Date de dépôt PCT/PCT Filing Date: 2006/12/19
Date publication PCT/PCT Publication Date: 2007/07/05
Entrée phase nationale/National Entry: 2008/06/18
N° demande PCT/PCT Application No.: US 2006/048478
N° publication PCT/PCT Publication No.: 2007/075717
Priorités/Priorities: 2005/12/19 (US60/751,679); 2006/12/18 (US11/612,202)


Demandeur/Applicant: JANSSEN PHARMACEUTICA N.V., BE
Inventeurs/Inventors: SMITH-SWINTOSKY, VIRGINIA L., US; REITZ, ALLEN B., US
Agent: OGILVY RENAISSANCE LLP/S.E.N.C.R.L., S.R.L.

Titre : UTILISATION DE DERIVES DE SULFAMIDE HETEROCYCLIQUE BENZO-FUSIONNE POUR LE TRAITEMENT DE L’ALCOOLISME ET/OU DES TOXICOMANIES
Title: USE OF BENZO-FUSED HETEROCYCLE SULFAMIDE DERIVATIVES FOR THE TREATMENT OF SUBSTANCE ABUSE AND ADDICTION

Abrégé/Abstract:
The present invention is a method for the treatment of alcohol abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of one or more novel benzo-fused heterocycle sulfamide derivatives of formula (I) and / or formula (II) as herein defined.
Title: USE OF BENZO-FUSED HETEROCYCLE SULFAMIDE DERIVATIVES FOR THE TREATMENT OF SUBSTANCE ABUSE AND ADDICTION

Abstract: The present invention is a method for the treatment of alcohol abuse and/or addiction comprising administering to a subject in need thereof a therapeutically effective amount of one or more novel benzo-fused heterocycle sulfamide derivatives of formula (I) and/or formula (II) as herein defined.
USE OF BENZO-FUSED HETEROCYCLE SULFAMIDE DERIVATIVES FOR THE TREATMENT OF SUBSTANCE ABUSE AND ADDICTION

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application 60/751,679, filed on December 19, 2005, which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention is directed to the use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction.

BACKGROUND OF THE INVENTION

Alcohol abuse, typically characterized as a maladaptive pattern of alcohol use, leading to clinically significant impairment or distress, is a serious medical and social problem. It has been suggested that agents producing a selective decrease in alcohol 10 drinking in animals, without producing a parallel decrease in water or food intake, are likely to be clinically effective in the treatment of human alcoholism (Myers 1994). Daidzin, the active ingredient of the Chinese herb Radix puerariae (RP), used as a traditional treatment for "alcohol addiction" in China, fits the profile: it decreases alcohol drinking in the golden hamster, without producing a decrease in water or food intake 15 (Keung and Vallee3 1993). In contrast, many drugs, including specific serotonergic agonist (e.g., sertraline) and opiate antagonists (e.g., naloxone and naltrexone), that have been shown to inhibit alcohol consumption in animals have also impaired water or food consumption at the same time (Myers 1994). However although atypical antipsychotic have been proposed as possible treatments for substance abuse, there medication may undergo substantial hepatic metabolism in substance abuse patients. The population of patients with hepatic impairment is quite high. Consequently it would be advantageous to treat substance abuse patients with an atypical antipsychotic, which was not significantly metabolized in the liver.
There remains a need to provide an effective treatment for substance abuse and/or addiction, more abuse of and/or addition to particularly alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstasy, nicotine, oxycontin/oxycodone, codeine, morphine, and the like.

SUMMARY OF THE INVENTION

The present invention is directed to a method for the treatment of substance abuse and/or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I)

\[
\begin{align*}
\text{CH}_2 \text{CH}_2 \text{N}^+ \text{SO}_2 \text{N}_2 \text{R} \text{R}^1 \\
\end{align*}
\]

wherein

- \( R^1 \) and \( R^2 \) are each independently selected from the group consisting of hydrogen and lower alkyl;
- \( R^4 \) is selected from the group consisting of hydrogen and lower alkyl;
- \( a \) is an integer from 1 to 2;
wherein b is an integer from 0 to 4; and wherein c is an integer from 0 to 2;
each R^5 is independently selected from the group consisting of halogen, lower alkyl and nitro;

provided that when

\[ \text{or} \]

then a is 1;
or a pharmaceutically acceptable salt thereof.

The present invention is further directed to a method for the treatment of substance abuse and/or addiction comprising administering to a subject in need thereof a therapeutically effective amount of compound of formula (II)

\[
\begin{align*}
\text{OCH}_3 & \quad \text{N} \quad \text{O} \quad \text{S-NH}_2 \\
\text{H} & \\
\text{(II)}
\end{align*}
\]
or a pharmaceutically acceptable salt thereof.

Exemplifying the invention is a method of treating alcohol abuse and/or addiction comprising administering to a subject in need thereof a
therapeutically effective amount of any of the compounds or pharmaceutical compositions described herein.

Further exemplifying the invention is a method for treating abuse of and/or addiction to a substance of abuse selected from the group consisting of alcohol, cocaine, heroin, methamphetamine, ketamine, Ecstasy, nicotine, oxycontin/oxycodone, codeine, morphine, comprising administering to a subject in need thereof a therapeutically effective amount of any of the compound or pharmaceutical compositions described herein.

The present invention is further directed to methods for the treatment of substance abuse and/or addiction comprising administering to a subject in need thereof co-therapy with a therapeutically effective amount with at least one anti-addiction agent and a compound of formula (I) or formula (II) as described herein.

**DETAILED DESCRIPTION OF THE INVENTION**

The present invention is directed to a method for the treatment of substance abuse and/or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I)

![Chemical Structure](image)

or a pharmaceutically acceptable salt thereof, wherein, a, R¹, R² and R⁴ are as herein defined.

The present invention is further directed to methods for the treatment of substance abuse and/or addiction comprising co-therapy with a therapeutically effective amount with at least one anti-addiction agent and a compound of formula (I) or formula (II) as described herein.

As sued herein, unless otherwise noted the term "substance" when referring to substances of abuse and/or addiction shall include any legal or
illegal substance to which a subject or patient may develop an addiction. Drugs classes that maybe subjected to abuse include but are not limited to stimulants, hallucinogens, barbiturates, natural and synthetic opioids, and benzodiazepines. Suitable examples include, but are not limited to alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstasy, nicotine, oxycontin / oxycodone, codeine, morphine, and the like.

As used herein, unless otherwise noted, the term "anti-addiction agent" shall mean any pharmaceutical agent useful for the treatment of substance abuse and / or addition. More particularly, "anti-addiction agents" include drugs of substitution, drugs of replacement (for example, methadone for heroin), drugs that block craving, drugs that block or mitigate withdrawal symptoms, drugs which block the pleasurable sensations and rewards of substance abuse, and the like. Suitable examples include but are not limited to naltrexone (including vivatrex), nalmepnene, antabuse, acamprosate, paliperidone and the like. Preferably, wherein the substance of addiction is alcohol, the anti-addiction agent used in the co-therapy methods of the present invention is naltrexone.

The term "subject" as used herein, refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.

The term “therapeutically effective amount” as used herein, means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.

Wherein the present invention is directed to co-therapy or combination therapy, comprising administration of one or more compound(s) of formula (I) or formula (II) and one or more anti-addiction agents, "therapeutically effective amount" shall mean that amount of the combination of agents taken together so that the combined effect elicits the desired biological or medicinal response.
For example, the therapeutically effective amount of co-therapy comprising administration of a compound of formula (I) or formula (II) and at least one anti-addiction agent would be the amount of the compound of formula (I) or formula (II) and the amount of the anti-addiction agent that when taken together or sequentially have a combined effect that is therapeutically effective. Further, it will be recognized by one skilled in the art that in the case of co-therapy with a therapeutically effective amount, as in the example above, the amount of the compound of formula (I) or formula (II) and/or the amount of the anti-addiction agent individually may or may not be therapeutically effective.

As used herein, the terms "co-therapy" and "combination therapy" shall mean treatment of a subject in need thereof by administering one or more compounds of formula (I) or formula (II) in combination with one or more anti-addiction agent(s), wherein the compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) are administered by any suitable means, simultaneously, sequentially, separately or in a single pharmaceutical formulation. Where the compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) are administered in separate dosage forms, the number of dosages administered per day for each compound may be the same or different. The compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) may be administered via the same or different routes of administration. Examples of suitable methods of administration include, but are not limited to, oral, intravenous (iv), intramuscular (im), subcutaneous (sc), transdermal, and rectal. Compounds may also be administered directly to the nervous system including, but not limited to, intracerebral, intraventricular, intracerebroventricular, intrathecal, intracisternal, intraspinal and/or peri-spinal routes of administration by delivery via intracranial or intravertebral needles and/or catheters with or without pump devices. The compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) may be administered according to simultaneous or alternating regimens, at the same or different times during the course of the therapy, concurrently in divided or single forms.
In an embodiment of the present invention $R^1$ is selected from the group consisting of hydrogen and methyl. In another embodiment of the present invention $R^2$ is selected from the group consisting of hydrogen and methyl. In yet another embodiment of the present invention $R^1$ and $R^2$ are each hydrogen or $R^1$ and $R^2$ are each methyl.

