wO 2007/009074 A2 |10 0 000 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘f | [I

) IO O T O OO 00

International Bureau

(43) International Publication Date
18 January 2007 (18.01.2007)

(10) International Publication Number

WO 2007/009074 A2

(51) International Patent Classification:

G09B 25/06 (2006.01)
(21) International Application Number:
PCT/US2006/027413
(22) International Filing Date: 13 July 2006 (13.07.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/698,775 13 July 2005 (13.07.2005) US
(71) Applicant (for all designated States except US):
GOOGLE, INC. [US/US]; 1600 Amphitheatre Park-
way, Building 41, Mountain View, California 94043 (US).

(71) Applicant and
(72) Inventor: ATENASIO, Christopher M. [US/US]; 14
Kinsley Road, Acton, Massachusetts 01720 (US).

(74) Agent: DRAGSETH, John A.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: IDENTIFYING LOCATIONS

10

&
Y

V\
A7
A 74

P >

/'/
16\ v’/ I 18 \

12\

(57) Abstract: A computer-implemented method
includes receiving in a query a location identifier from
a user of a remote device, parsing the input location
identifier to generate one or more location-related
tokens, querying a repository of location information

28 with the one or more location-related tokens to
identify locations for one or more documents having
a substantial match to the tokens, scoring the one or
more documents using a mass of location for each
document that represents the geographical size of a
location associated with the document, and presenting
information relating to the one or more documents for
display using the mass of location.

}
Location 1 Location 2 Location n
id id id
address address address
structured _ structured_ structured_
address address address
mass mass e mass
location_ID location_ID location_ID
) Lﬁ_—l
12a 12b 12c

| 1600 Mountainview | 4
>\ %20
Ay
«
A4
— 1

WO 2007/009074 A2 |00 0T 0000 0 0000 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/009074 PCT/US2006/027413

10

15

20

IDENTIFYING LOCATIONS

CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional
Application Serial No. 60/698,775, filed July 13, 2005, the contents of

which are hereby incorporated by reference in its entirety.

TECHNICAL FIELD

This document relates to the provision of a location identifier,
such as latitude/longitude coordinate or GPS coordinates, in response to a

different identifier, such as an address, for the same location or locations.

BACKGROUND

Many computing applications require the use of geographic
locations. For example, mapping programs need to know where a user is.
Travel planning programs need to know the location for the endpoints of a
trip, and perhaps the location of multiple waypoints between the endpoints.

As yet another example, “local search,” such as Google Local,
has become more and more popular. Such local search adds a local
component to ordinary search by taking advantage of a known (or at least
suspected) location of the searcher. For example, a searcher who enters
“furniture” as a search term and who has previously identified his or her
zip code, may be provided with a sub-set of search results for businesses
within or near that zip code, such as nearby furniture stores. The searcher
may also be provided with appropriately targeted local advertising results

along with the search results.

10

15

20

WO 2007/009074

These systems generally need to produce relatively precise
locations. For example, if a system is going to compute a trip path
between two points, it should know those points fairly closely or else the
user will be left to guess near each end of the trip. Such systems also
generally need unambiguous locations. In other words, if they need to
calculate a search for the area around some point, they need to know that
they are using the appropriate point, and not some other point with a
similar name or description hundreds of kilometers away.

At the same time, it is best if these systems do not demand such
unambiguous input from users. Specifically, users will not feel good about
a system that requires them to provide a precise location or address,
without any typos and with perfect detail. Users certainly do not want to
have to provided a latitude and longitude for a location, or provide Global
Positioning Service (GPS) or other such coordinates.

Users also do not want to be forced to enter a single appropriate
identifier for a location when there are multiple accurate identifiers (e.g.,
an address that may technically be described as located in either of two
cities, or in a city and also a county; or an address on a road that has a
number and an official name, and a common name). Moreover, users may
want to enter queries without having to explicitly identify which text in the
query represents a location, such as by a natural language query. In
addition, it may be necessary to be able to associate content, such as web
pages, with a location or locations, so as to be able to provide such content

in response to a location-based query.

PCT/US2006/027413

10

15

20

25

WO 2007/009074 PCT/US2006/027413

Therefore, there is a need for systems and methods that can
generate an accurate computer-usable location identifier from a user-
provided human-usable location identifier. There is also a need for systems
and methods that can extract an address from a provided query, web page,
or other text, to create a computer-usable location identifier. Also, in
certain areas such as Japan, human-usable standards for identifying
locations can vary widely in syntax and style, making such a conversion
especially difficult. Thus, there is a particular need for systems and
methods that can generate computer-usable location identifiers even in

areas having particularly ambiguous human-usable location identifiers.

SUMMARY

This document discloses methods and systems that assist users of
computing and communication devices in entering data into those devices.
In one aspect, a computer-implemented method is disclosed. The method
comprises receiving in a query a location identifier from a user of a remote
device, parsing the input location identifier to generate one or more
location-related tokens, querying a repository of location information with
the one or more location-related tokens to identify locations for one or
more documents having a substantial match to the tokens, scoring the one
or more documents using a mass of location for each document that
represents the geographical size of a location associated with the
document, and presenting information relating to the one or more
documents for display using the mass of location.

In some implementations, a query-independent geographical

indication may be received from the remote device and used to score the

3

WO 2007/009074 PCT/US2006/027413

10

15

20

25

one or more documents. The query-independent geographical indication
may be selected from the group consisting of a location where the remote
device is located, a bounding box of a map displayed on the device, and a
region corresponding to the Internet domain the user is on. The score for a
document may include a ratio of the mass of the document to a distance
between the query-independent geographic indication and a result. In
addition, the step of querying a repository of location information may
comprise recursively querying the repository using less specific
information until a sufficient number of matches are found, and may also
include querying for each permutation of tokens with a token eliminated.
The querying a repository may also comprise querying for each
permutation of tokens with two tokens eliminated, if a match is not made
with one token eliminated, weighting each permutation of tokens, and
using the weights to score results from querying each permutation
(including by assigning a weight to each token based on its content and
adjusting the weight according to the location of the token in the query).

In some implementations, the query may comprise a search
request. Also, presenting information relating to the one or more
documents for display may comprise presenting a ranked list of search
results.

