may be software architects, designers, coders, or the
like. The product manager receives one or more submissions in response to the communicated
specification. Each submission is scored, at least in part based on the degree to which the
submission satisfies the communicated specification. One of the submissions is selected,
responsive to the score, for inclusion in a software repository for distribution to the public.
Royalties can be allocated to the developers who submitted the designs or code that is included
in the repository. It should be understood that the software program can be any sort of program,
including for example without limitation, a component, a class, a library, an application, or some
combination or collection of one or more of these.
[0008] Various embodiments can include one or more of the following features. The ratings
assigned to a developer can be derived from the developer’s performances in one or more coding
competitions, which in turn can be held online. The ratings assigned to a developer can be
derived from the developer’s prior submissions of designs for software programs. The ratings
assigned to a developer can be derived from the developer’s prior submissions of software
programs. The specifications sent to the developers can be for the design of a software program.
The specifications sent to the developers can be for the development of a software program. The
software program can be a software component. The software program can be one of a software
application, a combination of one or more software components, or a software module. The
ratings derived for a developer can be used to determine the subset of programmers that should
receive the specifications. The existence of a rating for a developer can determine if the
developer is included in the subset of programmers that should receive the specifications. The
developers can submit a design for a software program. The developers can submit computer
code for a software program. The developer can be a software designer. The developer can be
software programmer. The score for a submission can be derived based on the submission being
reviewed by a developer other than the developer who submitted the submission. The

submission can be selected for inclusion into the software repository based on receiving a

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-3-

minimum score. The submissions included in the software repository can be certified to operate
in computing environments different from the computing environment used for the original
submission.

[0009] In general, another aspect of the invention relates to compensating developers for the
design or development of software programs. A method includes soliciting multiple developers
for submissions of software programs, receiving at least one software program in response to the
solicitation, scoring the received responses, selecting a software program for distribution to the
public based on the score, distributing the program to the public, and allocating a portion of the
revenue received from the distribution of the program to the developer who submitted the
selected design or the code for the program.

[0010] Embodiments can include one or more of the following features. Prior to soliciting
the developers, rating the developers. The developers can be rated based on their performance in
an online coding competition. The developers can be rated based on their prior submissions of a
design for a software program. The developers can be rated based on their prior submissions of
a software program. The software program can be a software component. The software program
can be a software application, a combination of software components, or a software module.
Instead, or in addition, the programmers can be solicited at least in part based on their rating, or
having a rating. The allocation of proceeds from the distribution of the program can be based at
least in part on the rating of the developers. The allocation of proceeds from the distribution of
the program can be based at least in part on the number of hours a developer spent developing
the software program and/or based on the proportion of work contributed by the developer. The
allocation of proceeds from the distribution of the program can be based at least in part on the
number of times and/or to whom the software program is distributed.

[0011] In yet another aspect, the invention relates to systems for implementing the methods
just described. For example, a system for facilitating the distributed development of software
programs includes a rating engine for rating the skills of software developers, and a server for
communicating software specifications to developers who have been previously rated by the
rating engine. The system further includes a server for receiving software programs as they are
submitted from the developers, and a module for scoring the submitted software programs.
[0012] In one embodiment of this aspect of the invention, the system can also include a
reviewing module to allow developers to review submissions submitted by other developers
and/or scorecards produced by the review board. The system can also include a repository for

storing the software programs along with all associated design documents. The repository can

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-4-
include an online showroom to display the programs, and can also include sample applications
built using the submitted software programs. The repository can also include a module for
demonstrating the functionality of the software programs to the public.
[0013] In another embodiment of the invention, the system can also include a calculation
module for allocating revenue among programmers who have previously submitted software
programs. The allocation of revenue can be based, at least in part, on the ratings of the
programmers. The allocation of revenue can be based, at least in part, on the number of hours
the programmers spent designing or developing the software program. The allocation of revenue
can be based, for example, at least in part on the number of times and/or to whom the software
program is distributed.
[0014] Other aspects and advantages of the invention will become apparent from the
following drawings, detailed description, and claims, all of which illustrate the iorinciples of the
invention, by way of example only.

Brief Description of the Drawings

[0015] In the drawings, like reference characters generally refer to the same parts throughout
the different views. Also, the drawings are not necessarily to scale, emphasis instead generally
being placed upon illustrating the principles of the invention.
[0016] FIG. 1 is a block diagram of an embodiment of a distributed software development
system having a server according to the invention.
[0017] FIG. 2 is a block diagram of one embodiment of a distributed software development
team according to the invention.
[0018] FIG. 3 is a block diagram of a second embodiment of a distributed software
development team according to the invention.
[0019] FIG. 4 is a flow chart of an embodiment of the steps performed by the virtual
software development team when developing a software program according to the invention.
[0020] FIG. 5 is a flow chart of an embodiment of the steps performed by the members of
the virtual software development team according to the invention.
[0021] FIG. 6 is a more detailed flow chart of an embodiment of the steps of FIG. 5
performed by the virtual members of the software design team.
[0022] FIG. 7 is a more detailed flow chart of an embodiment of the steps of FIG. 5
performed by the virtual members of the software programming team.
[0023] FIG. 8 is a more detailed block diagram of an embodiment of the server of FIG. 1 to

facilitate the development and/or distinction of software programs according to the invention.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-5-
[0024] FIG. 9 is a more detailed block diagram of an embodiment of the server if FIG. 1 to
facilitate the posting of specifications and the receipt and scoring of submissions according to the
invention.
[0025] FIG. 10 is a block diagram of an embodiment of a software catalog according to the
invention.
[0026] FIG. 11 is a block diagram of an embodiment of a software catalog system
communicating with a first company and a second company according to the invention.
[0027] FIG. 12 is a block diagram of an embodiment of a software catalog system illustrating
modification of a software component according to the invention.
[0028] FIG. 13 is a block diagram of an embodiment of a compensation data structure
according to the invention.
[0029] FIG. 14 is a table illustrating an embodiment of a royalty-based compensation
structure for the distributed software development team according to the invention.
[0030] FIG. 15 is a table illustrating another embodiment of a royalty-based compensation
structure for the distributed software development team according to the invention.
[0031] FIG. 16 is a linear diagram illustrating an embodiment of a sliding scale royalty
compensation structure supported by the server according to the invention.

Detailed Description

[0032] Referring to FIG. 1, in one embodiment, a distributed software development system
101 includes at least one server 104, and at least one client 108, 108’, 108", generally 108. As
shown, the distributed software development system 101 includes three clients 108, 108', 108",
but this is only for exemplary purposes, and it is intended that there can be any number of clients
108. The client 108 is preferably implemented as software running on a personal computer (e.g.,
a PC with an INTEL processor or an APPLE MACINTOSH) capable of running such operating
systems as the MICROSOFT WINDOWS family of operating systems from Microsoft
Corporation of Redmond, Washington, the MACINTOSH operating system from Apple
Computer of Cupertino, California, and various varieties of Unix, such as SUN SOLARIS from
SUN MICROSYSTEMS, and GNU/Linux from RED HAT, INC. of Durham, North Carolina
(and others). The client 108 could also be implemented on such hardware as a smart or dumb
terminal, network computer, wireless device, information appliance, workstation, minicomputer,

mainframe computer, or other computing device, that is operated as a general purpose computer

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-6-
or a special purpose hardware device solely used for serving as a client 108 in the distributed
software development system 101.
[0033] Generally, in some embodiments clients 108 can be operated by software developers
and are used by software developers to participate in software development. Clients 108 can
also be operated by customers of the software developed by the software developers. In various
embodiments, the client computer 108 includes a web browser 116, client software 120, or both.
The web browser 116 allows the client 108 to request a web page (e.g. from the server 104) with
a web page request. An example of a web page is a data file that includes computer executable
or interpretable information, graphics, sound, text, and/or video, that can be displayed, executed,
played, processed, streamed, and/or stored and that can contain links, or pointers, to other web
pages. In one embodiment, a user of the client 108 manually requests a web page from the
server 104. Alternatively, the client 108 automatically makes requests with the web browser
116. Examples of commercially available web browser software 116 are INTERNET
EXPLORER, offered by Microsoft Corporation of Redmond, Washington, and NETSCAPE
NAVIGATOR, offered by Netscape Communications Corporation of Mountain View,
California.
[0034] In some embodiments, the client 108 also includes client software 120. The client
software 120 provides functionality to the client 108 that allows a software developer to
participate in a coding competition. The client software 120 may be implemented in various
forms, for example, it may be in the form of a Java applet that is downloaded to the client 108
and runs in conjunction with the web browser 116, or the client software 120 may be in the form
of a standalone application, implemented in a multi-platform language such as Java or in native
processor executable code. In one embodiment, if executing on the client 108, the client
software 120 opens a network connection to the server 104 over the communications network
112 and communicates via that connection to the server 104. The client software 120 and the
web browser 116 may be part of a single client-server interface 124; for example, the client
software can be implemented as a “plug-in” to the web browser 116.
[0035] A communications network 112 connects the client 108 with the server 104. The
communication may take place via any media such as standard telephone lines, LAN or WAN
links (e.g., T1, T3, 56kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless
links, and so on. Preferably, the network 112 can carry TCP/IP protocol communications, and
HTTP/HTTPS requests made by the web browser 116 and the connection between the client
software 120 and the server 104 can be communicated over such TCP/IP networks. The type of

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-7 -
network is not a limitation, however, and any suitable network may be used. Typical examples
of networks that can serve as the communications network 112 include a wireless or wired
ethernet-based intranet, a local or wide-area network (LAN or WAN), and/or the global
communications network known as the Internet, which may accommodate many different
communications media and protocols.
[0036] The servers 104 interact with clients 108. The server 104 is preferably implemented
on one or more server class computers that have sufficient memory, data storage, and processing
power and that run a server class operating system (e.g. SUN Solaris, GNU/Linux,
MICROSOFT WINDOWS NT). Other types of system hardware and software than that
described here could also be used, depending on the capacity of the device and the number of
users and the size of the user base. For example, the server 104 may be part of a server farm or
server network, which is a logical group of one or more servers. As another example, there
could be multiple servers 104 that may be associated or connected with each other, or multiple
servers could operate independently, but with shared data. In a further embodiment and as is
typical in large-scale systems, application software could be implemented in components, with
different components running on different server computers, on the same server, or some
combination.
[0037] The server 104 can include a contest server, as described in co-pending U.S. Patent
Application Serial No. 10/041,393, entitled “Systems and Methods for Coding Competitions,” by
Lydon et al.
[0038] In one embodiment, the server 104 enables the distributed software development of a
software program by a virtual development team. The software program can be any sort of
instructions for a machine, including, for example, without limitation, a component, a class, a
library, an application, an applet, a logic table, a data block, or any combination or collection of
one or more of any one or more of these. In one embodiment, the software program is a software
component. Generally, a software component is a functional software module that may be a
reusable building block of an application. Just as a few examples, software components include,
but are not limited to, such components as a graphical user interface, a small interest calculator,
an interface to a database manager, calculations for actuarial tables, a DNA search function, an
interface to a manufacturing numerical control machine for the purpose of machining
manufactured parts, a public/private key encryption algorithm, and functions for login and
communication with a host application (e.g., insurance adjustment and point of sale (POS)

product tracking). In some embodiments, components communicate with each other for needed