In an embodiment of the present invention $-(CH_2)_a-$ is selected from the group consisting of $-CH_2-$ and $-CH_2-CH_2-$. In another embodiment of the present invention $-(CH_2)_a-$ is $-CH_2-$.

In an embodiment of the present $R^4$ is selected from the group consisting of hydrogen and methyl, preferably, $R^4$ is hydrogen.

In an embodiment of the present invention $a$ is 1.

In an embodiment of the present invention $b$ is an integer from 0 to 2. In another embodiment of the present invention $c$ is an integer from 0 to 2. In another embodiment of the present invention $b$ is an integer from 0 to 1. In another embodiment of the present invention $c$ is an integer from 0 to 1. In yet another embodiment of the present invention the sum of $b$ and $c$ is an integer form 0 to 2, preferably an integer form 0 to 1. In yet another embodiment of the present invention $b$ is an integer from 0 to 2 and $c$ is 0.

In an embodiment of the present invention, is selected from the group consisting of

\[
\begin{align*}
(R^5)_b &- \xrightarrow{2} \xrightarrow{2} \xrightarrow{2} \\
(R^5)_b &- \xrightarrow{2} \xrightarrow{2} \\
(R^5)_b &- \xrightarrow{2} \xrightarrow{2} \\
(R^5)_c &- \xrightarrow{2} \xrightarrow{2} \\
(R^5)_b &- \xrightarrow{2} \xrightarrow{2} \\
(R^5)_b &- \xrightarrow{2} \xrightarrow{2} \\
(R^5)_b &- \xrightarrow{2} \xrightarrow{2} \\
\end{align*}
\]

and
In another embodiment of the present invention, is selected from the group consisting of

and


In another embodiment of the present invention, is selected from the group consisting 2-(benzo[1,3]dioxolyl), 2-(2,3-dihydrobenzo[1,4]dioxinyl), 2-(6-chloro-2,3-dihydro-benzo[1,4]dioxinyl), 2-(7-chloro-2,3-dihydro-benzo[1,4]dioxinyl), 2-(7-methyl-2,3-dihydro-benzo[1,4]dioxinyl), 2-(6-bromo-2,3-dihydro-benzo[1,4]dioxinyl) and 2-(6,7-dichloro-2,3-dihydro-
benzo[1,4]dioxinyl). In another embodiment of the present invention, is selected from the group consisting of 2-(2,3-dihydro-benzo[1,4]dioxinyl), 2-(7-methyl-2,3-dihydro-benzo[1,4]dioxinyl) and 2-(6-bromo-2,3-dihydro-benzo[1,4]dioxinyl).

In an embodiment of the present invention R⁵ is selected from the group consisting of halogen and lower alkyl. In another embodiment of the present invention R⁵ is selected from chloro, fluoro, bromo and methyl.

In an embodiment of the present invention, the stereo-center on the compound of formula (I) is in the S-configuration. In another embodiment of the present invention, the stereo-center on the compound of formula (I) is in the R-configuration.

In an embodiment of the present invention the compound of formula (I) is present as an enantiomerically enriched mixture, wherein the % enantiomeric enrichment (% ee) is greater than about 75%, preferably greater than about 90%, more preferably greater than about 95%, most preferably greater than about 98%.

Additional embodiments of the present invention, include those wherein the substituents selected for one or more of the variables defined herein (i.e. R¹, R², R³, R⁴, X-Y and A) are independently selected to be any individual substituent or any subset of substituents selected from the complete list as defined herein.

Representative compounds of the present invention, useful for the treatment of alcohol abuse and addiction, are as listed in Tables 1 below. Additional compounds of the present invention, useful for the treatment of alcohol abuse and addiction, are as listed in Table 3. In Tables 1 and 2 below, the column headed "stereo" defines the stereo-configuration at the carbon atom of the heterocycle attached at the starred bond. Where no designation is listed,
the compound was prepared as a mixture of stereo-configurations. Where an "R" or "S" designation is listed, the stereo-configuration was based on the enantiomerically enriched starting material.

### Table 1: Representative Compounds of Formula (I)

<table>
<thead>
<tr>
<th>ID No.</th>
<th>Stereo</th>
<th>(CH₂)ₐ</th>
<th>NR⁴</th>
<th>R¹</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-(2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>2-(benzo[1,3]dioxolyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>3-(3,4-dihydro-2H-benzo[1,4]dioxepinyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>2-(2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td>2-(2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>R</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>2-(2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>methyl</td>
<td>methyl</td>
</tr>
<tr>
<td>7</td>
<td>2-(2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>CH₂</td>
<td>N(CH₃)</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>2-(6-chloro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>2-(6-fluoro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>2-(chromanyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>2-(5-fluoro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td>2-(7-chloro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>ID No.</td>
<td>2-(6-chloro-benzo[1,3]dioxolyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>2-(2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>CH₂CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>16</td>
<td>2-(7-nitro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>18</td>
<td>2-(7-methyl-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>19</td>
<td>2-(5-chloro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>20</td>
<td>2-(8-methoxy-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>22</td>
<td>2-(6-bromo-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>24</td>
<td>2-(6,7-dichloro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>29</td>
<td>2-(8-chloro-2,3-dihydro-benzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>30</td>
<td>2-(2,3-dihydro-naphtho[2,3-b][1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>33</td>
<td>2-(4-methyl-benzo[1,3]dioxolyl)</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

**Table 2: Additional Compounds of the Present Invention**

<table>
<thead>
<tr>
<th>ID No.</th>
<th>Stereo</th>
<th>X</th>
<th>NR¹⁴</th>
<th>R¹¹</th>
<th>R¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Molecular Structure</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------------------------------------------------------</td>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>23</td>
<td>2-(5-methoxy-2,3-dihydrobenzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>26</td>
<td>2-(6-methylcarbonyl-2,3-dihydrobenzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>32</td>
<td>2-(6-methoxycarbonyl-2,3-dihydrobenzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>34</td>
<td>2-(6-hydroxymethyl-2,3-dihydrobenzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
<tr>
<td>36</td>
<td>2-(7-amino-2,3-dihydrobenzo[1,4]dioxinyl)</td>
<td>S</td>
<td>CH₂</td>
<td>NH</td>
<td>H</td>
</tr>
</tbody>
</table>

As used herein, unless otherwise noted, "halogen" shall mean chlorine, bromine, fluorine and iodine.

As used herein, unless otherwise noted, the term "alkyl" whether used alone or as part of a substituent group, includes straight and branched chains. For example, alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, penty1 and the like. Unless otherwise noted, "lower" when used with alkyl means a carbon chain composition of 1-4 carbon atoms.

As used herein, unless otherwise noted, "alkoxy" shall denote an oxygen ether radical of the above described straight or branched chain alkyl groups. For example, methoxy, ethoxy, n-propoxy, sec-butoxy, t-butoxy, n-hexyloxy and the like.

As used herein, the notation "**" shall denote the presence of a stereogenic center.

When a particular group is "substituted" (e.g., alkyl, aryl, etc.), that group may have one or more substituents, preferably from one to five.
substituents, more preferably from one to three substituents, most preferably from one to two substituents, independently selected from the list of substituents.

5 With reference to substituents, the term "independently" means that when more than one of such substituents is possible, such substituents may be the same or different from each other.

Under standard nomenclature used throughout this disclosure, the terminal portion of the designated side chain is described first, followed by the adjacent functionality toward the point of attachment. Thus, for example, a "phenyl-alkyl-amino-carbonyl-alkyl" substituent refers to a group of the formula

\[
\begin{align*}
\text{(alkyl)} & \quad \text{O} \\
\text{N} & \quad \text{(alkyl)} \\
\text{H} & \quad \text{(alkyl)} \\
\end{align*}
\]

15 Abbreviations used in the specification, particularly the Schemes and Examples, are as follows:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC</td>
<td>Dicyclohexyl Carbodiimide</td>
</tr>
<tr>
<td>DCE</td>
<td>Dichloroethane</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DIPEA or DIEA</td>
<td>Diisopropylethylamine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>EDC</td>
<td>Ethylcarbodiimide</td>
</tr>
<tr>
<td>Et3N or TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>Et2O</td>
<td>Diethyl ether</td>
</tr>
<tr>
<td>EA or EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>IPA</td>
<td>2-propanol</td>
</tr>
<tr>
<td>Hept</td>
<td>Heptane</td>
</tr>
<tr>
<td>HOBT</td>
<td>1-Hydroxybenzotriazole</td>
</tr>
</tbody>
</table>
HPLC = High Pressure Liquid Chromatography
LAH = Lithium Aluminum Hydride
M or MeOH = Methanol
NMR = Nuclear Magnetic Resonance
Pd-C = Palladium on Carbon Catalyst
RP HPLC = Reverse Phase High Pressure Liquid Chromatography
RT or rt = Room temperature
TEA = Triethylamine
TFA = Trifluoroacetic Acid
THF = Tetrahydrofuran
TLC = Thin Layer Chromatography

Where the compounds according to this invention have at least one chiral center, they may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention.

Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.

For use in medicine, the salts of the compounds of this invention refer to non-toxic "pharmaceutically acceptable salts." Other salts may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid. Furthermore, where the
compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quaternary ammonium salts. Thus, representative pharmaceutically acceptable salts include the following:

acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, carnosylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate,

gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, maleate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt, oleate, pamoate (embonate), palmitate, pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, sulfate, subacetate, succinate, tannate, tartrate, teoclate, tosylate, triethiodide and valerate.

Representative acids and bases which may be used in the preparation of pharmaceutically acceptable salts include the following:

acids including acetic acid, 2,2-dichloroacetic acid, acylated amino acids, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, (+)-camphoric acid, camphorsulfonic acid, (+)-(1S)-camphor-10-sulfonic acid, caprylic acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, D-gluconic acid, D-glucononic acid, L-glutamic acid, α-oxo-glutaric acid, glycolic acid, hipuric acid, hydrobromic acid, hydrochloric acid, (+)-L-lactic acid, (±)-DL-lactic acid, lactobionic acid, maleic acid, (-)-L-malic acid, malonic acid, (±)-DL-mandelic acid, methanesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, nitric acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, phosphoric acid, L-
pyrog glutamic acid, salicylic acid, 4-amino-salicylic acid, sebaic acid, stearic acid, succinic acid, sulfuric acid, tannic acid, (+)-L-tartaric acid, thiocyanic acid, p-toluenesulfonic acid and undecylenic acid; and
bases including ammonia, L-arginine, benethamine, benzathine, calcium hydroxide, choline, deanol, diethanolamine, diethylamine, 2-(diethylamino)-ethanol, ethanolamine, ethylenediamine, N-methyl-glucamine, hydrabamine, 1H-imidazole, L-lysine, magnesium hydroxide, 4-(2-hydroxyethyl)-morpholine, piperazine, potassium hydroxide, 1-(2-hydroxyethyl)-pyrrolidine, secondary amine, sodium hydroxide, triethanolamine, tromethamine and zinc hydroxide.

Compounds of formula (I) may be prepared according to the process outlined in Scheme 1.

![Scheme 1](image)

Accordingly, a suitably substituted compound of formula (X), a known compound or compound prepared by known methods, is reacted with sulfamide, a known compound, preferably wherein the sulfamide is present in an amount in the range of about 2 to about 5 equivalents, in an organic solvent such as THF, dioxane, and the like, preferably at an elevated temperature in the range of about 50°C to about 100°C, more preferably at about reflux temperature, to yield the corresponding compound of formula (la).

Alternatively, a suitably substituted compound of formula (X), a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of formula (XI), a known compound or compound prepared by known methods, in the presence of a base such as TEA, DIPEA,
pyridine, and the like, in an organic solvent such as DMF, DMSO, and the like, to yield the corresponding compound of formula (I).

Compounds of formula (X) wherein \( R \) is may be prepared according to the process outlined in Scheme 2.

Accordingly, a suitably substituted compound of formula (XII), a known compound or compound prepared by known method (for example as described in Scheme 3 above) is reacted with \( \text{NH}_2\text{OH} \), a known compound, optionally in an organic solvent such as acetonitrile, and the like, to yield the corresponding compound of formula (XIII).

The compound of formula (XIII) is reacted with a suitably selected reducing agent, such as LAH, and the like, and the like, in an organic solvent such as THF, diethyl ether, and the like, to yield the corresponding compound of formula (Xa).
Compounds of formula (X) wherein \( R \) is selected from \( (R^3)^b \) may be prepared according to the process outlined in Scheme 3.

\[ \text{(XIV)} \rightarrow \text{(XV)} \rightarrow \text{(Xb)} \]

Scheme 3

Accordingly, a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, is reacted with \( \text{NH}_4\text{OH} \), in the presence of a coupling agent such as DCC, and the like, optionally in an organic solvent such as acetonitrile, and the like, to yield the corresponding compound of formula (XV).

The compound of formula (XV) is reacted with a suitably selected reducing agent, such as LAH, and the like, in an organic solvent such as THF, diethyl ether, and the like, to yield the corresponding compound of formula (Xb).
Compounds of formula (X) wherein \( R \) is selected from

\[
\begin{array}{c}
\text{(R)}_b \\
\text{(XVI)}
\end{array}
\]

and wherein \( a \) is 2, may be prepared according to the process outlined in Scheme 4.

\[
\begin{array}{c}
\text{(R)}_b \text{CN}
\end{array}
\]

\[
\begin{array}{c}
\text{(XVII)}
\end{array}
\]

\[
\begin{array}{c}
\text{(R)}_b \text{NH}_2
\end{array}
\]

\[
\begin{array}{c}
\text{(Xc)}
\end{array}
\]

Scheme 5

Accordingly, a suitably substituted compound of formula (XVI) wherein \( J^1 \) is a suitable leaving group such as Br, Cl, I, tosyl, mesyl, triflyl, and the like, a known compound or compound prepared by known methods (for example, by activating the corresponding compound wherein \( J^1 \) is OH), is reacted with a cyanide such as potassium cyanide, sodium cyanide, and the like, in an organic solvent such as DMSO, DMF, THF, and the like, to yield the corresponding compound of formula (XVII).

The compound of formula (XVII) is reduced according to known methods, for example by reacting with a suitable reducing agent such as LAH, borane, and the like, to yield the corresponding compound of formula (Xc).
Compounds of formula (X) wherein \( \text{R} \) is selected from

\[
(R^5)_b
\]

and wherein a is 1, may be prepared according to the process outlined in Scheme 5.

\[
\text{(XVIII)} \quad \text{OH} \quad \text{J}^2 \quad \text{(XIX)}
\]

\[
(R^5)_b
\]

\[
\text{(XX)} \quad \text{NH}_2 \quad \text{(Xd)}
\]

Scheme 5

Accordingly, a suitably substituted compound of formula (XVIII), a known compound or compound prepared by known methods is activated, according to known method, to yield the corresponding compound of formula (XIX), wherein \( J^2 \) is a suitable leaving group, such as tosylate, Cl, Br, I, mesylate, triflate, and the like.

The compound of formula (XIX) is reacted with a phthalimide salt such as potassium phthalimide, sodium phthalimide, and the like, in an organic solvent such as DMF, DMSO, acetonitrile, and the like, preferably, at an elevated temperature in the range of from 50°C to about 200°C, more preferably, at about reflux temperature, to yield the corresponding compound of formula (XX).
The compound of formula (XX) is reacted with \( \text{N}_2\text{H}_4 \), a known compound, in an organic solvent such as ethanol, methanol, and the like, preferably, at an elevated temperature in the range of from about 50°C to about 100°C, more preferably, at about reflux temperature, and the like, to yield the corresponding compound of formula (Xd).

One skilled in the art will recognize that compounds of formula (X)

![Diagram](image)

wherein \( R \) is selected from

\( \text{(R}^3_c \text{)} \)

\( \text{(R}^3_b \text{)} \)

\( \text{(R}^5_c \text{)} \)

\( \text{(R}^5_b \text{)} \)

or

may be similarly prepared according to known methods or for example, according to the processes outlined in Schemes 2 through 5 above, by selecting and substituting the corresponding naphthyl-fused compounds for the benzo-fused starting materials.

One skilled in the art will further recognize that wherein a single enantiomer (or a mixture of enantiomers wherein one enantiomer is enriched) of a compound of formula (X) is desired, the above processes as described in Schemes 1 through 5 may be applied by substituting the corresponding single enantiomer (or mixture of enantiomers wherein one enantiomer is enriched) for the appropriate starting material.
One skilled in the art will recognize that wherein a reaction step of the present invention may be carried out in a variety of solvents or solvent systems, said reaction step may also be carried out in a mixture of the suitable solvents or solvent systems.

Where the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography. The compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as (-)-di-p-toluoyl-D-tartaric acid and/or (+)-di-p-toluoyl-L-tartaric acid followed by fractional crystallization and regeneration of the free base. The compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.

During any of the processes for preparation of the compounds of the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P.G.M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.

The present invention further comprises pharmaceutical compositions containing one or more compounds of formula (I) with a pharmaceutically acceptable carrier. Pharmaceutical compositions containing one or more of the compounds of the invention described herein as the active ingredient can be
prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral). Thus for liquid oral preparations such as suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, stabilizers, coloring agents and the like; for solid oral preparations, such as powders, capsules and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate major site of absorption. For parenteral administration, the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation. Injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.

