(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 September 2003 (04.09.2003)

(10) International Publication Number

PCT

WO 03/073265 A2

(51) International Patent Classification”:

(21) International Application Number:

GO6F 9/00

PCT/US03/04956

(22) International Filing Date: 21 February 2003 (21.02.2003)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
10/082,440

English

English

22 February 2002 (22.02.2002)

Us

(71) Applicant: XILINX, INC. [US/US]; 2100 Logic Drive,

San Jose, CA, 95124 (US).

(72) Inventors: SANCHEZ, Reno, L.; 8520 Beverly Hills, Al-
buquerque, NM 87122 (US). LINN, John, H.; 8620 Hamp-
ton NE, Albuquerque, NM 87122 (US).

(74) Agents: CHANROO, Keith, A. et al.; Xilinx, Inc., 2100
Logic Drive, San Jose, CA 95124 (US).

(81) Designated State (national): CA.

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

Published:

— without international search report and to be republished
upon receipt of that report

[Continued on next page]

(
TEM-ON-CHIP (SoC)

——
—
—
—_—
—
—
—
— 105
=)")‘ 110 120
—
— -~ SYSTEM SELECTOR |<——
——
—)— 115
——
— SYSTEM CUSTOMIZER
— PLATFORM q
— ~115A
= GENERATOR SYSTEM PARAMETER] SYSTEM
= ® Main GUI |«—» CUSTOMIZER <——»| ANALYZER
—_— ® Shopping Cart v
——]
= HARDWARE IP
PARAMETER) " 1158
CUSTOMIZER
o SOFTWARE [P |
< PARAMETER I 11sc
CUSTOMIZER
n
\o
o
(2]
g 125
S S J %
S :
SYSTEM

54) Titlee METHOD AND SYSTEM FOR CREATING A CUSTOMIZED SUPPORT PACKAGE FOR AN FPGA-BASED SYS-

(57) Abstract: A method for
customization of the software of
an FPGA-based SoC includes the
steps of selecting (380) a system
component used for customizing
the FPGA-based SoC, configuring
(382) the selected system component
with parameters for use with the
FPGA-based SoC and propagating
(384) the parameters used to config-
ure the selected system component
to peer system components. The
method further includes the step of
configuring (388) the peer system
components using the propagated
parameters during customization of
the FPGA-based SoC and creating
(401) a software interface to the
selected system components and to
the peer system components.

w0 03/073265 A2 NI 00 0 OO 0

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 03/073265 PCT/US03/04956

METHOD AND SYSTEM FOR CREATING A CUSTOMIZED SUPPORT PACKAGE
FOR AN FPGA-BASED SYSTEM-ON-CHIP (SoC)

FIELD OF THE INVENTTION

This invention relates generally to programmable logic
devices, and more particularly to a method and system for
creating support packages for customized FPGA-based SoCs.

BACKGROUND OF THE INVENTION
Programmable devices are a class of general-purpose

integrated circuits that can be configured for a wide
variety of applications. Such programmable devices have
two basic versions, mask programmable devices, which are
programmed only by a manufacturer, and field programmable
devices, which are programmable by the end user. In
addition, programmable devices can be fufther categorized
as programmable memory devices or programmable logic
devices. Programmable memory devices include programmable
read only memory (PROM), erasable programmable read only
memory (EPROM) and electronically erasable programmable
read only memory (EEPROM). Programmable logic devices
include programmable logic array (PLA) devices,
programmable array logic (PAL) devices, erasable
programmable logic devices (EPLD) devices, and programmable
gate arrays (PISA).

As chip capacity continues to increase significantly, the
use of field programmable gate arrays (FPGAs) is quickly
replacing the use of application specific integrated
circuits (ASICs). An ASIC is a specialized integrated
circuit that is designed for a particular application and
can be implemented as a specialized microprocessor.
Notably, an FPGA is a programmable logic device (PLD) that
has an extremely high density of electronic gates as
compared to an ASIC. This high gate density has
contributed immensely to the popularity of FPGAs. Notably,
FPGAs can be designed using a variety of architectures that
can include user configurable input/output blocks (IOBs),
and programmable logic blocks having configurable
interconnects and switching capability.