In yet another aspect, a location-based data collection and
distribution system is disclosed. The system comprises a request processor
to receive data requests from one or more remote clients, a location-based
tokenizer that identifies location-related tokens in the data queries, and a

result scorer to query a repository of location information with the one or

WO 2007/009074 PCT/US2006/027413

10

15

20

25

more location-related tokens to identify locations for one or more
documents having a substantial match to the tokens, and to score the one or
more documents using a mass of location for each document.

In yet another aspect, a location-based data collection and
distribution system is disclosed that comprises a request processor to
receive data requests from one or more remote clients, a location-based
tokenizer that identifies location-related tokens in the data queries, and a
means for scoring items responsive to the data request.

In another implementation, a method of identifying location-
based information in a corpus of documents is discussed. The method
comprises parsing a document in the corpus of documents to generate one
or more tokens, comparing combinations of adjacent generated tokens with
combinations of tokens in a location-based repository, querying a general
database using a combination of adjacent tokens that have a match in the
location-based repository, and assigning the adjacent generated tokens as a
location for the document if there the query generates a sufficient number
of matches.

In one aspect, the location-based repository may comprise token
bigrams from a larger repository, and the comparison of adjacent generated
tokens with combinations of tokens in the location-based repository may
comprise comparing overlapping bigrams from a set of three consecutive
tokens. In addition, tokens may be added to the adjacent generated tokens
to make an enlarged token set, and the enlarged token set may be compared
to the location-based repository. Also, adjacent tokens may be repeatedly

added to make enlarged token sets, the enlarged token set compared to the

WO 2007/009074 PCT/US2006/027413

10

15

20

location-based repository until no match results, and the general database
may be queried with the largest enlarged token set. The largest enlarged
token set may also be reduced to generate a reduced token set if there is no
match for the query, the general database requeried with the reduced token
set. The general database may also comprise information extracted from
documents on the internet.

The systems and techniques described here may provide one or
more of the following advantages. A system may provide effective and
automated location results independently of the user’s location-whether in
the United States, the United Kingdom, Japan, China, Korea, India, or
other locations that use different addressing schemes than the areas above.
Once the data is built into a repository, it is responsive whether it is
German, English, or Hebrew. Also, a system may assist a user by
providing accurate information quickly, and down to a detailed address
level. In addition, the systems and techniques may be used
interchangeably with various applications in a flexible manner that does
not require much work from the application authors.

The details of one or more embodiments of the invention are set
forth in the accompanying drawings and the description below. Other
features, objects, and advantages of the invention will be apparent from the

description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

These and other aspects will now be described in detail with

reference to the following drawings.

WO 2007/009074 PCT/US2006/027413

10

15

20

25

Figure 1 shows schematically a system for retrieving location
identifiers for a variety of applications.

Figure 2 shows an exemplary organization for a location
repository.

Figure 3 is a schematic diagram of a system to obtain a location
identifier in response to the provision of documents or queries containing
location-related information.

Figure 4 is a schematic diagram showing information flow in a
geocoding system.

Figure 5 is a flow chart showing exemplary steps for obtaining
geocoding information.

Figure 6 is a flow chart showing exemplary steps for extracting
address information from a document to assign an address to the document.

Figure 7 is a flow chart of exemplary steps for building a
repository of location information.

Figure 8 is a flow chart of exemplary steps for parsing location
information from a query.

Figure 9 is a relationship diagram showing components for
extracting and geocoding location information.

Like reference symbols in the various drawings indicate like

elements.

DETAILED DESCRIPTION

The systems and techniques described here relate to assistance
with obtaining definite location data, such as a latitude and longitude or a

particular area, from indefinite data sources, such as queries received by
7

WO 2007/009074 PCT/US2006/027413

10

15

20

25

users of a system, and web pages authored by people who did not intend to
provide definite location information. In general, the systems operate by
parsing received strings to identify tokens that may be location related and
matching the tokens to known location identifiers. Particular tokens or sets
of tokens may then be scored according to the locational mass of the
tokens, perhaps in combination with a locational hint such as the current
location of the user submitting a query. Documents may also be scanned
for locational information by tokenizing the documents and searching a
database using combinations of tokens to determine if those combinations
generate any hits. Combinations that generate hits may be considered to be
locations identified in the documents.

Figure 1 shows schematically a system 10 for retrieving location
identifiers for a variety of applications. In the system 10, a variety of
applications make calls to a repository 12 of location information. The
repository is established to be highly visible so that it can be used for many
purposes with minimal effort. Such an approach of centralizing the
information helps the system avoid duplication of location information,
and also makes it easier to develop additional location-based applications.

The repository 12 contains a number of location documents 12a-
12¢ which each describe a unique location in the world (though multiple
documents may have overlapping locations, and could even describe
identical locations in appropriate circumstances). Each location document
may include a number of common attributes, including an id, an address, a
structured address, a mass, and a location identifier. The id may be a

unique identifier string, such as a common street address, or a region name.

8

WO 2007/009074 PCT/US2006/027413

10

15

20

25

The address may contain the name by which the location is called. The
address may be similar to the id, but in a more readable form. The
structured address is a form of the address, broken into portions so that the
system 10 may have more control over how the various portions of the
address are displayed or presented.

The mass is a description of importance, typically numeric, for
the location. In one form, the mass is approximately the number of point
addresses contained in the location. For example, a single address might
have a mass of 1, while a town might have a mass in the thousands
(composed of the total number of single addresses in the town), and a
country might have a mass in the hundreds of thousands or millions.
Finally, the location identifier may include any appropriate identifier that is
usable by the system for computing things such as a map. Specifically, the
location identifier may include a lat-long point or combination, the
coordinates of a bounding box for a region, or a polygon. The organization
of repository documents is described in more detail with respect to Figure 2
below.

Referring again to Figure 1, several applications are shown
accessing the repository 12. Address description 16 may be, for example,
the raw text of a query entered by a user attemipting to access a mapping
program. Generally, repository 12 provides geocoding services in such a
scenario. A geocode answers the question, “I have a small chunk of text
describing a location in the world; what is the location it best describes?”
As such, the address description 16 may provide the repository (or more

accurately, may provide an application working with the repository) with a

WO 2007/009074

10

15

20

25

PCT/US2006/027413

human-readable address. The system 10 may parse the information and
submit it to the repository, and the repository may return a machine usable
location identifier related to the query, such as the location ID from a
location document.

