
(12) STANDARD PATENT (11) Application No. AU 2017367772 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Generating, accessing, and displaying lineage metadata

(51) International Patent Classification(s)
G06F 16/22 (2019.01)

(21) Application No: 2017367772 (22) Date of Filing: 2017.12.01

(87) WIPO No: WO18/102691

(30) Priority Data

(31) Number (32) Date (33) Country
62/428,860 2016.12.01 US

(43) Publication Date: 2018.06.07
(44) Accepted Journal Date: 2020.05.14

(71) Applicant(s)
Ab Initio Technology LLC

(72) Inventor(s)
Clemens, David;Radivojevic, Dusan;Galarneau, Neil

(74) Agent / Attorney
RnB IP Pty Ltd, PO Box 9530, Deakin, ACT, 2600, AU

(56) Related Art
LUCAS ZAMBOULIS ED - HOWARD WILLIAMS ET AL, XML Data Integration
by Graph Restructuring, KEY TECHNOLOGIES FOR DATA MANAGEMENT;
[LECTURE NOTES], SPRINGER-VERLAG, BERLIN/HEIDELBERG, PAGE(S) 57
71, (2004-06-19)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization I~I~~~DDDIIDIIIIIDD~IDIID~~~DD~I

International Bureau (10) International Publication Number

(43) International Publication Date W O 2018/102691 Al
07 June 2018 (07.06.2018) W IPO I PCT

(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
G06F 17/30 (2006.01) DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,

(21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

PCT/US2017/064227 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
01 December 2017 (01.12.2017) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
62/428,860 01 December 2016(01.12.2016) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Applicant: AB INITIO TECHNOLOGY LLC [US/US]; EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

201 Spring Street, Lexington, Massachusetts 02421 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Inventors: CLEMENS, David; 18 Middlesex St., Cam- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

bridge, Massachusetts 02140 (US). RADIVOJEVIC, Du- KM, ML, MR, NE, SN, TD, TG).
san; 140 Weyland Circle, North Andover, Massachusetts
01845 (US). GALARNEAU, Neil; 2 Shrewsbury Road, Published:

West Roxbury, Massachusetts 02132 (US). - with international search report (Art. 21(3))
(- before the expiration of the time limit for amending the
(74)Agent: GERRATANA, Frank, L. et al.; Fish & claims and to be republished in the event of receipt of

Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota amendments (Rule 48.2(h))
55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: GENERATING, ACCESSING, AND DISPLAYING LINEAGE METADATA

(57) Abstract: Among other things, we describe a method of receiving a portion of
metadata from a data source, the portion of metadata describing nodes and edges;
generating instances of a data structure representing the portion of metadata, at least
one instance of the data structure including an identification value that identifies a
corresponding node, one or more property values representing respective properties

11 nof the corresponding node, and one or more pointers to respective identification val
LineageMetadata ues, each pointer representing an edge associated with a node identified by the cor

ouery responding respective identification value; storing the instances of the data structure
in random access memory; receiving a query that includes an identification of at least

one particular element of data; and using at least one instance of the data structure
to cause a display of a computer system to display a representation of lineage of the
particular element of data.

- 124

126 128

Metadata
Dataoas

106

FIG. 1B

WO 2018/102691 PCT/US2017/064227

GENERATING, ACCESSING, AND DISPLAYING LINEAGE
METADATA

TECHNICAL FIELD

This application relates to data structures and methods for generating, accessing,

and displaying lineage metadata, e.g. lineage of an element of data stored in a data

storage system.

BACKGROUND

Enterprises use data processing systems, such as data warehousing, customer

relationship management, and data mining, to manage data. In many data processing

systems, data are pulled from many different data sources, such as database files,

operational systems, flat files, the Internet, and other sources into a central repository.

Often, data are transformed before being loaded in the data system. Transformation may

include cleansing, integration, and extraction. To keep track of data, its sources, and the

transformations that have happened to the data stored in a data system, metadata can be

used. Metadata (sometimes called "data about data") are data that describe other data's

attributes, format, origins, histories, inter-relationships, etc. Metadata management can

play a central role in complex data processing systems.

Sometimes a user may want to investigate how certain data are derived from

different data sources. For example, a user may want to know how a dataset or data

object was generated or from which source a dataset or data object was imported. Tracing

a dataset back to sources from which it is derived is called data lineage tracing (or

"upstream data lineage tracing"). Sometimes a user may want to investigate how certain

datasets have been used (called "downstream data lineage tracing" or "impact analysis"),

for example, which application has read a given dataset. A user may also be interested in

knowing how a dataset is related to other datasets. For example, a user may want to know

if a dataset is modified, what tables will be affected.

Lineage, which is a kind of metadata, enables a user to obtain answers to

questions about data lineage (e.g., "Where did a given value come from?" "How was the

output value computed?" "Which applications produce and depend on this data?"). A

1

WO 2018/102691 PCT/US2017/064227

user can understand the consequences of proposed modifications (e.g., "If this piece

changes, what else will be affected?" "If this source format changes, which applications

will be affected?"). A user can also obtain questions to answers involving both technical

metadata and business metadata (e.g., "Which groups are responsible for producing and

using this data?" "Who changed this application last?" "What changes did they make?").

The answers to these questions can assist in analyzing and troubleshooting

complex data processing systems. For example, if an element of data has an unexpected

value, any number of prior inputs or data processing steps might be responsible for this

unexpected value. Accordingly, lineage is sometimes presented to a user in the form of a

diagram that includes a visual element representing an element of data of interest, as well

as visual elements representing other elements of data that affect or are affected by the

element of data of interest. A user can view this diagram and visually identify other

elements of data and/or transformations that affect the element of data of interest. As an

example, by using this information, the user can see whether any of the elements of data

and/or transformations may be a source of unexpected values, and correct (or flag for

correction) any of the underlying data processing steps if problems are discovered. As

another example, by using this information, the user can identify any elements of data or

transformations that may be essential to a portion of the system (e.g., such that the

element of data of interest would be affected by their removal from the system), and/or

elements of data or transformations that may not be essential to a portion of the system

(e.g., such that the element of data of interest would not be affected by their removal

from the system).

