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that a contiguous stream of v L . 1
data from the DCS is prOVided Preprocessing | ; Preprocessing | | Preprocessing Set preprocessing
to the predictive device at a 5 20 20 20 fgma{ 30 and postpre g
synchronous  discrete  base ] P13 ] H8 6] T8 | Parameters 40
sample time. In prediction Y ]
mode, the device controller Dg‘“b“‘fd
operates the predictive device Smm Training
. ystem A 4 N D
once per base sample time and 10 > ata
receives the output from the 48

predictive device through path
(14). In horizon mode and

reverse horizon mode, the device controller operates the predictive device additionally many times during base sample time interval. In
horizon mode, additional data is provided through path (52). In reverse horizon mode data is passed in a reverse direction through the
device, utilizing information stored during horizon mode, and returned to the device controller through path (66). In the forward modes, the

data are passed to a series of preprocessing units (20) which convert

each input variable (18) from engineering units to normalized units.
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NON-LINEAR DYNAMIC PREDICTIVE DEVICE

|. FIELD OF THE INVENTION

The present invention pertains to a predictive device that models the dynamic
input/output relationships of a physical process, particularly in the process industries
such as hydrocarbons, polymers, pulp and paper, and utilities. The predictive device
is primarily for multivariable process control, but is also applicable to dynamic
process monitoring, or to provide a continuous stream of inferred measurements in

place of costly or infrequent laboratory or analyzer measurements.

[l. BACKGROUND OF THE INVENTION

Most existing industrial products designed for multivariable model predictive
control (MPC) employ linear step-response models or finite impulse response (FIR)
models. These approaches result in over-parameterization of the models (Qin and
Badgwell, 1996). For example, the dynamics of a first order single input/single
output SISO process which can be represented with only three parameters (gain, time
constant and dead-time) in a parametric form typically require from 30 to 120
coefficients to describe in a step-response or FIR model. This over-parameterization
problem is exacerbated for non-linear models since standard non-parametric
approaches, such as Volterra series, lead to an exponential growth in the number of
parameters to be identified. An alternative way to overcome these problems for non-
linear systems is the use of parametric models such as input-output Nonlinear Auto-
Regressive with eXogenous inputs (NARX). Though NARX models are found in
many case-studies, a problem with NARX models using feed forward neural
networks is that they offer only short-term predictions (Su, et al, 1992). MPC
controllers require dynamic models capable of providing long-term predictions.
Recurrent neural networks with internal or external feedback connections provide a
better solution to the long-term prediction problem, but training such models is very
difficult.
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The approach described in (Graettinger, et al, 1994) and (Zhao, et al, 1997)
provides a partial solution to this dilemma. The process model is identified based on
a set of decoupled first order dynamic filters. The use of a group of first order
dynamic filters in the input layer of the model enhances noise immunity by
eliminating the output interaction found in NARX models. This structure
circumvents the difficulty of training a recurrent neural network, while achieving
good long-term predictions. However, using this structure to identify process
responses that are second order or higher can result in over sensitive coefficients and
in undesirable interactions between the first order filters. In addition, this approach
usually results in an oversized model structure in order to achieve sufficient
accuracy, and the model is not capable of modeling complex dynamics such as
oscillatory effects. In the single input variable case, this first order structure is a
special case of a more general nonlinear modeling approach described (Sentoni et al.,
1996) that is proven to be able to approximate any discrete, causal, time invariant,
nonlinear SISO process with fading memory. In this approach a Laguerre expansion
creates a cascaded configuration of a low pass and several identical band pass first
order filters. One of the problems of this approach is that may it require an
excessively large degree of expansion to obtain sufficient accuracy. Also, it has not
been known until now how to extend this methodology in a practical way to a multi-

input system.

This invention addresses many essential issues for practical non-linear
multivariable MPC. It provides the capability to accurately identify non-linear

dynamic processes with a structure that

has close to minimum parameterization

e can be practically identified with sufficient accuracy

e makes good physical sense and allows incorporation of process knowledge
e can be proven to identify a large class of practical processes

e can provide the necessary information for process control
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I1. SUMMARY OF THE INVENTION

The present invention is a dynamic predictive device that predicts or
estimates values of process variables that are dynamically dependent on other
measured process variables. This invention is especially suited to application in a
model predictive control (MPC) system. The predictive device receives input data
under the control of an external device controller. The predictive device operates in
either configuration mode or one of three runtime modes - prediction mode, horizon

mode, or reverse horizon mode.

The primary runtime mode is the prediction mode. In this mode, the input
data are such as might be received from a distributed control system (DCS) as found
in a manufacturing process. The device controller ensures that a contiguous stream of
data from the DCS is provided to the predictive device at a synchronous discrete base
sample time. The device controller operates the predictive device once per base

sample time and receives the prediction from the output of the predictive device.

After the prediction mode output is available, the device controller can switch
to horizon mode in the interval before the next base sample time. The predictive
device can be operated many times during this interval and thus the device controller
can conduct a series of experimental scenarios in which a sequence of input data can
be specified by the device controller. The sequence of input data can be thought of as
a data path the inputs will follow over a forward horizon. The sequence of
predictions at the output of the controller is a predicted output path over a prediction
horizon and is passed to the device controller for analysis, optimization, or control.
The device controller informs the predictive device at the start of an experimental
path and synchronizes the presentation of the path with the operation of the device.
Internally, horizon mode operates exactly the same way as prediction mode, except
that the dynamic states are maintained separately so that the predictive device can
resume normal prediction mode operation at the next base sample time. In addition,
the outputs of the filter units are buffered over the course of the path and are used

during reverse horizon operation of the device.
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The purpose of reverse horizon mode is to obtain the sensitivities of the
predictive device to changes in an input path. Reverse horizon mode can only be set
after horizon mode operation has occurred. The device controller first informs the
predictive device the index of the point in the output path for which sensitivities are
required. The device controller then synchronizes the reverse operation of the

predictive device with the output of sensitivity data at the input paths of the device.

In forward operation, each input is scaled and shaped by a preprocessing unit
before being passed to a corresponding delay unit which time-aligns data to resolve
dead time effects such as pipeline transport delay. Modeling dead-times is an
important issue for an MPC system. In practical MPC, prediction horizons are
usually set large enough so that both dynamics and dead-time effects are taken into
account; otherwise the optimal control path may be based on short term information,
and the control behavior may become oscillatory or unstable. In the preferred
embodiment, the predictive device is predicting a single measurement, and the dead-
time units align data relative to the time of that measurement. If predictions at several
measurement points are required, then several predictive devices are used in parallel.
During configuration mode, the dead times are automatically estimated using
training data collected from the plant. In the preferred embodiment the training
method consists of constructing individual auto-regressive models between each
input and the output at a variety of dead-times, and choosing the dead time
corresponding to the best such model. As with other components of the invention,
manua] override of the automatic settings is possible and should be used if there is

additional process knowledge that allows a more appropriate setting.

Each dead time unit feeds a dynamic filter unit. The dynamic filter units are
used to represent the dynamic information in the process. Internally the dynamic
filter units recursively maintain a vector of states. The states derive their values from
states at the previous time step and from the current input value. This general filter
type can Be represented by what is known to those skilled in the art as a discrete state
space equation. The preferred embodiment imposes a much-simplified structure on

the filter unit that allows for fast computation for MPC and also allows intelligent



WO 99/17175 PCT/US98/20295

10

15

20

25

-5-

override of the automatic settings. This simplified structure is composed of first and
second order loosely coupled subfilters, only one of which receives direct input from
the corresponding delay unit. The practical identification of this filter structure is an

essential part of this invention.