Query application 18 may also submit requests to the repository
12. Query application 18 may include a variety of applications that receive
requests from users or from other applications, and that provide responses
to the requests. Queries may be passed to repository 12 (or an application
operating with repository), for example, as a string of text, some of which
relates to the substantive query and some of which relates to a location.
For example, the query might be “sushi restaurants in New York City.” In
such an example, the repository may return a descriptor, such as a location
ID, of the area that bounds New York City.

One common example of a query application is a common search
engine, whereby a user can enter a query in any appropriate form, and may
be provided as a response a number of web documents (e.g., web pages) or
other documents that best match the query. Where the query contains
location-related information, the search results may be provided and sorted
in part by correlation between the location-related information provided by
the user and any location-related information in, or related to, the
documents located by the search.

Address extractor 20 may also interact with repository 12.
Specifically, address extractor 20 may review a variety of documents, such
as those representing content from web pages identified by a crawling

process, may extract information from those documents that may be

10

WO 2007/009074 PCT/US2006/027413

10

15

20

25

location-related, and may look to match the information against the
repository 12 to confirm whether the information is location-related or not.
In this manner, a location or locations may be associated with the
document so that the document may be identified as a match based on the
location or locations in addition to, or as an alternative to, identifying the
document as a match by its other content.

Each of the variations in using the repository 12 just mentioned
are discussed in more detail below. The communications with repository
12 may generally be carried out by simple remote procedure calls (RPCs)
from control logic that interacts with repository 12. In one
implementation, geocoding and query parsing are server-side operations
using simple RPC interfaces that pass a single argument in each
direction—a string with the call and a machine-usable location identifier
with the response. Co-location of the repository for these applications
lowers roundtrip latency for the repository and makes more powerful
feedback-driven algorithms possible. It also may ease implementation
maintenance. Address extraction may be implemented as a client-load-
heavy library that interfaces with the repository via low-level RPCs. Such
an arrangement allows for large address extraction, particularly in parallel,
with minimal repository load.

Figure 2 shows an exemplary organization for a location
repository. Each location in the repository is represented by a location
document, shown here for clarity as a column in a table. The various
parameters for the location document—id, address, structured address,

mass, and location identifier—are shown for each of three exemplary

11

WO 2007/009074 PCT/US2006/027413

10

15

20

25

locations. The first location is Building 42 on the Google campus in
Mountain View, California. The second location is the city of Ulm,
Germany. The third location is the Shibuya train station in Tokyo, Japan.

As can be seen, the id’s can take many forms, while the addresses
generally take a more formal format for the name the location is called.
The structured address is yet more formal, including tags or meta data
corresponding to the various portions of the address, such as the country,
state (or administrative area), town (or locality), street (or thoroughfare).
As noted above, the mass represents the importance of the location, which
may be measure by the “size” of the location per the number of point
addresses contained in the bounds of the location. Finally, the location
identifier may be any appropriate machine-usable and definite manner in
which to express a geographic point or geographic area. One such
common approach is Jatitude and longitude.

Figure 3 is a schematic diagram of a system 40 to obtain a
location identifier in response to the provision of documents or queries
containing location-related information. The system 40 includes a sub-
system 42 that may be a centrally located group of servers and clients
connected to perform a variety of functions. For example, the components
of sub-system 42 may be owned and operated by a single organization,
with various components open to access by programmers within the
organization, such as by RPCs or other techniques.

Sub-system 42 may communicate with the outside world via
interface 44 which may in turn communicate with networks such as the

Internet 46. In this manner, remote devices such as wireless device 48

12

WO 2007/009074 PCT/US2006/027413

10

15

20

25

(which mﬁy include, for example, PDAs, wireless telephones, and other
communication devices) operating through wireless network 50, and home
or business computer 52, may communicate with sub-system 42. Such
communications may include requests such as search requests, along with
responses such as links to results from a search request. Interface 44 may
take any appropriate form, and may include various network hardware and
software according to known standards, such as Ethernet, Infiniband, and
others. The particular arrangement of the components in sub-system 42 is
not critical to the operations discussed here.

One feature of sub-system 42 may be a search engine 66, which
may include all components needed to collect information about
documents, or web pages, on the Internet such as by a crawling process, to
index those documents such as in index database 70, to receive requests
relating to those documents, and to generate results for those requests.
Requests from users may be handled initially by request processor 54, such
as to format and route the requests for handling by the sub-system 42.
Likewise, response formatter 56 may take information generated by sub-
system 42 and format it for transmission to user of the system 40. Request
processor 54 and response formatter 56 may be, for example, components
of a typical web server, and may serve additional functions, such as
merging relevant promotional materials with items transmitted to users,

Certain requests may be forwarded to a parser/tokenizer 60 that is
part of a location identification system. As described in more detail below,
the parser/tokenizer is a component that receives text, such as a string of

text from a search request, and breaks it into distinction portions (tokens)

13

WO 2007/009074 PCT/US2006/027413

10

15

20

that may be analyzed to determine if they represent location-based
information, and if so, what that information is.

Tokenized information may be passed from parser/tokenizer to
scorer 62. As described in more detail below, the scorer is a component
that looks to the information in the tokens to determine how relevant it is
for a particular application. For example, the scorer may compare the
tokenized information to known location information stored in a location
repository 68, such as to locate a match or near match between the
tokenized information and a location document in the location repository
68. The scoring may take place according to any appropriate approach,
including those described in more detail below.

Application 64 may interact with the other components of sub-
system 42 to perform various functions relating to location-based
information. Application 64 is shown generally in the figure to indicate
that various applications can readily have access to the services provided
by parser/tokenizer 60 and scorer 62 and may use the information obtained
from those components in any appropriate manner. Parser/tokenizer 60
and scorer 62, in fact, may look like a single component to other
components of sub-system 42, particularly where the other components
simply need to issue an RPC and wait for a response. Parser/tokenizer 60
and scorer 62 may also be actually combined and may be providf:d with
additional functionality as needed to perform their roles. In addition, they
may make requests of, or calls to, other components in carrying out their

roles.

14

WO 2007/009074

10

15

20

25

In all, system 40 provides a flexible mechanism by which to serve
various user needs in a modular componentized fashion. Various
applications may be developed to use the location-finding infrastructure
just described. If those applications need additional information, they may
add to what they receive from the location-finding structures. If such
information becomes commonly required, the functionality to provide it
may be added to the location-finding structures.