SUMMARY

Among other things, we describe a method performed by a data processing

apparatus, the method including receiving a portion of metadata from a data source, the

portion of metadata describing nodes and edges, at least some of the edges each

representing an effect of one node upon another node, each edge having a single

direction; generating instances of a data structure representing the portion of metadata, at

least one instance of the data structure including an identification value that identifies a

corresponding node, one or more property values representing respective properties of the

corresponding node, and one or more pointers to respective identification values, each

2

WO 2018/102691 PCT/US2017/064227

pointer representing an edge associated with a node identified by the corresponding

respective identification value; storing the instances of the data structure in random

access memory; receiving a query that includes an identification of at least one particular

element of data; and using at least one instance of the data structure to cause a display of

a computer system to display a representation of lineage of the particular element of data.

These techniques can be implemented in a number of ways, including as a

method, system, and/or computer program product stored on a computer readable storage

device.

Aspects of these techniques can include one or more of the following advantages.

Lineage metadata can be stored using a special-purpose data structure designed for speed

and efficiency when responding to queries for lineage metadata. Lineage metadata can be

stored in memory, such that a computer system storing the lineage metadata can respond

to queries for lineage metadata more quickly than if the lineage metadata were not stored

in memory (e.g., if the lineage metadata were stored in and accessed from a hard disk or

another kind of storage technique). Using the techniques described herein, lineage data

can be retrieved much faster than other techniques, e.g., 500 times faster.

DESCRIPTION OF DRAWINGS

FIGS. 1A-1D show a metadata processing environment.

FIGS. 2A-2E show examples of information displayed in a metadata viewing

environment.

FIG. 3 shows an example data structure.

FIG. 4 shows an example walk plan.

FIG. 5A shows a flowchart representing a procedure for storing lineage metadata

in a form defined by a special-purpose data structure.

FIG. 5B shows a flowchart representing a procedure for causing lineage metadata

to be displayed.

FIG. 6 shows a flowchart representing a procedure for traversing lineage metadata

stored in the form of special-purpose data structures.

Like reference symbols in the various drawings indicate like elements.

3

WO 2018/102691 PCT/US2017/064227

DESCRIPTION

A system that manages access to metadata can receive a query from a user

requesting lineage of a particular element of data and, in response, deliver a diagram

representing lineage of the element of data. If the element of data belongs to a data

storage system that stores a relatively large amount of data, the system that manages

access to the metadata may need to expend a large amount of processing time in order to

process the lineage of the element of data and generate the corresponding diagram.

However, the processing can be sped up and made more efficient by introducing a system

that is dedicated to processing lineage metadata and optimized for this kind of processing.

Accordingly, this specification describes a technique by which a specialized system is

used for the purpose of processing and storing lineage metadata in a manner that is

typically faster and more efficient than if the specialized system were not used.

FIG. 1A shows a metadata processing environment 100 that includes a lineage

server 102 which stores and provides lineage metadata to other systems in the

environment. The metadata processing environment 100 also includes a metadata server

104 which typically responds to requests for metadata. The metadata server 104 has

access to metadata 106 stored in a metadata database 108. The metadata 106 comes from

data sources 110A-C which contribute metadata 112A-C to the metadata database 108 on

an ongoing basis. For example, the data sources 110A-C may be any combination of

relational databases, flat files, network sources, and so on.

In use, the metadata server 104 responds to a query 114 received from a user

terminal 116 operated by a user 118. For example, the user terminal 116 could be a

computing device such as a personal computer, laptop computer, tablet device,

smartphone, etc. In some examples, the user terminal 116 operates a network-based user

application such as a web browser, e.g., if the metadata server 104 is configured to

provide access to data over a network and includes, or communicates with, a web server

that can interface with the web browser. In general, many of the interactions between

computer systems described herein may take place using the Internet or a similar

communications network using communications protocols commonly used on these kinds

of networks.

4

WO 2018/102691 PCT/US2017/064227

The metadata server 104 is configured to respond to queries for multiple kinds of

metadata. Because one kind of metadata is lineage metadata, the metadata server 104 can

process a query 114 that requests lineage of a particular element of data, e.g., an element

of data 120 stored by one of the data sources 110A-C, by accessing metadata 106 stored

in the metadata database 108 describing the lineage of the particular element of data. The

metadata server 104 can then provide lineage metadata 122 to the user terminal 116, e.g.,

lineage metadata in the form of a lineage diagram (described below with respect to FIGS.

2A-2E).

In some examples, processing a query 114 related to lineage metadata is a task

that takes a relatively large amount of processing time and/or uses a relatively large

amount of processing resources of the metadata server 104. For example, in order to

process the query 114, the metadata server 104 may need to access metadata 106 stored

in the metadata database 108. In this example, the metadata server 104 would need to

spend processing resources generating queries to the metadata database 108 in order to

access all of the required metadata. Further, the process of transmitting a query to the

metadata database 108 and waiting for a response introduces latency, e.g.,

communications network latency. Additionally, in some examples, the metadata server

104 would need to process the metadata received from the metadata database 108 in order

to extract metadata needed to create a lineage diagram. For example, the metadata

received from the metadata database 108 may include information not directly pertinent

to lineage of an element of data of interest, since the metadata database 108 stores a

variety of kinds of metadata beyond lineage metadata, and so additional processing time

is used to identify and remove the information not pertinent to lineage.

In some implementations, the lineage server 102 is used to provide lineage

metadata to the metadata server 104, e.g., to improve performance of the metadata

processing environment 100. The lineage server 102 is a specialized system that stores

lineage metadata 124 in a form that can be typically accessed faster and more efficiently

than techniques that do not use a lineage server. In particular, the lineage server 102

stores lineage metadata 124 using a special-purpose data structure designed for speed and

efficiency when responding to queries for lineage metadata. A data structure defines an

arrangement of data, such that all data stored using a particular data structure is arranged

5

WO 2018/102691 PCT/US2017/064227

in the same manner. The data structure technique is described in further detail below with

respect to FIG. 3.

In use, the lineage server 102 transmits queries 126 to the metadata database 108

in order to retrieve lineage metadata 128. The lineage server 102 ideally stores a

comprehensive body of lineage metadata, e.g., for most or all of the data elements 120

stored by the data sources 110A-C. In this way, the lineage server 102 can respond to

queries for lineage for most of the data elements 120 for which a query might be made.