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-8-
services (e.g., over the communications network 112). A specific example of a component is a
JavaBean, which is a component written in the Java programming language. A component can
also be written in any other language, including without limitation Visual Basic, C-++, Java, and
ct,
[0039] In one embodiment, the software program is an application. In some embodiments,
he application can is comprised of one or more software components. In one embodiment, the
software application is comprised of software components previously developed using the
methods described below. In some embodiments, the application comprises entirely new
software programs. In some embodiments, the application comprises a combination of new
software programs and previously developed software components.
[0040] Referring to FIG. 2, a software development team can be used to develop software
components. In one embodiment, the software development team 200 includes a product
manager 202. The product manager 202 is the manager for the development and deployment of
a component. The product manager 202 can perform market research to identify a component
that is potentially useful to a market. For example, the product manager 202 can perform
research in an industry to determine if companies would find useful a component that has certain
characteristics, and specify the requirements for such a component. The product manager 202
can also specify (without limitation) items such as the cost of the project, the project schedule,
and the project risks. In one embodiment, the product manager 202 creates a project plan for the
project, which may include an estimated project cost and schedule and a requirements document
describing the scope and risks of the project.
[0041] An architect (also referred to as a “designer”) 208 designs the software component.
The architect 208 preferably is a senior developer who acts as a mentor to and collaborates with
one or more of the other team members 204, 212, 216 to design the architecture of the
component. The architect 208 can also create test cases that meet the requirements for the
component as described by the product manager 202, for example in a requirements document,
or by other communication with the product manager 202. The architect 208 preferably designs
the component in a manner that maximizes the potential re-use of the software component. The
architect 208 may therefore base the design of the software component on, for instance but not
limited to, the number of interfaces available, the compatibility of the component to other
components, and the speed of execution of each design of the component.
[0042] One or more QA developer(s) 216, 216" (generally, 216) then develops a test plan for

the component. The test plan can include normal and extreme input to simulate production and

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-9-
stress. In one embodiment, a QA developer 216 develops the test plan using the requirements
specification written by the product manager 202, and the design specification written by the
architect 208. The QA developer 216 attempts to identify potential problem areas in the
specification and tailor the QA testing towards one or more of those areas. Moreover, the QA
developer 216 may communicate with the other team members to improve or discuss the test
plan. Once it is complete, the test plan can be reviewed by the architect 208 and/or the product
manager 202, to verify that the test plan will adequately test the component requirements.
[0043] One or more developer(s) 222, 222" (generally, 222) then develops a component to
meet the requirements described by the specification. In one embodiment, the developer 222
submits an object model to the architect 208, such as a model in the Unified Modeling Language
(UML). Once the architect 208 approves the object model, the developer 222 develops the code
to implement the component. The developer uses the test plan to confirm that the code as
implemented meets the requirements. When the developer 222 completes the code, the architect
208 and/or product manager 202 review the code. In one embodiment, the architect 208 reviews
the code, for example but not limited to, to confirm functionality, style, adherence to coding
standards, performance, and stability.
[0044] Once the component is developed, the QA developer 216 tests the completed
component, and verifies that it is acceptable, according to the test plan.
[0045] Although the software development team 200 shown in the figure includes one
product manager 202, one architect 208, two QA developers 216, 216’, and two developers 222,
222’ it will be understood that this is only for exemplary purposes and the number of developers
222 and QA developers 216 will depend on the particular project. It should also be understood
that one or more of the members of the software development team 200 can operate one or more
clients 108 and communicate with the server 104 via the communications network 112 as shown
in FIG. 1.
[0046] In some embodiments, the software development team 200 is comprised of
developers with no relationship to each other. For example, the developers 222 may not know
(or if they do know each other, be very familiar with), the QA developers 216, or the product
manager 202. One advantage to this particular embodiment is the developers are more willing to
participate in unbiased peer review of the software design or component developed by another.
Further, in some embodiments, the review process can be kept anonymous, so that the

developers do not know whose work they are reviewing. Reviewing work of the development

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-10 -

team 200 in this manner, with adherence to a strict development procedure, greatly enhances the
quality of the final product. In one embodiment, the peer review process is implemented with a
development environment residing on the server, 104. In another embodiment, other sorts of
development environments are used, for example, the peer review can done using the individual
developer's computer.

[0047] Referring now to FIG. 3, in a variation of the embodiment of FIG. 2, the product
manager 302 moderates a development team 300, which is formed from an distributed group of
developers (used here to include designers, design reviewers, developers, development
reviewers, etc.). For example, the designers and developers can be members of an organization
or a community dedicated to collaborative computer programming and distributed software
development. In one embodiment, the product manager 302 facilitates an initial discussion
among such a group of developers, which can include potential or actual development team
members 300. The discussion can be a collaboration to identify requirements for a new or
improved software component to be developed. In some embodiments, the discussion takes
place in an online forum, which is can be accessed by developers in a development community.
In one embodiment, participation in such forums is encouraged by selecting participants for
architecture/design 304 and development 310 boards from those who meet other criteria and
participate in such discussions.

[0048] Developers 312 can request inclusion on the development team 300, the product
manager 302 can invite developers 312 to join the development team 300, or some combination.
In some embodiments, the product manager 302 creates an incentive for developers 312 to
participate in the development team by providing monetary compensation or awards for
developers 312 who provide quality submissions. In some embodiments, the product manager
302 creates incentive to developers 312 to particibate by fostering competition among the
developers 312. For example, in some embodiments, the developers 312 receive increased
ratings by participating in certain development teams.

[0049] The development team 300 includes an architecture review board 304. The
architecture review board 304 includes one or more developers 312 who review design
submissions from software designers 328. The architecture review board preferably has a small
number of (e.g., less than ten) members, for example, three members, but can be any number.
Generally, the review board is formed for only one or a small number of related projects.
Review boards, in some embodiments, could be formed for an extended time, but it is also

possible that changes in staffing could help maintain quality.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

=11 -
[0050] Preferably, one of the architecture review board members is selected, by the product
manager 302, the architecture review board 304, or otherwise, to be a primary review board
member 308. If the board 304 is instituted for an extended time, typically, the primary review
board member 308 is assigned for each component or related group of components, but the
primary review board member 308 also can be the same for all components reviewed by that
board 304, depending on the availability and skills of the members. The primary review board
member 308 is responsible for coordination and management of the activities of the board 304.
[0051] In one embodiment, submissions for component designs meeting a particular
specification are requested by the product manager 302, and the design submissions made by
designers 328 are judged by the architecture review board 304. The primary review board
member 308 screens the design submissions before they are reviewed by the other members of
the architecture review board 304, to allow the rest of the review board to judge only the best of
the submissions. In some embodiments, the screening process includes scoring the submissions
based on the degree to which they meet the requirements outlined in the specification. In some
embodiments, scores are documented using a scorecard, which can be a document, spreadsheet,
online form, database, or other electronic document.
[0052] In one embodiment, the primary review board member 308 informs the architecture
review board 304 that one or more submissions have passed the screening process, and the
architecture review board 304 review the design submissions. In some embodiments, the
architecture review board 304 reviews the submissions based on requirements documented in the
specification. In some embodiments, the architecture review board 304 scores the submissions.
In some embodiments, the scores are documented using a scorecard, which can be a document,
spreadsheet, online form, database, or other electronic document.
[0053] In some embodiments, the scores and reviews from the primary review board member
308 and the other members of the architecture review board 304 are aggregated into a final
review and score. In some embodiments, the aggregation can comprise compiling information
contained in one or more documents. Such aggregation can be performed by the, the primary
review board member 308, the other members of the architecture review board 304 or in one
exemplary embodiment, the aggregation is performed using a computer-based system which
resides on the server 104 (FIG. 1). In some embodiments, the product manager 302 resolves
discrepancies or disagreements among the architecture review board 304.
[0054] In one embodiment, the design with the highest combined score is selected as the

winning design that will be used for implementation. A prize and/or recognition is given to the

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-12 -
designer. In one embodiment, a portion of the payment to the designer is withheld until the end
of the development review. For example, the designer may receive 75% of the payment and the
end of the design review, and 25% is paid after the development review. There can also be
prizes and/or recognition for the other submitted designs.

[0055] In some embodiments, in addition to reviewing the submissions, the architecture
review board 304 can identify useful modifications to the specification or the design that should
be included into the design. The primary review board member 308 documents the additional
requirements, and communicates this information to the designer 328 who submitted the design.
In one embodiment, the primary review board member 308 aggregates the comments from the
review board 304. The designer 328 can update the design and resubmit it for review by the
architecture review board 304. This process can repeat until the primary review board member
308 believes the design has met all the necessary requirements.

[0056] Once the architecture review board 304 validates that a design has sufficiently
addressed the requirements of the specification, the primary review board member 308 notifies
the product manager 302 that such a design has passed the design review process. The product
manager 302 can then use the design to solicit submissions for software components that meet
the specifications of the design. For example, the product manager 302 can make the design
available on a web site or mailing list for implementation. The product manager 302 requests
implemented components according to the design.

[0057] The development team 300 also includes a development review board 310 that is
analogous to the architecture review board 304. The development review board can be formed
once the design is complete and selected, or can be selected at a different time, for example, at
the time that the architecture review board 304 is formed. The membership of the development
review board 310 can be the same as, or overlap with, the membership of the design review
board 304, although this may not be as desirable from a quality maintenance point of view. In
some embodiments, the development review board 310 is not selected until the submissions for
the development project are received.

[0058] The development review board 310 includes one or more developers 312 who review
development submissions from software programmers 322. The development review board 310
preferably has a small number of (e.g., less than ten) members, for example, three members, but
can be any number. Generally, the development review board 310 is formed for only one or a

small number of related projects. Review boards, in some embodiments, could be formed for an

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-13 -

extended time, but a change in staffing (and continued competition for review board slots) could
help maintain quality.

[0059] Preferably, one of the development review board 310 members is selected, by the
product manager 302, the development review board 310, or otherwise, to be a primary
development review board member 316. If the board 310 is instituted for an extended time,
typically, one of the development board members 310 is assigned to be the primary development
review board member 316, and is assigned for each component or related group of components,
but the primary development review board member 316 also can be the same for all components
reviewed by that board 310, depending on the availability and skills of the members. The
primary development review board member 316 is responsible for coordination and management
of the activities of the board 310.

[0060] In one embodiment, the primary development review board member 316 screens
submitted components before the submissions are reviewed by the other members of the
development review board 310. In some embodiments, the screening process includes scoring
the submissions based on the degree to which they meet the requirements outlined in the design
specifications. In some embodiments, the scores are documented ﬁsing a scorecard. The
scorecard can be a document, spreadsheet, online form, database, or other electronic document.
[0061] In one embodiment, the primary development review board member 316 informs the
other development review board members 310 that one or more submissions have passed the
screening process. In one embodiment, the members of the development review board 310
review the submitted components. In some embodiments, the primary development review
board member 316 reviews the submissions based on the detailed requirements documented in
the design document described above. In some embodiments, the development review board 310
scores the submissions. In some embodiments, the scores are documented using a scorecard.
The scorecard can be a document, spreadsheet, online form, database, or other electronic
document.

[0062] In some embodiments, the score can be based on how the component perforrhs in one
or more test cases. In some embodiments, the test cases can include tests to determine the
accuracy of the results received when the component is provided with valid input data. In some
embodiments, the test cases can include tests to determine if the component behaves correctly
when provided with invalid input data. In some embodiments, the test cases can include tests

that determine how the component responds to a large quantity of input data.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-14 -
[0063] In some embodiments, the scores and reviews from the primary development review
board member 316 and the development review board 310 are aggregated into a final review. In
some embodiments, the aggregation can comprise compiling information contained in one or
more documents. In one embodiment, the product manager 302 aggregates the information. In
some embodiments, the primary development review board member 316 aggregates the
information. In one exemplary embodiment, the aggregation is done using a computer program,
which in turn can reside on the server 104. In some embodiments, the product manager 302
resolves discrepancies or disagreements among the development review board members 310.
[0064] Once the development review board 310 validates that a implemented component
meets the requirements of the specification, and is of sufficient quality, the primary development
review board member 316 notifies the product manager 302 that the component has completed
the development review process. In one embodiment, the implementation with the highest
aggregate score is selected as the winning component that will be used. A prize and/or other
recognition is given to the programmer. There can also be prizes and/or recognition for runners-
up. The winning component can then be included in a software repository, for access and use by
other programmers. As discussed further below, the participants in the design and
implementation of the components can be paid commensurate with their contribution as a
percentage of revenue for the use of the developed component.
[0065] In some embodiments, members of the development review board 310 can identify
modifications to the implementation that should be included in the component. The primary
development review board member 316 documents the additional requirements, so that the
programmer 322 can update and resubmit. This process can repeat until the primary
development review board member 316 believes the component is complete.
[0066] Referring also to FIG. 4, in one embodiment, the product manager 302 determines the
scope of a development project (STEP 408), as described above. The project manager 302
(possibly in coordination with the architect 308) generates a specification of the component,
components, or application to be developed, as well as a development timeline and budget
(STEP 412).
[0067] In one embodiment, the product manager 302 moderates a collaborative forum to
determine the scope of potential development projects. In some embodiments, the information
can be ideas for new software components, and in some embodiments, the information can be
additional requirements for existing software components. In some embodiments, the

information can be ides for software applications that are comprised of a combination of

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-15-

previously developed software components. The collaborative forum can consist of developers,
customers, prospective customers, or others interested in the development of software
components. In one embodiment, the collaboration forum is an online forum where participants
can post ideas, questions, suggestions, or other information. In some embodiments, only a subset
of the forum members can post suggestions to the forum. Once the product manager 302
determines the necessary requirements for the software component are collected, the product
manager 302 can create the requirements specification for the component. The product manager
302 optionally can terminate the collaboration forum at that time.