Figure 4 is a schematic diagram showing information flow in a
geocoding system. In this particular implementation, a client 70 submits
an RPC to a component known as a “Waldo Cluster,” named after the well-
known character who is often difficult to find in children’s books. The
request is simply formatted as “GeocodeRequest(raw),” indicating that the
client 70 passes a raw string of text to the cluster 72. The response is
formatted as “GeocodeResponse(location),” indicating that the response
comes back in a simple, predetermined format such as an ordered
numerical pair representing a latitude and longitude combination for a
location, or the full structure with id, address, structured address, etc.

Within the cluster 74, there is a driver 74, and a mobile 76
component. The driver 74 may be a control loop that makes decisions and
interfaces with the mobile 76. The mobile 76 may in turn be comprised of
a cluster of servers having multiple leaves that run scorers to decode
geographic information. The leaves may be part of a tree of servers, and
may be used where retrieval and scoring can be carried out via parallel
divide-and-conquer approaches. The particular arrangement of the cluster

72, the driver 74 or the mobile 76, is not critical to the operation of the

15

PCT/US2006/027413

WO 2007/009074 PCT/US2006/027413

10

15

20

features described here, and may take any appropriate form that is capable
of handling the needed throughput.

Figure 5 is a flow chart showing exemplary steps for obtaining
geocoding information, such as by the messaging process shown in Figure
4. The process is broken up by actions taken by a “client” and those by a
“server.” This representation is shown for clarity and as an example for
carrying out the process. No formal client-server architecture is intended
to be required by this representation. Rather, a client may simply be a
device seeking information, while a server may be a device providing the
information. Also, a client may be a device that acts as a server to another
device, such as a remote device (e.g., wireless telephone or PDA).

At action 100, the client sends a geocode query. The query may
simply be a rough string as entered by a user and received from a remote
device (which itself may be considered a client). The query may be, for
example, “1060 W. Addison Street, Chicago, IL. 60613.” The client may
also transmit a location “hint.” Such a hint may include, for example, the
point where the user making the query is standing (e.g., as determined by
information provided by the user, by triangulation of the user’s location, by
determining the location of a wireless tower serving the user, or by data in
a message header generated by a GPS-enabled device). It may also include
the bounding box of a map or view the user is looking at when they make
the query. Alternatively, it may be a polygon bounding the area in which
the user is located, as determined by the country of the domain the user is

on, or the domain of the user.

16

WO 2007/009074 PCT/US2006/027413

The server, at action 102, may receive the query, and the hint if it
is provided. The query may then be normalized and reduced (action 104).
For example, capital letters may be removed, abbreviations may be
shortened or lengthened (e.g., “St.” to “street” or vice-versa), and
5 punctuation between elements of the string may be removed. Thus, for
example, the following three queries may be reduced as follows:

"Building 42 1600 Amphitheatre Parkway, Mountain View CA 94043

USA"
"Ulm Deutschland"
10 "HARORERREA K EYIR 1T B 1 B8R
to:

"building 42 1600 amphitheatre parkway mountain view ca 94043 usa"
"ulm deutschland"
"B AR I IR 1T B 184 R
15 The string may then be tokenized (action 106). In particular,
individual elements representing portions of an address may be broken out
into distinct tokens for further processing. For example, each level of an
address—e.g., unit, building, street number, street, city, state, zip code, and
country—may be made into a token for representing the location. The
20 tokenization process may take any appropriate form, and in particular may
be a lexicon-loaded trie with left-to-right greedy matching. Tokenized
versions of the three queries above could be, for example:

[building_42] [1600] [amphitheatre parkway] [mountain_view]
[ca] [94043] [usa]

25 [ulm] [deutschland]
[B A] [RAER] (B K] (EZR] (1T B1[1] [EAER]

17

WO 2007/009074

10

15

20

25

The particular token sequences may be indexed as individual
documents in a tokenspace repository, and related location identifiers,
when determined, may be stored as an attachment. When indexing a token,
variant forms may also be included. For example, the following tokens on
the left will generate the variant forms on the right:

[building_42] -> [bldg_42]
[amphitheatre_parkway] -> [amphitheatre_pkwy]
[mountain view] -> [mV]

[ca] -> [california]

[usa] -> [us]

[BRHR] -> [

(BB K] -> [B34]

[T H]->[1]

[1] > [1%]

[R >]

The tokens may then be submitted to the mobile component
(action 108), which may receive the components and attempt to match
them to locations (action 110). In one implementation, the rule by the
mobile is to find all location documents that contain all of the tokens in-
order, skipping over a maximum of two repository tokens per query token.
For each hit, the Mobile reads the document’s location from an attachment,
attaches it to the result, and uses the result in scoring, as discussed below.

If there are no matches (see action 112), a back-off method may
be employed. In such situations, the repository may not contain the
specificity for which the user is looking, or the query may be incorrect. In
this back-off approach, a new query is formed by combining multiple

queries that lack one token, i.e., each permutation of the tokenized string,

18

PCT/US2006/027413

WO 2007/009074 PCT/US2006/027413

10

15

20

25

30

less one token, is queried to the repository. Thus, where the repository
document is:

[building_43] [1600] [amphitheater_parkway] [mountain_view]
[94107] [ca] [us]

and the tokenized query is:

[396C] [building_43] [1600] [amphitheatre parkway] [94106]

there are no hits using a two-token separation rule. That is because the
query includes a room specifier that is not in the repository, and the area
code is off. The following tokenized strings will then be queries in a first
back-off round:

[building_43] [1600] [amphitheatre_parkway] [94106] |
[396C] [1600] [amphitheatre parkway] [94106] |

[building_43] [amphitheatre parkway] [94106] |
[396C] [building 43] [1600] [94106] |
[396C] [building_43] [1600] [amphitheatre_parkway]

This set of queries will still generate no hits, so a second level of
back-off will be used, so that the following tokenized phrases are queried:

[1600] [amphitheatre parkway] [94106]
[building_43] [amphitheatre_parkway] [94106]
[building_43] [1600] [94106]
[building_43] [1600] [amphitheatre parkway]
[396C] [amphitheatre parkway] [94106]
[396C] [building_43] [1600] [amphitheatre_parkway] [94106]
[396C] [1600] [94106]
[396C] [1600] [amphitheatre parkway]
[396C] [building_43] [94106]
[396C] [building_43] [amphitheatre parkway]

Here, a match will be found. In the event there are multiple
matches, the high scorer will be returned.