As the lineage server 102 receives lineage metadata 128 from the metadata database 108,

the lineage server 102 updates its data structures containing stored lineage metadata 124.

In some examples, the lineage server 102 sends new queries 126 to the metadata database

108 on regular intervals, e.g., every hour or every day or another interval, in order to

store a relatively up-to-date body of lineage metadata. For example, the intervals can be

scheduled intervals, e.g., corresponding to schedule data maintained by the lineage server

102.

As shown in greater detail in FIG. 1B, the metadata server 104 receives a query

114 for lineage metadata (e.g., a query for lineage metadata that can be used to display a

lineage diagram on the user terminal 116), the metadata server 104 can provide the query

114 to the lineage server 102. The lineage server can then return lineage metadata 122

responsive to the query 114. The metadata server 104 need not expend as much

processing time and use as many processing resources preparing the received lineage

metadata 122 before providing it to the user terminal 116, compared to lineage metadata

retrieved using other techniques such as retrieving the lineage metadata from the

metadata database 108.

FIGS. IC and ID show elements of the lineage server 102 and metadata server

104 and the way in which they interact. As described above, the metadata server 104

receives a query 114 that requests lineage of a particular element of data. The query 114

identifies the particular data element (e.g., one of the data elements 120 of FIG. 1A) for

which lineage is requested. The metadata server 104 uses the identity of the data element

to select a walk plan 130 from a set of walk plans 132 that can be used to gather lineage

metadata related to the data element. A walk plan 130 is a data structure (e.g., a

structured document containing tagged portions, such as an XML document) which

6

WO 2018/102691 PCT/US2017/064227

describes how to traverse ("walk") a set of lineage metadata in a particular manner. In

some examples, a walk plan can be selected based on a data type of the data element. For

example, a particular data type can be associated with a particular one of the walk plans

132 (e.g., an association stored in an index of associations accessible to the metadata

server 104). The walk plans 132 are described in detail below with respect to FIG. 4.

Once a walk plan 130 has been selected, the metadata server 104 transmits the

query 114 and the walk plan 130 to the lineage server 102. In response, the lineage server

102 identifies lineage metadata relevant to the query 114 among its data structures 134 of

lineage metadata. The data structures 134 are a representation of lineage metadata

arranged in a way that minimizes the amount of storage space needed to contain them,

without omitting any data that is needed to respond to a query for lineage metadata. Thus,

the lineage server 102 can typically use the data stored in its data structures 134 to

provide the metadata server 104 all of the lineage metadata that the metadata server 104

would need to respond to a query 114. The data structures 134 are described in detail

below with respect to FIG. 3.

In some implementations, the data structures 134 are loaded in memory 135 of the

lineage server 102 for fast access (e.g., fast reading and writing of data). One example of

memory is random access memory. Random access memory stores items of data in a

manner such that each item of data can be accessed in substantially the same amount of

time as any other item of the same size (e.g., a byte or a word). In contrast, other types of

data storage, such as magnetic disks, have physical constraints that cause some items of

data to take longer to access than other elements of data, depending on the current

physical state of the disk (e.g., the position of a magnetic read/write head). Items of data

stored in random access memory are typically stored at an address unique to that item of

data or shared among a small number of items of data. Random access memory is

typically volatile, such that data stored in random is lost if the random access memory is

disconnected from an active power source (e.g., a computer system loses power). In

contrast, magnetic disks and some other kinds of data storage is non-volatile and retains

data absent an active power source.

Because the lineage server 102 stores the data structures 134 in memory 135, the

lineage server 102 can read and write lineage metadata faster than techniques that do not

7

WO 2018/102691 PCT/US2017/064227

store the data structures in memory 135. In particular, the data structures 134 are arranged

in a way that minimizes the amount of data use. For example, the data structures 134 may

omit data such as text strings present in the original lineage metadata obtained from the

metadata server 104. Thus, all of the data structures 134, e.g., all of the data representing

lineage metadata, can be stored in memory 135 while the lineage server 102 is in use.

Computer systems typically have constraints on the amount of random access memory

that can be used at a given time (e.g., due to addressing limitations). Further, random

access memory tends to be more expensive on a per-byte basis than other types of data

storage (e.g., magnetic disk). Thus, if random access memory is used, the data structures

134 may have an upper limit to their combined size on a particular computer system.

Accordingly, the techniques described herein (e.g., the techniques described below with

respect to FIG. 3) minimize their size but retain information with respect to lineage that

may be requested by a query 114.

In some implementations, the metadata server 104 also stores lineage metadata

137 (e.g., lineage metadata received from the metadata database 108 shown in FIG. 1A).

However, the metadata server 104 does not store most of its stored lineage metadata 137

in random access memory, e.g., because the metadata server 104 does not use the data

structures of the lineage server 102. Thus, even if the metadata server 104 also stores

some lineage metadata 137, the metadata server 104 can access the lineage metadata 124

of the lineage server 102 to obtain any metadata not stored locally at the metadata server

104. If the lineage server 102 were not used, a metadata server 104 storing some lineage

metadata 137 typically would access lineage metadata stored in the metadata database

108 (FIG. 1A), which, as described above, may have performance disadvantages

compared to using the lineage server 102.

Although random access memory is used here as the primary example, other types

of memory can be used with the lineage server 102. For example, another kind of

memory is flash memory. Unlike random access memory, flash memory is non-volatile.

However, flash memory typically has constraints on accessing items of data. Some types

of flash memory are configured in a way that a collection of data items (e.g., blocks of

data items) is the smallest unit of data that can be accessed at a time, as opposed to

individually accessible data items. For example, in order to delete an item of data on

8

WO 2018/102691 PCT/US2017/064227

some types of flash memory, an entire block must be deleted. The remaining items of

data can be re-written to the flash memory to preserve them.