[0068] In one embodiment, the specification defines the business plan and a stable hardware
and/or software platform, or other architectural constraints. For example, the specification can
define the network devices, servers, and general infrastructure to support the development and
production of the project and product. The specification can also identify the language that the
component must be programmed in, a functional overview of the software component, boundary
conditions, efficiency requirements, computer platform requirements, interface requirements,
performance criteria, test-case requirements, and/or documentation requirements of the
component. In some embodiments, the specification can include an amount of money that will
be paid to the designer who submits the best design.

[0069] Once the specification is completed, the product manager 302 communicates the
specification to the other team members (STEP 416). This communication can occur over the
communications network 112 (FIG. 1), such as via an email message, a posting on a web page
accessible by the web browser 116, through a news group, facsimile, or other communication.
The product manager 302 can communicate with the architect 208 and/or any other team
members 212, 216 to obtain comments and/or suggestions to the specification. In one
embodiment, the product manager 302 communicates the speciﬁcatfon to one or more members
of the development review board 310. In one embodiment, the development review board 310
selects the primary development review board member 316 according to the methods described
above. The development review board can also review (and in some embodiments, select) the
work of the primary development review board member 316. The primary development review
board member 316 then develops a test plan for the component (STEP 420), as described above.
The programmer 322 then develops a component that meets all requirements described by the
specification (STEP 424). Once the component is developed, the primary development review
board member 316 tests the completed component (STEP 428). If the software component

passes the testing by the primary development review board member 316 (and in some

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-16 -

embodiments the primary architect review board member 308 and/or the product manager 302),
the component is added to a component catalog (STEP 432).

[0070] In one embodiment, the product manager 302 can have a component certified to
operate in multiple computing environments (STEP 436), where the computing environment
might include variations or combinations of hardware platforms, operating systems, application
servers, networking protocols, database management systems, and so on. For example, it might
be beneficial to have a software component developed to operate on a Intel-based PC running
WINDOWS 2000 Server and a SQLServer database certified to operate on a SUN Solaris server
with an Oracle database. The certification can be done by a rated development member that is
part of a certification pool. The certification pool has access to the server 104 in order to test
components on multiple platform combinations. In some embodiments, the certification pool
comprises developers that are selected to certify components, and they are compensated a
nominal amount for each certification completed. The developers selected can be the developers
used for development or other developers.

[0071] Tn one embodiment the primary architecture review board member 308 tests the
functionality of the component and reviews the deliverables produced by the development team
200, such as the source code and documentation. Furthermore, the primary architecture review
board member 308 can communicate a final approval to the product manager 302 if the
component sufficiently passes the architect’s tests. The product manager 302 can also verify the
deliverables for herself before approving them for the component catalog. In some
embodiments, the component can be reviewed by a developer other than the developer who
submitted the component.

[0072] Moreover, in some embodiments, the component is scored based on how well the
component performed in the various tests that the development team 300 applied to the
component. For instance, the product manager 302 can use the server 104 (FIG. 1) to subject the
component to one or more tests that target the contribution of each member of the development
team 300. Using the results of these targeted tests, the product manager 302 (e.g., using the
server 104) can obtain a component development score for each team member, which can then
be used to determine whether such team member will be used for a subsequent component
development project. The rating of a team member is an ongoing process that includes, but is
not limited to, performance of components, on time delivery, task fulfillment, and validity of

deliverables.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

=17 -

[0073] The development team 300 may then determine that if the component has not scored
above a predetermined amount, the component is not added to the component catalog. In one
embodiment, if the component is not added, members of the development team 300 (e.g.,
developers 322) are not compensated as highly for their work on the component as if the
component obtained a higher score. Compensation may be in the form of, for instance, monetary
compensation, vacations, tangible objects, intangible objects, or any combination thereof.

[0074] Referring to FIG. 5, developers optionally are rated (STEP 508) according to their
performance in coding competitions, their performance in designing, testing, or coding
components, and possibly also other factors. The product manager 302 communicates the
specification to developers (STEP 512). In some embodiments, the product manager 302 only
communicates the specification to developers who have a rating, or who have a rating value
above a predetermined minimum.

[0075] Developers create designs or components in response to the specification, and submit
those designs or components for review to the product manager 302, primary architecture review
board member 308, or primary development review board member 316 (STEP 516).

[0076] Each submission can then be scored, based on quality criteria, for example but not
limited to, functionality, style, adherence to coding standards, performance, and stability (STEP
520). Once each submission is evaluated, and one submission is selected as the winning
submission (STEP 524). The product manager 302 then allocates a portion of the proceeds to the
developer who authored the winning submission using any of the methods described below
(STEP 528).

[0077] Referring to FIG. 6, in one specific embodiment, a product manager 302 conducts
market research (STEP 602) to determine the need for a particular software component. Based
on the results of the research, the product manager 302 specifies the design requirements of the
software component (STEP 604).

[0078] The product manager 302 identifies (which can include selecting) the members of the
architecture review board 304 (STEP 606) and provides the specification to the architecture
review board 304 (STEP 608). In one embodiment, the product manager 302 places the
specification on a web server for access by the architecture review board 304.

[0079] The architecture review board 304 can be already determined, as a standing
architecture review board 304, or the architecture review board 304 members can be identified as
members of the architecture review board 304 for this particular component. In one

embodiment, the architecture review board 304 members are selected by the product manager

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-18 -
302 as a result of one or more of the their expertise, their ratings, and their expressed willingness
to participate in this capacity. In one embodiment, the architecture review board 304 members
are compensated for their participation in the review board 304.
[0080] In one embodiment, the architecture review board 304 is open to members of the
general public. In another embodiment, the architecture review board 304 is limited to software
designers who have participated in at least one design or coding competition and are optionally
pre-qualified based on their competition performance (STEP 610). In another embodiment, only
the excellent designers of one or more competitions are eligible for participation in the
architecture review board 304.
[0081] For insténce, a series of competitions can be used to identify excellent developers
from a large number of contestants. Alternatively, an architecture review board 304 member can
be required to periodically have a component selected in this process. Once the product manager
302 provides the architecture review board members access to the specification, the board
members 304 review the specification to understand the design requirements (STEP 612). The
board members 304 can ask for clarification or revision of the specifications, and the product
manager 302 can respond. In this way, the review board members 304 make sure that they
understand the requirements for the components that they will evaluate.
[0082] When the architecture review board 304 has reviewed the design requirements
specification, the requirements are provided to designers. In some embodiments, prior to being
granted access to the design specification, software designers 308, 308" and 308", generally 308,
are pre-qualified (STEPS 614, 614' and 614") as described above based on ratings, skills, or other
criteria. The product manager 302, ora member of the architecture review board 304 gives
designers that meet pre-qualification requirements access to the specification. In some
embodiments, access can be granted by a web page (which can require authentication for
access), by email, or other technique. The designers 308 can review the specification (STEPS
616, 616' and 616") and develop designs (STEPS 618, 618' and 618"). When a designer 308 has
completed his or her design, the designer 308 submits the design to the architecture review board
304 (STEPS 620, 620' and 620").
[0083] The designs can take a number of forms, depending on the component specified.
Typically, the specifications for the component will include the requirements for the design. In
one embodiment, the design includes class diagrams, which can be developed in the Unified
Modeling Language (UML), for example using the Poseideon Computer Aided Software
Engineering (CASE) tool, available from Gentleware AG of Hamburg, Germany. The design

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-19 -
also includes use-case diagrams and sequence diagrams. The design also includes a written
component design specification describing the design, a list of required algorithms, and class
stubs for the classes in the design. The design also includes functional tests that can be used to
test the program. In one such embodiment, the functional tests are tests compatible with the
JUnit testing infrastructure. JUnit is open source software for testing Java software, which is
available from www.sourceforge.net.
[0084] The architecture review board 304 reviews received designs (STEP 622). In one
embodiment, this review includes a first screening review by a primary reviewer, and then
further review by other members of the review board. The first screening review determines that
the required elements of the design are included (e.g., class, use-case, and sequence diagrams,
component specification, required algorithms, class stubs, and functional tests).
[0085] The screening review can also determine that these elements appear complete. With
regard to the class diagram, for example, and in particular the class definition, the screening
review can determine any or all of that: (1) the class definition provides a descriptive overview
of the class usage, (2) sub-packages have been created to separate functionality, (3) class scope
matches class usage, (4) there is proper and effective use of programming techniques such as
inheritance and abstraction, (5) interfaces are used properly, (6) suitable constructors are defined
for the component, and that (7) class modifiers such as final, static, are appropriately used. The
screening review can also determine, for example, with regard to the variable definition, that: (1)
variable scope is correctly defined, (2) type assignments are defined appropriately for balance
between efficiency and flexibility, and (3) that all variables are defined with an initial value.
Further, with regard to method definition, for example, the screening review can determine that:
(1) scope is correctly defined, exceptions are handled and used appropriately, modifiers are
properly used, return types are used, method arguments are properly defined, and that the
application programming interface (API) as stated in the requirements specification is available.
[0086] The screening review can also, for example, verify that use-case diagrams exist for all
public methods in the design, and that sequence diagrams exist for each use case. The screening
review can also, for example, with regard to test cases, verify that functional test cases are
provided for each sequence diagram, and that they appear to be appropriate for those diagrams.
[0087] In one embodiment the initial screen reduces the number of entries to a manageable

number for the review board to review, such as 5 entries.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-20 -
[0088] The architecture review board evaluates the designs to determine whether they
comply with the specifications (STEP 624). In embodiments in which there is an initial
screening, the members of the review board each perform a review to evaluate the submission.
[0089] In some embodiments, the architecture review board 304 calculates a score for the
submission, based for example on the quality of the design and how well it complies with
requirements stated in the specification. For example, a review board member will determine
whether and to what degree: (1) the design addresses the requirements detailed in the functional
specification, (2) the design effectively uses all required technologies (e.g., language, required
components, etc.), (3) the design incorporates standard design patterns and methodologies where
applicable, (4) the design balances the use of design patterns and principles with the expected
component usage, (5) the design accounts for incorporating additional functionality and features
beyond the initial intended usage.
[0090] In some embodiments, each architecture review board member also closely evaluates
the degree to which the design elements. For example, with regard to the class diagram, and in
particular, for example, the class definition, the architecture review board member evaluates
whether the class diagram accurately and thoroughly depicts the required elements of the
component. The board member also evaluates whether the design is suitable given the expected
component usage and throughput requirements. With regard to variable definition, the board
member evaluates whether variable types are suitable for the expected component usage, and
confirms that the variables used meet the minimum and maximum value parameters. With
regard to method definition, the board member evaluates the degree to which (1) the defined
methods properly expose the API requirements defined in the requirements specification, (2) the
methods provide access to and properly encapsulate the defined variables, and (3) the exceptions
defined is an inclusive list of the anticipated exceptions. The board member can also evaluate
whether (1) class relationships are well defined, (2) the use-case diagram thoroughly depicts
class usage, (3) the sequence diagram thoroughly depicts the ordered interaction between classes,
(4) the component specification provides sufficient information for this design to be
implemented, details how invalid arguments should be handled for the defined methods, and
details the exceptions thrown by the defined methods, and (5) that the test cases thoroughly and
accurately address component functionality. The board member can then assign an overall score
to each entry.
[0091] For example, the architecture review board 304 members can use the server 104 of