Once matches are found, they may be scored. The scoring may
be based on the “mass” of matches, on a hint or hints, or on a combination
of the two. Such scoring may resolve ambiguities in results, for example,

when a user asks only for “Mountain View” and generates matches for

19

WO 2007/009074

10

15

20

25

PCT/US2006/027413

“Mountain View CA” and “Mountain View Drive, San Antonio TX.” At
action 116, the system determines whether a hint was received. If no hint
was received, the results may be scored according to their mass, with a
result having a higher mass ranked above a result having a lower mass
(action 118).

If a hint was received, the hint (e.g., in the form of a location)
may be combined with the mass value to generate a score, such that results
closer to the hint are given a higher score (action 120). One such scoring
technique factors the distance between the hint and a result into the score
for the result. The formula may be, for example:

Score = mass / (distance(hint, result) +C)
where C is an appropriately selected constant.

Where a back-off has been used, results based on the various
permutations of tokenized strings may also be weighted appropriately. For
example, each token may be assigned a weight based on its contents. As
examples, an ascii character may have a weight of one, a phonetic utf8
character may also have a weight of one. A number may have a weight of
two, as may combined utf8 characters, and anything else may have a higher
weight such as 20. The weights of tokens may then be adjusted according
to their position in the string, and the error or distance of a candidate string
may be the sum of the weights of the tokens dropped to form it.

With scores made for the matches, the mobile component may

pass the result or results to the driver component. The driver component
may then analyze the results and return them to the client if they are

sufficient (action 122). Finally, the client may take the results, such as a

20

10

15

20

WO 2007/009074

latitude/longitude pair, and use them as appropriate in the application it is
running.

Search here may happen in two phases: (1) retrieval, where a list
of N(parameter) documents matching the query(token sequence) are
found; and (2) scoring, where they are ordered for relevance. Some
scoring may be completed during retrieval, e.g., sorting documents by
location mass, so that it may be known during retrieval that the top N
matches are found when based solely on location score. Thus, for an un-
hinted search result, retrieval can be very fast. For a hinted search result,
additional queries may need to be examined.

For example, if the query “mountain view” brings up “mountain
view, ca” in position 1 and “mountain view drive el paso, tx” in position
3, the system may need to retrieve (and score) 2 extra results fora
location-hinted query to work. In addition, and as a result, hinting may
not work in some cases. For example, the pedantic query “1” hinted with
a latitude/longitude bounding box of a map containing only one house
number one is doomed to fail, for example. The retrieval of “1” will
likely find many, many documents before the desired document is found,
which is not generally practical.

The problem could be addressed by indexing, along with the
document, one or more terms describing its latitude/longitude location,
so as to retrieve, at retrieval time, only documents in the appropriate
region, and have a much shorter list of documents to consider. For

example, the earth may be represented using varying levels of triangular

21

PCT/US2006/027413

WO 2007/009074

10

15

20

25

meshes, naming the faces, and then associating documents with the faces.
This approach may be helpful for certain applications.

Figure 6 is a flow chart showing exemplary steps for extracting
address information from a document to assign an address to the
document. Generally, this process is appropriate for building an index of
location information relating to documents to enable later location-based
searching of the documents. One such example is the Google Local
service. This process answers the hypothetical question, “T have a
document; what addresses does it contain and where in the world are
they?”

In general, the pictured process may occur over a compacted web
repository on the client-side so as to avoid placing an unnecessary load
on the normal repository that may be serving ongoing queries. The
compacted repository may be, for example, a Bloom filter of certain
bigrams found in the main repository. These bigrams may include, for
example, some or all non-number bigrams in the main repository, and
also bigrams that skip over a token or two in an address. In certain
implementations, the address extraction library may make direct use of
the Mobile component. By limiting accesses made to the server in this
manner, load on the server can be reduced substantially.

Referring to Figure 6, the client first makes a request to obtain a
compact form of the location repository (action 200), and the server
returns that compact form of the repository (action 202). The client may
also obtain the full repository if it is able, and may make multiple calls to

generate a compact version of the repository itself. Also, various actions

22

PCT/US2006/027413

WO 2007/009074 PCT/US2006/027413

10

15

20

25

described herein may be performed by the server itself, and other actions
may be added, removed, or combined as appropriate. Once the client has
the compact repository, it may store it for future use 204. The compact
version of the repository may also be updated periodically, such as
whenever the main repository is updated.

At action 204, the client accesses a first document. Documents
may include any relevant type of file to be analyzed, and in which a user
might be interested. Common examples include web pages or other
mark-up documents, word processor documents, pdf files, databases, e-
mails, Usenet group discussions, blogs, catalogs, etc. The document may
be scanned to identify elements that are location-related, and those
elements may be normalized and tokenized in manners similar to those
described above (action 206). The client then scans through the tokens
looking for a good address hypothetsis. In one implementation, the client
may track a running set of three consecutive tokens, looking for whether
the two pairwise combinations in the set of three pass an existence check
in the Bloom filter (action 208). For example, where the tokens are A B
C, the client checks for the existence of (A B) and (B C).

If there is no match, the client advances to the next set of tokens
(action 210) and checks again for matches (action 208). If thereis a
match on consecutive sets, a token is added to make the entire set larger,
until there is no longer a match for the pairwise existence checks in the
Bloom filter (action 212). The client then queries the mobile with the
generated token sequence (actions 214, 216). If there is a hit or hits, the

sequence is grown, and checked again for hits (actions 218, 220); if there

23

WO 2007/009074 PCT/US2006/027413

10

15

20

25

is no hit, the sequence is shrunk by a token and retried. The process is
repeated until the longest hit-producing token sequence has been found
(actions 216, 218 220, 222, 224).

With the largest token sequence for the document located, the
location identifier, or geodata, for the corresponding location document is
retrieved and attached to the document (action 226). If there are
documents left to be extracted (action 228), the system returns to process
more documents. If there are no more documents, the system waits
(action 230), e.g., until some further command or until additional
documents are available. In this manner, relevant address or location
information may be located in documents and associated with a machine-
usable location identifier.