The outputs of the dynamic filter units are passed to a non-linear analyzer that
embodies a static mapping of the filter states to an output value. The exact nature of
the non-linear analyzer is not fundamental to this invention. It can embody a non-
linear mapping such as a Non-linear Partial Least Squares model or a Neural
Network, or a hybrid combination of linear model and non-linear model. The
preferred embodiment makes use of a hybrid model. The reason for this is that a non-
parametric non-linear model identified from dynamic data (such as a neural net)
cannot, by its nature, be fully analyzed and validated prior to use. The non-linearity
of the model means that different dynamic responses will be seen at different
operating points. If the process being modeled is truly non-linear, these dynamic
responses will be an improvement over linear dynamic models in operating regions
corresponding to the training data, but may be erroneous in previously unseen
operating regions. When the non-linear model is used within the context of MPC,
erroneous responses, especially those indicating persistent and invalid gain reversals
can create instabilities in the MPC controller. With a hybrid approach, a non-linear
model is used to model the errors between the linear dynamic model and the true
process. The hybrid dynamic model is a parallel combination of the linear dynamic
model with the error correction model. The dynamic response of the linear model can
be analyzed completely prior to use, since the gains are fixed and independent of the
operating point. The process engineer can examine and approve these gains prior to
closing the loop on the process and is assured of responses consistent with the true
process. However, the linear dynamic response will be sub-optimal for truly non-
linear processes. In online operation of the hybrid model within an MPC framework,
the responses of the linear model and the hybrid model can be monitored

independently and compared. In operating regions where the non-linear model shows
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persistently poor response, control can be switched, either automatically or by the

operator, back to the safety of the linear model.

The output of the non-linear analyzer is passed through a postprocessing unit

that converts the internal units to engineering units.

The importance of this invention is that its structure is shown to be able to
approximate a large class of non-linear processes (any discrete, causal, time
invariant, nonlinear multi-input/single output (MISO) process with fading memory),
but is still simple enough to allow incorporation of process knowledge, is
computationally fast enough for practical non-linear MPC, and can be configured

with sufficient accuracy in a practical manner.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

The textual description of the present invention makes detailed reference to

the following drawings:

FIG. 1 is an overall block diagram of the invention showing both the runtime and

training components.
FIG. 2 shows the runtime structure of an individual preprocessing unit.
FIG. 3 shows the runtime structure of an individual delay unit.

FIG. 4 shows the forward flow internal decomposition of an individual filter unit into

cascaded subfilter units.

FIG. 5 shows the preferred forward flow structure of a primary first order subfilter
unit.

FIG. 6 shows the preferred forward flow structure of a secondary first order subfilter
unit and the preferred coupling with the previous subfilter in the cascade.

FIG. 7 shows the preferred forward flow structure of a primary second order subfilter
unit.

FIG. 8 shows the preferred forward flow structure of a secondary second order

subfilter unit and the preferred coupling with the previous subfilter in the cascade.
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FIG. 9 shows a typical feedforward configuration of the non-linear analyzer.

FIG.10 shows the reverse flow configuration of the non-linear analyzer depicted in
FIG. 9.

FIG.11 shows the reverse flow internal decomposition of an individual filter unit into

cascaded subfilter units.
FIG. 12 shows a method of training an individual delay unit.

FIG. 13 shows the first order decoupled structure used at the start of each iteration of

the preferred dynamic filter unit identification method.

FIG. 14 shows that reverse flow of data through a matrix structure can be described

mathematically by forward flow of data through the transpose matrix structure.

V. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG.1 is an overall block diagram of the invention and its context. An
external device controller (50) synchronizes the flow of data to and from the
predictive device via the data paths (18), (14), and (64). The device controller also
controls the mode of operation and the path stepping of the predictive device via the
control path (54). The external device controller may also communicate with a DCS
(10) or other data/control system both for requesting data and for requesting control
changes to the modeled process; however the exact external context and

configuration of the device controller is beyond the scope of this application.

V.1 FORWARD RUNTIME OPERATION OF THE PREDICTION DEVICE

The figures and equations in this detailed description refer to an index £ that
represents a data point in a sequence of data points. This index has different
meanings depending on whether the forward operational mode of the device is

prediction mode or horizon mode.

In prediction mode data is provided at a regular sampling interval 4 to the
input nodes (18) of the device. Data is passed in a forward direction through the

device. For simplicity of notation, the sample point T+k4t is denoted by the index k.



WO 99/17175 PCT/US98/20295

10

15

20

25

-8-

In horizon mode, a sequence of data representing a forward data path is
provided to the inputs. This data path may represent a proposed path for manipulated
variables for process control purposes, or may represent a holding of the inputs to
constant values in order to determine the steady state output of the device. The
starting point of this path is taken to be the most recent input sample provided in
predicﬁon mode. Index 0 represents this starting point and index k represents the k"

data point in this path.

V.1.1 FORWARD RUNTIME OPERATION OF A PREPROCESSING UNIT

Each input feeds a preprocessing unit (20) which is used to convert the
engineering units of each data value to a common normalized unit whose lower and

upper limits are, by preference, -1 and 1 respectively, or 0 and 1 respectively.

The preprocessing unit can also shape the data by passing it through a non-
linear transformation. However, the preferred embodiment uses a simple scale and

offset as shown in FIG. 2 and equation (1):
u(k)=su,(k)+o (1

where u,(k) is the value of an input in engineering units, and u(%) is the preprocessed
value in normalized units. The scale and offset values as stored in the configuration
file (30 - FIG. ) are, in general, different for each input variable, and are determined

in the configuration mode.

V.1.2 FORWARD RUNTIME OPERATION OF A DELAY UNIT

Data flows from each preprocessing unit to a corresponding delay unit (22).
The forward run-time operation of the delay unit (22) is shown in FIG 3 and equation
(2). The output u“(k)(304) of an individual delay unit (300) is equal to the input (k)
(302) delayed by d sample times. The value of d may be different for each delay unit
(22) and is retrieved from the configuration file (30 - FIG. I). This may be

implemented as a shift register with a tap at the &” unit.

u? (k)= u(k - d) )
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This equation can also be written in terms of the unit delay operator g:

u(k)=q"ulk)

V.1.3 FORWARD RUNTIME OPERATION OF THE FILTER UNITS

Referring again to FIG. 1, each delayed input value is passed to an individual
filter unit (24). The general internal feedforward structure of a filter unit (24) is
shown in FIG. 4. The general feedforward structure is composed of S cascaded
subfilters (402, 404, ..., 406). The first subfilter in the cascade (400) is referred to as
the primary subfilter. Non-primary subfilters are referred to as secondary
subfilters. All the subfilters are alike except that the primary subfilter receives no
input from another subfilter, and the final subfilter sends no output to another

subfilter. Now the general form of the primary subfilter will be described in detail.

The primary subfilter maintains a vector (412) of states x,(k) at each time £.
An internal single time step delay unit (414) feeds the vector state to a coupling unit
(420) and to a matrix unit (416). The matrix unit converts the delayed state vector
(418) and feeds it to a vector addition unit (408). The input to the filter unit #*(k) is
expanded and linearly scaled by the input coupling unit (410) to a vector of values of
the same dimension as the state vector. The vector addition unit then combines its
two input streams to produce the vector of states for the current time. The operation
just described for the primary subfilter is conveniently described in mathematical

matrix and column vector notation as:
Xl(k)zAlxl(k_1)+b1ud(k) 3)

Such an equation is known, to those skilled in the art, as a linear state space equation
with a single input. If no structure is imposed on A, or b,, then further subfilters are
unnecessary since the cascaded subfilter structure can subsumed into a single
complicated primary subfilter. However, the preferred subfilter structures as
described below, or similar to those described below, are essential for a practical

embodiment and application of the invention.
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The subfilter coupling unit (420) determines how state values at time k-1
affect the state units in the next subfilter at time k. In mathematical terms, the
subfilter coupling unit uses the coupling matrix 7; to perform a linear transformation
of state vector x,(k-1) which is passed to the vector addition unit of the next
subfilter. The operation of a secondary subfilter is conveniently described in

mathematical matrix and vector notations as:

x,(k)=A,x,(k-1)+T x,_(k-1)+b,u’(k) 4)

s-1

In the preferred embodiment, the subfilters are all of first or second order. A
first order subfilter maintains just one state. The preferred embodiment for a first
order primary subfilter (500) is shown in FIG. 5. The vectorizing unit (502) and the
matrix unit (504) collapse to become scaling operations so that the state vector (506)

is represented by:

%, (k)= 2,5, (k= 1)+ (- 4, Ju’ (k) )

The preferred embodiment for a first order secondary subfilter (600) is shown
in FIG. 6. The secondary subfilter receives no direct input, but instead receives
cascaded input from the previous subfilter. The preferred coupling is a loose
coupling scheme (602) in which only the last state component of the previous
subfilter contributes. Note that the previous subfilter is not required to be a first order

subfilter. The state vector (606) is represented by:
'xs (k) = /1’ s xs (k - l)+ (1 - /1’ s )xs—l,last (k - 1) (6)
where the matrix unit 4 | (604) is a scalar.