FIG. 1 to record and communicate their evaluations of the component designs to the other board

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-21 -
members. In one embodiment, the board member uses an on-line evaluation form to evaluate
each component. The evaluations of the board members can then be identified, and the
components ranked by board member scores received.
[0092] In one embodiment, the architecture review board 304 members can also use the
server 104 of FIG. 1 to subject the design to one or more tests that target individual requirements
as defined in the specification. Using the results of these targeted tests, members of the
architecture review board 304 (e.g., using the server 104) can obtain a design score for each
submission. Based on the evaluation of the submission(s) the architecture review board 304
selects a design as the winning submission (STEP 626). '
[0093] In some cases, modifications may need to be made to a design, even a design that is
the high scorer, based on additional ideas or problems identified by the reviewers. In one
embodiment, the architecture review board 304 sends the design back to the designer 308 who
submitted the winning design, along with suggestions for modifications, explicit directions to
make certain modifications, or other instructions, and so on. In some embodiments, the primary
architecture review board member makes the modifications. The designer 308 incorporates the
changes into the design (STEP 628) and resubmits the design to the architecture review board
304 (STEP 630). The architecture review board 304 then performs a final quality control review
of the design (STEP 632), and sends the design to the product manager 302. The product
manager 302 can then use the design to solicit developed software components based on the
winning design (STEP 634), for example as further illustrated with reference to FIG. 7. The
product manager 302 can also pay the winning designer 308, either a flat fee, or using methods
described below.
[0094] Referring to FIG. 7, once a software design is available, for example by using the
method of FIG. 6 or otherwise, the design can be used to facilitate the development of a software
component.
[0095] The product manager 302 identifies the members of a development review board 310
(STEP 702). This could, optionally, include prior or concurrent selection of a development
review board for the component. The product manager 302 provides the design to the
development review board 310 (STEP 704). In one embodiment, the product manager 302
places the design on a web server for access by the development review board.
[0096] The development review board 310 can already be determined, as a standing
development review board 310, or the development review board 310 members can be identified

as members of the development review board for a particular component or group of

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-22-

components. In one embodiment, the development review board 10 members are selected by the
product manager 302 as a result of their expertise, their ratings, and their expressed willingness
to participate in this capacity. In one embodiment, the development review board members are
selected after the software components are submitted to allow all developers an opportunity to
submit components. In one embodiment, the development review board 310 members are
compensated for their participation in the review board 310. This compensation can be in the
form of recognition, a flat or hourly fee, or a percentage of revenue generated by the component.
[0097] In one embodiment, the development review board 310 is open to members of the
general public. In another embodiment, the development review board 310 is limited to software
developers who have participated in at least one design or coding competition and are optionally
pre-qualified based on their competition performance (STEP 710). In another embodiment, only
the excellent developers of one or more competitions are eligible for participation in the
development review board 310.

[0098] For instance, a series of competitions can be used to identify excellent developers
from a large number of contestants. Alternatively, a development review board 310 member can
be required to have recently submitted one or more winning component(s) or designs. Once the
product manager 302 grants the development review board 310 access to the specification, the
board members review the specification to understand the development requirements, as
described above (STEP 708). The development review board members 310 can ask for
clarification or revision of the specifications, and the product manager 302 can respond. In this
way, the development review board 310 can be sure to understand the requirements for the
components that they will evaluate.

[0099] In some embodiments, prior to being granted access to the design, the software
developers (also called programmers) 314, 314' and 314", generally 314, are also pre-qualified
(STEPS 710, 710' and 710"), which may be similar to that described above for the board
members (e.g., ratings, etc.) or otherwise. The product manager 302, or a member of the
development review board 310 then grants those developers that meet the pre-qualification
requirements access to the design. In some embodiments, access can be granted by a developer
314 entering a password, by a developer 314 navigating to a particular web page which checks
the developer's qualifications, by the product manager 302 emailing the specification to the
developers 314, or other similar means. Once granted access to the specification, the developers
314 can then review the specification (STEPS 712, 712' and 712") and begin developing
software components consistent with the posted design (STEPS 714, 714' and 714"). Once a

10

15

20

25

30

WO 03/088119 PCT/US03/10537

=23 -
developer 314 has completed developing their software component, the developer 314 submits
the component to the development review board 310 (STEPS 716, 716' and 716").
[00100] In some embodiments, the components are subjected to a peer review process. The
peer review process allows developers to test and review the components developed by other
developers. For example, developer 314 may create a software component and, prior to
submission, developer 314' may subject the component to one or more tests to determine the
quality of the component. As described above, the developers 314, 314' and 314" typically have
minimal or no prior relationship to each other. In one exemplary embodiment, the developers
on-line nicknames are used instead of the their actual identities. Because the components are
subjected to this independent and anonymous peer review process, the quality of the submitted
components will be very good.
[00101] The submitted components can take a number of forms depending on the component
specified. Typically, the specifications for the component will include the requirements for the
developed component. In one embodiment, the developed component includes source code,
which can be written in the Java programming language, for example, using the Java 2 Micro
Edition (J2ME) development platform from Sun Microsystems of Santa Clara, California. The
component also includes unit test cases and log documenting successful execution against the
test cases. The component also includes documentation. In one such embodiment, the
documentation is consistent with Javadoc style documentation. The component also includes a
deployment guide.
[00102] The development review board 310 reviews received components (STEP 718). In
one embodiment, this review includes a first screening review by a primary reviewer, and then
further review by other members of the development review board 310. The first screening
review determines that the required elements of the design are included and are functional (e.g.,
source code, unit test cases, documentation, log files, and deployment guide).
[00103] The screening review can also determine that these elements appear complete. With
regard to the source code, for example, the screening review can determine any or all of that: (1)
all public methods are clearly commented; (2) required tags such as “@author,” “@param,”
“@return,” “@throws,” and “@version” are included; (3) the copyright tag is populated; (4) the
source code follows standard coding conventions for the Java language such as those published
by Sun Microsystems; (5) a 4 space indentation is used in lieu of a tab indentation; and (6) all
class, method and variable definitions found in the class diagram are accurately represented in

the source code. The development screening review can also, for example, verify that unit test

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-24 -

cases exist for all public methods in the design, and each unit test is properly identified by a
testing program.

[00104] In one embodiment, the initial development screening process reduces the number of
entries to a manageable number for the development review board 310 to review, such as five
entries.

[00105] The development review board 310 evaluates the components to determine whether
they comply with the design (STEP 720). In embodiments where there is an initial screening,
the members of the review board each perform a review to evaluate the submitted component.
[00106] The development reviewer evaluates the component code against the design. In one
embodiment, for example, with regard to the component, the reviewer evaluates the extent to
which: (1) the implementation addresses the functionality as detailed in component design
documents; (2) the implementation correctly uses all required technologies (e.g. language,
required components, etc.) and packages; (3) the implementation properly implements required
algorithms; (4) the implementation has correctly implemented (and not modified) the public
application programming interface (API) as defined in the design, with no additional public
classes, methods, or variables.

[00107] With regard to class definitions, for example, the reviewer evaluates the extent to
which classes are implemented as defined in the design documents (including, for example,
modifiers, types, and naming conventions), and whether defined classes are implemented. With
regard to variable definitions and method definitions, for example, the reviewer evaluates the
extent to which all variables and methods are implemented as defined in the design documents
(including, for example, modifiers, types, and naming conventions). With regard to
relationships, for example, the reviewer evaluates the extent to which the implementation
properly maps class relationships.

[00108] The reviewer can further evaluate the code by performing a code inspection. For
example, the reviewer can determine the extent to which the object types defined in the
implementation are the best choices for the intended usage — for example whether a Vector type
should have been used instead of an Array type. The reviewer can determine the extent to which
there are any needless loops, or careless object instantiation or variable assignment. With regard
to test cases, for example, the reviewer can determine the extent to which (1) the unit test cases
thoroughly test all methods and constructors; (2) the unit test cases properly make use of setup

and teardown methods to configure the test environment; (3) files used in unit test cases exist in

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-25-

the designated directory; (4) unit test cases do not leave temporary files on the file system after
testing is complete.

[00109] The reviewer can even further evaluate the code by conducting accuracy, failure, and
stress tests. Accuracy tests test the accuracy of the results output when provided valid input.
Accuracy tests can also validate configuration data. Failure tests test for correct failure behavior
when the component is provided with invalid input, such as bad data and incorrect usage. Stress
tests test the component capacity for high-volume operation, but testing such characteristics as
performance as throughput. The tests that fail are included in the evaluation of the component,
for example as a score reduction. Each reviewer can then assign an overall score to the
component based on this evaluation.

[00110] In one embodiment, the development review board members 310 can use the server
104 of FIG. 1 to subject the design to one or more tests that target individual requirements, for
example as set out in the design. Using the results of these targeted tests, members of the
development review board (e.g., using the server 104) can obtain a total score for each
submission.

[00111] For example, the development review board members 310 can use the server 104 of
FIG. 1 to record and communicate their evaluations of the component designs to the other board
members. In one embodiment, the board member uses an on-line evaluation form to evaluate
each component. The evaluations of the board members can then be identified, and the
components automatically ranked by board member scores received. Based on the evaluation of
the submission(s) the development review board 310 selects a design as the winning submission
(STEP 722).

[00112] In some cases, modifications may need to be made to the winning component. In
these cases, the development review board 310 sends the component back to the developer 314
who submitted the winning component, along with suggestions for modifications, explicit
directions to make certain modifications, or other instructions and so on. The developer 314
incorporates some or all of the changes into the component (STEP 724) and resubmits the
component to the development review board 310 (STEP 726). The development review board
310 can then perform a final quality control review of the component (STEP 728), and sends the
component to the product manager 302. The product manager 302 can then include the
component in a component catalog, as described below, and make the component available for
distribution (STEP 730). The product manager 302 can also pay the winning developer 314,
using any one of the methods described below (STEP 732).

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-26 -

[00113] Referring to FIG. 8, the server 104 can include a number of modules to facilitate the
development and/or distinction of components. For example, a component development
subsystem 800 can facilitate the development process described above. The component
development subsystem 800 facilitates the development of a component with the development
team 200 and communicates with many different modules to achieve the distributed team
development process.

[00114] In one embodiment and as described in more detail below, the server 104 can include
a component catalog 804. The component catalog 804 stores components developed by the
development team 200. In one embodiment, the component catalog 804 provides a catalog or
directory of information about components available to potential purchasers. For instance, a
customer of the server 104 can view a directory of the component catalog 804 and information
about each component in the component catalog 804 before selecting a particular component.
Once the server 104 (or administrator of the component catalog 804) receives the required fee
payment or authorization information for the component, the server 104 downloads the
component to the client 108 over the communications network 112. The component catalog is
described further with reference to FIG. 10 below.

[00115] The server 104 also includes communication tools 808. In one embodiment, the
communication tools 808 are tools that facilitate communication between the team members 204,
208, 212, 216 of the development team 200. Examples of the communication tools 808 include,
but are not limited to, a module enabling the real-time communication between team members
204,208, 212, 216 (e.g., chat), news groups, on-line meetings, and document collaboration tools.
[00116] Moreover, the server 104 can also include a component incubator 812. The
component incubator 812 is a module enabling users to submit suggestions for components or
modifications to components which can then be used as the basis for market research.