To prepare the pharmaceutical compositions of this invention, one or more compounds of the present invention as the active ingredient is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending of the form of preparation desired for administration, e.g., oral or parenteral such as intramuscular. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed. Thus, for liquid oral preparations, such as for example, suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like; for solid oral preparations such as, for example, powders, capsules, caplets, gelcaps and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques. For parenterals, the carrier will usually
comprise sterile water, through other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. The pharmaceutical compositions herein will contain, per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, an amount of the active ingredient necessary to deliver an effective dose as described above. The pharmaceutical compositions herein will contain, per unit dosage unit, e.g., tablet, capsule, powder, injection, suppository, teaspoonful and the like, of from about 0.1-1000 mg and may be given at a dosage of from about 0.01-150.0 mg/kg/day, preferably from about 0.1 to 100 mg/kg/day, more preferably from about 0.5-50 mg/kg/day, more preferably from about 1.0-25.0 mg/kg/day or any range therein. The dosages, however, may be varied depending upon the requirement of the patients, the severity of the condition being treated and the compound being employed. The use of either daily administration or post-periodic dosing may be employed.

Preferably these compositions are in unit dosage forms from such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, autoinjector devices or suppositories; for oral parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation. Alternatively, the composition may be presented in a form suitable for once-weekly or once-monthly administration; for example, an insoluble salt of the active compound, such as the decanoate salt, may be adapted to provide a depot preparation for intramuscular injection. For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active
ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 1000 mg of the active ingredient of the present invention. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of material can be used for such enteric layers or coatings, such materials including a number of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include, aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions, include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinyl-pyrrolidone or gelatin.

The method of treating alcohol abuse and / or addiction described in the present invention may also be carried out using a pharmaceutical composition comprising any of the compounds as defined herein and a pharmaceutically acceptable carrier. The pharmaceutical composition may contain between about 0.1 mg and 1000 mg, preferably about 50 to 500 mg, of the compound, and may be constituted into any form suitable for the mode of administration selected. Carriers include necessary and inert pharmaceutical excipients, including, but not limited to, binders, suspending agents, lubricants, flavorants, sweeteners,
preservatives, dyes, and coatings. Compositions suitable for oral administration include solid forms, such as pills, tablets, caplets, capsules (each including immediate release, timed release and sustained release formulations), granules, and powders, and liquid forms, such as solutions, syrups, elixers, emulsions, and suspensions. Forms useful for parenteral administration include sterile solutions, emulsions and suspensions.

Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like. Moreover, when desired or necessary, suitable binders; lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture. Suitable binders include, without limitation, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like.

The liquid forms in suitably flavored suspending or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methylcellulose and the like. For parenteral administration, sterile suspensions and solutions are desired. Isotonic preparations which generally contain suitable preservatives are employed when intravenous administration is desired.
Compounds of this invention may be administered in any of the foregoing compositions and according to dosage regimens established in the art whenever treatment of alcohol abuse and / or addiction is required.

The daily dosage of the products may be varied over a wide range from 0.01 to 150 mg / kg per adult human per day. For oral administration, the compositions are preferably provided in the form of tablets containing, 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 150, 200, 250, 500 and 1000 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. An effective amount of the drug is ordinarily supplied at a dosage level of from about 0.01 mg/kg to about 1500 mg/kg of body weight per day. Preferably, the range is from about 0.1 to about 100.0 mg/kg of body weight per day, more preferably, from about 0.5 mg/kg to about 50 mg/kg, more preferably, from about 1.0 to about 25.0 mg/kg of body weight per day. The compounds may be administered on a regimen of 1 to 4 times per day.

Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular compound used, the mode of administration; the strength of the preparation, the mode of administration, and the advancement of the disease condition. In addition, factors associated with the particular patient being treated, including patient age, weight, diet and time of administration, will result in the need to adjust dosages.

One skilled in the art will recognize that, both in vivo and in vitro trials using suitable, known and generally accepted cell and / or animal models are predictive of the ability of a test compound to treat or prevent a given disorder.

One skilled in the art will further recognize that human clinical trials including first-in-human, dose ranging and efficacy trials, in healthy patients and / or those suffering from a given disorder, may be completed according to methods well known in the clinical and medical arts.
The following Examples are set forth to aid in the understanding of the invention, and are not intended and should not be construed to limit in any way the invention set forth in the claims which follow thereafter.

**Example 1**

((3,4-Dihydro-2H-benzo[b][1,4]dioxepin-3-yl)methyl)sulfamide

(Compound #3)

Catechol (5.09 g, 46.2 mmol) and potassium carbonate were combined in acetonitrile and heated to reflux for one hour. 2-Chloromethyl-3-chloro-1-propene (5.78 g, 46.2 mmol) was added and the reaction was continued at reflux for 24 hours. The solution was cooled to room temperature and filtered. The filtrate was evaporated and the residue was diluted with water and extracted with diethyl ether (3 x). The combined organic solution was dried over MgSO₄ and concentrated. Chromatography (2% ethyl ether in hexane) yielded 3-methylene-3,4-dihydro-2H-benzo[b][1,4]dioxepine as a colorless oil.

MS (ESI): 163.2 (M+H⁺)

$^1$H NMR (300 MHz, CDCl₃), δ: 6.94 (m, 4H), 5.07 (s, 2H), 4.76 (s, 4H).

3-Methylene-3,4-dihydro-2H-benzo[b][1,4]dioxepine (5.00 g, 30.8 mmol)

was dissolved in dry THF (100 mL). Borane-THF (1.0 M in THF, 10.3 mL) was added at 0°C. The reaction was stirred at RT for 5 hours. Aminosulfonic acid (6.97 g, 61.6 mmol) was added. The reaction was heated to reflux overnight. The reaction was cooled to room temperature and aqueous sodium hydroxide (3.0 M, 100 mL) was added. The solution was extracted with ethyl acetate (3 x 100 mL). The combined organic solution was dried over MgSO₄. The solution was concentrated under vacuum and purified by chromatography (2% to 8% methanol in dichloromethane) to yield ((3,4-dihydro-2H-benzo[b][1,4]dioxepin-3-yl)methyl)amine as a colorless oil.

MS (ESI): 180.1 (M+H⁺)
$^1$H NMR (300 MHz, DMSO), δ: 6.92 (m, 4H), 4.21 (m, 2H), 4.07 (m, 2H), 3.33 (broad, 2H), 3.16 (d, $J = 4$ Hz, 1H), 2.72 (d, $J = 4$ Hz, 1H), 2.30 (m, 1H).

((3,4-Dihydro-2H-benzo[b][1,4]dioxepin-3-yl)methyl)amine (2.90 g, 16.2 mmol) and sulfamide (3.11 g, 32.4 mmol) were combined in dry dioxane (60 ml) and heated to reflux overnight. Chloroform was added and the precipitate was removed by filtration. The filtrate was concentrated under vacuum and purified by chromatography (2% to 8% acetone in dichloromethane) to yield the title compound as an off-white solid.

258.8 (M+H$^+$)

$^1$H NMR (300 MHz, DMSO), δ: 6.92 (m, 4H), 6.71 (broad, 1H), 6.59 (broad, 2H), 4.19 (m, 2H), 4.04 (m, 2H), 3.00 (m, 2H), 2.39 (m, 1H).

**Example 2**

**N-(2,3-Dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide (Compound #1)**

![Chemical Structure](image)

Racemic 2,3-dihydro-1,4-benzdioxin-2-ylmethylamine (4.4 g, 26 mmol) and sulfamide (5.1 g, 53 mmol) were combined in 1,4 dioxane (100 mL) and refluxed for 2 h. The reaction was cooled to room temperature and a small amount of solid was filtered and discarded. The filtrate was evaporated in vacuo and the residue was purified using flash column chromatography (DCM:Methanol - 10:1) to yield a white solid. The solid was recrystallized from DCM to yield the title compound as a white solid.

mp: 97.5 – 98.5°C

Elemental Analysis:

Anal Calc:  C, 44.25; H, 4.95; N, 11.47; S, 13.13
Anal Found:  C, 44.28; H, 4.66; N, 11.21; S, 13.15

$^1$H NMR (DMSO d6) δ 6.85 (m, 4H), 6.68 (bd s, 3H, NH), 4.28 (m, 2H), 3.97 (dd, $J = 6.9, 11.4$ Hz, 1H), 3.20 (m, 1H), 3.10 (m, 1H).
Example 3
(Benzo[1,3]dioxol-2-ylmethyl)sulfamide (Compound #2)

Catechol (10.26 g, 93.2 mmol), sodium methoxide (25% by weight in methanol, 40.3 g, 186 mmol), and methyl dichloroacetate (13.3 g, 93.2 mmol) were combined in dry methanol (100 mL). The solution was heated to reflux overnight. The reaction was cooled to room temperature, acidified by addition of concentrated hydrochloric acid and then reduced in volume under vacuum to about 50 mL. Water was added and the mixture was extracted with diethyl ether (3 x 100 mL). The combined organic solution was dried with MgSO₄, concentrated to a brown solid, and chromatographed (2% ethyl acetate in hexane) to yield benzo[1,3]dioxole-2-carboxylic acid methyl ester as a colorless oil.

MS (ESI): 195.10 (M+H⁺).

¹H NMR (300 MHz, CDCl₃), δ: 6.89 (broad, 4H), 6.29 (s, 1H), 4.34 (q, J =7 Hz, 2H), 1.33 (t, J =7 Hz, 3H).

To benzo[1,3]dioxole-2-carboxylic acid methyl ester (7.21 g, 40.0 mmol) was added ammonium hydroxide (29% in water, 10 mL) and enough acetonitrile to make the mixture homogeneous (~5 mL). The solution was stirred for two hours at room temperature and then distilled water was added. Benzo[1,3]dioxole-2-carboxylic acid amide precipitated as a white solid and was collected by filtration and used without further purification.

MS (ESI): 160.00 (M+H⁺)

¹H NMR (300 MHz, DMSO), δ: 7.99 (s, broad, 1H), 7.72 (s, broad, 1H), 6.94 (m, 2H) 6.86 (m, 2H), 6.30 (s, 1H).

Benzo[1,3]dioxole-2-carboxylic acid amide (5.44 g, 32.9 mmol) was dissolved in tetrahydrofuran (THF, 100 mL). Lithium aluminum hydride (LAH, 1M in THF, 39.5 mL, 39.5 mmol) was added slowly to the solution at room temperature. The reaction was stirred at room temperature for 24 hours.

Distilled water was added to destroy the excess LAH. Aqueous sodium
hydroxide (3.0 M, 100 mL) was added and the solution was extracted with ethyl acetate (3 x 100 mL). The combined organic solution was washed with water and dried over MgSO₄. The solvent was evaporated to yield C-benzo[1,3]dioxol-2-yl-methylamine as a colorless oil.

MS (ESI): 152.1 (M+H⁺)

1H NMR (300 MHz, CDCl₃), δ: 6.87 (m, 4H), 6.09 (t, J = 4 Hz, 1H), 3.13 (d, J = 4 Hz, 2H)

C-Benzo[1,3]dioxol-2-yl-methylamine (2.94 g, 19.4 mmol) and sulfamide (3.74 g, 38.9 mmol) were combined in dry dioxane (50 mL) and the solution was heated to reflux overnight. The reaction was concentrated and the residue was chromatographed (2% to 10% acetone in dichloromethane) to yield the title compound as a white solid.

MS (ESI): 230.0 (M+H⁺)

1H NMR (300 MHz, CDCl₃), δ: 6.87 (m, 4H), 6.25 (t, J = 4 Hz, 1H), 4.79 (broad, 1H), 4.62 (broad, 1H), 3.64 (d, J = 4 Hz, 2H).

Example 4
(2S)-(-)-N-(2,3-Dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide
(Compound #4)

Catechol (13.2 g, 0.12 mol) and potassium carbonate (16.6 g, 0.12 mol) were stirred in DMF (250 mL) and (2R)-glycidyl tosylate (22.8 g, 0.10 mol) was added and the reaction was stirred at 60°C for 24 h. The reaction was cooled to room temperature and diluted with ice water (1 L) and extracted with diethyl ether (4 times). The combined organic solution was washed 3 times with 10% potassium carbonate, once with water, once with brine and evaporated in vacuo to yield a white solid which was purified by flash column chromatography (DCM:Methanol – 50:1) to yield ((2S)-2,3-dihydro-benzo[1,4]dioxin-2-yl)-methanol as a solid.
The solid (13.3 g, 68 mmol) was dissolved in pyridine (85 mL) cooled to 0°C, p-toluenesulfonyl chloride (13.0 g, 68 mmol) was added and the reaction mixture stirred at room temperature for 20h. The reaction was diluted with diethyl ether (1 L) and 1N HCl (1.2 L). The organic layer was separated and washed 2 times with 1N HCl (500 mL), 4 times with water (150 mL), once with brine, dried (MgSO₄) and evaporated in vacuo to yield a white solid which was purified by flash column chromatography (Hept:EA – 2:1) to yield toluene-4-sulfonic acid (2S)-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester as a white solid.

The white solid was combined with potassium phthalimide (14.4 g, 78 mmol) in DMF (250 mL) and heated to reflux for 1 h, cooled to room temperature and poured into vigorously stirring water (1.5 L) and stirred 30 min. White solid was filtered and the solid was washed several times with water, 2% NaOH, and water again and let air dry to yield a (2S)-2-(2,3-Dihydro-benzo[1,4]dioxin-2-ylmethyl)-isoindole-1,3-dione as white powdery solid.

The powdery white solid was combined with hydrazine (2.75 g, 86 mmol) in EtOH (225 mL) and heated at reflux for 2 h, cooled to room temperature and 1N HCl added to pH 1.0 and stirred for 15 min. White solid was filtered and washed with fresh EtOH (solid discarded) and the filtrate was evaporated in vacuo to a solid, which was partitioned between diethyl ether and dilute aqueous NaOH. The diethyl ether solution was dried (Na₂SO₄) and evaporated in vacuo to yield a light yellow oil. The oil was purified by flash column chromatography (DCM:MeOH – 10:1) to yield an oil. A portion of the oil (4.82 g, 29 mmol) in 2-propanol (250 mL) was treated with 1N HCl (30 mL) and heated on steambath until homogeneous and then let cool to room temperature. After 3 h, the mixture was ice cooled for 2 h. A white flaky solid (the corresponding HCl salt of (2S)-C-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-methylamine) was filtered off and then recrystallized again from 2-propanol to yield a white solid.

\[\alpha_d = -69.6 \text{ (c = 1.06, EtOH)}\]

The white solid was partitioned between DCM and dilute NaOH, and the DCM was dried (NaSO₄) and evaporated in vacuo to yield (2S)-C-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-methylamine as an oil.
$[\alpha]_D^{\circ} = -57.8$ (c = 1.40, CHCl$_3$)

The oil (2.1 g, 12.7 mmol) and sulfamide (2.44 g, 25.4 mmol) were refluxed in dioxane (75 mL) for 2 h and the crude product was purified by flash column chromatography (DCM:MeOH 10:1) to yield a white solid, which was recrystallized from DCM to yield the title compound as a white crystalline solid.

mp 102-103°C

$[\alpha]_D^{\circ} = -45.1^{\circ}$ (c = 1.05, M);

$^1$H NMR (DMSO-d$_6$) $\delta$ 6.86 (m, 4H), 6.81 (bd s, 3H, NH), 4.3 (m, 2H), 3.97 (dd, J = 6.9, 11.4 Hz, 1H), 3.20 (dd, J = 5.5, 13.7 Hz, 1H), 3.10 (dd, J = 6.9, 13.7 Hz, 1H)

Elemental Analysis:

Anal Calc: C, 44.25; H, 4.95; N, 11.47; S, 13.13

Anal Found: C, 44.20; H, 4.69; N, 11.40; S, 13.22.

Example 5

N-(2,3-Dihydro-benzo[1,4]dioxin-2-ylmethyl)-N',N'-dimethylsulfamide

(Compound #6)

Racemic 2,3-dihydro-1,4-benzodioxin-2-ylmethylamine (8.25 g, 5.0 mmol) and triethylamine (1.52 g, 15 mmol) were combined in DMF (10 mL) and cooled in an ice bath as dimethylsulfamoyl chloride (1.44 g, 10 mmol) was added. The reaction mixture was then stirred for 3 hr with continued cooling. The reaction mixture was partitioned between ethyl acetate and water, and the ethyl acetate solution was washed with brine, dried (MgSO$_4$) and evaporated in vacuo to yield an oil. The oil was purified using flash column chromatography (ethyl acetate:Heptane - 1:1) to yield a white solid, which was recrystallized (ethyl acetate/Hexane) to yield the title compound as a white floccular solid.

mp 76 – 78°C

MS 273 (MH$^+$)
Elemental Analysis:
Anal Calc: C, 48.52; H, 5.92; N, 10.29; S, 11.78
Anal Found: C, 48.63; H, 5.62; N, 10.20; S, 11.90

$^1$H NMR (CDCl$_3$) $\delta$ 6.87 (m, 4H), 4.59 (bd, 1H, NH), 4.35 (m, 1H), 4.27 (dd, J = 2.3, 11.4 Hz, 1H), 4.04 (dd, J = 7.0, 11.4, 1H), 3.36 (m, 2H), 2.82 (s, 6H).