Second order subfilters maintain two states. The preferred embodiment for a
second order primary subfilter (700) is shown in FIG. 7. In this figure, the state
vector x,(k) is shown in terms of its two components x,,(k) (708) and x,.(k) (710). The
vectorizing unit (702) creates two inputs to the vector addition unit (714), the second
of which is fixed at zero. The delayed states (704) and (706) are fed to the matrix unit
(712) whose outputs are also fed to the vector addition unit (712) which adds the
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matrix transformed states to the vectorized inputs producing the current state. Note
that due to the (1,0) structure of the second matrix row, and the zero second
component of the vectorizing unit component, the current second state component

(710) is just equal to the delayed first component (704):

x”(k)= allxll(k _1)+alzx12(k_1)+ (1 —a; —ap )“d(k)

le(k)=xll(k_1) @

The preferred embodiment for a second order secondary subfilter (800) is
shown in FIG. 8. In this figure, the state vector x,(k) is shown in terms of its two
components x,,(k) (808) and x,.(k) (810). The preferred coupling with the previous
subfilter unit is a loose coupling scheme (802) in which only the last state component
of the previous subfilter contributes to the first state component of the current
subfilter. Note that the previous subfilter is not required to be a first order subfilter or
second order subfilter. The output of the coupling unit is fed to the addition unit
(814). The delayed states (804) and (806) are fed to the state matrix unit (812) whose
outputs are also fed to the vector addition unit (812) which adds the state matrix
transformed states to the output of the coupling unit, producing the current state.
Note that due to the (1,0) structure of the second state matrix row, and the zero
second row of the coupling matrix, the current second state component (810) is just

equal to the delayed first component (804):

x:l (k) = asl'xsl (k - 1)+ as2x:2 (k - l)+ (1 - asl - asZ )xs—l,lasl (k - 1)

50 (6)=x, (k1) ®

If the device is operating in horizon mode current states along the path are
maintained in a separate storage area so as not to corrupt the prediction mode states.
In horizon mode, k indexes the input path and the states are initialized at the start of
the path (k =0) to the prediction mode states. In addition the states at the output of

the filter unit are buffered for use in reverse horizon mode.
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V.1.4 FORWARD RUNTIME OPERATION OF THE NON-LINEAR ANALYZER
Referring again to FIG. 1, the outputs (28) of the filter units (24) provide

input to the non-linear analyzer (26). The exact structure and configuration of the
non-linear analyzer (26) is not central to this application. It is the interaction of the

5 non-linear analyzer (26) with the filter units (24), and the operation and configuration
of the filter units (24) that forms the core of this invention. The preferred
embodiment, for reasons discussed in the summary of the invention is a hybrid
parallel combination of linear and non-linear. However, for clarity of explanation, a
standard neural network structure is described which is well known to those skilled

10  in the art. This structure is shown in FIG 9. The equations for this structure are:

f;.(k)z Who +2Whi‘xi(k)
77h(k)= tanh(fh(k)) €)
)=o)

V.1.5 FORWARD RUNTIME OPERATION OF THE POSTPROCESSING UNIT
The postprocessing unit (32) in FIG. ! is used to scale the output from the

normalized units to engineering units. The postprocessing unit can also shape the

15 data by passing it through a non-linear transformation. However, the preferred
embodiment uses a simple scale and offset. For consistency with the preprocessing
units, the scale and offset represent the mapping from engineering units to

normalized units.
1
yek)==y(k)-= (10)
s K

20 The scale and offset values as stored in the configuration file (30 - FIG. 1)

and are determined in the configuration mode.
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V.2 REVERSE RUNTIME OPERATION OF THE PREDICTION DEVICE

The reverse horizon mode of operation is only allowed immediately
following horizon mode operation. Horizon mode operation buffers the states (28)
output by the filter units (24) over the course of the forward path. The purpose of
reverse horizon mode is to obtain the sensitivity of any point y(k) of the prediction

path (output by the device in horizon mode) with respect to any point in the input

path u(l).

In order to use the invention for process control applications, the
mathematical derivatives of the prediction with respect to the inputs are required.
The mathematical derivatives measure how sensitive a state is in response to a small
change in an input. The dynamic nature of the predictive device means that a change
in input at time k will start to have an effect on the output as soon as the minimum
dead-time has passed and will continue to have an effect infinitely into the future. In
most practical applications systems are identified to have fading memory so that the
effect into the future recedes with time. For MPC applications the aim is to plan a
sequence of moves for the inputs corresponding to manipulated variables (MVs). The
effect of these moves needs to be predicted on the controlled variables (CVs) along a
prediction path. A constrained optimization algorithm is then used to find the move

sequences that predict an optimal prediction path according to some desired criteria.

In reverse horizon mode, the external device controller specifies the output
path index k. The device then outputs in sequence the sensitivities (64) in reverse
order at the input nodes of the device. In the detailed description below, the
sensitivity of the output y, (k) of the device with respect to any variable v is

represented by Q, v It is this sensitivity value, rather than an external data value that

is fed back through the device when operating in reverse horizon mode.

V.2.1 REVERSE RUNTIME OPERATION OF THE POSTPROCESSING UNIT

The reverse operation of the postprocessing unit (32) is to scale data received
at its output node using the inverse of the feedforward scaling shown in equation
(10):
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Qky(k)=SQkyE(k) (11)
Since the sensitivity of the output with respect to itself is:
Qs (k)=1 (12)

the postprocessing unit always receives the value of 1 at its output node in reverse

operation.

V.2.2 REVERSE RUNTIME OPERATION OF THE NON-LINEAR ANALYZER
The reverse runtime operation of a neural net model is well known to those
skilled in the art and is shown in FIG. 10. The output from the reverse operation of

the postprocessing unit Q, y(k) is presented at the output node of the non-linear

analyzer (26). The information flows in a reverse manner through the non-linear
analyzer (26) and the resulting sensitivities (62) are output at the input nodes of the
non-linear analyzer (26):
Qk’?h(k) = Cth(k)
Qkfh(k) =Qn h(k)tanh’(é:h(k))
ZQkﬂh(k)(l"’?h(k))(l""h(k)) (13)

Q,x; (k) = iwhigkgh(k)

V.2.3 REVERSE RUNTIME OPERATION OF A FILTER UNIT

The effect of a change in the delayed input #%(l) on a the sequence of states
being output from a filter unit (24) in horizon mode is complex due to the
dependencies of a subfilter's states based on the previous subfilter's states and on the
subfilter's previous states. An efficient solution can be derived using the chain rule
for ordered derivatives (Werbos, 1994) and is achieved by the reverse operation of
the filter unit (24). In reverse horizon mode, the output of each filter unit (24)

receives the vector of sensitivities Q x_ (k)propagated back from the non-linear

analyzer (26) operating in reverse mode:
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Q,x, (k) I=k
Qx, () AT(Qx, ([ +1)+T7 (Q,x,, (1 +1) I<kl<s<S
X =
O AT(Q,x, (1 +1) I<ks=S$
0 1>k

(14)

Q,u ()= Y b7Q,x, (1)

s=1

The operation of these equations is shown in FIG. 11, which shows the filter
structure of FIG. 4, but with data flowing in the reverse direction. Given the point k
in the output path for which the sensitivities are being calculated, the vector of

sensitivities Q, X, (k) is presented at the output channels (1120, 1122...1124) of the

filter unit (24) and cycled in reverse through the filter structure. This reverse

operation is indexed by / < k. At each iteration /, the resulting sensitivity Q, u? (l )

is output at the input channel (1110) of the filter unit (24). For / < k the external
input at the output channels (1120, 1122...1124) is in practice zero vector since

Q,x, (/)= 0. However, the filter unit (24) itself is not constrained to operate under

this assumption.