[00117] The server 104 can include a requirements design subsystem 816. The requirements
design subsystem 816 enables the product manager 204 and architect 208 to view and comment
on the requirements specification. In further embodiments, the requirements design subsystem
816 enables the product manager 204 and the architect 208 to create, edit, download, upload,
and/or approve requirements in the specification (e.g., over the communications network 112).
In one embodiment, the requirements design system can share and manipulate models in UML.
[00118] The server 104 additionally includes a development posting subsystem 820. The
development posting subsystem 820 enables the server 104 or product manager 204 to

communicate with potential development team members to promote development projects and

10

15

20

25

30

WO 03/088119 PCT/US03/10537

=27 -

grow a community of contributors that contribute to the component catalog. In one embodiment,
the development posting subsystem 820 displays an advertisement to potential development team
members. In one embodiment, the advertisement describes the project using text, graphics,
video, and/or sounds. The advertisement may also describe positions available in the
development team 200. Examples of communication techniques include, without limitation,
posting these ads on the server’s web site, displaying statistics about the project (e.g., planned
royalties paid to development team members, development team members who are participating
in this project, development hours available per week). Moreover, in one embodiment the
development posting subsystem 820 accepts inquiries associated with development projects. In
further embodiments, the development posting subsystem 820 suggests members of the
competition member base to form a development team to handle an inquiry. The development
posting subsystem 820 may analyze, for example, the rating of each member of the coding
competition member base, previous contributions to previous development projects, the quality
of contributions to previous component development projects (e.g., based on a score given to
each development team member 204, 208, 212, 216 at the completion of the component, as
discussed above), and current availability of the potential team member when recomménding a
member of the competition member base to be part of the development team 200. The product
manager 204 may or may not be an advertised position as just described. -

[00119] The server 104 also includes a management subsystem 824. The management
subsystem 8§24 is a module that allocates revenue to a development team member (e.g.,
developer 212, QA developer 216). In one embodiment, a development team member earns an
ongoing royalty on component licenses or sales of copies of the component. In further
embodiments, the management subsystem 824 enables the product manager 204 and architect
208 to view inquiries for projects and select project teams based on a recommendation from the
server 104 (i.e., the development posting subsystem 820). The management subsystem 824 can
also track deliverables produced by the development team 200 (e.g., source code, documentation,
and schema) and/or enable the review of development team members 204, 208, 212, 216 after
the development of the component. The management subsystem 824 can also scan development
team member information, such as, but not limited to, history, coding competition ranking, and
prior work experience. In some embodiments, the management subsystem 824 can display the
development team member information to the product manager 204 and/or architect 208 via, for

instance, a graphical user interface.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-28 -
[00120] The server 104 also includes a software design subsystem 828. The software design
subsystem 828 enables collaboration between the team members 204, 208, 212, 216. More
specifically and in one embodiment, the software design subsystem 828 enables team members
204, 208, 212, 216 to view and/or comment on the design documents, such as object diagrams
(e.g., class diagrams and use-case diagrams, and so on.). In another embodiment, the software
design subsystem 828 enables development team members 204, 208, 212, 216 to create,
download, upload, and/or edit the design documents and/or the architecture documents over the
communications network 112.
[00121] Moreover, the server also includes a component development environment (CDE)
832. The CDE 832 enables team members 204, 208, 212, 216 and potential purchasers of the
components to create applications by linking components together. In one embodiment, the
CDE 832 is a web-based application (e.g., applet or plug-in application). In additional
embodiments, the CDE 832 is included in the client software 120. The CDE 832 also enables
the transition of a component from a QA application which tests the component, as described
below, into the integration module, also described below, to create larger components or
applications. The CDE 832 also enables the migration of standalone components from QA to
production and/or the migration of an application or larger component to production. The CDE
832 may additionally incorporate commercially available Integrated Development Environment
(IDE) software.
[00122] The server 104 additionally includes a quality assurance (QA) application 836. The
QA application 836 enables the testing of all applications and/or components. In one
embodiment, the QA application 836 executes test cases developed by the QA developer 216.
Moreover, the QA application 836 may execute an automated test on the component or
application, such as to verify and/or measure memory usage, thread usage, machine statistics
such as I/O usage and processor load. Additionally, the QA application 836 can score the
component by performance, design, and/or functionality. Moreover, the QA application 836 can
be a test harness for testing multiple components simultaneously.
[00123] In one embodiment, the server 104 can include a packaging application 840. The
packaging application 840 packages deliverables (e.g., source files, executables, documentation,
and/or supporting material (e.g., XML, DDL)) in a downloadable file (e.g., .ZIP file, Java
Archive (.JAR file), or dynamic link library (DLL) file). In one embodiment, the packaging

application 840 packages these deliverables into a downloadable file when a customer purchases

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-29 -
a component from the component catalog. The packaging application 840 then downloads the
file to the client 108.
[00124] The server 104 also includes a component showroom 844. The component
showroom 844 promotes the license (and/or sales of copies) and usage of the components by
providing information about the component. The component showroom 844 can also provide
the ability to, for instance but not limited to, demonstrate component usage, demonstrate a case
study, provide a list of related components and applications, and provide information about
pricing and/or licensing.
[00125] Although described above as independent subsystems and modules, this is for
exemplary purposes only and these subsystems and modules may alternatively be combined into
one or more modules or subsystems. For example, in another embodiment, the component
development module 800 can perform any number of the functions described above. Moreover,
one or more of the subsystems described above may be remotely located from other modules
(e.g., executing on another server 104 in a server farm).
[00126] Referring to FIG. 9, the development posting subsystem 820 includes a web server
902. The product manager 204 can use the web server 902 to post design or specifications for
distribution to the software team 200. The server 104 also includes a rating engine 904. In one
embodiment, the rating engine 904 calculates ratings for each participant in one or more coding
competitions. In other embodiments, the rating engine can calculate ratings for members of
project teams 200 based on the individual members' contributions to the project. The server 104
also includes a receiving module 906. In one embodiment, the receiving module 906 receives
computer software designs submitted to the development posting éubsystem 820 by members of
the project team 200. Alternatively, the receiving module 906 facilitates the receipt of
submissions from developers 212 competing for spots on the development team 200. The server
104 also includes a scoring module 908. In one embodiment, the architecture review board 304
uses the scoring module 908 to evaluate multiple software designs submitted by the software
designers 308. Additionally, the development review board 310 can use the scoring module 908
to evaluate multiple software components submitted by the programmers 314. The server also
includes a reviewing module 910. Additionally, developers can use the reviewing module 910 to
review submissions from other developers. In one embodiment, the web server 902, rating
engine 904, receiving module 906, scoring module 908, and reviewing module reside on the
server 104. Alternatively, the web server 902, rating engine 904, receiving module 906, scoring

module 908, and reviewing module 910 can reside on other servers or remote devices.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-30-
[00127] Referring to FIG. 10, the component catalog 804 includes a component repository
1004. The component repository 1004 is a central store for components that the server 104 can
publicize and sell to purchasers. In one embodiment, the component catalog 804 is stored on the
server 104. Alternatively, the component catalog 804 can be stored on another server or remote
storage device (e.g., database server). In some embodiments, the component repository 1004
provides the user interface to potential purchasers wishing to purchase a component or its
information. Typically, the user interface generates code for the client software 120 or web
browser 116 used by purchasers to communicate with the server 104.
[00128] The component catalog 804 additionally includes an information module 1008. The
information module 1008 provides information about the components to the component
repository 1004. For instance, the information module 1008 can provide or include a table
listing supported components of the server 104 that are stored in the component repository 1004.
Moreover, the information module 1008 can also provide documentation for each component to
the component repository 1004, such as, but not limited to, the component’s memory
requirements, efficiency, score received in QA testing, and members of the development team
200. In one embodiment, the information module 1008 is in communication with the component
repository 1004 to provide the component information to the component repository 1004 so that,
for example, a potential purchaser can view a component’s information (e.g., performance)

during selection.

[00129] The component catalog 804 also includes an update tracking module 1012. The
update tracking module 1012 ensures that the component repository contains the most recent
version of a component. In one embodiment, upon the determination of a modification to a
component previously purchased by a customer, the component catalog 804 receives the change.
The update tracking module 1012 ensures that the modified component is stored in the
component repository 1004. In some embodiments, the update tracking module 1012 alerts the
product manager 204 or architect 208 of the modification. In yet other embodiments, the update
tracking module 1012 transmits only the modified portion of the component to the component
repository 1004 for more efficient updates. In further embodiments, if a component is modified,
the update tracking module 1012 transmits a message to all customers who had previously
purchased the previous version of the component to notify the customers that a newer version is

available and the differences between this version and the previous version.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-31-

[00130] The component catalog 804 additionally includes a dependency tracking module
1016. The dependency tracking module 1016 tracks the dependencies between components that
are linked together in an application. For example, a component purchaser purchases a
component A from the server 104. Component A is a larger component made up of components
B, C, and D. If component C is subsequently modified, in one embodiment the server 104
notifies the purchaser that component C has been modified and component C depends off of
component A. The purchaser, however, is interested in component A. If the purchaser only
updates component C, then the purchaser’s component A may not operate unless the purchaser
downloads the updated component B and D. The dependency tracking module 1016 is the
module that tracks such dependencies. In some embodiments, the dependency tracking module
1016 notifies customers about dependencies.

[00131] The component catalog 804 also includes an integration module 1020. In one
embodiment, the integration module 1020 integrates components in the component catalog 804
to form larger components or applications. For instance, the product manager 204 can determine
that a need exists for a particular component A. If the product manager 204 realizes that no
component A exists in the component catalog 204 but does realize that other components exist
that may be able to create component A using other components, the product manager 204 can
plan a project for the creation of the component A. In one embodiment, the integration module
1020 facilitates the integration of many components into one larger component.

[00132] For example and referring to FIG. 11, a component catalog system 1100 includes a
first company 1104 operating the first client 108 and a second company 1108 operating the
second client 108'. The companies 1104, 1108 communicate with the server 104 over the
communications network 112. The server 104 includes the component catalog 804 and the
component catalog 804 includes the update tracking module 1012. Although not illustrated, each
client 108, 108’ includes the respective web browser 116, 116’, the server 104 includes the
modules (e.g., component showroom 844) described above in FIG. 8, and the component catalog
804 includes the modules (e.g., the information module 1008) described above in FIG. 10.
[00133] In one embodiment, the server 104 transmits a remote upload tracking module 1112,
1112', generally 1112, to the first and second companies 1104, 1108, respectively. Each remote
upload tracking module 1112 communicates with the upload tracking module 1012 when a
company 1104, 1108 modifies a component that is stored in the component catalog 804.

Additionally, the remote upload tracking module 1112 also enables a company (e.g., 1104, 1108)

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-32-

to add their components to the component catalog 804, thereby making the component available
to other companies. In some embodiments, the remote upload tracking module 1112 may be
implemented in various forms, for example, it may be in the form of a Java applet that is
downloaded to the client 108 and runs in conjunction with the web browser 116 and/or client
software 120, or the remote upload tracking module 1112 may be in the form of a standalone
application, implemented in a multi-platform language such as Java or in native processor
executable code. Further, the remote upload tracking module 1112 may be implemented as the
client software 120.

[00134] In one embodiment, the first company 1104 produces a first version of a component
1116. In one embodiment, the remote upload tracking module 1112 then automatically transmits
the component 1116 to the server 104 (e.g., the upload tracking module 1012) over the
communications network 112 for addition into the component catalog 804. Alternatively, the
remote upload tracking module 1112 queries the first company 1108 (e.g., an employee of the
first company 1104) if the first company 1108 wants to submit the component to the component
catalog 804 and consequently make the component available to other companies (e.g., the second
company 1108). For instance, the remote upload tracking module 1112 queries the first
company 1104 via a dialog box (e.g., displayed on the web browser 116 or client software 120).
If the first company 1104 agrees to the query (e.g., selects YES from a dialog of adding the
component 1116 to the component catalog 804), the remote update tracking module 1112
transmits the component 1116 to the server 104, as illustrated with arrow 1120. In one
embodiment, the remote upload tracking module 1112 has an option (e.g., checkbox) to transmit
completed components to the server 104. Once the option is selected, the remote upload tracking
module 1112 does not query the first company 1104 but rather automatically transmits the
completed component to the server 104 and does so until the option is unselected. Additionally,
although tailored towards the first company 1104, the description also applies to the second
company 1108. In another embodiment, other functions, such as royalty negotiation, effort
determination, and so on, may take place before a third party component is added to the
component catalog 804.

[00135] In one embodiment, the uploaded components undergo a QA process as described
herein before addition to the component catalog 804. In one embodiment, upon receiving the
first version of the component 1116, the server 104 subjects the component 1116 to one or more
of the steps described above in FIG. 4. For example, the server 104 does not add the component

1116 into the component catalog 804 without performing the QA testing on the component

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-33.-

(STEP 428). In additional embodiments, the server 104 does not add the component 1116 to the
component catalog 804 until the architect 208 provides the final approval to the product manager
204. Thus, if version 1 of the component 1116 does not meet the stringent coding standard
requirements of the architect 208 (and/or product manager 204), the component 1116 is not
added to the component catalog 408. In further embodiments, the server 104 notifies the first
company 1104 that the component 1116 did not meet the required standards for entry into the
component catalog 804. The server 104 can additionally provide the first company 1104 with
the problems found in the component 1116.