The lineage server 102 uses the walk plan 130 to traverse the data structures 134

and collect lineage metadata stored in the data structures that is responsive to the query

114. As shown in FIG. ID, the lineage server 102 then sends a response 138 containing

the lineage metadata 139 back to the metadata server 104. The metadata server 104 can

use the lineage metadata 139 to generate its own response 140 to the query 114. The

response 140 could take one of several forms. In some examples, the response 140

contains the same lineage metadata 139 received from the lineage server 102, e.g., in a

form with minimal post-processing. In some examples, the metadata server 104 performs

post-processing on the lineage metadata 139. For example, the metadata server 104 may

change the form of the lineage metadata 139 to a human-readable form, e.g., if the

lineage metadata 139 is received in an encoded format that is not human-readable. In

some examples, the metadata server 104 generates a lineage diagram based on the lineage

metadata 139 and incorporates data representing the lineage diagram into the response

140. In some examples, the response 140 is transmitted to the user terminal 116 (FIG.

1A), e.g., if the response 140 is a lineage diagram (as described in detail below with

respect to FIGS. 2A-2E). In some examples, the response 140 is transmitted to an

intermediate system before it is transmitted to the user terminal and/or processed into a

form suitable for transmission to the user terminal.

FIG. 2A shows an example of information displayed in a metadata viewing

environment. In some examples, the metadata viewing environment is an interface that

executes on a user terminal, e.g., the user terminal 116 shown in FIG. 1A. In the example

of FIG. 2A, the metadata viewing environment displays information related to a data

lineage diagram 200A. One example of metadata viewing environment is a web-based

application that allows a user (e.g., the user 118 shown in FIG. 1A) to visualize and edit

metadata. Using the metadata viewing environment, a user can explore, analyze, and

manage metadata using a standard Web browser from anywhere within an enterprise.

Each type of metadata object has one or more views or visual representations. The

metadata viewing environment of FIG. 2A illustrates a lineage diagram for target element

206A.

9

WO 2018/102691 PCT/US2017/064227

For example, the lineage diagram displays the end-to-end lineage for the data

and/or processing nodes that represent the metadata objects stored in the metadata server

104 (FIG. 1A); that is, the objects a given starting object depends on (its sources) and the

objects that a given starting object affects (its targets). In this example, connections are

shown between data elements 202A and transformations 204A, two examples of

metadata objects. The metadata objects are represented by nodes in the diagram. Data

elements 202A can represent datasets, tables within datasets, columns in tables, and fields

in files, messages, and reports, for example. An example of a transformation 204A is an

element of an executable that describes how a single output of a data element is

produced. The connections between the nodes are based on relationships among the

metadata objects.

FIG. 2B is illustrates a corresponding lineage diagram 200B for the same target

element 206A shown in FIG. 2A except each element 202B is grouped and shown in a

group based on a context. For example, data elements 202B are grouped in datasets 208B

(e.g., tables, files, messages, and reports), applications 210B (that contain executables

such as graphs and plans and programs, plus the datasets that they operate on), and

systems 212B. Systems 212B are functional groupings of data and the applications that

process the data; systems consist of applications and data groups (e.g., databases, file

groups, messaging systems, and groups of datasets). Transformations 204B are grouped

in executables 214B, applications 210B, and systems 212B. Executables such as graphs,

plans or programs, read and write datasets. Parameters can set what groups are expanded

and what groups are collapsed by default. This allows users to see the details for only the

groups that are important to them by removing unnecessary levels of details.

Using the metadata viewing environment to perform data lineage calculations is

useful for a number of reasons. For example, calculating and illustrating relationships

between data elements and transformations can help a user determine how a reported

value was computed for a given field report. A user may also view which datasets store a

particular type of data, and which executables read and write to that dataset. In the case of

business terms, the data lineage diagram may illustrate which data elements (e.g.,

columns and fields) are associated with certain business terms (e.g., definitions in an

enterprise).

10

WO 2018/102691 PCT/US2017/064227

Data lineage diagrams shown within the metadata viewing environment can also

aid a user in impact analysis. Specifically, a user may want to know which downstream

executables are affected if a column or field is added to a dataset, and who needs to be

notified. Impact analysis may determine where a given data element is used, and can also

determine the ramifications of changing that data element. Similarly, a user may view

what datasets are affected by a change in an executable, or whether it safe to remove a

certain database table from production.

Using the metadata viewing environment to perform data lineage calculations for

generating data lineage diagrams is useful for business term management. For instance, it

is often desirable for employees within an enterprise to agree on the meanings of business

terms across that enterprise, the relationships between those terms, and the data to which

the terms refer. The consistent use of business terms may enhance the transparency of

enterprise data and facilitates communication of business requirements. Thus, it is

important to know where the physical data underlying a business term can be found, and

what business logic is used in computations.

Viewing relationships between data nodes can also be helpful in managing and

maintaining metadata. For instance, a user may wish to know who changed a piece of

metadata, what the source (or "source of record") is for a piece of metadata, or what

changes were made when loading or reloading metadata from an external source. In

maintaining metadata, it may be desirable to allow designated users to be able to create

metadata objects (such as business terms), edit properties of metadata objects (such as

descriptions and relationships of objects to other objects), or delete obsolete metadata

objects.

The metadata viewing environment provides a number of graphical views of

objects, allowing a user to explore and analyze metadata. For example, a user may view

the contents of systems and applications and explore the details of any object, and can

also view relationships between objects using the data lineage views, which allows a user

to easily perform various types of dependency analysis such as the data lineage analysis

and impact analysis described above. Hierarchies of objects can also be viewed, and the

hierarchies can be searched for specific objects. Once the object is found bookmarks can

be created for objects allowing a user to easily return to them.

11

WO 2018/102691 PCT/US2017/064227

With the proper permissions, a user can edit the metadata in the metadata viewing

environment. For example, a user can update descriptions of objects, create business

terms, define relationships between objects (such as linking a business term to a field in a

report or column in a table), move objects (for instance, moving a dataset from one

application to another) or delete objects.

In FIG. 2C, a corresponding lineage diagram 200C for target element 206A is

shown, but the level of resolution is set to applications that are participating in the

calculation for the target data element 206A. Specifically, applications 202C, 204C,

206C, 208C, and 210C are shown, as only those applications directly participate in the

calculation for the target data element 206A. If a user wishes to view any part of the

lineage diagram in a different level of resolution (e.g., to display more or less detail in the

diagram), the user may activate the corresponding expand/collapse button 212C.

FIG. 2D shows a corresponding lineage diagram 200D at a different level of

resolution. In this example, an expand/collapse button 212C has been activated by a user,

and the metadata viewing environment now displays the same lineage diagram, but

application 202C has been expanded to show the datasets 214D and executables 216D

within application 202C.