In FIG. 11, the reverse operation of a delay (1130) is represented by ¢ which
is the unit delay in the reverse time direction since the index [ is decreasing at each

iteration.

The reverse operation of a matrix operation (1132, 1134) or a vector
operation (1136) is represented mathematically as the transpose of the forward
operation. The physical justification for this is shown in FIG. 14 which shows the
individual channels represented by a 3x2-matrix operation which in forward
operation maps two input channels to three output channels, and in reverse operation

maps three input channels to two output channels.



WO 99/17175 PCT/US98/20295

10

15

20

-16-

V.2.4 REVERSE RUNTIME OPERATION OF A DELAY UNIT

The reverse operation of a delay unit (22) corresponds to a delay in the

reverse sequencing:

Qu(l)=Q,u(+d) (15)

V.2.5 REVERSE RUNTIME OPERATION OF A PREPROCESSING UNIT

The reverse operation of a preprocessing unit (20) is to scale data received at

its output node using the inverse of the feedforward scaling shown in equation (1):

Quu, (1) =~ Q,u(l) (16)
S

V.3 CONFIGURATION MODE

The predictive device is configured, in the preferred embodiment, using
training data collected from the process. However, a process engineer can override
any automated configuration settings. The training data set should represent one or
more data sets which have been collected at the same base-time sample rate that will
be used by the external device controller to present data to the predictive device in
prediction mode. Each set of data should represent a contiguous sequence of

representative.

In order to allow operator approval or override of the configuration settings,
the training of the predictive device is done in stages, each stage representing a major

component of the predictive device.

V.3.1 CONFIGURING THE PREPROCESSING AND POSTPROCESSING UNITS

The scale and offset of a preprocessing or postprocessing unit is determined
from the desire to map the minimum E,,;,, and maximum E,_ of the corresponding

variable's engineering units to the minimum N,

and maximum N,,,, of the

normalized units:
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Nmax _Nmin
Emax —Emin

(17)

_ Emamein _EminN

max
E max E min

o

The preferred normalized units have N,,;,=-1, N,,,.=1. The engineering units may be
different for each input variable, leading to a different scale and offset for each

preprocessing/postprocessing unit.

5 V.3.2 CONFIGURING A DELAY UNIT

The configuration of a delay unit (22) is not a central aspect of this
application. FIG. 12 shows a simple advisory procedure for suggesting delay times.
A process engineer can override these advisory settings. In this procedure d_;, and
..., are user settable limits for the delay time and the procedure calculates a delay

10 time d such that

V.3.3 CONFIGURING A FILTER UNIT

A practical means of configuring a filter unit (24) is an essential aspect of this
invention. The preferred method of configuration is initialized using the simplified
15 filter structure shown in FIG. 13 in which all subfilters are first order and decoupled.
This is the structure used in (Graettinger, et al, 1994). It is important to note that this
structure is used for initialization of the configuration procedure and does not

represent the final suggested filter configuration.

Step 1

20 The operator specifies an appropriate dominant time constant 7; associated
with each input variable. This can be specified from engineering knowledge or
through an automated approach such as Frequency Analysis or a Back Propagation
Through Time élgorithm. The value of the initial time constant is not critical the
proposed configuration method automatically searches the dominant time range for

25 the best values.
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Step 2

For each input, initialize the filter structure in FIG. 13 using a high order
system where a number of first order filters are created around the given dominant
time constant (dominant frequency, dominant dynamics). For example, a fifth order
system can be created using:

At
1= 05T
=€

M
do=e O

Ag=e " (18)

In this simple filter structure, each subfilter (1302, 1304, 1306) yields a
corresponding single state (1312, 1314, 1316) which is decoupled from the other

subfilter states. This initial filter structure represents the equation
x(k)= Ax(k —1) + Bu“ (k) (19)

which has a simplified diagonal block structure of the form

x(k) { 2(k)
[A
0
0
| 0

.0
A= Az ’ (20)
0 0
0 A,
b1 0 0 0
g_|0 b2 O 5
0 0 0
0 0 b,
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where
X
Xio
Xi= .
Xis
Ay 0 0 0
A = 0 4, O : @1
o 0 0
0 ’ ’1;'5
1—’7'1'1
b, = 1_"7'[2
l_ﬂﬁ
Step 3

Map the contiguous input training data through the delay units (22) and filter
5 structure (24) to obtain a set of training state vectors {X(k)k =1---,T } Then find a
vector ¢ that provides the best linear mapping of the states to the corresponding
target outputs {Y (k}k =1--,T } One way of doing this is to use the Partial Least
Squares method that is well known to those skilled in the art. This results in a multi-
input, single-output (MISO) state space system {A,b,cT} in which equations (19),
10 (20), and (21) are supplemented by the equation:

y(k)=c"x (22)
where
¢ Ci
e=| 2] o =] (23)
cy ‘

Step 4
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Balance each subsystem {A,. b, ¢l }of the MISO block diagonal system
based on controllability & observability theory. The balancing procedure allows
order reduction of a state space system by transforming the states so that the
controllability and observability properties of the original system are substantially

concentrated in the first part of the state vector.

For each input variable, indexed by i, perform the balancing procedure on the
sub-system {A,.,b el } Balancing of a linear state space system is a method of
reduction well known to those skilled in the art. Other methods of model reduction,

such as Hankel reduction, can be substituted. A summary of the balancing method is

now given.

T
i

For each sub-system {A »b;.e }, compute the controllability and

observability Gramians P, >0, Q, > 0 that satisfy the equations:

AiPiAiT -P = "bibiT

(24)
AJQA,-Q, = —c,c]
Find a matrix R,, using the Cholesky factorization method, such that
P,=R/R,. (25)

Using the singular value decomposition method, diagonalize to obtain the following

decomposition:

RQR/ =UzU] (26)
Define

T'=RTU,Z;"? (27)
then

TPT =(17)' QT =3, 8)

and the balanced subsystem is obtained through a similarity transform on the states

as:
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Ai = TiAi’Ti—I ’f)i = TibiaéiT = ciTTi—] (29)

Step 5

Using balanced subsystems find out dominant time constant for each input by
reducing each balanced model to a first order model. This is done by considering the
dynamics of all but the first state of each input’s filter unit (24) to have reached
steady state. This leads to:

R (30)
In(a,)
where
A ~ IN _1 ~
a; =a, +aiT12 (I_Aizz) A (31)
and
Ai = l:fiill ?’:117;2 } (32)
a, A,

Check the convergence of the dominant time constant estimation:

If

2

% \/i (g — g ) < ¢ (33)

i=1

or the number of iterations has exceeded the maximum allowable, go to step 6.
Otherwise, return to step 2. The maximum number of iterations and € are parameters

of the training method.

Step 6
Once an accurate estimate of the dominant time constant is available for each

input variable, the eigenvalues {/lf: s=1,--,5 }of the controllability gramian P,

(equivalently the observability gramian) are calculated; these are always positive
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and real because the controllability gramian is positive definite. The final order S; of

each filter unit (24) is then calculated such that

§;-1 S;
2 W H
ol <f<E (34)

Yal o Ya
s=1 s=1

where ¢ is parameter of the training method and is a value less than 1, a good
practical value being 0.95. This order represents the total number of states of an

individual filter unit (24).

After determining the model order, truncate the A ,matrix so that just the first
S, states are used; this truncation is done by selecting the upper left Sx S, submatrix
of A,. Then calculate the S; eigenvalues of the truncated A, matrix {/l ,.s|s =15, }
Now configure each filter unit (24) using the preferred first and second order

subfilter configurations with the preferred couplings as shown in FIG 5 through FIG.