[00136] If the component 1116 does meet the server’s requirements and is consequently
added to the component catalog 804, the server 104 can then display the component 1116 in the
component catalog 804 for potential purchase. Thus, if a second company 1108 views the
component catalog 804 (e.g., via the component showroom 844), the second company 1108 can
purchase version 1 of the component 1116. After the sale, the server 104 subsequently transmits
the component 1116 to the second company 1108, illustrated with arrow 1124. In one
embodiment, the first company 1104 may be compensated for any sale of version 1 of the
component.

[00137] Referring to FIG. 12, in one embodiment the second company 1108 purchases
version 1 of the component and subsequently modifies the component 1116, shown with
modification arrow 1128. A modification is, for example, an improvement (e.g., efficiency
increase, smaller memory requirements), deletion (e.g., of an unneeded step or feature), and an
addition (e.g., of a complimentary feature or function) to the component 1116. Another example
of a modification is the integration of the component 1116 into another component (e.g., a larger
component). In response to the modification, version 1 of the component 1116 becomes, for
example, version 1.1 of the component 1116’. In one embodiment, the remote update tracking
module 1112 transmits a message to the server 104 stating that the second company 1108 has
modified the component 1116. In further embodiments, the remote update tracking module 1112
then transmits (or, e.g., queries and transmits) the modified version 1.1 to the server 104, as
shown with arrow 1132. Upon receipt of version 1.1 of the component 1116, the server 104
and/or development team members determine whether the modified component 1116 can be
added to the component catalog 804 by performing the steps illustrated in FIG. 4. In one
embodiment, when version 1.1 of the component 1116’ is added to the component catalog 804,

version 1.1 replaces version 1 of the component 1116. Alternatively, version 1.1 of the

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-34 -
component 1116’ is added as another component in the component catalog 804. The
replacement or addition of version 1.1 of the component 1116’ may depend on the amount of
changes relative to version 1 of the component. Furthermore, the update tracking module 1012
may notify each customer who previously purchased version 1 of the component 1116 that an
updated version 1.1 has been added to the component catalog 804. The other modules 1008,
1016, 1020 may also notify customers about, for example, additional dependencies and available
information. Additionally, in some embodiments the second company 1108 is compensated for
licenses / sales of copies of the second version of the component 1116'.
[00138] In one embodiment, members of a development team (e.g. 208, 212, 216) working on
a software product (e.g. a component or a software application) are paid a fee for their work on
the product. Although preferably a software component, the product that is developed by the
distributed software development system 101 can be any software application or type of
intellectual property. In one embodiment and as described above with respect to FIG. 8, the
development posting subsystem 820 of the server 104 posts project listings and descriptions of
the projects in the project listings, such as in an advertisement. The advertisement or posting can
include, for instance, the contribution of each development team member, the fee that a
development team member receives for work on the project, and the total contribution of the
entire development team.
[00139] In one embodiment, the members of a development team receive a royalty based on
their contribution to the product and the revenue earned from licenses or sales of copies of the
product. The management subsystem 824 (also described above with respect to FIG. 8) of the
server 104 tracks particular characteristics for determining the royalty amounts to be paid to the
members of the development team. In one such embodiment, the fee is an advance payment on
royalties, meaning that royalties are not paid until the advance is covered.
[00140] In one embodiment and also referring to FIG. 13, the server 104 (e.g., the
management subsystem 824) tracks the total revenue 1304, development team member
contribution 1308, development team member royalty percentage 1310, royalty pool percentage
1311, royalty pool 1312, and royalty 1316 for the project and/or for each development team
member.
[00141] In one embodiment, the contribution 1308 is a predetermined amount that is specified
in advance of the development work. In another embodiment, the contribution 1308 of each

member is determined by the amount of time, level of skill (determined by previous scores,

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-35 -
contest rating, experience or a combination), or degree of effort made by the development team
member. In another embodiment, the contribution 1308 is determined by the usefulness of the
development team member’s contribution. The expected proportional contribution of a
development team member (e.g., 208, 212, 216) is the development team member’s royalty
percentage 1310. In one embodiment, the development team member’s royalty percentage 1310
is determined by dividing the total work contribution 1308 that is expected to be required by the
development team member to accomplish her task by the total work contribution that is expected
to be required by all of the development team members to develop the deliverables (e.g., the
component and related documentation). In the event that the component is changed, upgraded or
otherwise modified, an adjustment may be made to the development team member’s royalty
percentage 1310 for that modified version, to reflect the new contribution division.
[00142] In one embodiment, a royalty pool percentage 1311 is selected for a product. The
royalty pool percentage 1311 is a percentage of total revenues 1304 (e.g. yeatly, quarterly, or
monthly revenue) to be reserved for royalty payments 1316 to be made to the development team
who worked on the product. In one embodiment, the anticipated royalty pool percentage 1311
for each product is set forth in the applicable specification document. In some embodiments, the
royalty pool percentage 1311 may depend on other business factors, such as time or popularity of
a product. The royalty pool 1312 is then the portion of revenues 1304 from a product that is to
be distributed as royalty payments 1316 to the members of the development team who developed
the product. In one embodiment, the royalty pool 1312 is determined by multiplying the royalty
pool percentage 1311 by the total revenues 1304 received from sales or licenses of the product
during a predetermined time period.
[00143] The management subsystem 824 tracks the information in the data structure 1324. In
one embodiment, there are a plethora of products that are stored in the component catalog 304.
Moreover, the number of people who have contributed or are contributing to one or more
projects can be substantial. To track the information used to accurately determine compensation
for each development team member’s contribution 1308 to products, the management subsystem
824 of the server 104 is employed.
[00144] In some embodiments, the server 104 tracks and stores a sliding scale royalty 1320,
which is based on a selection that a development team member can make that determines the
amount of initial compensation paid to the team member (e.g., set fee) upon their agreeing to
work on the project. The sliding scale royalty 1320 is described in more detail below with

respect to FIG. 16. In one embodiment, the management subsystem 824 stores this information

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-36-

1304, 1308, 1312, 1316, 1320 in a compensation data structure 1324. The data structure 1324
may be stored, for instance, in the server’s memory, in an external memory, and/or in a persistent
storage.

[00145] For example and referring to FIG. 14, a royalty compensation table 1400 includes
three development team members 1404, Memberl, Member2, and Member3 that are contributors
on a development team. For example, Memberl could be an architect 208, Member2 could be a
developer 212, and Member3 could be a quality assurance (QA) developer 216. In this
embodiment, the contribution 1308 of Member1 is 100 hours, the contribution 1308 of Member2
is 200 hours, and the contribution 1308 of Member3 is 300 hours. In this example, the
contribution 1308 for each member (e.g., Memberl, Member 2, Member3) can be determined by
the expected number of hours required for each member (as determined by the product manager
204). In other embodiments, the contribution 1308 can be determined by, for instance, the actual
number of hours spent, the actual amount of model or code designed written, or tested, and so
on.

[00146] In this example, the total amount 1410 of contribution 1308 by the development team
is 600 hours. The development team member royalty percentage 1310 is the contribution 1308
of each member divided by the total contribution. In this example, the total contribution is
(100+200+300) = 600 hours. The development team member royalty percentage 1310 is, then,
for Member1 (100/600) = 17%; for Member2 (200/600) = 33%; and for Member3 (300/600) =
50%. 4

[00147] In this example, the total revenue 1304 is $20,000. The royalty pool percentage 1311
for this product is 5%. The royalty pool 1312 is therefore ($20,000 x 5% =) $1,000. Thus, the
royalty 1316 earned by each development team member 1404 is their royalty percentage 1310 of
the royalty pool 1312. Specifically, Member1 receives ($1,000 x 17% =) $170, Member2
receives ($1,000 x 33% =) $330, and Member3 receives ($1000 x 50% =) $500. In some
embodiments, these royalty payments 1324 would be made in a similar manner as additional
revenue for the product is received.

[00148] Referring to FIG. 15, in a continuing example, the product produced by the three
team members 1404 is modified and updated into another version. The new version could be
version 1.1 of the component 1116 described in FIG. 11 or integrated into another product. The
additional work is performed by team members 1504 (e.g., Member4 and Member5) and also by
Member3, but not Member2 and Memberl. The royalties are adjusted to include the new

development team members’ contributions into the determination of the royalty 1316. In this

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-37-

example, the contribution of Member4 is 50 hours and the contribution of MemberS5 is also 50
hours. Thus, with the contribution of the two additional members 1504, the total 1410 of the
amount of contribution increases to 750 hours. The development team member royalty
percentage 1310 is the contribution of each member (e.g., Memberl, Member2, Member3,
Member 4, Member 5) divided by the total contribution.

[00149] The development team member royalty percentage 1310 is, then, for Member1
(100/750) = 13.33%,; for Member2 (200/750) = 26.66%; for Member3 (350/750) = 46.66%,; for
Member4 (50/750) = 6.66%, and for Member5 (50/750) = 6.66%.

[00150] Further, in this example, the total revenue 1304 generated for the modified product is
$30,000. The royalty pool percentage 1311 for this product is 5%. The royalty pool 1312 is
therefore ($30,000 x 5% =) $1500. Each of the development team members 1508 receives their
royalty percentage 1310 of the royalty pool 1312: Member! receives ($1500 x 13.33% =) $200.
Member2 receives ($1500 x 26.66% =) $400. Member3 receives ($1500 x 46.66% =) $700,
which is higher than the previous royalty 1316 that Member3 had previously received before
Member3’s additional contribution 1308. In some embodiments, these royalty payments 1316
would be made in a similar manner as additional revenue for the product is received.

[00151] Also referring to FIG. 16, in some embodiments the development team members can
adjust the amount of revenue that they receive (as royalties 1316) by adjusting their sliding scale
royalty 1320. Specifically, the server 104 (e.g., the product manager 204) can implement a
sliding scale 1606 that enables a team member to choose the amount of a set fee 1608 and
development team member royalty percentage 1310 such that the development team member can
accept more or less risk of the success of the product. An increased fee 1608 will result in a
decreased royalty and vice-versa, and, therefore, reduces the received royalties 1316. Thus, the
amount of the fee 1608 that the team member chooses corresponds with a royalty selection 1612.
The endpoints of the sliding scale 1606 are the maximum values of the set fee 1608 and the
development team member royalty percentage 1310 that the team member can receive for their
contribution 1308 to the project. In the sliding scale 1606 shown, the values of the set fee 1608
are represented on the top half of the sliding scale 1606 and the development team member
royalty percentages 1310 are represented on the bottom half of the sliding scale 1606. In one
embodiment, when a fee is requested, the royalty potential of the team member is adjusted due to
the choice of the set fee. To determine the sliding scale royalty 1320, which would replace the
royalty 1316 received by the team member, the server 104 multiples the development team

member royalty percentage 1310 of the team member with the royalty pool 1312 and with the

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-38 -

royalty selection 1612 made by the team member. Thus, the sliding scale royalty 1320 would be
the total revenue 1304 multiplied by the royalty pool percentage 1311 multiplied by the
development team member royalty percentage 1310 multiplied by the royalty selection
percentage 1612.

[00152] Using the example illustrated in FIG. 16 with respect to Member2, Member3, and
Member 5 of FIG. 15, if Member2 chooses to receive 100% of his compensation in a set fee
1608, then Member2 will receive 0% of the royalties otherwise applicable. Thus, Member2 has
a new sliding scale royalty 1320, which relglaces the royalty 1316 shown in FIG. 15, of (26.66%
* 1500 * 0% =) zero, as Member2 chose all of his royalties as a set fee 1608.