FIG. 2E shows a corresponding lineage diagram 200E at a different level of

resolution. In this example, a user has selected to show everything expanded by a custom

expansion. Any field or column which is an ultimate source of data (e.g., it has no

upstream systems) is expanded. In addition, fields that have a specific flag set are also

expanded. In this example, the specific flags are set on datasets and fields at a key

intermediate point in the lineage, and one column is the column for which the lineage is

being shown.

Other examples of lineage are described in United States Patent Application

Serial No. 12/629,466, titled "VISUALIZING RELATIONSHIPS BETWEEN DATA

ELEMENTS AND GRAPHICAL REPRESENTATIONS OF DATA ELEMENT

ATTRIBUTES," which is hereby incorporated by reference in its entirety.

Viewing elements and relationships in the metadata viewing environment can be

made more useful by adding information relevant to each of the nodes that represent

them. One exemplary way to add relevant information to the nodes is to graphically

12

WO 2018/102691 PCT/US2017/064227

overlay information on top of certain nodes. These graphics may show some value or

characteristic of the data represented by the node, and can be any property in the

metadata database. This approach has the advantage of combining two or more normally

disparate pieces of information (relationships between nodes of data and characteristics

of the data represented by the nodes) and endeavors to put useful information "in

context." For example, characteristics such as metadata quality, metadata freshness, or

source of record information can be displayed in conjunction with a visual representation

of relationships between data nodes. While some of this information may be accessible in

tabular form, it may be more helpful for a user to view characteristics of the data along

with the relationships between different nodes of data. A user can select which

characteristic of the data will be shown on top of the data element and/or transformation

nodes within the metadata viewing environment. Which characteristic is shown can also

be set according to default system settings.

As described above with respect to FIG. 1A, the lineage server 102 uses data

structures 134 to store lineage metadata in memory (e.g., random access memory). FIG. 3

shows an example data structure 300. In use, the lineage server 102 contains many

instances of the data structure 300. An instance of a data structure is a collection of data

(e.g., collection of bits) formatted in a manner defined by the data structure. An instance

of the data structure 300 described here is sometimes referred to as a "node."

Each instance of the data structure 300 represents a metadata object, e.g., one of

the data elements 202A or transformations 204A shown in FIG. 2A. In some examples,

each instance of the data structure 300 represents a node that may be shown in a lineage

diagram, e.g., the diagrams 200A-200E shown in FIGS. 2A-2E.

In use, the lineage server 102 stores each data structure 300 at a memory location

302 specific to the data structure. Each data structure 300 typically points to memory

locations of other data structures.

The data structure 300 is made up of several fields. A field is a collection of data,

e.g., a subset of the bits that make up an instance of the data structure 300. An identifier

field 310 includes data representing a unique identifier for an instance of the data

structure 300. A type field 312 includes data representing a type of a metadata object

represented by the corresponding instance of the data structure 300. In some examples,

13

WO 2018/102691 PCT/US2017/064227

the type could be "data element," "transformation," and so on. In some examples, the

type field 312 also indicates how many forward and backward edges are included in the

instance of the data structure 300. Properties fields 314 each represent different

characteristics of the metadata object represented by the corresponding instance of the

data structure 300. Examples of the properties fields 314 can include a "name" field that

includes a text label identifying the metadata object, and a "subtype" field that indicates a

subtype of the metadata object, e.g., whether the metadata object represents a file object,

executable object, a database object, or another subtype. Other types of properties can be

used. In general, the type field 312 and properties fields 314 can be customized for a

particular instance of the lineage server 102, and are not confined to the examples listed

here.

The data structure also includes fields that represent forward edges 316A-C and

backward edges 316D-F. The edge fields 316A-F enable the lineage server 102 to "walk"

from data structure to data structure and collect the data of the data structure when

gathering lineage metadata. In the broadest sense, when we refer to "collecting" a portion

data, we mean identifying the portion of data as pertinent to a future action (e.g.,

transmitting the collected data). Collecting a portion of data sometimes includes copying

the data, e.g., copying the data to a buffer or queue to be used in the future action.

Each edge field 316A-F includes a pointer field 320A-B. The pointer field 320A

B stores an address of a respective memory location 322A-B. In general, a memory

location 322A-B referenced by a pointer field 320A-B refers to a portion of memory that

stores another instance of the data structure 300. In this way, one instance of a data

structure representing a metadata object is "linked" to one or more other instances of data

structures representing other metadata objects. Thus, the edges 316A-D can correspond

to, e.g., the relationships among the metadata objects shown in the lineage diagram

examples 200A-E of FIGS. 2A-2E. For example, a forward edge 316A represents an

effect that a metadata object (e.g., the metadata object represented by this instance of the

data structure 300) has on another metadata object (e.g., the metadata object represented

by the instance of the data structure at the memory location 322A). As another example, a

backward edge 316D represents an effect that another metadata object (e.g, the metadata

14

WO 2018/102691 PCT/US2017/064227

object represented by the instance of the data structure at the memory location 322B) has

on the metadata object of this instance of the data structure 300.

Each edge field 316A-F also includes one or more flags 324. The flags 324 are

indicators of information about their associated edge. In some examples, one of the flags

324 may indicate a type of the associated edge, selected from multiple possible types.

Many types of edges are possible. For example, some types of edges are input/output

edges (representing output from one object and input to another object), element/dataset

edges (representing an association between an element and the dataset to which the

element belongs), and application/parent edges (representing an association between an

executable application and a container, such as a container that also contains datasets

associated with the application).

Many of the elements of the data structure 300 typically use a relatively small

amount of data. For example, the data associated with the identifier field 310, type field

312, and properties fields 314 together may only be a few bytes. e.g., 32 bytes. These

fields encode commonly used information within as little as a few bits; for example, if

there are only eight possible types for a node, the type field 312 can be as little as three

bits long. More complex data, such as strings of text representing the node types, need

not be used. Further, the data associated with the memory location 322A-C is typically

the same amount of data as the length of a memory address associated with the type of

computer system executing software that instantiates the data structure 300. Thus, most

or all instances of a data structure 300 may use a relatively small amount of data in total,

compared to the data used by other techniques for storing lineage metadata.

FIG. 4 shows an example of a walk plan 400. As described above with respect to

FIG. IC, walk plans 400 are typically stored by the metadata server 104. In use, the

metadata server 104 provides a walk plan to the lineage server 102 when requesting

lineage metadata.