8. Use a first order filter for each real eigenvalue. Use a second order filter for each

pair of complex eigenvalues {/Z, A } , Where, in FIG. 7 (equation 7) or FIG. 8

(equation 8):
a,=A+1 (35)
a, =-AA

The preferred ordering of these subfilter units is according to time-constant, with the

fastest unit being the primary subfilter.

Another favored approach is to perform model reduction by initializing with
Laguerre type filter units as described in section V.4.2, rather than the simple
diagonal filter structure of FIG. 13. Sufficient quantity of Laguerre type filter units
span the full range of dynamics in the process, and thus the iterative process
described above is not needed. In fact a non-linear model reduction can be achieved

by performing a linear model reduction on the linear system whose states are defined
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by the Laguerre filters and whose outputs are defined by pre-transformed values at

the hidden layer of the neural net:

&) (k)

V.3.4 CONFIGURING THE NON-LINEAR ANALYZER

The configuration of the non-linear analyzer (26) is not a central aspect of
this application. The non-linear analyzer (26) is trained to optimally map the outputs
of the filter units (24) to the corresponding target output. Training of a neural net is

described in detail in (Bishop, 95) for example.

V.4 UNIVERSALITY OF THE PREDICTION DEVICE

The predictive device is shown, in this section, to be able to approximate any
time invariant, causal, fading memory system (defined below). In order to prove this,

some precise notation and definitions will be needed.

V.4.1 NOTATION AND DEFINITIONS FOR UNIVERSALITY PROOF
Let Z denote the integers, Z, the non-negative integers and Z_the non-

positive integers respectively. A variable urepresents a vector or a sequence in
accordance with the context, while u(k)represents a value of the sequence at the

particular time .

For any positive integer p > 0, R" denotes the normed linear space of real N-

vectors (viewed as column vectors) with norm |u| = max . Matrices are

isi<h [¥n

denoted in uppercase bold. Functions are denoted in italic lowercase if they are

scalars and in bold if they are vector valued.

Let I3 (Z) (respectively [3(Z,) and [3(Z_)), be the space of bounded R” -

valued sequences defined on Z (respectively Z, and Z_) with the norm:

u(k)

Jul.. = sup.cz
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For every decreasing sequence w:Z, — (0,11, llcim w(k)=0 define the
following weighted norm:
Jul, = supucz [ulk}wl-F)

A function F:I;(Z_)— R is called a functional on I%(Z_), and a function

3:15(Z_)— 17(Z) is called an operator. As a notational simplification the

parentheses around the arguments of functionals and operators are usually dropped,

for example, Fu rather than F [u] and Ju(k) rather than S[uKk).
Two specific operators are important. The delay operator defined by
Q“u(k)=u(k -d)

and the truncation operator defined by

e 12

The following definitions make precise the terms used to characterize the

class of systems approximated by the predictive device.

Time invariant: An operator 3J is time-invariant if

0'3=30" VdelZ.
Causality:  Jis causal if u(l)= v(()VI <k = 3u(k)=3v(k).
Fading Memory: 3:17(2) > 1”(Z) has fading memory on a subset
K_ cI3(Z_) if there is a decreasing sequencew: Z, — (0,1} limw{k) =0, such that
for each u,v e K_ and given ¢£> 0 thereisa § >0 such that
ju()-v@E), < = |3u(0)-3v(0)<s
Every sequence uin /3 (Z_)can be associated with a causal extension

sequence u, in /5 (Z) defined as:
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{u@) k<0

u0) %£>0

and each time invariant causal operator 3 can be associated with a functional F on

I2(Z_) defined by
Fu= Suc(())
The operator I3 can be recovered from its associated functional F via
Su(k)= FPQ*u (36)

Then, J is continuous if and only if F is, so the above equations establish a one to
one correspondence between time invariant causal continuous operators and

functionals F on [ (Z_ ) In the next the definition of the Laguerre system is given.

These can be configured in the general filter structure of FIG. 4 but also have

important theoretical properties.

V.4.2 LAGUERRE SYSTEMS

The set of the Laguerre systems is defined in the complex z-transform plane

as:

. 24 gz |
L;:\/—TZZ { / R S

z—aj z—aj
where:

L (z): is the Z transform of I’(k), the s-th order system for the i-th input.
a,:  isthe i-th input generating pole, such that |a,| < 1. This pole is selected as

AT . . . :
a; =1———, where T, is the dominant time constant for the i-th input

i

variable.

d,:  isthe time delay associated with the i-th input variable.

1



WO 99/17175 PCT/US98/20295

10

15

20

-26-

;. =l-a}

1

The whole set of Laguerre systems can be expressed in a state space form that
shows a decoupled input form and therefore can be mapped to the general filter

structure in FIG 4. Each filter unit (24) is configured as a single structured {A i,Bi}

subfilter. The structure of A, is a lower triangular matrix, and b, =[1 0 --- of .

The key point here is that the representation is decoupled by input. Balancing
can be done to decrease the order of the Laguerre systems, and similarity transforms
can be done on the Laguerre filters in order to simplify the configuration to utilize
the preferred subfilter units. Similarity transformations do not affect the accuracy of
the representation and so proving that the use of Laguerre filters decoupled by input
approximate any time invariant, causal, fading memory system is equivalent to
proving the preferred subfilter structure can approximate any such system. The

balancing is a practical mechanism to reduce order without degrading performance.

V.4.3 PROOF OF APPROXIMATION ABILITY OF LAGUERRE SYSTEMS

First some preliminary results are stated:

Stone-Weierstrass Theorem (Bovd.1985).

Suppose E is a compact metric space and G a set of continuous functionals

on E that separates points, that is for any distinct u,v € E there is a G € G such that

Gu # Gv. Then for any continuous functional F on E and given & > 0, there are

N
functionals, {Gll,---G;I,~-,G1N,---Gs";}gG, §=>"S, and a polynomial

i1
p:R® 5> R,suchthatforall ueE
\Fu—p(Gllu,---,G;lu,---,Gl”u,---,G;‘]’vuX <€

The reason for the group indexing, which is not necessary for a general statement of

the Stone-Weierstrass theorem, will become apparent in Lemma 2 when each block
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with a Laguerre operator. In addition, three lemmas are necessary before the theorem

can be proved.

Lemmal: K_= {u el3(z. XO <|u]<¢, }, is compact with the || norm.

Proof. Let u” be any sequence in K_. We will find a u'” € K_ and a subsequence

of ul? converging in the ”“w norm to u'?. It is well know that K _ is not compact in
I7(2_) with the usual supremum norm |} (Kolmogorov, 1980). For each /, let be
K_[-1,0] the restriction of K_ to [-1,0]. k_[- 1,0] is uniformly bounded by ¢, and
is composed of a finite set of values, hence compact in /5 [— l ,O]. Since K _ [— l ,O] is

compact for every /, we can find a subsequence u?) of u” anda @ e K_ [— l,O]

)

along which ule converges:

sup Iu(”’")(k)— u(°)(kj -0 as mowo (37)

—Isk<0

Now, let £ > 0. Since w(k)— 0 as k — oo, we can find m, > Oa such that

w(m, )< /c, . Since u?) u® e K _, we have that

sup ’u(”’")(k)—u(o)(ka(— k)<2ew(m,)< e (38)

ks—m

Now from equation (37) we can find m, such that

sup lu(””)(k)—u(o) (kj <¢ for m>m, (39)

—my<k<0

so by equation (38) and equation (39) we can conclude that

fu) —u®

<& for  m>m,

w

which proves that K_ is compact.
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Lemma 2. The set of functional {G; }associated to the discrete Laguerre Operators

are continuous with respect to ||“w norm, that is, given any & > 0 there exists 0 >0

such that u - v||w <5 =

Gju—G:VI <e

Proof. Consider the functional G! () associated with the Laguerre operator ES()