[00153] In this example, Member3 chooses a maximum royalty selection 1612 (e.g., 100%).
Consequently, Member3’s sliding scale royalty 1320 is (46.66% * 1500 * 100% =) $700. In
another embodiment, Member5 chooses to receive 50% of the possible fee 1608 and 50% royalty
1316. Thus, Member5’s sliding scale royalty 1320 is (6.66% * 1500 * 50% =) $50.

[00154] In one embodiment, the amount of the set fee 1608 directly relates to the reduction in
the development team member royalty percentage 1310. Thus, a 20% increase in the set fee
1608 consequently reduces the development team member royalty percentage 1310 by 20%. In
other embodiments, the change in set fee 1608 is not directly related to the change in the
development team member royalty percentage 1310. For example, the server 104 may multiply
a constant times the increase in the fee 1608 to make even a slight increase in the fee 1608
correspond to a large increase in the development team member royalty percentage 1310
adjusted for the expected risk. Alternatively, the server 104 may assign a constant which applies
an inverse relationship to the change in the development team member royalty percentage 1310
from a change in the set fee 1608. Moreover, any relationship can exist between the set fee 1608
and the development team member royalty percentage 1310. Thus, the server 104 can apply one
or more mathematical functions to determine the change in one variable with respect to a change
in the other variable.

[00155] In one embodiment, the development team member royalty percentage 1310 and
royalty pool percentage 1311 (e.g., 5% in previous two examples) may differ for each applicable
product and each are subject to upward or downward adjustment by the server 104 at any time.
In further embodiments, the product manager 204 and/or the architect 208 can vary these
percentages 1310, 1311.

10

15

20

25

30

WO 03/088119 PCT/US03/10537

-39-
[00156] Furthermore, in one embodiment, revenue can be measured before expenses (e.g.,
gross revenue). In another embodiment, revenue can be determined after expenses (e.g., net
revenue, commissions, etc.).
[00157] In one exemplary embodiment, the distributed software development system 101 is
employed in the bio-technology industry. A first bio-tech company develops a new set of
molecules, referred to below as set A, B, and C, and believes that one or more of the molecules
can be effective against a particular disease, .referred to below as disease X. However, the bio-
tech company does not have the protein data that is used to determine if molecule A, B, and/or C
are effective against disease X. In one embodiment, the product manager 204 researches the
industry and, subsequently, a development team adds a software component that models the
characteristics of each molecule into the component catalog 804. In some embodiments, the
development team also creates one or more components that model diseases, such as disease X.
The bio-tech company may view the components in the component catalog 804 and determine to
use one or more of the components to, for example, model molecular interactions and determine
the effectiveness of a molecule on a particular disease. In some embodiments, the server 104 /
produces components that provide a data warehouse for data about a particular gene or molecule.
In one embodiment, the bio-tech company uses a component to read data out of a bio-tech
machine that reads data of cells and/or genes. The component can also store the data read out of
a bio-tech machine.
[00158] In general, in one aspect, the invention relates to a method for determining a royalty
for a first contributor to a cooperatively developed product that is developed by the first
contributor and at least one other contributor. The method includes receiving a value indicative
of the contribution made by each of the ﬁrst contributor and each of the at least one other
contributor to the cooperatively developed product. The method includes calculating the total
contribution made by the contributor and the at least one other contributor by summing the
received values. The method includes determining a developer royalty percentage for the first
developer based on the ratio of the determined first contributor’s contribution value to the
calculated total contribution. The method includes allocating a royalty pool for the cooperatively
developed product out of revenue received for the cooperatively developed product; and
determining a royalty amount for the first contributor by multiplying the royalty pool by the
developer royalty percentage.
[00159] In one embodiment, allocating a royalty pool includes specifying a royalty pool

percentage for the cooperatively developed product, and multiplying revenue received for the

10

15

20

25

30

WO 03/088119 PCT/US03/10537

- 40 -
cooperatively developed product by the royalty pool percentage. In various embodiments, the
revenue received can be the revenue before or the revenue after deducting expenses.
[00160] Although described here with reference to software, and useful when implemented
with regard to software components, the cooperatively developed product can be any sort of
tangible or intangible object that embodies intellectual property. In one embodiment, the product
includes at least one computer software component. In one such embodiment, the product
includes a computer application program made up of at least one computer software component.
In other embodiments, the product includes at least one of an integrated circuit design and a
computer hardware device. In one embodiment, the contribution is at least one of product
management, design, architecture, coding, and quality assurance testing.
[00161] In one embodiment, the receiving step comprises receiving from at least one of a
system administrator, keyboard input, or a data store (e.g. hard disk, memory), and a software
object. In one embodiment, the method is performed by a computer in response at least in part to
input of contributor contribution values for the cooperatively developed work. In one
embodiment, the value indicative of contribution is a predetermined value based on estimates of
work required for a specified contribution. In another embodiment, the value indicative of
contribution is based on measuring actual contribution. (e.g. lines of code, hours spent). In
various embodiments, the steps of the method can be used for follow-on or modified products
that include the contribution of additional contributors. In such a case, the value indicative of
contribution can be either the contribution to the original product or the contribution to the
follow-on or modified product.
[00162] In general, in another aspect, the invention relates to a system that can perform the
method steps for many contributors and many products. The system is able, using the
information and techniques and described herein, to track the information associated with these
products and developers to allocate revenue as royalties for the contributors. In general, in
another aspect, the invention relates to a system for facilitating distributed component
development , including a component catalog, a distributed development environment, and a
royalty calculation system.
[00163] In general, in another aspect the invention relates to a component catalog system that
includes local component storage for storing components and information about the components,
an user interface module for providing information about components, an update tracking
module for tracking updates made to the components, a dependency tracking module for tracking

component dependencies, and an integration module for identifying components that can be

WO 03/088119 PCT/US03/10537

-41 -

integrated. In one embodiment, the system further comprises a remote module for providing
information about components stored on a remote system, and making the components available
to users of the component catalog as if they were contained in the local component storage.

What is claimed is:

)—l)di—l)—ﬂ[\))—‘[\)HUJ[\)I—IH[\)HN)—B[\JD—'[\)HD—!D—!OO\]O\U].[:.U»)[\)t—l

WO 03/088119 PCT/US03/10537

-42 -
Claims
1. A method for facilitating the distributed development of software programs comprising:
(a) providing a skill rating for a plurality of developers;
(b) communicating specifications for a software program to a subset of the plurality
of developers;
(¢) receiving at least one submission in response to the communicated specifications;
(d deriving a score for the at least one submission; and
(e) selecting one of the at least one submission for inclusion in a software repository

based on its derived score.

2. The method of claim 1 wherein the rating is based on the results of a coding competition.
3. The method of claim 2 wherein the coding competition is an online coding competition.
4, The method of claim 1 wherein the rating is based on prior submissions of a design for a
software program.

5. The method of claim 1 wherein the rating is based on prior submissions of a software
program.

6. The method of claim 1 wherein the specifications are for the design of a software
program.

7. The method of claim 1 wherein the specifications are for the development of a software
program.

8. The method of claim 1 wherein the software program is a software component.

9. The method of claim 1 wherein the software program can be one or more of: a software

component, a software application, a combination of software components, or a software
module.

10. The method of claim 1 wherein the subset of the plurality of developers is determined
based on the skill ratings of the developers.

11. The method of claim 10 wherein the subset of the plurality of developers is determined
based on which developers have a rating.

12. The method of claim 1 wherein the submission is a design for a software program.

13. The method of claim 1 wherein the submission is computer code for a software program.
14. The method of claim 1 wherein the developer is a software designer.

15. The method of claim 1 wherein the developer is a software programmer.

\ooo\]O\UIJkUJNr—*UJNw—nN»—tUJMo—A

10

T S N Y N R e N L A S R

N

WO 03/088119 PCT/US03/10537

-43 -
16. The method of claim 1 wherein the step of deriving a score for the at least one
submission further includes reviewing the submission by a developer other than the developer
who submitted the submission.
17. The method of claim 1 wherein the submission must receive a minimum score to be
selected for inclusion into the software repository.
18. The method of claim 1 wherein submissions included in the software repository are
certified to operate in computing environments different from the computing environment used
for the original submission.
19. A method for compensating software developers comprising:

() soliciting a plurality of developers for submissions of computer software
programs;

(b) receiving submissions from at least one of the plurality of developers;

(c) deriving a score for each of the submissions;

(d) selecting a subset of the submissions for inclusion in a repository for distribution
to the public based on the scores assigned to the submissions;

(e allotting a portion of the proceeds from the distribution of the at least one
software program to at least one of the plurality of developers in response to the selected
submission.

20. The method of claim 19 further comprising, prior to step a), rating the software
developers.

21. The method of claim 20 wherein the software developers are rated based on their
performance in an online coding competition.

29 The method of claim 20 wherein the software developers are rated based on prior
submissions of a design for a software program.

23, The method of claim 20 wherein the software developers are rated based on prior
submissions of a software program.

24. The method of claim 19 wherein the software program is a software component.

25. The method of claim 19 wherein the software program can be one or more of: a software
application, a combination of software components, or a software module.

26. The method of claim 19 wherein the developers are solicited based at least in part on
their rating.

27. The method of claim 26 wherein the developers are solicited based on the developers

having a rating.

W N = NP N~ N~ NN =N =N = N R W R N R W RN =N

WO 03/088119 PCT/US03/10537

- 44 -

28. The method of claim 19 wherein the step of selecting a subset of the submissions further
includes identifying one submission as the winning submission.
29. The method of claim 19 wherein the proceeds are allotted at least in part based on the
fating of the developers.
30. The method of claim 19 wherein the proceeds are allotted at least in part based on the
number of hours the at least one of the plurality of developers spent coding the software
program.
31, The method of claim 19 wherein the proceeds are allotted at least in part based on the
number of times the software program is distributed.
32. A system for facilitating the distributed development of software programs comprising:

a rating engine for rating the skills of software developers;

a server for communicating specifications to a plurality of developers, the developers
having been previously rated in a coding competition;

a receiving module for receiving software programs developed by the developers; and

a scoring module for evaluating the received software programs.
33. The system of claim 32 further comprising a reviewing module for allowing developers
to review submissions submitted by other developers.
34. The system of claim 32 further comprising a repository for storing the evaluated software
programs.
35. The system of claim 34 further comprising an online showroom for displaying the
software programs stored in the repository.
36. The system of claim 34 further comprising sample applications built at least in part from
the software programs stored in the repository.
37. The system of claim 34 further comprising a demonstration module for demonstrating the
features of the software programs stored in the repository.
38. The system of claim 32 further comprising a calculation module for allocating revenue
among a development team.
39. The system of claim 38 wherein the calculation module allots proceeds based at least in
part on the rating of the developers.
40. The system of claim 38 wherein the calculation module allots proceeds based at least in
part on the number of hours the at least one of the plurality of developers spent coding the

software program.

WO 03/088119 PCT/US03/10537

-45 -
1 41. The system of claim 38 wherein the calculation module allots proceeds based at least in

2 part on the number of times the software component is distributed.

PCT/US03/10537

1/16

1 "OId

701 ¥3AY3S
1N3IWdOT3A3A LNINOJNOD
43}
511 A H N - A O T O |
YISMO¥E | | IUVMLLOS {i| |1 Y¥ISMOME | . IUVMLIOS ! i d3ISMoME | | ZUVMLIOS :
g3IMm PINAmo | g3IM P ANEno b ! 4am Ao
b 1 O ; e
7 i 7 - 7 _

R -80} LN3O el 80} INJITO vzl 80} LNAIO

WO 03/088119

PCT/US03/10537

WO 03/088119

2/16

00¢

¢ 9Old

¥3d4073A3A (VO)
JONVHNSSY ALITVYND

\

ol¢

H3d0T13A3aa (vO)
JONVHNSSY ALITYND

\

.91¢

80¢

[4v4

H3d013A3d

(444

d3dOTdAId

d3INOISIA/LOILIHOYY

JIAOVNYIN
13NAaoydd

.¢éc

PCT/US03/10537

WO 03/088119

3/16

00€

€ "Old

CLE Tle

sladojensq

slowwelsboid

slauBisaqg

/

[44>

/

Jsquisi pJeog mainey Juswdopasg Aewild /

Jaquiayy pJeog meinay wawdojsasg

Jequial\ pleog mainsy juswidojaas

pieog malAay juswidojoraq

/

(2

gle

8¢ce

Jaquisy pleog malasy 108liyaly Alewd pd
JAQUIS pleog MaiAsy 108)Yoly

laquiapy pJeog malasy 109)Iyaly

€0 0000000000000 0000000000000000000000000000ccntss

pieog MaIA3Y 9iNn}o9}Iyoaly

~80¢

e

Jabeuelp] Jonpo.d

c0¢e

WO 03/088119 PCT/US03/10537

4/16
Step 408 ___| Determine Scope of Project
!
Step 412 E— Develop Specification
!
Step 416 —— Communicate Specification
'
Step 420 — Develop Test Plan
:
Step 424 | Develop Component
v
Step 428 — Test Component
Step 432 Add to Compontnt Catalog
I
Step 436 —— Certify Component

__

WO 03/088119 PCT/US03/10537

5/16

Step 508] Rate Developers

Step 512 —— Communicate Sptcification
!