A walk plan 400 describes information used by the lineage server 102 when

traversing its stored data structures 134. In general, when a query for lineage metadata is

received, e.g., lineage metadata pertinent to a particular metadata object, not all types of

lineage metadata need to be returned in response. In some examples, depending on the

15

WO 2018/102691 PCT/US2017/064227

query, lineage metadata associated with some types of edges may not need to be returned

because it is not responsive to the query.

Accordingly, the walk plan 400 includes records 402A-C for each edge type that

may be among the types of edges represented by the lineage metadata stored by the

lineage server 102. A record 402A includes an edge type field 404 that includes data

indicating the type of edge corresponding to the record 402A. A record 402A also

includes a follow flag 406, a collect node flag 408, and a collect edge flag 409 for the

forward direction 410, and a follow flag 412, a collect node flag 414, and a collect edge

flag 415 for the backward direction 416.

A follow flag 406, 412 indicates whether or not the lineage server 102 should

follow an edge of this edge type when traversing its data structures 134. Put another way,

a follow flag 406 for the forward direction 410 indicates whether or not the lineage server

102, referring to FIG. 3, should access the memory location 322A identified by a pointer

field 320A of a forward edge field 316A of an instance of the data structure 300.

Similarly, a follow flag 412 for the backward direction 416 indicates whether or not the

lineage server 102, referring to FIG. 3, should access the memory location 322b

identified by a pointer field 320b of a backward edge field 316D of an instance of the

data structure 300.

A collect node flag 408, 414 indicates whether or not the lineage server 102

should collect an instance of the data structure 300 (FIG. 3), sometimes referred to as a

"node," pointed to by this edge type when traversing its data structures 134. When we

refer to collecting an instance of the data structure 300, we mean that the data of the

instances (or nodes) is added to the data that will be returned in response to a query being

processed by the lineage server 102 (FIG. 1A) processing the query. Thus, if a node is

collected, data associated with the metadata object represented by the instance of the data

structure 300 will be among the lineage metadata returned by the lineage server 102.

A collect edge flag 409, 415 indicates whether or not the lineage server 102

should collect the edge (e.g, corresponding to the pointer field 320A of an instance of the

data structure 300). If an edge is collected, data representing the edge will be among the

lineage metadata returned by the lineage server 102. In some implementations, an edge

may not be collected if the edge does not represent a flow of data between the nodes. For

16

WO 2018/102691 PCT/US2017/064227

example, the edge may represent the association between a data object (represented by

one node) and a container of the data object (representing by another node). In this way,

by using collect node flags 408, 414 and collect edge flags 409, 415 in a walk plan 400,

nodes can be associated with each other in a variety of ways that may or may not be

collected for inclusion in lineage metadata, and nodes can represent a variety of data that

may or may not be collected for inclusion in lineage metadata.

In some implementations, in use, a walk plan 400 can be represented in the form

of one or more XML (Extensible Markup Language) documents. An XML document is a

collection of portions separated by "tags." A tag typically contains a label (e.g., a label

identifying the type of tag) and may also include one or more attributes. Tags sometimes

come in the form of a start tag and an end tag, such that a start tag is paired with a

corresponding end tag. In this way, tags can be hierarchical, such that tags are "nested"

within other tags, e.g., by placing a tag between another tag's start tag and end tag pair.

An example walk plan in the form of an XML document is presented below:

<lineageServerPlan direction="both" conditionalOnArg="autoFilterEnabled"

replacesQueries="walk">

<useEdge name="DE-Tr">

<condition special="ExelnterfaceCallStack" />

<condition special="ControlFilter" />

<condition special="Summarization" />

</useEdge>

<useEdge name="Tr-DE">

<condition special="ExelnterfaceCallStack" />

<condition special="ControlFilter" />

<condition special="Summarization" />

</useEdge>

<useEdge name="DE-DS" direction="forward" collectEdge="false"

conditionalOnArg="walkDSlevel" />

<useEdge name="Tr-Exe" direction="forward" collectEdge="false"

conditionalOnArg="walkDSlevel" />

17

WO 2018/102691 PCT/US2017/064227

<useEdge name="DS-Exe" conditionalOnArg="walkDSlevel">

<condition special="ExelnterfaceCallStack" />

<condition special="DSLevelIfNoDE" />

</useEdge>

<useEdge name="Exe-DS" conditionalOnArg="walkDSlevel">

<condition special="ExelnterfaceCallStack" />

<condition special="DSLevelIfNoDE" />

</useEdge>

<useEdge name="DE-DS" direction="backward" collectEdge="false">

<condition special="DSLevelIfNoDE" />

</useEdge>

<useEdge name="Tr-Exe" direction="backward" collectEdge="false">

<condition special="DSLevelIfNoDE" />

</useEdge>

</lineageServerPlan>

In this example, the "useEdge" tag specifies information for a given type of edge.

Each "useEdge" tag can correspond to a record (e.g., the records 402A-C of the walk plan

400). The "name" attribute specifies the type of edge (e.g., the edge type 404), the

"direction" attribute specifies the direction (e.g., forward direction 410 or backward

direction 416), the "collectEdge" attribute specifies whether to collect the edge (e.g., the

collect flags 408, 414). Other tags can be used. For example, the "condition special" tag

shown in the example above is used to specify custom rules that are carried out when an

edge of the specified edge type is followed. In some examples, the custom rules may

specify conditions to determine if the edge should be followed and/or collected.

FIG. 5A shows a flowchart representing a procedure 500 for storing lineage

metadata in a form defined by a special-purpose data structure, e.g., the data structure 300

shown in FIG. 3. The procedure 500 can be carried out, for example, by components of

the lineage server 102 shown in FIG. 1A.

The procedure requests 502 lineage metadata from a metadata source. For

example, the metadata source could be the metadata database 108 shown in FIG. 1A. The

18

WO 2018/102691 PCT/US2017/064227

request could be a request made on regular or semi-regular intervals, for example, every

hour, every ten minutes, every minute, or any other interval. In some examples, the

request could be made in response to an event, e.g., an event such as a notification that

new metadata is available at the metadata source.

Lineage metadata typically describes nodes and edges, such that each node

represents a metadata object, and the edges each represent a one-way effect of one node

upon another node, e.g., such that each edge has a single direction.

