Title: REUSABLE INSTRUMENTS AND RELATED SYSTEMS AND METHODS

Abstract: Reusable instruments, such as reusable medical instruments, and related systems and methods, are disclosed. In some embodiments, the reusable instrument can be an endoscope.
REUSABLE INSTRUMENTS AND RELATED SYSTEMS AND METHODS

Cross-Reference to Related Application

Technical Field

The invention relates to reusable instruments, such as endoscopes, and related systems and methods.

Background

Endoscopes are commonly used to view a region inside a subject (e.g., a human, an animal), such as, for example, when performing a therapeutic or interventional medical procedure to remove a polyp within the intestine, when performing a diagnostic medical procedure to view the bronchii searching for tumors, or when performing a diagnostic medical procedure to ultrasonically image an organ (e.g., in transesophageal ultrasonic imaging). Typically, an endoscope has a manipulation portion coupled to an elongated portion (e.g., a flexible elongated portion, a rigid elongated portion, a semi-rigid elongated portion) so that, during use of the endoscope, the manipulation portion remains outside the subject while the elongated portion is at least partially disposed inside the subject. Generally, the elongated portion has one or more optical components (e.g., one or more lenses, imaging fiber optics, video imager) to illuminate and view the region inside the subject, and the manipulation portion has one or more devices designed to control the optical components and the position of the elongated portion in the subject.

Optionally, the elongated portion can include one or more medical tools configured to perform a medical procedure on the subject. In general, after each use in a medical procedure, the endoscope is cleaned to remove detritus, and subsequently disinfected and/or sterilized.

Summary

In one aspect, the invention features a method of charging a client for use of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes charging the client for use of the reusable instrument, where the charge to the client is at least partially based on the number of times the client
has used the reusable instrument since last being charged for use of the reusable instrument.

In another aspect, the invention features a method of charging a client for use of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes reading recognition data from the reusable instrument to determine the identity of the reusable instrument, and determining the client based on the identity of the reusable instrument. The method also includes charging the client based on data associated with the client.

In a further aspect, the invention features a method of managing a condition of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes determining the identity of the reusable instrument, and determining, based on the identity of the reusable instrument, the number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure.

In one aspect, the invention features a method of maintaining a supply material associated with uses of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes determining the identity of the reusable instrument, and determining, based on the identity of the reusable instrument, the number of times the reusable instrument has been used since the supply material was last acquired by a client associated with the reusable instrument.

In another aspect, the invention features a method of preventing use of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes determining a client associated with the reusable instrument based on the identity of the reusable instrument, and preventing the reusable instrument from being used in a procedure based on data associated with the client.

In a further aspect, the invention features a method of maintaining a database for a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes determining, each time the reusable instrument has been used in a procedure, that the reusable instrument has been used in a procedure, and updating, each time the reusable instrument has been used in a procedure, the database to indicate that the reusable instrument has been used in another procedure.
In one aspect, the invention features a method of charging a client. The method includes charging the client, where the charge to the client is at least partially based on a number of times the client has treated a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) since last being charged.

In another aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause a process to occur. The process includes charging a client for use of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope), where the charge to the client is at least partially based on a number of times the client has used the reusable instrument since last being charged for use of the reusable instrument.

In a further aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes reading recognition data from a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) to determine an identity of the reusable instrument, and determining a client associated with the reusable instrument based on the identity of the reusable instrument. The process also includes charging the client based on data associated with the client.

In one aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes determining an identity of the reusable instrument (e.g., a reusable medical instrument, such as an endoscope), and determining, based on the identity of the reusable instrument, a number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure.

In another aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes determining
an identity of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope), and determining, based on the identity of the reusable instrument, a number of times the reusable instrument has been used since the supply material was last acquired by a client associated with the reusable instrument.

In a further aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes determining an account for a client based on an identity of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope), and preventing the client from using the reusable instrument in a procedure based on data associated with the client.

In one aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes determining, each time a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) has been used in a procedure, that the reusable instrument has been used in a procedure, and updating, each time the reusable instrument has been used in a procedure, the database to indicate that the reusable instrument has been used in another procedure.

In another aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes charging a client, where the charge to the client is at least partially based on a number of times the client has treated a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) since last being charged.