5 Givene >0, chose & > 0 such that:

,

H

—vi|w <o =

G'u, —ijil <& (40)

This is possible due to the continuity of the one dimensional Laguerre operators with
respect to the weighted norm as shown in (Sentoni et al, 1996). Therefore, from

equation (40) and the definition of the functionals

10 jo—v] <=, -v,] <§:>\Gju—ij‘=

i i
Gu, -Gy,

<& (41)
which proves Lemma 2.
Lemma 3. The {GS’} separate points in / (Z_ ), that is, for any distinct u,v e/, (Z_)
thereisa G! € G such thatGlu# G'v.
Proof. Suppose u,vely (Z_) are equal except for the i-th component. Then

15 Gu=Give Gu, #Gly, (42)

by the definition of the functionals. It is known from one dimensional theory

(Sentoni et al, 1996) that for any distinct u,,v, € I*(Z_)there is a G such that

G'u, # Glv,; this result together with equation (42) proves Lemma 3.

s

Approximation Theorem

20 Now given ¢ >0, Lemmas 1, 2, 3 together with the Stone-Weierstrass

theorem imply that given any continuous functional F on K _, there is a polynomial

p:RS —> R, such that forall ue K_

‘Fu—p(Gllu,---,G;lu,u-,GlNu,---,GQLul<¢9 (43)
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Because the Laguerre systems are continuous and acting on a bounded space, the

G'u are bounded real intervals on so the polynomial p can be replaced by any static

model that acts as a universal approximator on a bounded input space, for example, a

neural net. In other words (43) can be replaced by
|Fu - NN(Glu, -+, GLu, -+, Glu, oo, GY u) < (44)

A time invariant causal operator 3 can be recovered from its associated functional

through equation (36) as

Su(k)= FPQ*u
Nowletue K and ke Z,so PO ue K_, hence

|[FPQ™ u~ NN(G! PQ™*u, -, G}, PO ™*u, -+, GY PO *u, -, G} PQ™u)<e
Since the last equation is true for allk € Z , we conclude that for all u e K _

o~

“Jll - 3u

’<€

In other words, it is possible to approximate any nonlinear discrete time
invariant operator having fading memory on K, with a finite set of discrete Laguerre

systems followed by a single hidden layer neural net. This completes the proof.

V.5 EQUIVALENTS

Although the foregoing details refer to particular preferred embodiments of
the invention, it should be understood that the invention is not limited to these
details. Substitutions and alterations, which will occur to those of ordinary skill in
the art, can be made to the detailed embodiments without departing from the spirit of
the invention. These modifications are intended to be within the scope of the present

invention.
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CLAIMS

What is claimed is:

1. A predictive device for modeling a non-linear, causal, multiple-input single-

output system or process, comprising:

a plurality of preprocessing units for receiving a working signal including
control data inputs, the preprocessing units normalizing the control

data inputs, resulting in preprocessed inputs;

a plurality of delay units coupled to the preprocessing units, the delay units
time aligning the preprocessed inputs, resulting in time aligned inputs;

a plurality of filter units coupled to the delay units, the filter units being of a
substantially simplified configuration as compared to a configuration
based upon discrete state space equations, the filter units filtering the
time aligned inputs at least according to time, resulting in filtered

states;

a non-linear analyzer coupled to the filter units and accepting the filtered

states, the non-linear analyzer generating a single analyzer output;

a postprocessing unit coupled to the non-linear analyzer to receive the
generated analyzer output, the postprocessing unit converting the
single analyzer output to a single device output that represents an
estimate or prediction of the output of the multiple-input single-output

dynamic system being modeled by the device, and

wherein the predictive device operates in a plurality of selectable modes

including a configuration mode and multiple runtime modes.

2. The device of Claim 1 wherein:
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the data generated by the predictive device, in any of the selectable modes,
are received by a device controller for analysis, monitoring,

optimization or control of the modeled process.

5 3. The device of Claim 1 wherein the preprocessing units normalize the control data

10

15

20

25

inputs by scaling and offsetting the control data inputs, resulting in preprocessed

inputs.

The device of Claim 1 wherein the postprocessing unit normalizes the analyzer
output by scaling and offsetting the analyzer output, resulting in a postprocessed

device output .

The device of Claim 1 further comprising a plurality of training units for
configuring the predictive device in configuration mode, the training units
including:
a preprocessing training unit to set overrideable parameters, including scale
and offset settings, in the plurality of preprocessing units;
a delay training unit to set overrideable delay times to the plurality of delay
units;
a filter training unit to configure the plurality of filter units;

a non-linear analyzer training unit to train the non-linear analyzer to

optimally map the filtered states to the analyzer output;

a postprocessing training unit to set overrideable parameters, including scale

and offset settings, in the plurality of postprocessing units; and

wherein the training units are activated when the predictive device is operated

in configuration mode.
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6. The device of Claim 5 wherein the filter training unit is used to configure, in a

practical manner allowing relatively simple override by an operator, the plurality
of filter units by using input training data for control data input, and by using a
corresponding measured process output for target device output training data, and
by:

(a) setting an initial estimated dominant time constant associated with each

input training data;
(b) for each input training data, initializing a filter structure based on the

input training data's initial estimated dominant time constant;

(c) for each target device output training data, determining a corresponding

target analyzer output training data

(d) mapping input training data through the delay units and the filter
structure, resulting in a plurality of training filter state vectors, creating a
vector trained to linearly map training states to the corresponding target
analyzer outputs, resulting in a multi-input, single-output state space
system consisting of a block structure of single-input single-output sub-

systems, one for each filter unit;

(e) applying a method of order reduction to each single-input, single-output
sub-system, resulting in a set of reduced order single-input, single-output

sub-systems;

(f) reducing each reduced single-input, single-output sub-system to a first
order system to determine an updated estimated dominant time constant

for each input training data;

(g) repeating steps (a) through (f) for one or more iterations using the updated
estimated dominant time constants in place of the initial estimated

dominant time constants; and

(h) configuring each filter unit using the corresponding reduced order single-

input, single-output sub-system.
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7. The device of Claim 5 wherein the filter training unit is used to configure, in a

practical manner allowing relatively simple override by an operator, the plurality

of filter units by using input training data for control data input, and by using a

corresponding measured process output for target device output training data, and

by:
(2)

(b)

(©)

setting an estimated dominant time constant associated with each input

training data,

for each input training data, initializing a filter structure based upon the

input training data's estimated dominant time constant;

for each target device output training data, determining a corresponding

target analyzer output training data

(d) mapping input training data through the delay units and the filter

(©)

®

structure, resulting in a plurality of training filter state vectors, creating a
linear or non-linear analyzer trained to map training states to the
corresponding target analyzer outputs, where said analyzer has a set of
internal states which are linearly dependent on a current filter state vector,
resulting in a linear multi-input, multi-output state space system mapping
input training data to said internal analyzer states, where said linear multi-
input, multi-output state space system consists of a block structure of

single-input multi-output sub-systems, one for each filter unit;

applying a method of order reduction to each single-input, multi-output
state space system, resulting in a set of reduced order single-input, multi-

output sub-systems; and

configuring each filter unit using the corresponding reduced order single-

input, multi-output sub-systems.

8. The device of claim 7 wherein the non-linear analyzer is a neural network and the

internal states are summation values of the neural network hidden layer.
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The device of claim 7 wherein the linear or non-linear analyzer is a Partial Least

Squares model and the internal states are latent variable scores.

The device of Claim 6 or Claim 7 wherein the method of reduction is a Hankel

model reduction procedure.

The device of Claim 6 or Claim 7 wherein the method of reduction is an

Internally Balanced model reduction procedure.

The device of Claim 6 or Claim 7 wherein the method of reduction is an iterative
application of any of a variety of model reduction procedures including a Hankel
model reduction procedure and an Internally Balanced model reduction

procedure.

The device of Claim 1 wherein the plurality of selectable runtime modes includes

a predictive mode in which:

) the predictive device receives a contiguous stream of control data

Inputs at asynchronous discrete base sample time; and

(1)  the predictive device is operated once per base sample time.