Figure 7 is a flow chart of exemplary steps for building a
repository of location information. Initially, collections of source data
may be assembled (action 250). This data may take the format, for
example, of the following data:

1600, AMPHITHEATRE PARKWAY, MOUNTAIN VIEW, CA,
37.422845, 41.72882261

The system may then generate location documents for each permutation of
each instance of source data. For the example above, the permutations may

be as follows, working from the “smallest” to the “largest™:

1600 AMPHITHEATRE PARKWAY
MOUNTAIN VIEW CA ->37.422845,
41.72882261

AMPHITHEATRE PARKWAY

MOUNTAIN VIEW CA ->37.422845,
41.72882261

24

WO 2007/009074

10

15

20

25

MOUNTAIN VIEW CA ->37.422845,
41.72882261

CA ->37.422845,
41.72882261

These four permutations, and the permutations for all other
points, may then be merged with all other locations having common
identifiers. The mass for each individual location (which will generally
be 1), for example, may be combined with the mass for all other locations
to form a mass number for a broader area, such as California in the
example. In logical terms, the mass of all underlying points or areaé is
combined (per a union operation) to form a mass for an identifier
common to those points or areas. Likewise, the boundary of a common
identifier is the union of the boundaries of all the underlying areas. The
common identifiers may then be accessed when they are requested
directly, or as a fall back for an incomplete query, such as “UNKNOWN
STREET MOUNTAIN VIEW CA.”

Figure 8 is a flow chart of exemplary steps for parsing location
information from a query. This method works on the assumption that the
query has been submitted generally in the form QL or LQ, where Q is the
query-related terms, and L is the location-related terms. For example, for
the query “pizza palo alto,” Q is “pizza” and L is “palo alto.” Additional
terms may also be located on either end of the Q and L terms.

The method first obtains the query string (action 270), and then

tokenizes the string (action 270), as described in one implementation
above. The method then steps through the tokens to identify possible

split points that separate the query component from the location

25

PCT/US2006/027413

WO 2007/009074

10

15

20

25

component of the string (action 276) until all split points are checked
(action 278). At each point, the assumed location-related tokens are
tested against a location repository, and the split point is moved
iteratively through the string. When all the split points have been
checked, or when a sufficient number have been checked, the process
identifies the longest token string as the appropriate location identifier.
The remainder of the query is taken as the substantive portion of the
query. The parsed components of the query string may then be used as
appropriate by other applications, such as to generate search results that
match the substantive portion of the query, as limited to a local search
controlled by the location-based portion of the query.

Figure 9 is a relationship diagram showing components for
extracting and geocoding location information. In this model, an
address has a canonical written form, and its components may have
written variants. For example, in a Japanese address, the lone "Z" used
to mark the block number is often written with an ascii or wide dash, so

("Z" ->"-") may be a good variant expansion. The reverse however

may be a less-accurate expansion. Moreover, if all addresses are in
canonical form, a reverse rule may be unnecessary.

A variant is composed of a base term and known written variants.
Expansion per (base -> variant) may be valid, while (variant ->p;
base) may not be.

The locations combiner combines all input location and generates
a set of location with addresses unique. In a map phase, the transition

may take the form of:

26

PCT/US2006/027413

WO 2007/009074 PCT/US2006/027413

map location -> Fingerprint (location.address()),

location;

In a reduction phase, the transition may take the form of:

5 if there are multiple values
log an error;

output the first value;

The variants combiner may merge all variants, such as by
10 performing the transitive expansion: ((a ->b) and (b ->c¢)) -> (a ->c).
Explained differently,

map<string, hash set<string> > variant_map;
load in all variants into variant_map;
until size of variant_map ceases to grow
15 for each a in variant map
for each b of variant mapl[al
for each c of variant_map[b]
variant maplal.insert(c);

write out variants;

20 The lexicon builder builds a lexicon out of variants terms, as

follows:

set<string> lexicon;
for each Variant {
insert base into lexicon;
25 insert all variants into lexicon;

}

write lexicon to file;

The address tokenizer, when given a string, may tokenize it into a

the set of lexicon words, leaving out any unrecognizable portions. The
30 process may conduct a greedy match. The process may have a hard
requirement that it tokenize into the supplied lexicon. In alternative

expression:

load lexicon into a trie;

while there's text left to tokenize ({
27

WO 2007/009074 PCT/US2006/027413

find the longest matching lexicon term;
if a term was found
add a token and advance the start pointer
by length(term);
5 else

advance the start pointer by 1:

Such an approach may be appropriate for Chinese, Japanese, and
10 Korean address sets. The repository builder builds a repository out of a

set of Locations.

load Variants into memory;
for each Location {
start a new document;
15 use an AddressTokenizer to tokenize
Location: :address;
for each token {
index the token;

add index entries for all variants of the

20 token;
}
attach Location::score;
attach Location::plane geometry;
}
25 While some variants may be generable (e.g., “street = st”),

others are not. Thus, it may be helpful to hve automatic assistance in
generating variants. A mix of manual and automatic variant generation
may be used, or fully automatic or fully manual generation may be
used to reduce complexity. Also, variants may be inverted -- ((a ->b)
30 -> (b -> a)) and then used at runtime to expand queries
The repository may be a composite containing (1) “body”
tokenspace - contains the indexed tokens; (2) “score” attachment -

contains the location score. (Used for constructing a priority table and

28

WO 2007/009074 PCT/US2006/027413

10

15

20

25

30

during scoring); and (3) “plane_geometry” attachment - contains the
PlaneGeometry.

Retrieval may be performed by taking a query string and
transforming it into a phrase term, effectively slapping quotes on either
side. A [max_separation:n] qualifier may be added on the beginning, to
allows for a certain amount of cruft to appear in-between address
components. The n factor can be adjusted for better results or
performance.

Extraction may take place as follows:

tokenize the string;
prepend and append made-up (not-in-lexicon) tokens;
initialize a token range to point to the first token;
while the range-end isn't beyond the end of the
tokens {
geocode - count the number of addresses matching
the token range;
1f the count is zero {
if the last count was 1
if the previous token range is a reasonable
address
geocode the previous token range to get a
Location and save it;
move the range-start forward one token;
if the range start is beyond the range end
move the range-end forward one token;
} else {

move the range-end forward one token;

}

return saved Locations;

The features just described for text entry may also be applied to
systems that obtain data using voice recognition or other means, such

as video recognition. The translation of input from a format such as
29

WO 2007/009074 PCT/US2006/027413

10

15

20

25

voice may occur by any of a number of well-known means used to
incorporate voice recognition with other data entry technologies. For
example, sensed voice commands may be translated into a format such
as VoiceXML or other usable format. Also, the system may operate on
data entered in various different languages.