Step 516 - Receive Submissions
'

Step 520 R Score Submissions
‘

Step 524] Select Submission
‘

Step 528 — Allocate Proceeds

FIG. 5

PCT/US03/10537

WO 03/088119

6/16

o e o e e e e e e e e e e e e e = e e e A = = e An et e e o o = o e e e e e 7 e e e = o o — An a7t = = = o o = o e —

i i
“ . subisa(subisa(g uoneouyoadg i
! 9 Old yugng [dojenaq | memey [€ Ajenb-a1d u seubiseq m
m | o 879 979 ided Ngoe |
m subisag subisag uoneoyioadg iienb-al m
! nwgns R dojeneqg D Mmooy [A d N..m:ﬁmcn_ m
e eeeeeemmeeemeemeeemmeeemeees - 89 e e 808 |
m ubiseqg SuUoRESUIPOIN || subiseq subisaq uoneoylosds g1 Auenb-al o) m
_ ! ¢ eou! /| ¢ ! [i=ell] | d | loubisag !
“ jugnsay a)elodioou] jwang dojenag < mainey / '
.8 < — s 86 .S 2 Ao R 808 |
_ ___ v zi9
729 229 «— Aien b-oi |
o0 ubiseq SNOISIA SNOISIA NOILYOI4103dS _:@_m "8id {| paeog moiney
leuld Buuun |4 Q3LLINGNS —| galingns NM3IAZY | ol9 SINosNydIY
z€9 1089198 ALVNIVAI MIIATY AN
¢9 120
y __ 905 < -
€9

% INIWdOT3AGE Yo T e | gy S |7 NoWVOLIodS soBeue

Y3INOISAQ | € NOIS3A [¢—] NOILYDIiD3dS IUNLOALIHONY jonpoud

ONINNIM AVd ONINNIM 2SN 1S0d 19313S % /
209 zoe

/ HOYVISTY
009 LIEVIN

PCT/US03/10537

WO 03/088119

7/16

m Ll wsuodwon suodwon ubisaq ; u sadojanaq
: G_H_ _ jwgng < dojanaQ < MaINDY Ayenb-aid /
i OLL
m SLL Wil 2L WJLE
m jusuodwo) jusuodwon ublsaq enb-al Z Jadojanaqg
' Hwugng < dojansQ < MBIASY A d /
H OLL yLE
e mmmmmmmmmmmmmmmmmos I L 2 L4y 1 7 N N N
m wsuodwon SUOHEOLIPON L | suodwo) weuocdwon ubisaqg Ayrenb-sid | Jadojaneq
! nwgnsay < ajelodioou) jwgng < dojaaag < M3IASY 0Ll /
2 vz o1z viZ N i
T RPN ISP MG EPIEpEESEpEEYEPRPEPSPRPRS P Y ittt ke el
. 00 jusuodwo) susuodwo) sjusuodwo) ubiseq ienb-al pieog malAdy
eut4 Buuup, |¢——| pepwans |¢——{ pemwans MaINSY A d || suowdoreneg
57T 109198 21003 MoInSY 507 904 AN
(44 0cL 8lLL oLe
o A 5 slaquiay
nnqusiq Jo4 5
Jadojaasg ubiseQd pleog mSInSY JoBeuepy
Bulu keg [€ mEmcoQEoo Buu 3sod [¢ Juswdojeneq Jonpoig
UIUUIAA 1SOd Anuspi
A3 0L :
0es c0L /
co¢e

8 "Old

PCT/US03/10537

%28 INFLSASANS 828 W3LSASENS
ININIDVYNYIN NDIS3A IHVYMLI0S
028 INFLSASANS
ONILSOd INFNJOTIAIA
Z€8 LNINNOHIANT
ININdOTIAIA
LININOJINOD

918 WALSASENS

NDISIA SININWIHINOTY 008 INILSASENS
1ININdOT13A3IA

/ 98 NOILYOI1ddY
VO) IONVYHNSSY ALITYND

8/16

ININOLINOD

1 218 HOLVENONI
m LNINOdNOD

N T

! 078 NOILYOITddY
; ONIDVMOVd

808 STO0L
NOILYOINNWINOD

08 D0TVLYD 778 WOOHMOHS
LININOJINOD ININOJNOD

WO 03/088119

¥olL

PCT/US03/10537

WO 03/088119

9/16

6 'Old

806
a|npo Buuoog

906
a[npo Buinieosy

0z8
we)sAsgng Bunsod
juswdojenag

06
aulbug Bupey

808 s[ooL
uoNESIUNWWIOD

206 JaAIeS gapn

016
a|npoly Bumeirey

70l

PCT/US03/10537

WO 03/088119

10/16

0L "'Old

¢l0l ITNAON

800} 31NAOKN

ONDOVHL 3Lvddn NOILVYINHOANI
910l 31NAON 001 AJOLISOd3d 020l ITNAON
ONDOVYL ININOJNOD NOILVHOILNI
AON3AN3d3d
708 ©0TV.LYD LNINOJINOD

PCT/US03/10537

WO 03/088119

11/16

FOPRSENYEL

708 DOTVLYD LNINOJINOD

Skl

¢l0l FTNAOCK
ONDIOVYL
31vadn

L1 "Old

(47"

801

0Ll ANVdNOO LSHId

clil

\ BINAOW ONMOVHL
Okl | 31vadn 3Loway

.801

801} ANVdINOD ANOOJ3S

.CLL

AN HTNAOWN ONIMOVHL
9LLL 31vadn FLON3Y

PCT/US03/10537

WO 03/088119

12/16

$0T JRAISS

Y01 Sorere) jusuodwo))

OIT1

~N I

¢l0l ITNAOCW
ONPIOVHL o111
J41vadn NI

cll

¢l 'Old

~

80!

011 ANVdINOD 1SHid

Ziir
\ HINAOW ONBIOVL
Okl ['31vadn 3Loway

.80L

01T ANVAINOD ANODIS
oLl
/ Zi

L HTNAOIN DNDIOVYL
3lvadn 3LONT

VL 9Ll

PCT/US03/10537

WO 03/088119

13/16

LEL ALTVAOH

ZL€1L 700d ALTVAOY

L€l IDVINIOHId ALTVAOY

0lEl FDVYINIDHAd ALTVAOH
HIGNTIN NVIL INFNJOT1EAEA

vZel 3JNLONYLS
V1vad NOILYSNIdNOD

80€l NOILNEIYLNOD d3diNa
Wv3L LINJWAOT13A3A 40 FLVINILLSH

N

0€l INNIAFH TVLOL

PCT/US03/10537

WO 03/088119

14/16

vl "Old

ooyl

p

ol¥l
0001 %001 009 TioL A\
005$ 0001$ %S %0S 00€ :eY39NEN 1a
0ges 0001$ %S %EE 002 '243dINTIIN 1a
0LL$ 0001$ %S %L1 00} ‘L Y3GNTIN LA
Srel(SavTioa) Zicl (SuvTiod) 118} J9vINIDuad OFEl IOVINIOH3d BOEL (SYNOH) YOV SUIaWan
ALTVAOY T00d 7004 ALIVAOd NOILNGMINOD (Ia) WvAL INSINdO19A3a
ALIVAOY ALIVAOY — S3dNIN VAL a3403ds
* oLl ININdOTIAIA
\ X
A%y vOEL
JOVINIOYId
ALVAGH 5 T00d \ NOILNGIY.LNOD TVLOL \
HFAWIW NVIL ALTVAOY | | (39V% 100d ALTVAQY) X INNIATY N 000'02% = INNIATY
INGNIOTEAIT NOILNEIYLNOD

PCT/US03/10537

15/16

gl "Old

0051$ %001 0S. 0l¥l TVLOL
v0S1
S— %
001$ 0051$ %S %999 0s | g yIanNEn 1d
00L$ 0051$ %S %99'9 05 | y3gNEN LA |
00/$ 0051$ %S %99'9% 0g¢ '€ ¥3aWan 1a
007$ 0051$ %S %99'92 002 'z 43gNaN La
002$ T 00S4$ %S %EE'EL 001 '} ¥39NAN La
orel (Suviiod) Ziel (SavTiod) TiEl JOVINZOuad OLE} FOVINIOH3d 80¢l (SHNOH) T TREENE
XLIVAOd 700d T00d ALTVAOY NOILNEEINOD TIa)NvAL INFWJO1IAIA
ALTVAOY PNRZ% B ECLELTED [EIE[EES
INTWdOTIAId
oLel
\ /
ziel v0gl
ADVINIOYAd
\ NOILNEI{LNOD TVLOL \
wmEnan VL X AITvAO
HBNIOTEATd ALIVAOH| | (39V% 100d ALTVAOY) X INNIATY N NOLLNGIMLNOD 000'05$ = INNIAIY

WO 03/088119

PCT/US03/10537

WO 03/088119

16/16

91 "Old

¢i91 NOILOIT3S ALTVACH

>

—

%001

%0

0$ 0001$

ALTVAOCYH
HIGNEIIN Wv3L
IN3INdOTINEA

™

00G1$

9091 31vOS ONIAITS

ozel
AN

|
N

809} 334 13S

yOEL
\

NOILOT13S ALIVAOY « (F39V% TO0d ALTIVAOY « NOILNGIYLNOD) = ALTVAOY ITVOS ONIAIS

000'0€$ = INNIAIY

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/10537

A, CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOG6F 17/60
UsSCL 705/1

B. FIELDS SEARCHED

According to International Patent Classification (IPC) or to both national classification and IPC

U.S. : 705/1

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,794,207 A (WALKER et al.) 11 August 1998 (11.08.1998) columns 18-24. 1-41
Y US 6,356,909 B1 (SPENCER) 12 March 2002 (12.03.2002) entire document. 1-41
Y US 2001/0034631 A1 (KISELIK) 25 October 2001 (25.10.2001) entire document. 1-41
Y US 2001/0037281 Al (FRENCH et al.) 01 November 2001 (01.11.2001) pages 3-6. 1-41
Y US 2001/0039529 A1 (HOFFMAN) 08 November 2001 (08.11.2001) entire document. 1-41
Y, P US 6,408,283 B1 (ALAIA et al.) 18 June 2002 (18.06.2002) column 12-27 1-41
Y,P US 6,397,197 B1 (GINDLESPERGER) 28 May 2002 (28.05.2002) columns 8-10. 1-41
Y US 2001/0032189 A1 (POWELL) 18 October 2001 (18.10.2001) entire document. 1-41

I:l Further documents are listed in the continuation of Box C.

[l

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

40" document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“Xr document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of same patent family

Date of the actual completion of the international search
29 June 2003 (29.06.2003)

Date of mailing of mlurr?jtjctl s?ﬁh?port

Alexandria, Virginia 22313-1450
Facsimile No. (703)305-3230

Name and mailing address of the ISA/US Authorized officer
Mail Stop PCT, Attn: ISA/US .
Comumissioner for Patents John Weiss 0
P.O. Box 1450

Telephone No. (703)305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US03/10537
INTERNATIONAL SEARCH REPORT

Continuation of Item 4 of the first sheet:
SYSTEM AND METHOD FOR SOLICITING PROPOSALS FOR SOFTWARE DEVELOPMENT SERVICES

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