In some examples, e.g., when a lineage server 102 has not yet generated an initial

set of data structures representing lineage metadata, the request is a request for all lineage

metadata stored by the data source. In some examples, e.g., when the lineage server 102

is updating an existing set of stored data structures, the request is a request for lineage

metadata that has been added or changed since the last request.

The procedure receives 504 data, e.g., lineage metadata, from the metadata

source. For example, the lineage metadata can be data representing metadata objects and

relationships between the metadata objects.

The procedure generates 506 data structures, e.g., instances of the data structure

300 shown in FIG. 3. For example, the data structures can contain information

corresponding to the data received from the metadata source. In some examples, each

instance of the data structure corresponds to a respective node received from the metadata

source. The data structure can include a field for identification values, e.g., an

identification value that identifies the node corresponding to an instance of the data

structure. The data structure can also include property fields that represent properties of a

node corresponding to an instance of the data structure. The data structure can also

pointers to identification values of other nodes, such that the pointers represent edges to

the nodes corresponding to the respective identification values.

The procedure stores 508 the data structures. For example, the data structures can

be stored in memory, e.g., the memory 135 shown in FIG. IC. In some examples, the

data structures are stored in random access memory. Because the data structures are used

to store lineage metadata, any data not relevant to lineage (e.g., other types of metadata

stored at the metadata source) can be omitted, reducing the amount of data needed to

store the data structures.

19

WO 2018/102691 PCT/US2017/064227

In use, the procedure returns to requesting 502 lineage metadata from the

metadata source, e.g., on the next regularly scheduled interval.

FIG. 5B shows a flowchart representing a procedure 520 for causing lineage

metadata to be displayed. The procedure 520 can be carried out, for example, by

components of the lineage server 102 shown in FIG. 1A. In general, a lineage server is

configured to return a response to a query that includes metadata describing lineage of a

particular element of data, e.g., a metadata object. In some examples, the metadata

describes a sequence of nodes and edges, wherein one of the nodes of the sequence

represents the particular element of data. In some examples, the procedure 520 is used to

access lineage metadata stored by the procedure 500 described above with respect to FIG.

5A.

The procedure receives 522 a query, e.g., a query for lineage metadata. In some

examples, the query identifies a metadata object for which lineage metadata is requested.

In some implementations, the query includes an identification of a type of lineage

and a walk plan that identifies which types of edges are relevant to the identified type of

lineage. In some examples, the walk plan includes conditions for following or collecting

an edge based on one or more property values representing respective properties of a

corresponding node. An example of a walk plan 400 is shown in FIG. 4.

The procedure gathers 524 lineage metadata. For example, a node representing

the metadata object of the received query can be accessed and collected, and edges (e.g.,

pointers to memory locations) can be traversed to collect other nodes. The gathering of

lineage metadata is described in further detail below with respect to FIG. 6.

The procedure transmits 526 the gathered lineage metadata. For example, the

gathered lineage metadata can be transmitted to a computer system that issued the query.

After the gathered lineage metadata is transmitted, the gathered lineage metadata

may be caused to be displayed 528 on a computer system, e.g., the user terminal 116

shown in FIG. 1A. For example, the lineage metadata may be displayed in the form of a

lineage diagram such as the lineage diagrams 200A-200E shown in FIG. 2A - 2E.

FIG. 6 shows a flowchart representing a procedure 600 for traversing lineage

metadata stored in the form of special-purpose data structures, e.g., instances of the data

20

WO 2018/102691 PCT/US2017/064227

structure 300 shown in FIG. 3. The procedure 600 can be carried out, for example, by

components of the lineage server 102 shown in FIG. 1A.

The procedure receives 602 a query and walk plan, e.g., the query 114 and walk

plan 130 shown in FIG. IC. The procedure accesses 604 accesses an initial node (e.g.,

instance of the data structure 300 shown in FIG. 3) representing a metadata object

referenced by the query 114. For example, the initial node may be identified by an

identifier field 310 (FIG. 3) storing data that is associated with the metadata object. The

initial node is then used as the "current" node, and a recursive portion of the process

begins in which the current node is selected from a queue and operations are applied to

the current node. Put another way, the initial node is placed in a queue as the first node of

the queue, and other nodes are subsequently added to the queue as the procedure is

carried out.

The procedure determines 606 if there are remaining forward edge pointers in the

current node (e.g., forward edge pointers that have not yet been accessed). If so, the

procedure accesses 608 the next pointer that has yet to be accessed, e.g., accesses the

memory location of the pointer to retrieve data stored at that memory location. The

procedure determines 610 whether to "walk" (e.g., process) the node at that pointer, e.g.,

according to the edge type associated with the pointer, based on the walk plan (as

described above with respect to FIG. 4). If not, the procedure accesses 608 another

pointer. If so, the procedure determines whether to collect 611 the node at that pointer. If

so, the procedure stores 612 the data of the node to be returned in response to the query,

and then places 614 the node in the queue so that its pointers can be accessed. If not, the

procedure only puts the node in the queue.

Once all of the forward edge pointers in the current node have been traversed, the

procedure determines 616 if there are remaining backward edge pointers in the current

node. If so, the procedure accesses 608 the next backward edge pointer.

If there are no remaining forward edge pointers or backward edge pointers, the

procedure determines 618 if any nodes remain in the queue. If so, the procedure accesses

620 the next node in the queue, and carries out operations described above using the next

node in the queue as the current node. If no nodes remain, the procedure prepares 622 the

collected data for transmission to other system. For example, the collected data may be

21

WO 2018/102691 PCT/US2017/064227

arranged in a particular format because it is transmitted. As another example, encoded

data in the collected data may be decoded. For example, data fields containing an

encoded value can be converted to a text string corresponding to the value.

Once the data is prepared for transmission, the data can be transmitted, e.g., as

described in FIG. 5B with respect to transmission 526 of data.