Other methods for providing input may also be used as
appropriate. For example, the device may be provided with an
accelerometer that may provide input. For example, the user may jerk
the device to indicate that a term has been entered. Also, the user may
selected items, such as from a list, by tilting the device forward or
backward.

As used herein, the terms “electronic document” and “document”
mean a set of electronic data, including both electronic data stored in a
file and electronic data received over a network. An electronic
document does not necessarily correspond to a file. A document may
be stored in a portion of a file that holds other documents, in a single
file dedicated to the document in question, or in a set of coordinated
files.

Various implementations of the systems and techniques described
here can be realized in digital electronic circuitry, integrated circuitry,
specially designed ASICs (application specific integrated circuits),
computer hardware, firmware, software, and/or combinations thereof.
These various implementations can include implementation in one or
more computer programs that are executable and/or interpretable on a

programmable system including at least one programmable processor,

30

WO 2007/009074 PCT/US2006/027413

which may be special or general purpose, coupled to receive data and

instructions from, and to transmit data and instructions to, a storage

system, at least one input device, and at least one output device.
These computer programs (also known as programs, software,

5 software applications or code) include machine instructions for a
programmable processor, and can be implemented in a high-level
procedural and/or object-oriented programming language, and/or in
assembly/machine language. As used herein, the term “machine-
readable medium” refers to any computer program product, apparatus

10 and/or device (e.g., magnetic discs, optical disks, memory,
Programmable Logic Devices (PLDs)) used to provide machine
instructions and/or data to a programmable processor, including a
machine-readable medium that receives machine instructions as a
machine-readable signal. The term “machine-readable signal” refers to

15 any signal used to provide machine instructions and/or data to a
programmable processor. The processes described here may be
implemented as commands that are carried out when instructions stored
on a machine-readable medium or a machine-readable signal are
carried out.

20 To provide for interaction with a user, the systems and techniques
described here can be implemented on a computer having a display
device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor) for displaying information to the user and a keyboard and a
pointing device (e.g., a mouse or a trackball) by which the user can

25 provide input to the computer. Other kinds of devices can be used to

31

WO 2007/009074

10

15

20

25

PCT/US2006/027413

provide for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback (e.g., visual
feedback, auditory feedback, or tactile feedback); and input from the
user can be received in any form, including acoustic, speech, or tactile
input.

The systems and techniques described here can be implemented
in a computing system that includes a back-end component (e.g., as a
data server), or that includes a middleware component (e.g., an
application server), or that includes a front-end component (e.g., a
client computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of the
systems and techniques described here), or any combination of such
back-end, middleware, or front-end components. The components of
the system can be interconnected by any form or medium of digital data
communication (e.g., a communication network). Examples of
communication networks include a local area network (“LAN”), a wide
area network (“WAN), and the Internet.

The computing system can include clients and servers. A client
and server are generally remote from each other and typically interact
through a communication network. The relationship of client and
server arises by virtue of computer programs running on the respective
computers and having a client-server relationship to each other.

Although a few embodiments have been described in detail
above, other modifications are possible. Portions of this disclosure

discuss operation though portable devices with constrained keyboards,

32

WO 2007/009074 PCT/US2006/027413

but any of a number of devices may be assisted, including fully-
functional computers with full keyboards. Also, the logic flows
depicted in the figures do not require the particular order shown, or
sequential order, to achieve desirable results. Also, other steps may be
5 provided, or steps may be eliminated, from the described flows, and
other components may be added to, or removed from, the described
systems. Other embodiments may be within the scope of the following

claims.

33

WO 2007/009074 PCT/US2006/027413

10

15

20

25

WHAT IS CLAIMED IS:

1. A computer-implemented method, comprising:

receiving in a query a location identifier from a user of a remote device;

parsing the input location identifier to generate one or more location-
related tokens;

querying a repository of location information with the one or more
location-related tokens to identify locations for one or more documents
having a substantial match to the tokens;

scoring the one or more documents using a mass of location for each
document that represents the geographical size of a location associated with
the document; and

presenting information relating to the one or more documents for display

using the mass of location.

The method of claim 1, further comprising receiving a query-independent
geographical indication from the remote device and using the query-

independent geographical indication to score the one or more documents.

The method of claim 2, wherein the query independent geographical
indication is selecting from the group consisting of a location where the
remote device is located, a bounding box of a map displayed on the device,

and a region corresponding to the Internet domain the user is on.

The method of claim 2, wherein the score for a document comprises a ratio
of the mass of the document to a distance between the query:independent

geographic indication and a result.

The method of claim 1, wherein the step of querying a repository of location
information comprises recursively querying the repository using less specific
information until a sufficient number of matches are found.

The method of claim 1, wherein the step of querying a repository of location
information comprises querying for each permutation of tokens with a token

eliminated.

34

WO 2007/009074 PCT/US2006/027413

10

15

20

25

7.

10.

11.

12.

13.

The method of claim 6, wherein the step of querying a repository of location
information comprises querying for each permutation of tokens with two

tokens eliminated, if a match is not made with one token eliminated.

The method of claim 6, further comprising weighting each permutation of
tokens and using the weights to score results from querying each

permutation.

The method of claim 8, wherein the weighting comprises assigning a weight
to each token based on its content and adjusting the weight according to the

location of the token in the query.

The method of claim 1, wherein the query comprises a search request.

The method of claim 1, wherein presenting information relating to the one or
more documents for display comprises presenting a ranked list of search

results.

A location-based data collection and distribution system, comprising

a request processor to receive data requests from one or more remote
clients;

a location-based tokenizer that identifies location-related tokens in the
data queries; and

a result scorer to query a repository of location information with the one
or more location-related tokens to identify locations for one or more
documents having a substantial match to the tokens and score the one or

more documents using a mass of location for each document.

A location-based data collection and distribution system, comprising

a request processor to receive data requests from one or more remote
clients;

a location-based tokenizer that identifies location-related tokens in the
data queries; and

a means for scoring items responsive to the data request.

35

WO 2007/009074 PCT/US2006/027413

10

15

20

25

14.

15.

16.

17.

18.

19.

20.