Example 6

N-(2,3-Dihydro-benzo[1,4]dioxin-2-ylmethyl)-N-methylsulfamide

(Compound #7)

Racemic 2,3-dihydro-1,4-benzdioxin-2-ylmethylamine (825 mg, 5 mmol) was dissolved in ethyl formate (15 mL), refluxed for 30 min and evaporated in vacuo to yield N-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-formamide as an oil.

The oil in diethyl ether (25 mL) was treated with 1M LAH in THF (9.0 mL, 9.0 mmol) at 0°C and stirred for 5 h at room temperature. The reaction was cooled in an ice bath and quenched with water (0.50 mL), followed by 3 N NaOH (0.50 mL) and water (0.50 mL). The mixture was then stirred at room temperature for 1 h. Solid was filtered and the filtrate was evaporated in vacuo to yield a residue which was partitioned between 1N HCl and diethyl ether.

The aqueous phase was basified with 1N NaOH and extracted with diethyl ether. The organic phase was dried (MgSO$_4$) and evaporated in vacuo to yield (2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-methyl-amine as an oil.

MS 180 (MH$^+$)

$^1$H NMR (CDCl$_3$) $\delta$ 6.85 (m, 4H), 4.30 (m, 2H), 4.02 (dd, J = 7.9, 11.6 Hz, 1H), 2.85 (m, 2H), 2.50 (s, 3H)

The oil (380 mg, 2.1 mmol) and sulfamide (820 mg, 8.5 mmol) were combined in dioxane (15 mL), refluxed for 1.5 h and evaporated in vacuo to yield a crude residue. The residue was purified via column chromatography.
(ethyl acetate/Heptane 1:1) and the resultant solid was recrystallized from ethyl acetate/Hexane to yield the title compound as a white solid.

mp 97-98°C
MS 257 (M⁻¹)

Elemental Analysis:
Anal Calc: C, 46.50; H, 5.46; N, 10.85; S, 12.41
Anal Found: C, 46.48; H, 5.65; N, 10.90; S, 12.07

¹H NMR (CDCl₃) δ 6.86 (m, 4H), 4.52 (bs, 2H), 4.46 (m, 1H), 4.29 (dd, J = 2.3, 11.5 Hz, 1H), 4.05 (dd, J = 6.5, 11.5 Hz, 1H), 3.51 (dd, J = 6.7, 14.9 Hz, 1H), 3.40 (dd, J = 5.9, 14.9 Hz, 1H), 2.99 (s, 3H).

Example 7

(2S)-(−)-N-(6-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide
(Compound #8)

Following the procedure outlined in Example 4 above, 4-chlorocatechol was reacted to yield a mixture of (2S)-C-(7-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-yl)-methylamine and (2S)-C-(6-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-yl)-methylamine (ca. 3:1 ratio of 6-chloro:7-chloro isomers by RP HPLC).

The mixture was dissolved in 2-propanol (100 mL) and 1N HCl in diethyl ether was added until pH = 1.0 was attained. The hydrochloride salt that precipitated was filtered (2.65 g) and re-crystallized from methanol/IPA to yield white crystals. The white crystals were partitioned between DCM and dilute NaOH. The DCM was dried and evaporated in vacuo to yield purified (2S)-C-(6-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-yl)-methylamine as an oil.

[α]ᵰ = −67.8 (c = 1.51, CHCl₃)

The oil (7.75 mmol) and sulfamide (1.50 g, 15.5 mmol) were combined in dioxane (50 mL) and refluxed for 2.0 h, cooled to room temperature and
evaporated in vacuo to yield a solid. The product was purified via flash column using DCM/methanol 20:1 to yield the title compound as a white solid.

**MS 277 (M⁻¹)**

\[ \alpha_D = -59.9^\circ \ (c = 1.11, \text{M}) \]

[^1]H NMR (CDCl₃) \( \delta \) 6.90 (d, J = 2.2 Hz, 1H), 6.81 (m, 2H), 4.76 (m, 1H), 4.55 (s, 2H), 4.40 (m, 1H), 4.29 (dd, J = 2.4, 11.5 Hz, 1H), 4.05 (dd, J = 7.1, 11.5 Hz, 1H), 3.45 (m, 2H)

Elemental Analysis:

Anal Calc: C, 38.78; H, 3.98; N, 10.05


The filtrates of the crystallized hydrochloride salt of (2S)-C-(6-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-yl)-methylamine prepared above were recovered (ca. 1:1 of 6-chloro:7-chloro isomers) and evaporated in vacuo to yield a solid, which was partitioned between DCM (200 mL) and dilute NaOH (0.5 M, 50 mL). The DCM solution was washed once with brine, dried (Na₂SO₄) and evaporated in vacuo to yield an oil, which was purified via reverse phase HPLC (10 – 50% ACN with 0.16% TFA in water with 0.20% TFA) to yield (2S)-C-(7-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-yl)-methylamine as a residue.

The residue was combined with sulfamide (0.90 g, 9.4 mmol) in dioxane (25 mL) and refluxed for 2.5 h, cooled to room temperature and evaporated in vacuo to yield an oil. The oil was purified by flash column chromatography using DCM/methanol – 10:1 to yield (2S)-(1)-(7-Chloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide as a white solid.

**MS 277 (M⁻¹)**

[^1]H NMR (CDCl₃/CD₃OD) \( \delta \) 6.88 (d, J = 0.7 Hz, 1H), 6.81 (m, 2H), 4.37 (m, 1H), 4.30 (dd, J = 2.3, 11.6 Hz, 1H), 4.04 (dd, J = 7.0, 11.6 Hz, 1H), 3.38 (m, 2H).
Example 8

**Chroman-2-ylmethylsulfamide (Compound #10)**

Chroman-2-carboxylic acid (4.5 g, 25 mmol) and HOBT (3.86 g, 25 mmol) were combined in DCM (40 mL) and DMF (10 mL). Dimethylaminopropyl ethylcarbodiimide (EDC, 4.84 g, 25 mmol) was added at room temperature and the reaction mixture was stirred for 30 min. Ammonium hydroxide (2.26 mL, 33.4 mmol) was added and the reaction mixture was stirred for 16 h. The reaction mixture was diluted with DCM (50 mL) and water (50 mL) and the pH of the mixture was adjusted to about pH = 3.0 with 1N HCl. The DCM was separated and the aqueous phase extracted twice with DCM. The combined DCM phase was dried (Na₂SO₄) and evaporated in vacuo to yield an oil, which was purified with flash column chromatography (ethyl acetate) to yield an oil.

The oil (5.35 g, 30 mmol) in THF (90 mL) was stirred as 1M LAH in THF (36 mL, 36 mmol) was added and the reaction mixture was then stirred at room temperature for 20 h. The reaction was quenched with water, stirred for 2 hours, the solution decanted, dried (Na₂SO₄) and evaporated in vacuo to yield C-chroman-2-ylmethylamine as an oily amine.

The oily amine (1.63 g, 10 mmol) and sulfamide (1.92 g, 20 mmol) were combined in dioxane (50 mL) and brought to reflux for 2 h. The solution was cooled and evaporated in vacuo to yield an oil, which was purified via column chromatography (DCM:Methanol 10:1) to yield a white solid. The solid was recrystallized from ethyl acetate/hexane to yield chroman-2-ylmethylsulfamide as a white solid.

mp 100-101°C

MS 241 (M⁺)

Elemental Analysis:

Anal Calc: C, 49.57; H, 5.82; N, 11.56; S, 13.23

Anal Found: C, 49.57; H, 5.80; N, 11.75; S, 13.33.
**Example 9**

2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-ethylsulfamide (Compound #16)

Potassium cyanide (2.05 g, 31.5 mmol) was added to 2-bromomethyl-(2,3 dihydrobenzo[1,4]dioxine) (6.87 g, 30 mmol) in DMSO (90 mL) and stirred at ambient temperature for 20 h. The reaction mixture was then diluted with water (250 mL) and extracted twice with diethyl ether. The diethyl ether was washed with water, then washed twice with brine, dried (Na₂SO₄) and evaporated in vacuo to yield 2-cyanomethyl-(2,3 dihydrobenzo[1,4]dioxine) as a white solid.

\[ ^1H \text{ NMR (CDCl}_3 \text{)} \delta 6.89 (m, 4H), 4.50 (m, 1H), 4.31 (dd, J = 2.3, 11.5 Hz, 1H), 4.08 (dd, J = 6.2, 11.6 Hz, 1H), 2.78 (d, J = 6.1, Hz, 2H) \]

The 2-cyanomethyl-(2,3 dihydrobenzo[1,4]dioxine) was dissolved in THF (50 mL) and 1M BH₃ in THF (80 mL, 80 mmol) was added and the reaction mixture refluxed for 5 h, then stirred at ambient temperature for 16 h. With ice bath cooling, 2N HCl was added until pH = 1.0 was achieved. The reaction mixture was then stirred for 1h at room temperature and evaporated in vacuo to yield an oil. The oil was partitioned between 3N NaOH and diethyl ether, and the diethyl ether solution was washed with brine, dried (Na₂SO₄) and evaporated in vacuo to yield crude 2-(2,3 dihydrobenzo[1,4]dioxin-2-yl)ethylamine.

MS (M+H)⁺ 180.

The crude 2-(2,3 dihydrobenzo[1,4]dioxin-2-yl)ethylamine in dioxane (100 mL) was combined with sulfamide (3.0 g, 31 mmol) and heated to reflux for 2 h. The solution was cooled and evaporated in vacuo to yield an orange solid, which was purified by column chromatography (DCM:MeOH - 10:1) to yield a white solid. The solid was re-crystallized from DCM to yield the title compound as a solid.

MS (M-1) 257
MP 101 - 103°C (corr)

$^1$H NMR (CDCl$_3$): $\delta$ 6.86 (m, 4H), 4.70 (m, 1H), 4.52 (s, 2H), 4.30 (m, 2H), 3.94 (dd, J = 7.4, 11.3 Hz, 1H), 3.43 (dd, J = 6.4, 12.9 Hz, 2H), 1.94 (dd, J = 6.5, 12.9, 2H).

Elemental Analysis:

Measured: C, 46.48; H, 5.60; N, 10.81; S, 12.41
Calculated: C, 46.50; H, 5.46; N, 10.85; S, 12.41

**Example 10**

(2S)-(-)-N-(6,7 Dichloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide (Compound #29)

4,5 Dichloroatechol (8.6 g, 48 mmol) and potassium carbonate (6.64 g, 48 mmol) were stirred in DMF (200 mL). (2R)-Glycidyl tosylate (9.12 g, 40 mmol) was added and the reaction mixture was stirred at 60°C for 24 h. The reaction mixture was cooled to room temperature and then diluted with ice water (600 mL) and extracted with diethyl ether (4 times). The combined organic solution was washed 3 times with 10% potassium carbonate, twice with brine, dried (MgSO$_4$) and evaporated in vacuo to yield a viscous oil of (2S)-2-(6,7-dichloro-2,3-dihydro-benzo[1,4]dioxine) methanol.

The (2S)-2-(6,7 dichloro-2,3-dihydro-benzo[1,4]dioxine) methanol oil (6.4 g, 27 mmol) was dissolved in pyridine (50 mL) cooled to 0°C. Then, $p$-toluenesulfonyl chloride (5.2 g, 27 mmol) was added and the reaction mixture was stirred at room temperature for 20 h. The reaction mixture was diluted with diethyl ether and 1N HCl (750 mL) and the organic layer was separated and washed 2 times with 1N HCl (250 mL), once with water (150 mL), twice with brine, dried (MgSO$_4$) and evaporated in vacuo to yield light yellow solid of toluene-4-sulfonic acid (2S)-6,7-dichloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester.
\(^1\)H NMR (CDCl\(_3\)): \(\delta 7.79\) (d, \(J = 8.3\) Hz, 2H), 7.36 (d, \(J = 8.0\) Hz, 2H), 6.94 (s, 1H), 6.83 (s, 1H), 4.37 (m, 1H), 4.2 (m, 3H), 4.03 (dd, \(J = 6.3, 11.7\) Hz, 1H), 2.47 (s, 3H).

Toluene-4-sulfonic acid (2S)-6,7-dichloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester (8.0 g, 20.5 mmol) was combined with potassium phthalimide (6.1 g, 33 mmol) in DMF (75 mL) and heated to reflux for 1 h, cooled to room temperature and poured into vigorously stirring water (0.5 L) and then stirred 30 min. White solid was filtered and the solid was washed several times with water, 2% NaOH, and water again and then let air dry to yield (2S)-2-(6,7-dichloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-isoindole-1,3-dione (6.0 g, 80%) as a white powdery solid.

The white powdery solid was combined with hydrazine (1.06 g, 33 mmol) in EtOH (80 mL) and heated at reflux for 2 h, then cooled to room temperature. 1N HCl was added to adjust the reaction mixture’s pH to pH 1.0 and the reaction mixture was then stirred for 15 min. White solid was filtered and washed with fresh EtOH (solid discarded) and the filtrate was evaporated in vacuo to a solid, which was partitioned between diethyl ether and dilute aqueous NaOH. The diethyl ether solution was dried (Na\(_2\)SO\(_4\)) and evaporated in vacuo to yield a viscous oil of (2S)-2-aminomethyl-(6,7-dichloro-2,3-dihydro-benzo[1,4]dioxine).

\(^1\)H NMR (CDCl\(_3\)): \(\delta 6.98\) (s, 1H), 6.96 (s, 1H), 4.25 (dd, \(J = 2.0, 11.2\) Hz, 1H), 4.15 (m, 1H), 4.0 (m, 1H), 2.97 (d, \(J = 5.5\) Hz, 2H)

A portion of the oil (3.8 g, 16 mmol) and sulfamide (3.1 g, 32.4 mmol) were refluxed in dioxane (100 mL) for 2 h and the crude product was purified by flash column chromatography (DCM:MeOH 20:1) to yield the title compound as a white solid, which was recrystallized from ethyl acetate / hexane to yield the title compound as a white crystalline solid.

MS [M-H]\(^-\) 311.0

mp 119-121°C

[\(\alpha\)]\(_D\) = -53.4 ° (c = 1.17, M)

\(^1\)H NMR (DMSOd6): \(\delta 7.22\) (s, 1H), 7.20 (s, 1H), 6.91 (bd s, 1H), 6.68 (bd s, 2H), 4.35 (m, 2H), 4.05 (dd, \(J = 6.5, 11.5\) Hz, 1H), 3.15 (m, 2H)

Elemental Analysis:
Elemental Analysis:
Measured: C, 34.52; H, 3.22; N, 8.95; Cl, 22.64; S, 10.24
Calculated: C, 34.64; H, 2.68; N, 8.87; Cl, 22.94; S, 10.35.

**Example 11**

*(2S)-(−)-N-(7-Amino-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide*

*(Compound #36)*

(2S)-(−)-N-(2,3-Dihydro-7-nitro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide

(1.2 g, 4.15 mmol), was prepared from 4-nitrocatechol according to the process outlined in Example 4. The (2S)-(−)-N-(2,3-Dihydro-7-nitro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide, was then combined with 10% Pd/C in methanol (120 mL) and shaken under hydrogen atmosphere (39 psi) at room temperature for 3 h. The solids were filtered and washed with 10% M in DCM and the filtrate was evaporated in vacuo to yield crude product. The crude product was dissolved in 0.2 N HCl (25 mL), frozen and lyophilized to yield the title compound as a white flaky solid, as the corresponding hydrochloride salt.

MS (M+H)^+ 260

^1^H NMR (DMSO d6): δ 10.2 (bd s, 3H), 6.86 (m, 1H), 6.85 (s, 1H), 6.74 (dd, J = 2.5, 8.4 Hz, 1H), 4.22 (m, 2H), 3.88 (dd, J = 6.7, 11.4 Hz, 1H), 3.04 (m, 2H)

**Example 12**

*(2S)-(−)-N-(7-Methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide*

*(Compound #19)*

H₃C
Title compound was prepared according to the procedure described in Example 4 above, starting with 4-methylcatechol, to yield a white solid, which was recrystallized from ethyl acetate/ hexane to yield the title compound as a white solid.

5  
MS [M-H]− 257

1H NMR (CDCl3): δ 6.76 (m, 1H), 6.66 (m, 2H), 4.80 (m, 1H), 4.57 (bd s, 1H), 4.40 (m, 1H), 4.28 (m, 1H), 4.03 (dd, J = 6.9, 11.4 Hz, 1H), 3.45 (m, 2H), 2.25 (s, 3H).

Elemental Analysis

10  
Calculated:  C, 46.50; H, 5.46; N, 10.85; S, 12.41

Found:  C, 46.65; H, 5.60; N, 10.84; S, 12.61.

Example 13

Alcohol Preferring Rats In Vivo Model

15  
Adult male selectively-bred alcohol preferring rats (which are known in the art to be useful for the study of the effect of test compounds on voluntary alcohol intake) were grouped into three groups: vehicle and Compound #8 (50 and 100 mg/kg, po). Rats were housed individually in wire mesh cages under a constant room temperature of 22±1°C and 12:12 light-dark cycle (8:00-20:00, dark). The animals were fed Agway Prolab Rat/Mouse/ Hamster 3000 formula and water ad libitum.

Alcohol intake was determined using the standard two-bottle choice method. Animals were first given free access to water in a graduated Richter tube for 2 days. Then they were given access to only a solution of 10% (v/v) ethanol for 3 consecutive days. During this period animals became accustomed to drinking from Richter tubes and to the taste and pharmacological effects of alcohol. Thereafter, they were given free access to both water and a solution of 10% alcohol for at least 4 consecutive weeks and throughout the study period. Rats had free access to food. Water and alcohol intake were recorded at 4, 6 and 24 hours after the treatment, whereas food intake was measured at 24 hour. Animals' body weight was measured every day.
After establishment of a stable baseline for alcohol, food, and water intake, rats were administered either vehicle or Compound #8 via oral gavage using a cross-over design with random assignment. To be able to compare the efficacy of these compounds on alcohol intake with an established FDA-approved drug, naltrexone, was included as a positive control. Same rats were given an oral dose of naltrexone (20mg/kg). The interval between treatments was at least 3 days. Alcohol and water intake were recorded 4, 6 and 24 h after the drug administration and food intake was recorded at 24 hr. A total of 8-10 animals per group were used.

The results below are presented as means ±SEM. Alcohol intake (g/kg) was calculated by multiplying the volume of alcohol consumed in ml by 10% and 0.7893 (ethanol density)/body weight in kg. Alcohol preference, expressed as percentage, was calculated as follows: (volume of alcohol consumed in ml/total fluid intake in ml) x 100 (Rezvani and Grady, 1994; Rezvani et al., 1997). Statistical differences between drug-treated and control groups were determined by using ANOVA and Turkey Student’s t test for multiple comparison.

As shown in Table 4 below, Compound #8 decreased ethanol consumption in alcohol-preferring rats at 6 h (@ 50 and 100 mg/kg dose) post-dosing.

Table 4: Results – Alcohol Preferring Rats Assay

<table>
<thead>
<tr>
<th>Measure</th>
<th>Vehicle</th>
<th>Naltrexone (20 mg/kg)</th>
<th>Compound #8 (50 mg/kg)</th>
<th>Compound #8 (100 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hr Ethanol</td>
<td>2.36 ± 0.49</td>
<td>0.77 ± 0.24*</td>
<td>1.28 ± 0.25*</td>
<td>1.33 ± 0.17*</td>
</tr>
<tr>
<td>6 hr Preference</td>
<td>75 ± 8</td>
<td>64 ± 12</td>
<td>67 ± 11</td>
<td>75 ± 8</td>
</tr>
<tr>
<td>6 hr Water</td>
<td>3.8 ± 1.5</td>
<td>1.3 ± 0.6</td>
<td>2.2 ± 0.7</td>
<td>3.7 ± 1.1</td>
</tr>
<tr>
<td>24 hr Ethanol</td>
<td>5.56 ± 0.33</td>
<td>4.48 ± 0.57</td>
<td>4.79 ± 0.5</td>
<td>4.35 ± 0.66</td>
</tr>
<tr>
<td>24 hr Preference</td>
<td>80 ± 3</td>
<td>76 ± 9</td>
<td>77 ± 7</td>
<td>70 ± 9</td>
</tr>
<tr>
<td>24 hr Water</td>
<td>8.2 ± 2.7</td>
<td>5.1 ± 1.9</td>
<td>5.3 ± 2</td>
<td>8.6 ± 2.3</td>
</tr>
<tr>
<td>24 hr Food</td>
<td>20.3 ± 1.1</td>
<td>18.9 ± 1.2</td>
<td>20.9 ± 0.9</td>
<td>18.9 ± 1.2</td>
</tr>
</tbody>
</table>

**Example 14**

As a specific embodiment of an oral composition, 100 mg of the Compound #8 prepared as in Example 7 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size 0 hard gel capsule.

While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations and/or modifications as come within the scope of the following claims and their equivalents.
We Claim:

1. A method for treating substance abuse or addiction comprising administering to a subject in need thereof, a therapeutically effective amount of a compound of formula (I)

\[
\text{\text{(I)}}
\]

wherein

- \( R^1 \) and \( R^2 \) are each independently selected from the group consisting of hydrogen and lower alkyl;
- \( R^4 \) is selected from the group consisting of hydrogen and lower alkyl;
- \( a \) is an integer from 1 to 2;

is selected from the group consisting of

\[
\text{\text{(R}^5_b\text{)}}
\]

\[
\text{\text{(R}^5_c\text{)}}
\]

wherein \( b \) is an integer from 0 to 4; and wherein \( c \) is an integer from 0 to 2;
each $R^5$ is independently selected from the group consisting of halogen, lower alkyl and nitro;

provided that when

Then $a$ is 1;

or a pharmaceutically acceptable salt thereof.

2. The method as in Claim 1, wherein

$R^1$ and $R^2$ are each independently selected from the group consisting of hydrogen and lower alkyl;

$R^4$ is selected from the group consisting of hydrogen and lower alkyl;

$a$ is an integer from 1 to 2;
wherein b is an integer from 0 to 2; and wherein c is an integer from 0 to 1;

5 each R^6 is independently selected from the group consisting of halogen, lower alkyl and nitro;

provided that when \( \text{R} \) is

or

\( \text{R} \), then a is 1;

or a pharmaceutically acceptable salt thereof.

3. The method as in Claim 2, wherein

\( R^1 \) and \( R^2 \) are each independently selected from the group consisting of hydrogen and lower alkyl;

\( R^4 \) is selected from the group consisting of hydrogen and lower alkyl;

15 a is an integer from 1 to 2;

\( \text{R} \) is selected from the group consisting of
wherein b is an integer from 0 to 2; and wherein c is 0;
each $R^5$ is independently selected from the group consisting of halogen,
lower alkyl and nitro;

provided that when

is

, then a is 1;
or a pharmaceutically acceptable salt thereof.

4. The method as in Claim 3, wherein

$R^1$ and $R^2$ are each independently selected from the group consisting of hydrogen and lower alkyl;

$R^4$ is selected from the group consisting of hydrogen and methyl;
a is an integer from 1 to 2;

2,3-dihydro-benzo[1,4]dioxinyl), 2-(2,3-dihydro-naphtho[2,3-b][1,4]dioxinyl) and
2-(4-methyl-benzo[1,3]dioxolyl);

provided that when [R] is 2-(3,4-dihydro-2H-benzo[1,4]dioxepinyl),
then a is 1;

or a pharmaceutically acceptable salt thereof.

5. The method as in Claim 4, wherein
   R¹ and R² are each independently selected from the group consisting of
   hydrogen and methyl;
   R⁴ is selected from the group consisting of hydrogen and methyl;
   a is an integer from 1 to 2;

   [R] is selected from the group consisting of 2-(benzo[1,3]dioxolyl), 2-(2,3-
   dihydro-benzo[1,4]dioxinyl), 2-(2,3-dihydro-benzo[1,4]dioxinyl), 2-(6-chloro-2,3-
   dihydro-benzo[1,4]dioxinyl), 2-(7-chloro-2,3-dihydro-benzo[1,4]dioxinyl), 2-(7-
   methyl-2,3-dihydro-benzo[1,4]dioxinyl), 2-(6-bromo-2,3-dihydro-
   benzo[1,4]dioxinyl) and 2-(6,7-dichloro-2,3-dihydro-benzo[1,4]dioxinyl);
   or a pharmaceutically acceptable salt thereof.

6. The method of Claim 1, wherein the compound of formula (I) is selected
   from the group consisting of (2S)-( )-N-(6-chloro-2,3-dihydro-benzo[1,4]dioxin-
   2-ylmethyl)-sulfamide; and pharmaceutically acceptable salts thereof.

7. The method of Claim 1 wherein the substance of abuse or addiction is
   selected from the group consisting of alcohol, cocaine, heroin,
   methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone,
   codeine and morphine.

8. The method of Claim 1, wherein the substance of abuse or addiction is
   selected from the group consisting of alcohol, cocaine, heroin,
   methamphetamine and nicotine.
9. The method of Claim 1, wherein the substance of abuse or addiction is alcohol or nicotine.

10. The method of Claim 1, wherein the substance of abuse or addiction is alcohol.

11. A method of treating substance abuse or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound selected from the group consisting (2S)-(−)-N-(6-chloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide; and pharmaceutically acceptable salts thereof.

12. The method of Claim 11, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstasy, nicotine, oxycontin / oxycodone, codeine and morphine.

13. The method of Claim 11, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine and nicotine.

14. The method of Claim 11, wherein the substance of abuse or addiction is alcohol or nicotine.

15. The method of Claim 11, wherein the substance of abuse or addiction is alcohol.

16. A method for the treatment of alcohol abuse or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (II)
or a pharmaceutically acceptable salt thereof.

17. The method of Claim 16, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstasy, nicotine, oxycontin / oxycodone, codeine and morphine.

18. The method of Claim 16, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine and nicotine.

19. The method of Claim 16, wherein the substance of abuse or addiction is alcohol or nicotine.

20. The method of Claim 16, wherein the substance of abuse or addiction is alcohol.