The systems and techniques described herein can be implemented, for example,

using a programmable computing system executing suitable software instructions or it

can be implemented in suitable hardware such as a field-programmable gate array

(FPGA) or in some hybrid form. For example, in a programmed approach the software

may include procedures in one or more computer programs that execute on one or more

programmed or programmable computing system (which may be of various architectures

such as distributed, client/server, or grid) each including at least one processor, at least

one data storage system (including volatile and/or non-volatile memory and/or storage

elements), at least one user interface (for receiving input using at least one input device or

port, and for providing output using at least one output device or port). The software may

include one or more modules of a larger program, for example, that provides services

related to the design, configuration, and execution of dataflow graphs. The modules of

the program (e.g., elements of a dataflow graph) can be implemented as data structures or

other organized data conforming to a data model stored in a data repository.

The software may be stored in non-transitory form, such as being embodied in a

volatile or non-volatile storage medium, or any other non-transitory medium, using a

physical property of the medium (e.g., surface pits and lands, magnetic domains, or

electrical charge) for a period of time (e.g., the time between refresh periods of a dynamic

memory device such as a dynamic RAM). In preparation for loading the instructions, the

software may be provided on a tangible, non-transitory medium, such as a CD-ROM or

other computer-readable medium (e.g., readable by a general or special purpose

computing system or device), or may be delivered (e.g., encoded in a propagated signal)

over a communication medium of a network to a tangible, non-transitory medium of a

computing system where it is executed. Some or all of the processing may be performed

on a special purpose computer, or using special-purpose hardware, such as coprocessors

or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated

22

WO 2018/102691 PCT/US2017/064227

circuits (ASICs). The processing may be implemented in a distributed manner in which

different parts of the computation specified by the software are performed by different

computing elements. Each such computer program is preferably stored on or downloaded

to a computer-readable storage medium (e.g., solid state memory or media, or magnetic

or optical media) of a storage device accessible by a general or special purpose

programmable computer, for configuring and operating the computer when the storage

device medium is read by the computer to perform the processing described herein. The

inventive system may also be considered to be implemented as a tangible, non-transitory

medium, configured with a computer program, where the medium so configured causes a

computer to operate in a specific and predefined manner to perform one or more of the

processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, it

is to be understood that the foregoing description is intended to illustrate and not to limit

the scope of the invention, which is defined by the scope of the following claims.

Accordingly, other embodiments are also within the scope of the following claims. For

example, various modifications may be made without departing from the scope of the

invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

23

CLAIMS

1. A method performed by a data processing apparatus, the method including:

receiving a portion of metadata from a data source, the portion of metadata describing

nodes and edges, at least some of the edges each representing an effect of one node upon

another node, each edge having a single direction;

generating instances of a data structure representing the portion of metadata, at least

one instance of the data structure including:

an identification value that identifies a corresponding node,

one or more property values representing respective properties of the

corresponding node, and

one or more pointers to respective identification values, each pointer

representing an edge associated with a node identified by the corresponding

respective identification value;

storing the instances of the data structure in random access memory;

receiving a query that includes an identification of at least one particular element of

data; and

using at least one instance of the data structure to cause a display of a computer

system to display a representation of lineage of the particular element of data.

2. The method of claim 1, wherein the query includes an identification of a type of

lineage and a walk plan that identifies which types of nodes and edges are relevant to the

identified type of lineage.

3. The method of claim 2, wherein the walk plan includes conditions for following or

collecting an edge based on one or more property values representing respective properties of

a corresponding node.

4. The method of any one of claims I to 3, wherein at least one of the identification

values represents a node corresponding to the particular element of data identified in the

query.

24

5. The method of any one of claims 1 to 4, wherein the data processing apparatus is

configured to return a response to the query, the response including metadata describing

lineage of the particular element of data.

6. The method of claim 5, wherein the metadata describing lineage of the particular

element of data includes metadata describing a sequence of nodes and edges, wherein one of

the nodes of the sequence represents the particular element of data.

7. The method of any one of claims I to 6, wherein the set of metadata includes text

strings associated with respective nodes, wherein the data structure omits at least one of the

text strings.

8. The method of any one of claims I to 7, wherein generating the instances of the

data structures includes identifying metadata that is relevant to lineage and storing the

identified metadata in a format defined by the data structure.

9. The method of any one of claims I to 8, wherein at least one of the pointers

includes a reference to a memory location associated with a portion of the random access

memory, wherein the memory location corresponds to a location of a node corresponding to

one of the identity values.

10. The method of any one of claims I to 9, including

in response to receiving the query:

accessing data stored using the data structure, including accessing an instance of the

data structure containing at least one identifier that corresponds to the particular element of

data identified by the query; and

based on the data stored using the data structure, generating a response to the query,

the response including lineage metadata, the lineage metadata describing a sequence of nodes

and edges, wherein one of the nodes of the sequence represents the particular element of data.

11. The method of any one of claims 1 to 10, including

accessing a first instance of the data structure, the first instance of the data structure

identified by a first identifier that corresponds to the particular element of data identified by

the query;

25

accessing a pointer associated with the first identifier, the pointer associated with the

first identifier;

accessing a second instance of the data structure, the second instance of the data

structure identified by a second identifier, the second identifier being stored at a memory

location referenced by the pointer associated with the first identifier; and

collecting data of the second instance of the data structure;

wherein the response includes data representing a node associated with the second

identifier.

12. The method of any one of claims I to 11, including transmitting requests to the

data source on scheduled intervals, wherein the portion of metadata is received from the data

source in response to one of the requests.

13. A system including:

at least one non-transitory computer-readable storage medium storing executable

instructions; and

one or more processors configured to execute the instructions;

wherein execution of the instructions causes performance of the steps of any one of

claims 1-12.

14. A non-transitory computer readable storage device storing instructions that, when

executed, carry out the steps of any one of claims 1-12.

15. A software program that, when executed, carries out the steps of any one of claims

1-12.

16. A system including:

means for receiving a portion of metadata from a data source, the portion of metadata

describing nodes and edges, at least some of the edges each representing an effect of one

node upon another node, each edge having a single direction;

means for generating instances of a data structure representing the portion of

metadata, at least one instance of the data structure including:

an identification value that identifies a corresponding node,

26

one or more property values representing respective properties of the corresponding

node,and

one or more pointers to respective identification values, each pointer representing an

edge associated with a node identified by the corresponding respective identification value;

means for storing the instances of the data structure in random access memory;

means for receiving a query that includes an identification of at least one particular

element of data; and

means for using at least one instance of the data structure to cause a display of a

computer system to display a representation of lineage of the particular element of data.

27

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