A method of identifying location-based information in a corpus of
documents, comprising:

parsing a document in the corpus of documents to generate one or more
tokens;

comparing combinations of adjacent generated tokens with combinations
of tokens in a location-based repository;

querying a general database using a combination of adjacent tokens that
have a match in the location-based repository; and

assigriing the adjacent generated tokens as a location for the document if

there the query generates a sufficient number of matches.

The method of claim 14, wherein the location-based repository comprises

token bigrams from a larger repository.

The method of claim 15, wherein the comparison of adjacent generated
tokens with combinations of tokens in the location-based repository
comprises comparing overlapping bigrams from a set of three consecutive

tokens.

The method of claim 14, further comprising adding tokens to the adjacent
generated tokens to make an enlarged token set, and comparing the enlarged

token set to the location-based repository.

The method of claim 17, further comprising repeatedly adding adjacent
tokens to make enlarged token sets and comparing the enlarged token set to
the location-based repository until no match results, and querying the general

database with the largest enlarged token set.

The method of claim 18, further comprising reducing the largest enlarged
token set to generate a reduced token set if there is no match for the query,

and re-querying the general database with the reduced token set.

The method of claim 14, wherein the general database comprises information

extracted from documents on the Internet,

36

WO 2007/009074

PCT/US2006/027413
1/9

24

22 ; i
G) «r NS '
S
X % S 28
4 N
/ S
'
14
>
A 2
16 / , i
N\ ¥ _—18 y
1600 Mountainview 4
» 20
\‘\
\
ﬁ
12 T /
N\ < v ¥
Location 1 Location 2 Location n
id id id
address address address
structured _ structured _ structured_
address address address
mass mass . mass
location_ID location_ID location_ID
=~ =~ =,
\ 3\ 3\
12a 12b 12c

Fig. 1

PCT/US2006/027413

WO 2007/009074

2/9

¢ b4

5%2.?%3&5_;&&
£01909'8p:2pmine| xew

$85£198"6:opnySuo] “u B
{6€L£0L 6 1:9pmiBuoj 68€61°8p: [5€0580°Z¢1--opnyiduo|
9£5559 SEopme]Jojolqiuiogossn) | opniie| unujol0IJpUNOYIORX5I000) SY8TTY LE-apniie|]ojolfiuioJoon) Ql”uoyeao
z 0000t . L SSBWl +—— 7

r.xm,@wm..no:__lmmo%wm
wIHLIHFE
XG5 Y o N | ,-oul] Ssaippe

¥ H owed Anunod]ssaippy|eisod

Luwi(),:owreu” Aypeooy , puejyos
IN9(],,SWRU ANUnoo]ssaippyieisod

[.zy Suipying, :oweu” asiwoid

+009 [, Iaqunu” a1ejySnoioy)
JAemyreq
aneayydury, :oweu areyysnoloy
WMIIA UIBIUNOJA, ;ouieU A}1[e00]

VO, OWeU BoIe 2ANjBISIUIIpE
SIS

paju),,)awey Anunooalssaippyeisod

$S4ppE” panonys

wYS0,

—— 0¥

8¢

T 9¢

WEEET EV0P6 VO MIIA UIBIUNON ‘Aemieg —
HLTHZFEXGREUEYH. wpuRyOSIIaq Wy, sneayiydury 0091 zy Sutpping, sseippe

, uCy Suipling

-009 | -Aeayred aneayydute
wEERCI-E1-T ¢ wWn-9p,, ~M91A UteUNOUL-BO-ST,, p

R guoieao N 2uoyaao . juoneso]

N AN
ve e /om

WO 2007/009074 PCT/US2006/027413
3/9

40

62\ ~
\\

AN

\
Scorer — Search
| 1 Engine
Parser/ '{
Tokenizer ~ f64
/[\
60 Application
54 56
\ N
\ Request Response
Processor Formatter
I]
Interface 44
D
’ T j” 52
B~ 50 S

000

Fig. 3

PCT/US2006/027413

WO 2007/009074

4/9

¥ "B14

181snjD opjepp 77

(uopeoo))ssuodseyepooosn

A[

(mey)1senbayopoooss

0Z
Juslo

WO 2007/009074

Send Geocode
Query with Hint

5/9

PCT/US2006/027413

]

Remove One
Token and
Match to

Permutations 1

Yes

Score Matches Using
Mass and Hint 120}

1

|
I
I
100 | |
1 i 1
| Receive Geocode Query
| with Hint 102
1
: Normalize and
| Reduce Query 104
| I
| Generate Tokens
| for Query 106
[8|
| Submit Tokens
| to Mobile 108
I 4 |
| |
] Receive Tokens and
| Match to Locations 11
| I
|
|
I
I
I
I
I
| Received ?
I 116
| No
: Score Matches Using
| Locational Mass 118
| |
I
: Return Results
| |if Sufficient 122
]]
l .
Receive and 124 : Driver Mobile
Process Results [
|
Client l Server

Fig. 5

WO 2007/009074 PCT/US2006/027413

6/9
Request Compact Repository
200
Provide Compact Repository
202
Receive and Store Repository
204
| <
Normalize and Tokenize Page
206
I
Advance

210

—_— e e e e e] — — e o e . e e e] e e e e e e e e e e e e e o e eme e e e e A e e

Generate Token Sequence 214
<
. —> .
Query Database With Sequence 216 <1 Provide Response
Grow
218 Token Set
220
Shrink
2
e Token Set
224
Retrieve Geodata for Hit 226 > Provide Geodata
Pages No
228 Done ?
Done / Wait 230

Client Fig. 6 Server

WO 2007/009074 PCT/US2006/027413
7/9

Assemble Source Data

N
&)
(@

|

Generate Location
Documents for
Permutations of
Source Data

N
[9)]
N

Merge Locations
Having
Common Identifiers

N
(@]
ExN

|

Fig. 7

WO 2007/009074 PCT/US2006/027413

8/9
Get Query String
270
Tokenize String
272
Identify Possible
Split Points 274
Place Split Point
and Check 276

Identify Longest
Token String as
Location ldentifier 80

Fig. 8

WO 2007/009074 PCT/US2006/027413
9/9

Data Source 1 Data Source n

Variants -

Combiner Locatlgns
Combiner

Lexicon _

Builder REpC_JSItory
Builder

Repository
Address
Tokenizer

Google
Serviet
-

-~
// \
-

Coma > Commte >

Fig. 9

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings