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

The advancement of computer chip technology has also
resulted in the development of embedded processors and
controllers. An embedded processor or controller can be a
microprocessor or microcontroller circuitry that has been
integrated into an electronic device as opposed to being
built as a standalone module or "plugin card." Advancement
of FPGA technology has led to the development of FPGA-based
system-on-chips (SoC) including FPGA-based embedded
processor system-on-chips. A SoC is a fully functional
product having its electronic circultry contained on a
single chip. While a microprocessor chip requires
ancillary hardware electronic components to process
instructions, a SoC would include all required ancillary
electronics. For example, a SoC for a cellular telephone
can include a microprocessor, encoder, decoder, digital
signal processor (DSP), RAM and ROM. It should be
understood within contemplation of the present invention
that an FPGA-Based SoC does not necessarily include a
microprocessor or microcontroller. For example, a SoC for
a cellular telephone could also include an encoder,
decoder, digital signal processor (DSP), RAM and ROM that
rely on an external microprocessor. It should also be
understood herein that "FPGA-based embedded processor SoCs"
are a specific subset of FPGA-based SoCs that would include
their own processors.

In order for device manufacturers to develop FPGA-based
S0oCs or FPGA-based embedded processor SoCs, it is necessary
for them to acquire intellectual property rights for system
components and/or related technologies that are utilized to
create the FPGA-based SoCs. These system components and/or
technologies are called cores or Intellectual Property (IP)
cores. An electronic file containing system component
information can typically be used to represent the core. A
device manufacturer will generally acquire several cores
that are integrated to fabricate the SoC.

Notwithstanding advantages provided by using FPGA-based
SoCs, the development of these SoCs can be very
challenging. Although a vast proportion of cores are
commercially available, a significantly greater proportion

of cores are proprietary. Proprietary cores can be called
2

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

customer specific cores. Commercially available cores can
typically include standardized interfaces, which can
provide interconnectivity between system components from
various vendors. Customer specific cores can typically
include proprietary interfaces that do not readily
facilitate interconnectivity between system components from
other vendors. For example, customer specific cores can be
written in proprietary languages, which are completely
different from standardized languages. Since customer
specific cores do not readily facilitate intercomnectivity
with other vendor's system components, integrating customer
specific cores during customization of an FPGA-based SoC
can be time consuming. This resulted in increased
development cost and greater time-to-market. Integration of
the cores can include simulating, modeling and debugging
the integrated cores in an operating environment.
Simulation and modeling can be a daunting task since it can
take hours if not days to simulate a few milliseconds of
real time operation. FPGA based embedded processor SoCs
are being introduced into the market, but there are no
solutions which allow users to customize the system, the
hardware cores, and the associated software nor is there a
system enabling a user to tradeoff between a function which
is implemented in hardware (FPGA fabric) or software
(running on the embedded processor). It would be desirable
to have a method and system for better integrating cores
during customization of FPGA-based SoCs. After a system is
customized with cores for an FPGA-based SoC, a software
interface to a circuit board is needed. Traditionally, a
Board Support Package (BSP) provided this software
interface to a fixed entity (the circuit board) and
included a collection of libraries which isolated all
hardware specific functionality from the software. 1In the
case of an FPGA-based SoC, a more dynamic solution is
needed since the FPGA-based SoC i1s a much more dynamic
environment than the traditional circuit board. Thus, a
need exists for a software framework that supports the
dynamic nature of customized FPGA-based SoCs.

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

SUMMARY OF THE TNVENTION

In a first aspect, the present invention can provide a
method for customization of the software of an FPGA-based
SoC. Subseqguent to selecting a system component used for
customizing the FPGA-based SoC, parameters can be used to
configure the selected system component for use with the
FPGA-based SoC. The parameters used to configure the
selected system component can be propagated and used to
configure peer gystem components. Notably, other
parameters that are used to configure the peer system
component can also be propagated and used to configure the
selected system component. The parameters used to
configure the peer system components can be propagated to
subsequently selected system components that can be used to
configure the FPGA-based SoC. The method further comprises
the step of creating a software interface to the selected
system component or components and to the peer system
components. Selection of the system components can also
include the provision of an option for selecting a hardware
implementation or a software implementation for customizing
the FPGA-based SoC. Additionally, the step of selecting
the system component can include selecting a system
component from the group consisting of a hardware core and
a software core.

In another aspect of the present invention, a method of
generating a chip support package for a customized FPGA-
based SoC can comprise the step of monitoring during
initialization of the customized FPGA-based SoC for at
least one system component and associated parameters among
a plurality of system components used for customizing the
customized FPGA-based SoC and the step of creating a
software interface based on the system components and
associated parameters monitored.

In yet another aspect of the present invention, a support
package generator for an FPGA-based system-on-chip (SoC)
comprises a software interface having access to a
collection of software component libraries for supporting
functions of a customized FPGA-based SoC and a self
contained directory specifying directory locations for

items selected from the group comprising an output of the
4

10

15

20

25

30

35

40

WO 03/073265 PCT/US03/04956

support package generator, a chip support package template
file, a software device driver file.

The support package generator can also include software
interface that serves as a software interface to hardware
functions selected from the group comprising hardware
initialization, interrupt handling, interrupt generation,
hardware clock management, hardware timer management,

mapping of local and bus memory spaces, and memory sizing.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a processor system generator
in accordance with the invention.

FIG. 2 depicts an exemplary topological view of a system

-model for generating a customized support package in

accordance with the inventive arrangements.

FIG. 3 depicts a flow chart illustrating exemplary steps
for creating a customized support package in accordance
with the invention.

FIG. 4 depicts a flow chart illustrating a method of
customizing an FPGA-based SoC.

FIG. 5 depicts an interface for integrating software system
component cores in accordance with the inventive
arrangements.

FIG. 6 depicts an exemplary hardware interface for
integrating hardware system components in accordance with

the invention.

DETATILED DESCRIPTION OF THE DRAWINGS

‘Referring to FIG. 1, there is shown a block diagram

illustrating an exemplary system for developing and
verifying a FPGA-based SoC in accordance with the
invention. For illustrative purposes, and without limiting
the scope of the invention, an embedded system consisting
of a microprocessor, buses, memory architecture,
peripherals, and software components is presented, although
a system using an external microprocessor is certainly
contemplated within the scope of the invention. Exemplary
software components for the embedded system can include,
but is not limited to, device drivers and system software,

such as a real time operating system (RTOS) and protocol
5

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

stacks. An exemplary development environment for this
embedded system can include, but is not limited to, one or

more libraries for microprocessors, peripheralsg, system

software, and device drivers. The relevant bus

architectures and memory options that can be utilized for
the development of an FPGA-based SoC can be included in the
libraries. Further, a good example of hardware/software
function tradeoff can involve the protocol stack, which can
be implemented in either hardware or software. A user may
implement a protocol stack in software if there is
sufficient processing power to meet all performance
requirements or the user could implement the protocol stack
in hardware given sufficient FPGA resources and a presumed
need for higher performance.

In general, a system model can be created to facilitate
design and testing of a FPGA-based SoC. The system model
can include a data structure that represents the internal
structure and functionality of the FPGA-based SoC. The
system model can include, but is not limited to, system
components, interconnections between components, and
attributes, which define various characteristics and
functionality of the system components and
interconnections. The data structure can be a hierarchical
structure, for example a tree structure, which can mirror
the design hierarchy of the embedded system. This system
model can also include algorithms, which can facilitate
selection and customization of system components. Notably,
the system model can be part of an integrated object-
oriented system (00S) that can facilitate selection and
customization of the system components. Alternatively,
other mechanisms and algorithms external to the system
model can facilitate selection and customization of the
system components.

Referring now to FIG. 1, there are shown a platform
generator 105, a system selector 110, a system customizer
115, a system analyzer 120, a code generator 125 and a
system implementor 130 all forming a processor system
generator. The platform generator 105 can include one or
more GUIs that can facilitate design of the system model.

A main GUI can provide various system options and
6

WO 03/073265 PCT/US03/04956

10

15

20

25

informational dialogs. The platform generator can include,
a navigator GUI having one or more dialogs and/or objects,
a topological GUI having one or more dialogs and/or objects
and a selection customizer GUI having one or more dialogs
and/or objects. One or more dialogs and/or objects can
provide system component resource counts, performance
estimates, power requirements and system and application
software requirements. For example, a GUI can be used to
display a table or chart representing the resource
allocation for the system components. Advantageously, such
table or chart can provide an easily readable condensed
view of the system resource allocation. An exemplary table
is illustrated below.

Device LUTs DFFs Slices |BRAM |I/Os
OPB Arbiter 300 200 200 0 9
UART 16450 500 400 300 0 12
Ethernet 10/100M 2500 1700 1500 0 12
Total Utilized 3300 2300 2000 0 21
Device Resources 122880 122880 61440 3456 1488
Available Resources | 119580 (120580 |[59440 3456 1267

Referring to the table, a condensed view of the system
resources is provided. Specifically, the table shows a
breakdown of particular resources utilized by each device
and also the total resources utilized by all devices. The
available resources can be computed based on the total
utilized resources and the total device resources. For
example, there are 122880 D-flip flops (DFFs) available.
OPB arbiter utilizes 200 DFFs, UART 16450 utilizes 400
DFFs, and Ethernet 10/100M device utilizes 1700 DFFs.
Hence, there are 2300 DFFs utilized, which leaves 120580
available.

A navigator dialog and/or object can provide an interactive
interface that can facilitate viewing of design

specification and configuration information. For example,
7

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

one or more navigator objects can provide a graphical view
to facilitate the insertion of a microprocessor from a
library into the system model. In a case where a universal
asynchronous receiver/transmitter (UART) is selected as a
peripheral, the navigator object and/or dialog can permit
customization of the UART. The navigator dialog can also
be configured to permit switching between multiple design
and implementation tasks. The topological dialog can
utilize a block diagram format to provide a topological
view that can visually represent the existing state of the
system model. The selection customizer object can permit
the selection and customization of a system component.

Upon selection of a system component, a GUI which can
include a dialog, can facilitate customization of the
system component. Platform generator 105 can have the
capability to permit a particular state and/or stage of the
system design and implementation .to be saved and recalled
at a subsequent time.

System selector 110 can be a GUI that can facilitate
selection of the system components that can be used to
design the FPGA-based SoC. For example, the system
selector 110 can provide one or more dialogs that can
permit the selection of microprocessors, microcontrollers,
peripheral devices, buses, system software and application
software. During selection of system components, each of
the selected components can be independently treated.

The system customizer 115 can include one or more GUIs
having objects and/or dialogs that can facilitate
customization or configuration of system components and
software. Referring to FIG. 1, there are shown a system
parameter customizer 115a, a hardware intellectual property
(IP) parameter customizer 115b, and a software IP parameter
customizer 115c. The system parameter customizer 115a can
facilitate customization of the memory map, interrupt
bindings and priorities, and global and default system
parameter definitions. The hardware intellectual property
(IP) parameter customizer 115b can facilitate customization
of device specific parameters. For example, data bus
widths, IP interfaces and device specific parameters can be

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

customized by hardware intellectual property (IP) parameter
customizer 115b.

The software intellectual property (IP) parameter
customizer 115c can facilitate customization of software
specific parameters. For example, upon selection of a
system component or a peripheral, an interrupt request
(IRQ) number, a memory mapped I/0 address and default
initialization parameters can be assigned to the peripheral
by the software IP parameter customizer 115c¢c. In a case
where a UART has been selected as a peripheral, default
parameters can include, but are not limited to, stop bits,
parity designation on/off, and baud rate. The customizer
system 115 not only provides selection of the system
components, but can also be configured to bind system
parameters to system components. For example, the memory
map for a particular peripheral can be bound to the
peripheral giving the peripheral its unigque memory address
space. Furthermore, a GUI having one or more dialogs can
be used to populate a system model data structure with
customization parameters and/or attributes.

The system analyzer 120 can include one or more GUIs having
objects and/or dialogs that can provide immediate feedback
regarding architectural choices made during customization.
The system analyzer 120 can include software that can have
the capability to validate and analyze the system model
while it is being customized. 1If problems including,
incompatibilities, conflicts and/or system violations
occur, the system analyzer 120 can issue immediate warnings
and/or provide possible solutions. The system analyzer 120
can perform tasks such as system checks, parameter
consistency checks, data type and value propagation checks,
interconnection inference, and resource and performance
analysis. Interconnection reference pertains to
implications that can result from making certain
connections. The system analyzer 120 can also assign device
identifications (IDs) to system components and computing
configuration read-only-memory (ROM) data. Exemplary
system and parameter consistency checks can include,

*matching data bus widths of peripherals and system

components, determining interrupt conflicts, determining
9

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

‘memory map conflicts, determining memory size and usage,

determining device counts, determining availability of FPGA
resources and determining maximum operating frequency.

The system analyzer 120 can be configured to propagate
default values, global values and/or previously defined
values through the system model. For example, if a bus is
configured with a default data width of 16 bits, then each
peripheral that "sits on" or utilizes that bus can
automatically be configured with a data width of 16 bits.
It should be recognized by one skilled in the art that
although a peripheral device may be automatically
configured with the default bus width value, this value can
be overwritten. For example, depending on the application,
availability of certain devices can dictate that two (2) 8-
bit devices be utilized instead of a single 16-bit device.
Advantageously, the propagation of values can prevent
multiple entry of similar data which typically increases
development time.

During performance analysis, system analyzer 120 can have
the capability to determine if system components are
properly configured. For example, system analyzer 120 can
identify a high-speed device that has not been configured
with direct memory access (DMA). Since such a device can
invariably cause a system conflict, system analyzer can
consider it as a source of potential problem. System
analyzer 120 can also determine whether there are too many
devices residing on a bus based on the device count. For
example, the system analyzer 120 can have the capability to
determine whether there are too many high-speed devices on
a low speed bus. In this case, the system analyzer 120 can
indicate the possgibility of errors and/or generate possible
solutions. By tracking memory usage, the system analyzer
120 can have the capability to determine whether the code
space assigned in the memory map is too large for the
physical memory. System analyzer 120 can also be
configured to track physical resource requirements for
example, slice counts for IP blocks, and width and height
of specifications of IP blocks. A GUI can provide a wvisual
display of a resulting or representative floor plan to aid

with tracking and management of physical resources.
10

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

Code generator 125 can include one or more GUIs having
objects and/or dialogs that can facilitate generation of
the code necessary for implementing the design of the FPGA-
based embedded processor SoC or FPGA-based SoC. The code
necessary for implementing the design of the FPGA-based SoC
can be in a format such as the well known hardware
description language (HDL). HDL is a language used to
describe the functions of an electronic circuit for
documentation, simulation and/or logic synthesis. Verilog
and VHSIC Hardware Description Language (VHDL) are
standardized HDLs which are well known by those skilled in
the art. Verilog and VHDL can be used to design electronic
systems at the component, board and system level. They can
facilitate the development of models at a very high level
of abstraction. Other formats now known or to be
discovered can also be used to represent the system model.
Depending on information generated by, for example, the
software IP parameter customizer 115c, the code generator
125 can tailor "header files," which can be used to
implement the software IP of the FPGA-based SoC. Moreover,
depending on the selected software IP, processors,
peripherals, operating system and device drivers, code
generator 125 can produce a source code directory structure
that can facilitate implementation of the software IP of
the FPGA-based SoC. The code generator 125 can also
generate the necessary "make files," which can be used to
define the rules necessary for compiling and building the
code used to implement the software IP of the FPGA-based
SoC. The code generator 125 can be configured to generate
information that can be used for debugging. The generated
information can be in an ASCII format or other suitable
format and can include information such as the memory map,
the configuration ROM table and the peripheral ID map.

The system implementor 130 can include one or more GUIs
that can have objects and/or dialogs that can facilitate
implementation of the FPGA-based SoC design. Implementation
of the design can include, but is not limited to, HDL
simulation and synthesis, mapping of information generated
by the code generator 125, placement, routing and bitstream

11

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

generation. An integrated tool or separate tools can
facilitate the implementation of the FPGA-based SoC design.
FIG. 2 depicts a functional flow chart analogous to the
block diagram and hardware description of FIG. 1. The
BSP/CSP generator 225 preferably serves as a tool for
automating the creation of a BSP and/or CSP based on a
customized FPGA-based SoC such as Xilinx’s FPGA-based
embedded processor SoC. The BSP would contain all the
necessary support software for a customized system,
including boot code, device drivers, and RTOS
initialization. The generator 225 preferably takes as
input a system description 215 that is preferably created
using a platform generator 205 similar to the platform
generator 105 previously described with respect to FIG. 1.
Using the system description 215 along with BSP (or CSP)
template files 235, the generator 225 produces a directory
structure containing a customized BSP and/or CSP 240.

Every operating system supported by the generator 225 éan
have a corresponding set of template files. If necessary,
the user (such as a developer) can further tailor the
BSP/CSP 240 to meet specific needs such as off-chip device
support as well as add application-level software. Thus,
the directory generated will generally contain canned BSP
files for the operating system and specific processor (in
the case of a FPGA-based embedded processor SoC) as well as
customized BSP files that are BSP template files modified
by the generator 225 to reflect the actual system just
created by the platform generator 205. These templates can
include makefiles used to build the BSP. Additionally, the
directory will contain software device driver files for

.peripherals included in the system description.

With respect to the directory (and corresponding directory
tree) produced by the generator 225, it is preferable that
BSP/CSP directory be self-contained to enable easy
portability to any other user directory based on the needs
of their operating system development tools. Besides names
for the BSP and associated CSPs, a directory tree (as
explained above) would further contain device driver
software and associated makefiles. Preferably, only those

device drivers actually used in the system is copied (from
12

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

a repository created by the Platform Generator 205 for
example) to the directory tree. Rather than create a BSP
that points (e.g. in makefiles) to the driver repository,
the necessary driver files are copied to the BSP directory
to create a self-contained BSP. An XML tag format will
allow for more than one CSP to be included in a single BSP
such as in the case where two or more FPGAs exist on a
single board or where two or more processors exist within a
single FPGA.

Referring to FIG. 3, a flow chart illustrating a method of
creating a support package for a customized FPGA-based SoC
is shown. The method preferably comprises the step of
monitoring for at least one system component and associated
parameters among a plurality of system components used for
customizing the customized FPGA-based SoC during
initialization of the customized FPGA-based SoC and the
step of creating a software interface based on the system
components and associated parameters monitored. The step
of monitoring can involve analysis of system descriptors as
previously described. The step of creating can involve the
automatic generation of a software interface to hardware
functions selected from the group comprising hardware
initialization, interrupt handling, interrupt generation,
hardware clock management, hardware timer management,
mapping of local and bus memory spaces, and memory sizing.
FIG. 4 depicts a flow chart illustrating exemplary steps
for creating support packages in accordance with the
invention. Referring to FIG. 4, in step 380, system
component #1 can be selected. System component #1 and any
subsequently selected system component can include a
hardware core or a software core. 1In step 382, system
component #1 can be configured with parameters. In step
384, the system parameters can be propagated to make them
available for subsequently selected system components that
will utilize common parameters. In step 384, system
component #2 can be selected. In step 388, system
component #2 can be configured with parameters including
previously propagated common parameters. In step 400, any
new parameters that'were used to configure system component

#2 can be propagated to make them available for previously
13

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

and subsequently selected system components that utilize
similar parameters. At step 401, a software interface to
the selected components and any peer components are
created.

It should be recognized by those skilled in the art that
the configuration and propagation of parameters can be
static or dynamic. Notably, as system components are
configured with new parameters, these new parameters are
propagated and made available for configuring other system
components. Importantly, these other system components can
include previously configured hardware and software system
components, as well as subsequently selected hardware and
software system components. Advantageously, the
propagation of system parameters can save on development
time, since it can obviate any need to re-enter similar
parameters which can be used to configure other selected
system components.

FIG. 5 depicts an interface 480, for integrating software
system component cores in accordance with the inventive
arrangements. Referring to FIG. 5, there are shown an
operating system layer 482, and operating system adaptation
layer 484 and a system component layer 486. The operating
system component layer 482 can facilitate management of
resources for the software system components that are used
to customize the FPGA-based SoC. The operating system
layer 482 can host an operating system such as a RTOS.

The operating system adaptation layer 484 can facilitate
communication between disparate system component drivers,
for example 486a, 486b 486c, and the operating system layer
482. The system component drivers 486a, 486b and 486c¢c can
be customer specific proprietary cores, each having a
different communication interface. Since each of the
component drivers 486a, 486b and 486c can have different
proprietary interfaces, communication messages can be
translated or converted to and from the proprietary formats
to facilitate communication with the operating system layer
480. The operating system adaptation layer 484 can include
a translator that can facilitate conversion to and from the
proprietary formats, so that information can be

14

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

communicated between the operating system layer 482 and the
system component layer 486. '

The system component layer 486 can include one or more
system component drivers. Each of the system component
drivers can be configured to handle the processing
functions for a system component. For example, system
component #1 driver can be configured to handle processing
functions for system component #1. For illustrative
purposes, system component #1 can represent serial device
215j. 1In this case, system component #1 driver 486a can be
used to process data in an associated data buffer for
serial device 215j. System component #1 driver 486 can
include an interrupt handling routine that can be used to
retrieve data pending in the associated data buffer for
serial device 2157j.

FIG. 6 depicts an exemplary hardware interface for
integrating hardware system components in accordance with
the invention. Referring to FIG. 6, there is shown an
exemplary interface 500 that can facilitate integration of
variously configured peripheral system components that can
be utilized for configuring the FPGA-based SoC. The FPGA-
based SoC can be configured to utilize dedicated
transistors in the Silicon of the FPGA for implementing a
peripheral interface. Alternatively, the FPGA-based SoC
can be configured to utilize dedicated transistors in the
logic fabric of a FPGA for implementing a peripheral
interface. Importantly, the choice of peripheral
interfaces used for configuring the FPGA-based SoC can
affect resource utilization of the FPGA-based SoC. For
example, the resource utilization for a master-glave
peripheral interface implementation can be markedly
different from a slave only peripheral interface
implementation. Advantageously, the invention can provide
immediate feedback on system component and peripheral
selection and implementation during customization of the
FPGA-based SoC. Importantly, customization of the FPGA-
based SoC can occur under resource constraints without the
need to spend expensive development time and effort.
Exemplary interface 500 can include, but is not limited to,

‘a multiplexer (MUX) 502, slave connection circuitry 506,

15

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

40

master connection circuitry 508, direct memory access DMA)
controller 510, interrupt controller 504, address decoder
514, write buffer 516, and read buffer 518. The MUX 502
can facilitate selection of the slave connection circuitry
506 or the master connection circuitry, which can be used
to connect a proprietary or customer specific or other
hardware system component core 512 to processor bus 520.
The interrupt controller 504 latches individual interrupt
signals and provides an indication of an interrupt
condition to a processor (not shown). DMA controller 510
can facilitate direct memory access to a storage device
such as a random access memory (RAM). I/O data transferred
to and from the system component core can be buffered in

.the write buffer 516 and the read buffer 518, which can

both be selected by the MUX 502.

In another aspect of the invention, a chip support package
can be automatically created for the FPGA-based SoC.
Typically, board support packages (BSP) can facilitate
hardware and software customization. A BSP can include a
circuit board and associated system and/or application
software. The system and application software can include
a collection of libraries, which typically isolate hardware
functionality of the circuit board from its software
functionality. For example, the BSP libraries can provide
software functions that can be used for hardware
initialization, interrupt handling, clock and timer
management, and data structures for memory mapping and
sizing. Nevertheless, a BSP usually correlates to a static
design of a specific circuit board with specific
components. A new circuit board with different components
would then necessarily require a different BSP.
Advantageously, the FPGA-based SoC provides a more flexible
approach than the BSP, by locating system components on a
chip, in contrast to being on a separate circuit board.
Rather than hard-coding the initialization of system
components that reside on the circuit board of the BSP, the
FPGA-based SoC can permit initialization of only those
system components that are utilized for customizing the
FPGA-based SoC. This can drastically reduce initialization

time and save on often precious memory. The code generator
16

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

125 and/or system implementor 130, can include a chip
support package generator for generating a chip support
package (CSP) or a board support package generator for
generating a board support package (BSP) once the system
components used to customize the FPGA-based SoC have been
selected and configured. The code generator (125) and/or
system implementor (130) can serve as a tool to automate
the creation of a BSP based on a specific FPGA-based SoC
and a specific operating system to be integrated with the
hardware or software cores previously selected.
Advantageously, the ability to get real-time feedback and
resource allocation can provide optimal resource allocation
while configuring the system components used to customize
the FPGA-based SoC. Furthermore, the ability to
automatically create a software interface (BSP/CSP) once
the FPGA-based SoC is customized can significantly reduce
up-front development costs and non-recurring engineering
costs and ultimately reduces the time to market. A method
for customizing the software of an FPGA-based SoC according
to the present invention can be realized in a centralized
fashion in one computer system, or in a distributed fashion
where different elements are spread across several
interconnected computer systems. Any kind of computer
system, or other apparatus adapted for carrying out the
methods described herein, is suited. A typical combination
of hardware and software could be a general purpose
computer system with a computer program that, when being
loaded and executed, controls the computer system such that
it carries out the methods described herein.

The present invention can also be embedded in a computer
program product, which comprises all the features enabling
the implementation of the methods described herein, and
which, when loaded in a computer system, is able to carry
out these methods. Computer program or application in the
present context means any expression, in any language, code
or notation, of a set of instructions intended to cause a
system having an information processing capability to
perform a particular function either directly or after
either or both of the following a) conversion to another

17

WO 03/073265 PCT/US03/04956

language, code or notation; b) reproduction in a different
material form. .
Additionally, the description above is intended by way of
example only and is not intended to limit the present

‘5 invention in any way, except as set forth in the following

claims.

18

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

CLATMS

What is claimed is:
1. A method for customization of the software of a system-
on-chip (SoC), the method comprising:

selecting a system component used for customizing the
SoC;

configuring said selected system component with
parameters for use with the SoC;

propagating saild parameters used to configure said
selected system component to peer system components;

configuring said peer system components using said
propagated parameters during customization of the SoC; and

creating a software interface to said selected system
component and to said peer system components.

2. The method according to claim 1, further comprising
configuring the selected system component with parameters
used to configure said peer system component.

3. The method of claim 1, wherein the step of creating a
software interface comprises the step of creating a board
support package which contains a chip support package
providing a software interface to hardware functions
selected from the group comprising hardware initialization,
interrupt handling, interrupt generation, hardware clock
management, hardware timer management, mapping of local and

bus memory spaces, and memory sizing.

4. The method of claim 1, wherein the SoC is an FPGA-based
SoC.

5. The method of claim 1 wherein the software of the SoC
is customized as a portion of customizing software of a
system including the SoC, and wherein the software
interface to said selected system component and to said
peer system components is created as a portion of creating
a software interface to the system.

19

WO 03/073265 PCT/US03/04956

10

15

20

25

30

35

6. A method of generating a support package for a
customized system-on-chip (SoC), comprising the steps of:
monitoring for at least one system component and
associated parameters among a plurality of system
components used for customizing the customized SoC during
initialization of the customized SoC; and

creating a software interface based on the system

components and associated parameters monitored.

7. The method of claim 6, wherein the customized SoC is a
customized FPGA-based SocC.

8. A board support package generator and chip support
package generator for a customized system-on-chip (SoC),
comprising:

a software interface having access to a collection of
software component libraries for supporting functions of a
customized SoC; and

a self contained directory specifying directory
locations for items selected from the group comprising an
output of the chip support package generator, a chip
support package template file, and a software device driver
file.

9. The board support package generator and chip support
package generator of claim 8, wherein the items are

selected on the basis of a specified operating system, a
specified processor, and at least one among a set of pre-

selected hardware and software cores.

10. The board support package generator and chip support
package generator of claim 8, wherein the customized SoC is
a customized FPGA-based SoC.

11. The board support package generator and chip support

package generator of claim 8 wherein the customized SoC is

a portion of a system.

20

PCT/US03/04956

WO 03/073265

1 "‘DI4

FOINTNA TIAT
WOLVIANTD d0D
INALSAS <
g1 el e
YHZINOLSND
0511 | ‘\ WHLANYIVd
dl TIVMIIOS
FMAZTNOLISND
qsit | ﬁ\ MALANVIV
d TIVM@OIVH

A

e Surddoys o

YHZATVNY [—> WAZINOLSND Ino W e
INLLSAS vert x VHALANVIVd WHLSAS NOLVYANAD
. INIOALY'1d
NIZINOISND NALSAS
ST1 S ﬁ
<«—»| WOIOTTAS WALSAS
0Z1 S]84 l\ S0l (\

1/5

PCT/US03/04956

WO 03/073265

£

: ONIZIS AJOWHN ANV ‘SHOVIS AMOWHN SN ANV TVDOT A0 ONIddVIN
INAWADVNVIN YHNLL TIVMAAIVH ‘INHNIDVNVYIA J00TO TIVMAIVH ‘NOLLVIHNED LN IHINI
‘ONITANVH LdNNIEINT ‘NOLLVZITVILINI ONISRIdNOD dN0¥H HHI WOdL AEIDHTIS SNOLLONA
OL D VAIALNI ONIANTONI DOS AdSVd-VOdd HH.L 0 NOLLVZI'TVILINI ODNRNA
ATIOLINOW SINANOJNOD WHISAS FHIL OL HOVAIHINI AVMILIOS V HLVHID

/
z0€

]

D0S dESVa-vOdd AdZINOLSID NI

AISN SYALANVIVA HLVIDOSSY ANV SINENOJNOD WHLSAS OLINOW

e
V4
10§ 00t ¢ ‘DIA
SHTId 4LV IdNHL
_ dso/dsd
00C
dSD/dSd YOLVIANAD NOLLdIIDSHd UOLVIANHID
IWOLSND dSD/dSd NALSAS WHI0ALV1d
F pd
e /

)4

Y44

S0c ¢ D4

2/5

PCT/US03/04956

WO 03/073265

v "DId

7# pue T# syuouodmod

0¥ M WO)SAS P210379s 9} 0] QIBLISIUI 2IBMYOS B)BT

H

s19jotrered Je[IwIs oZyIn et sjuouoduwiod
wo)sAs paores Apuenbasqns pue Ajsnorasid
00% — I0J S[qe[ieA® TUSY) OXBUE 0} 7# JuouodtIod WaisAs
araSyguoo 01 pasn siajpuwrered weisAs o1eSedorg

!

siojoweIed TouHoo poregedoxd o)
88¢ — Surpnjour siojourered Jim g JuaU0duiod woIsAs amsyuo)

i

7# TuuOodoD WSISAS 100[0S

»

s1ojourered TOUIIOD SZIIN
ey sjuouodiod W)sAs pejod[es Apuenbasqns 1oy
8¢ — o[qe[IeAR WY} oxew 0} s1eourered wo)sAs sjededor

»

s1oeuered IIM [# Juouodiod WISiSAS 9INTIUO))

f

*1# yusuodwoo weisAs 109108

98¢ —

8¢ —

08€—

3/5

WO 03/073265

480

Operating System Layer

Operating System Adaptation Layer

System Component #7 Driver

System Component #6 Driver

System Component #5 Driver

System Component #4 Driver

System Component #3 Driver

System Component #2 Driver

System Component #1 Driver

482

484

4/5

PCT/US03/04956

486b 486¢

486a

FIG. 5

PCT/US03/04956

WO 03/073265

H40D
/INHNOdNOD INH.LSAS

9 'DIA

00s

114

(45

HHTIOYLINOD

y0s

LAEIHINT —

908

’ ~"|
01S -
- VINQ
81¢ > LLINONID
> ﬂ NOLLDENNOD |t—
<« ¥EIIng avay - WHISVIN
<«
9IS , Ji
] X c0S 80S
<« MELINE ALRIM | m
vIS «———
' AALINDYEID
<« 98000Eda » NOLLOHENNOD |-
J

A OQUMmnwmOx MPw®w

5/5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