The device of claim 13 wherein the contiguous stream of control data inputs is
passed from a device controller and the analyzer output is received by the device
controller for analysis, monitoring, optimization or control of the modeled

process.

The device of Claim 1 wherein the plurality of selectable runtime modes

comprises an horizon mode in which the predictive device:
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receives an externally defined sequence of trial future data inputs proceeding

from a current prediction mode device state;

1s operated in response to this trial sequence of data inputs producing a
corresponding sequence of at least filtered states, and possible other

5 state information; and

stores the filtered states and other state information for use in reverse horizon

mode.

16. The device of claim 15 wherein the horizon mode is run one or more times

10 between runs of the predictive device in the predictive mode.

17. The device of claim 15 wherein

a contiguous stream of external trial data inputs is passed to the predictive

device from a device controller; and

15 the predictions generated during horizon mode are received by the device
controller for analysis, monitoring, optimization or control of the

modeled process.

18. The device of Claim 1 wherein the plurality of selectable runtime modes

comprises a reverse horizon mode in which the predictive device uses

20 (1) the filtered states and other state information from the most recent

horizon mode run, and

(i)  an output path index indicating a point in a generated sequence of
predictions to obtain the sensitivities of the predictive device to
changes in the trial input data sequence used by a most recent horizon

25 mode run, based upon running the predictive device backwards.

19. The device of claim 18 wherein the reverse horizon mode is run one or more

times between runs of the predictive device in the predictive mode.
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20. The device of claim 18 wherein

the predictive device sensitivities generated during reverse horizon mode are
received by a device controller for analysis, monitoring, optimization

5 or control of the modeled process.

21. The device of claim 18 wherein

a device controller specifies the output path index.

10 22. The device of Claim 6 or Claim 7 wherein the initializing of the filter structure

uses a Laguerre expansion.

23. The device of Claim 1 wherein the plurality of filter units comprise:

first and/or second order subfilters.

15
24. The device of Claim 1 wherein the non-linear analyzer comprises:
a neural network.
25. The device of Claim 1 wherein the non-linear analyzer comprises:
20 a linear or non-linear Partial Least Squares model.
26. The device of Claim 1 wherein the non-linear analyzer comprises:
a hybrid parallel combination of a linear model with a non-linear
model.
25

27. A computer method for modeling a non-linear, causal, multiple-input single-

output, system or process, comprising the steps of:
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(a) receiving and normalizing a working signal including control data inputs,

resulting in preprocessed inputs;
(b) aligning the preprocessed inputs, resulting in time aligned inputs;
(c) using a plurality of filter units, filtering the time aligned inputs, at least
5 according to time, resulting in filtered states;
(d) generating an analyzer output based upon the filtered states, said
generating employing a non-linear analyzer; and

(e) converting the analyzer output to a model output that represents an
estimate or prediction of the output of the multiple-input single-output

10 dynamic system being modeled by the method.

28. The method of Claim 27 wherein the step of receiving includes receiving a
contiguous stream of control data inputs from an external system, said data inputs

representing measurements from the modeled process; and

15 further comprising the step of passing model output to an external device or
method for analysis, monitoring, optimization or control of the

modeled process.

29. The method of Claim 27 wherein the normalizing step employs a scale and offset

20 for each input.

30. The method of Claim 27 wherein the converting step employs a scale and offset.

31. The method of Claim 27 further comprising the step of configuring including the
25 steps of:

(a) setting overrideable parameters, including scale and offset settings, for the

receiving and normalizing step;
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(b) setting overrideable delay times, for the aligning the preprocessed inputs

step,

(¢) training the plurality of filter units used in the filtering of the time aligned
inputs step;
(d) training the non-linear analyzer to optimally map the filtered states to the

analyzer output in the generating analyzer outputs step; and

(e) setting overrideable parameters, including scale and offset settings, for the

converting the analyzer output to a model output.

10 32. The method of Claim 31 wherein the step of training the filter units includes:

15

20

25

employing a filter training unit to configure, in a practical manner

allowing relatively simple override by an operator, the plurality of filter units
by using input training data for control data input, and by using a
corresponding measured process output for target model output training data,
and by:
(a) setting an initial estimated dominant time constant associated with each

input training data;
(b) for each input training data, initializing a filter structure based on the

input training data's initial estimated dominant time constant;

(c) for each target device output training data, determining a corresponding

target analyzer output training data

(d) mapping input training data through the delay units and the filter
structure, resulting in a plurality of training filter state vectors, creating a
vector trained to linearly map training states to the corresponding target
analyzer outputs, resulting in a multi-input, single-output state space
system consisting of a block structure of single-input single-output sub-

systems, one for each filter unit;
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(e) applying a method of order reduction to each single-input, single-output
sub-system, resulting in a set of reduced order single-input, single-output

sub-systems;

(f) reducing each reduced single-input, single-output sub-system to a first
order system to determine an updated estimated dominant time constant

for each input training data;

(g) repeating steps (a) through (f) for one or more iterations using the updated
estimated dominant time constants in place of the initial estimated

dominant time constants; and

(h) configuring each filter unit using the corresponding reduced order single-

input, single-output sub-system.

33. The method of Claim 31 wherein the step of training the filter units includes:

15

20

25

employing a filter training unit to configure, in a practical manner
allowing relatively simple override by an operator, the plurality of filter units
by using input training data for control data input, and by using a
corresponding measured process output for target model output training data,

and by:

(a) setting an estimated dominant time constant associated with each input

training data;

(b) for each input training data, initializing a filter structure based upon the

input training data's estimated dominant time constant;

(c) for each target device output training data, determining a corresponding

target analyzer output training data

(d) mapping input training data through the delay units and the filter
structure, resulting in a plurality of training filter state vectors, creating a
linear or non-linear analyzer trained to map training states to the
corresponding target analyzer outputs, where said analyzer has a set of

internal states which are linearly dependent on a current filter state vector,
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resulting in a linear multi-input, multi-output state space system mapping
input training data to said internal analyzer states, where said linear multi-
input, multi-output state space system consists of a block structure of

single-input multi-output sub-systems, one for each filter unit;

(e) applying a method of order reduction to each single-input, multi-output
state space system, resulting in a set of reduced order single-input, multi-

output sub-systems; and

(f) configuring each filter unit using the corresponding reduced order single-

input, multi-output sub-systems.

The method of claim 33 wherein the non-linear analyzer step employs a neural
network and the internal states are the summation values of the neural network

hidden layer.

The method of claim 33 wherein the linear or non-linear analyzer employs a

Partial Least Squares model and the internal states are latent variable scores.

The method of Claim 32 or Claim 33 wherein the step of balancing employs a

Hankel model reduction procedure.

The method of Claim 32 or Claim 33 wherein the step of balancing employs an

Internally Balanced model reduction procedure.

. The method of Claim 32 or Claim 33 wherein the step of balancing employs an

iterative application of any of a variety of model reduction procedures including
a Hankel model reduction procedure and an Internally Balanced model reduction

procedure.
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The method of Claim 27 wherein, in a predictive mode, the step of receiving
includes receiving a contiguous stream of control data inputs from an external

system, said data inputs representing measurements from the modeled process;
said receiving of data inputs occurs once per base sample; and

the steps (a) through (e) are performed once per base sample.

The method of Claim 39 further comprising the step of passing the model output
to an external system for analysis, monitoring, optimization or control of the

modeled process.

The method of Claim 27 wherein, in an horizon mode, steps (a) through (e) are
iterated multiple times wherein, at each iteration, the filtered states and other

state information are stored for later use.

The method of Claim 41 further comprising the step of passing the model output
at each iteration to an external device or method for analysis, monitoring,

optimization or control of the modeled process.

The method of Claim 27 wherein, in a reverse horizon mode , steps (a) through

(e) are iterated multiple times in reverse order, wherein, at each iteration
the steps employ stored information from the method of Claim 41; and

the result of this method is to produce sensitivities of a predictive model
output for a specified iteration with respect to changes in the
predictive mode received data at each previous iteration, where said

specified iteration is provided to the method by an external system.
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The method of Claim 43 further comprising the step of passing the calculated
sensitivities at each iteration to an external device or method for analysis,

monitoring, optimization or control of the modeled process.

. The method of Claim 32 or Claim 33 wherein the step of initializing the filter

structure uses a Laguerre expansion.

The method of Claim 27 wherein the plurality of filter units comprise:

first and/or second order subfilters.

The method of Claim 27 wherein the non-linear analyzer comprises:

a neural network.

The method of Claim 27 wherein the non-linear analyzer comprises:

a linear or non-linear Partial Least Squares model.

The method of Claim 27 wherein the non-linear analyzer comprises:

a hybrid parallel combination of a linear model with a non-linear

model.



PCT/US98/20295

1/10

WO 99/17175

[ DId
14
< 1]
mﬂ””mw 1 . A waishg
PR LN .‘Ohdou
: = ! 1 pamquusiq
€ A
OF S1o1WmeRIRg 81, |9 8ly v9 8L | r9 B
Suissaooidisod prre | <o 0f e 07 0z 0z mj
Smssasoidad jog Susssooudsig | | Smssasordaly | | Smssasoadaig
] & A A
* u s
oy o A - - 4 - 99 (4
Ev I @- ¢ .
Ew% i y X wun Aepq| |wun Aepal  fwmn Aepeg 3 $
2 » A h
M ces G 0s
\. n L 3 v v 1 4 kkuwu.wmo
tb sana i o 144 vz vz | —
suuf} ! up I8y nup) 9y muf) LI g
Isgng weiy 3 -} 4 T % 1 4
u sz| 1 o 5t z9 8¢ 9
w ° b1
WV U v see v K
g — e e 97 35ZAjeIy Jesurj-uoN
wmex .H 4 A
Li Z¢ Suissavoidisod
3pOJA SumuIy
_ 09 301A3(] 2ALDIPal] STureuA( Hnun:-coz




WO 99/17175 PCT/US98/20295
2/10
uplk) —ls ‘?ﬂ
1 —»{o |
\ 20
FIG 2
u (k) Delay unit | ud(k) = u (k-d)
302 | (300 ] q° 304

FIG 3




PCT/US98/20295

WO 99/17175

3/10

¥ OId

Y] D

90¥ —IIIV@A'..
Sy
t s
[
(1-)5x

¥
+
_A 80%

yoy

Wﬁhv\ v

@ex ¥

. @NHA



PCT/US98/20295

WO 99/17175
4/10
A
506 [
[ -1 ; b —]
x(k) d ‘ lrl(k )
@’“ A, | 504
1- Al 502
A
ud(k) 500 "\
: 402
FIG S5
A
606
- (k)
Xs-1 (k"]) Loose ;Ouphng:

1"5=[0 0 - 1..,15]'_"®'_

<

xs(k-1)

604

600

V

404



WO 99/17175
5/10
x;i(k-1)
710 S
708 A A P s
x11(k) x12(k) x12(k-1)
704
— .
a9 1
> 706
[ p
714 | (+ ) A Dy
rd 1242
L ! 1 1: h 4
©) L1
A
(I-aj;-a;z 0) |702 712

Ay 700 \
402

FIG7

PCT/US98/20295

Xsl (k'])
808 4 4810 £ ‘ '
h
Xs! (k) Xs2 (k) Xs2 (k" ])
N 804 -
- 1 814 i
oose coupling: L. i e
+ ] f as]
X1(k-1) e —[az]
o= 0 0 l-a,-a, s E< 4
’ s 0 0 s 0 ,\l‘ 0 h.
b,=0 812
.

802
/ U
4290



PCT/US98/20295

6/10

WO 99/17175

@ZH Qv,m.ﬁ. Q&R 6 ‘DI

Jayng nduf

NHm
ZHm
/ IHm
e
»v\\ 0Hm
H
sjusms]y SUISSa20Id @) .
Jo'124R"] USPPIH
Hop
JUSTSY
Suissa001d Indingo




PCT/US98/20295

WO 99/17175

7/10

E/eke)

Zlm ITat

[67i3-4Kd ]

QL1

Zo In

/A

Tim

C/eé)
Yy

01 Old



PCT/US98/20295

8/10

WO 99/17175

\ (1)pn ¥ | -0l

llllllllllllllllllllllllllllllllllllllll -

+) |

|

ﬁ |

1'9 |

\|h, 1

I s L9 | I

9| k.@ ! “I llllllllll al

lllllllll _ I 1!

" T 4 | \ﬁ ] |

_ 1 ! ' “ | |47 |

2l | v || 1IEIIEEZ R “ X

s | ] Oucl

R Vi L I o (r) ! | — N

| W | 7 T | (-1

“ w “ _r (1-1)5x g _ L | ———— -4

N M | _

_ \\IN\M,»\*Q. _ i - & ® © NrN. ]

L e _ Ll sri-ve -

1= I el R o U 1 = N
Moy T T T T T T T T e T T T T T T T T T T T T T —/——— 7
| yewul ¥y coe () >x 1y x|
T T T _
e onr owmem o ey |
| 18wy O=(1)x ¥y oo 01>V o= |

e — =
et _

SUBSTITUTE SHEET (RULE 26)



WO 99/17175 PCT/US98/20295

9/10 .

d=dmin

(-

Y

Find aand b
that minimizes

E@ =Y (y(k)-y, (k)
where (k) =qyﬂc—] ) +bu(k-d)

d-=d+] YES d<dmax

NO

Choose d
that minimizes
E(d)

| 4

FIG 12



WO 99/17175

PCT/US98/20295
10/10
A A N
1312 | xi(k) 1314 | Xia(k) 1316 |Xs(k)
A A ¢ A
o— || O ]
r'y 1302 s 1304 ¥ 1306
1-4, 1-4, 1=
T i i
ui(k)
' FIG I3
Forward Operation ai az1 a3
> \
< :
Reverse Operation
N D NG BN
an an az
FIG. 14

Forward
Operation

Reverse
Operation




INTERNATIONAL SEARCH

REPORT

I ationat Application No

PCT/US 98/20295

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO5B13/04 G05B17/02

G05B23/02

According to International Patent Classification (IPC) or to both national classification and |PC

B. FIELDS SEARCHED

IPC 6 GO5B

Minimum documentation searched (classification system foilowed by classification symbois)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

DESIGN FOR LARGE SCALE SYSTEMS"

VOLUME FROM THE IFAC CONFERENCE,
27 September 1994, pages 47-52,
XP002091768

UK

see the whole document

INTEGRATED SYSTEMS ENGINEERING.A POSTPRINT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A WO 97 28669 A (ASM INC) 7 August 1997 1,27
see page 37, line 21 - page 59, line 2
A US 5 659 667 A (BUESCHER KEVIN L ET AL) 1,27
19 August 1997
see column 11, Tine 21 - column 14, line
22
A M.KATEBI ET AL: "PREDICTIVE CONTROL 1,27

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underying the
invention

"X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

1 February 1999

Date of mailing of the international search report

16/02/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Kelperis, K

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2




INTERNATIONAL SEARCH REPORT

Ir. ational Application No

PCT/US 98/20295

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

B.GIBBS ET AL: "NONLINEAR MODEL
PREDICTIVE CONTROL FOR FOSSIL POWER
PLANTS"

PROCEEDINGS OF THE 1992 AMERICAN CONTROL
CONFERENCE,

vol. 4, 24 June 1992, pages 3091-3098,
XP002091769

USA

see page 3092, left-hand column, line 3 -
page 3093, left-hand column, line 22

1,27

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2




INTERNATIONAL SEARCHREPORT [ =
information on patent family members PCT/US 98/20295
Patent document Publication Patent family Publication
cited in search report date member(s) date
W0 9728669 A 07-08-1997 AU 1843597 A 22-08-1997
EP 0879547 A 25-11-1998
US 5659667 A 19-08-1997 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