In a further aspect, the invention features a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The instrument includes an instrument body, and an indicator configured to provide the identity of the instrument. The indicator is integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

In one aspect, the invention features a system that includes a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) and a data
recognition device. The instrument includes an instrument body and an indicator. The indicator is integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body. The data recognition device is configured to read data from the indicator to determine the identity of the reusable instrument.

In another aspect, the invention features a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) that includes an instrument body and an indicator. The indicator is integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body. The indicator is configured to provide a serial number of the reusable instrument device, a product number of the reusable instrument, a treatment status of the reusable instrument, a procedure enablement status (e.g., a medical procedure enablement status) of the reusable instrument, or a supply status of the reusable instrument.

In a further aspect, the invention features a system that includes a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) and a data recognition device. The instrument includes an instrument body and an indicator. The indicator is integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body. The data recognition device is configured to read data from the indicator, where the data is a serial number of the reusable instrument, a product number of the endoscopic device, a treatment status of the reusable instrument, or a procedure enablement status of the reusable instrument.

In one aspect, the invention features a system that includes an article and a data recognition device. The article is a component of a treatment system (e.g., a sterilization system, a disinfection system) for the reusable instrument (e.g., a reusable medical instrument, such as an endoscope), a holder for a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) that is configured to be removably housed in a treatment chamber (e.g., a reusable medical instrument, such as an endoscope) for the reusable instrument, or a docking station for a holder for a reusable instrument that is configured to be removably housed within a treatment chamber for the reusable instrument. The data recognition is integral with the article, disposed on an exterior of the article, or disposed in an
interior of the article. The data recognition device is configured to read data from
the reusable instrument to recognize a serial number of the reusable instrument, a
product number of the reusable instrument, a treatment status of the endoscope, or a
procedure enablement status of the reusable instrument.

In another aspect, the invention features a system that includes an article and
a disabling device coupled to the article. The article is a component for a treatment
system (e.g., a sterilization system, a disinfection system) for the reusable instrument
(e.g., a reusable medical instrument, such as an endoscope), a holder for a reusable
instrument (e.g., a reusable medical instrument, such as an endoscope) that is
configured to be removably housed in a treatment chamber for the reusable
instrument, or a docking station for a holder for a reusable instrument (e.g., a
reusable medical instrument, such as an endoscope) that is configured to be
removably housed within a treatment chamber for the reusable instrument. The
disabling device is configured to change a procedure enablement status of a reusable
instrument to prevent the reusable instrument from being used in a procedure.

In a further aspect, the invention features a system that includes an article
and a treatment status device coupled to the article. The article is a component for a
treatment system (e.g., a sterilization system, a disinfection system) for the reusable
instrument (e.g., a reusable medical instrument, such as an endoscope), a holder for
a reusable instrument (e.g., a reusable medical instrument, such as an endoscope)
that is configured to be removably housed in a treatment chamber for the reusable
instrument, or a docking station for a holder for a reusable instrument (e.g., a
reusable medical instrument, such as an endoscope) that is configured to be
removably housed within a treatment chamber for the reusable instrument. The
treatment status device is configured to change a treatment status of a reusable
instrument to indicate that the reusable instrument has been treated since it was last
used in a procedure.

In one aspect, the invention features a method that includes reading data
from a reusable instrument (e.g., a reusable medical instrument, such as an
endoscope) to determine the identity of the reusable instrument.

In another aspect, the invention features a method that includes reading
recognition data from a reusable instrument (e.g., a reusable medical instrument,
such as an endoscope), where the recognition data is a serial number of the reusable
instrument, a product number of the reusable instrument, a treatment status of the reusable instrument, a supply status of the reusable instrument, or a procedure enablement status of the reusable instrument (e.g., a medical procedure enablement status of the reusable instrument).

In a further aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes reading data from a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) to determine the identity of the reusable instrument.

In one aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes reading recognition data from a reusable instrument (e.g., a reusable medical instrument, such as an endoscope), where the recognition data is a serial number of the reusable instrument, a product number of the reusable instrument, a treatment status of the reusable instrument, a supply status of the reusable instrument, or a procedure enablement status of the reusable instrument.

In another aspect, the invention features an endoscopic device that includes an endoscope body and a communication device. The communication device is integral with the endoscope body, disposed on the exterior of the endoscope body, or disposed in the interior of the endoscope body. The communication device is a wireless transmitter and/or a wireless receiver.

In a further aspect, the invention features a system that includes an endoscope body and a first communication device that is integral with the endoscope body, disposed on the exterior of the endoscope body, or disposed in the interior of the endoscope body. The system also includes a second communication device. The first communication device is a wireless transmitter and/or a wireless receiver, and the first and second communication devices are configured to wirelessly transmit data therebetween.

In one aspect, the invention features a method of communicating that includes wirelessly communicating data between an endoscope and an article.
In another aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes wirelessly communicating data between an endoscope and an article.

In a further aspect, the invention features a system that includes a treatment chamber (e.g., a sterilization chamber, a disinfection chamber) for treating a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) and a cleaning device coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the cleaning device is capable of interacting with an interior channel of the reusable instrument to at least partially clean the interior channel.

In one aspect, the invention features a system that includes a treatment chamber (e.g., a sterilization chamber, a disinfection chamber) for treating a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) and a cleaning device coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the cleaning device interacts with an exterior surface of the reusable instrument to at least partially clean the exterior surface of the reusable instrument.

In another aspect, the invention features a system that includes a treatment chamber (e.g., a sterilization chamber, a disinfection chamber) for treating a reusable instrument (e.g., a reusable medical instrument, such as an endoscope) and a fluid source coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the fluid source is adjacent an opening in an interior channel of the reusable instrument so that the fluid source can dispose a fluid into an interior channel of the reusable instrument.

In a further aspect, the invention features a system that includes a sterilization chamber and a first cleaning device coupled to the sterilization chamber so that, when an endoscope is disposed in the sterilization chamber, the first cleaning device is capable of interacting with an interior channel of the endoscope to at least partially clean the interior channel. The first cleaning device is, for example, a brush, a fluid emission device, a radiation emission device, a pipe cleaner, a thread, or a rope. The system also includes a controller configured to control a position of
the first cleaning device within the sterilization chamber so that the first cleaning device can be moved from a first position in the sterilization chamber to a second position in the sterilization chamber that is different from the first position, where the first cleaning device is at least partially disposed within the interior channel of the endoscope when in the second position. The system further includes a second cleaning device coupled to the sterilization chamber so that, when the endoscope is disposed in the sterilization chamber, the second cleaning device interacts with an exterior surface of the endoscope to at least partially clean the exterior surface of the endoscope. The cleaning device is, for example, a brush, a fluid emission device, a radiation emission device, a pipe cleaner, a thread, or a rope. The system also includes a controller configured to control a position of the second cleaning device within the sterilization chamber so that the second cleaning device can be moved from a first position in the sterilization chamber to a second position in the sterilization chamber that is different from the first position, where the second cleaning device is adjacent the exterior surface of the endoscope when in the second position. The system further includes a fluid source coupled to the sterilization chamber so that, when the endoscope is disposed in the sterilization chamber, the fluid source can dispose a fluid into the interior channel of the endoscope. The fluid source is, for example, a fluid emission device. The system also includes a controller configured to control a position of the fluid source within the sterilization chamber so that the fluid source can be moved from a first position in the sterilization chamber to a second position in the sterilization chamber that is different from the first position, where the fluid source is adjacent an opening in the interior channel of the endoscope when in the second position.

In one aspect, the invention features a method of cleaning an interior channel of a reusable instrument (e.g., a reusable medical instrument, such as an endoscope). The method includes disposing the reusable instrument in a treatment chamber, and at least partially disposing a cleaning device within the interior channel of the reusable instrument to clean the interior channel of the reusable instrument.

In another aspect, the invention features a method of cleaning an exterior surface of a reusable instrument (e.g., a reusable medical instrument). The method includes disposing the reusable instrument in a treatment chamber (e.g., a sterilization chamber, a disinfection chamber), and disposing a cleaning device
adjacent an exterior surface of the reusable instrument to remove contaminants from
the exterior surface of the reusable instrument.

In a further aspect, the invention features a method of cleaning an interior
channel of a reusable instrument (e.g., a reusable medical instrument, such as an
endoscope). The method includes disposing the reusable instrument in a treatment
chamber (e.g., a sterilization chamber, a disinfection chamber), and disposing a fluid
in an interior channel of the reusable instrument to clean the interior channel.

In one aspect, the invention features a computer program product residing on
a computer readable medium having a plurality of instructions stored thereon which,
when executed by one or more processors, cause the one or more processors to cause
the occurrence of a process. The process includes disposing a reusable instrument
(e.g., a reusable medical instrument, such as an endoscope) in a treatment chamber
(e.g., a sterilization chamber, a disinfection chamber), and at least partially disposing
a cleaning device within the interior channel of the reusable instrument to clean the
interior channel of the reusable instrument.

In another aspect, the invention features a computer program product
residing on a computer readable medium having a plurality of instructions stored
thereon which, when executed by one or more processors, cause the one or more
processors to cause the occurrence of a process. The process includes disposing a
reusable instrument (e.g., a reusable medical instrument, such as an endoscope) in a
treatment chamber (e.g., a sterilization chamber, a disinfection chamber), and
disposing a cleaning device adjacent an exterior surface of the reusable instrument to
remove contaminants from the exterior surface of the reusable instrument.

In a further aspect, the invention features a computer program product
residing on a computer readable medium having a plurality of instructions stored
thereon which, when executed by one or more processors, cause the one or more
processors to cause the occurrence of a process. The process includes disposing a
reusable instrument (e.g., a reusable medical instrument, such as an endoscope) in a
treatment chamber (e.g., a sterilization chamber, a disinfection chamber), and
disposing a fluid into an interior channel of the reusable instrument to clean the
interior channel.

In one aspect, the invention features an endoscopic device that includes an
endoscope body and a light source. The endoscope body includes an elongated
portion having a proximal end, a distal end, and a longitudinal channel extending from the proximal end to the distal end, where the longitudinal channel is sealed at the distal end. The endoscope body also includes a manipulation portion having an interior, where the manipulation portion is coupled to the proximal end of the elongated portion. The light source is disposed in the interior of the manipulation portion. The light source is in optical communication with the distal end of the elongated portion through the longitudinal channel.

In another aspect, the invention features an endoscopic device that includes an endoscope body and a pressure regulator. The endoscope body has an interior, an exterior, and an opening capable of allowing fluid communication between the interior and exterior. The pressure regulator is coupled to the opening in the endoscope body so that the pressure regulator is capable of regulating fluid communication between the interior of the endoscope and the exterior of the endoscope.

In a further aspect, the invention features a system that includes an endoscope body and a pressure regulator. The endoscope body has an interior, an exterior, and an opening capable of allowing fluid communication between the interior and exterior. The pressure regulator is coupled to the opening in the endoscope. The system also includes a gas source coupled to the pressure regulator. The pressure regulator and the gas source are configured so that the pressure gas source is capable of regulating fluid communication between the gas source and the interior of the endoscope body. The gas source is capable of removing gas from the interior of the endoscope body or adding gas to the interior of the endoscope body.

In one aspect, the invention features a method of operating an endoscope. The endoscope has a proximal end, a distal end and a longitudinal channel extending from the proximal end to the distal end. The method includes generating light in the proximal end of the endoscope, and transmitting the light generated in the proximal end of the endoscope to the distal end of the endoscope through the longitudinal channel.

In another aspect, the invention features a method of sterilizing an endoscope. The endoscope has an interior, an exterior, and a distal end. The method includes sterilizing a portion of the interior of the endoscope while maintaining a pressure differential between the interior of the endoscope and the
exterior of the endoscope of at most about five psi. The portion of the interior of the endoscope is sealed at the distal end of the endoscope.

In a further aspect, the invention features a method that includes determining a pressure differential between the interior of the endoscope and the exterior of the endoscope while the endoscope is disposed in a treatment chamber, and regulating a pressure in the interior of the endoscope based on the pressure differential while the endoscope is disposed in the treatment chamber.

In one aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes transmitting light from a proximal end of an endoscope to a distal end of the endoscope through a longitudinal channel.

In another aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes sterilizing at least a portion of an interior of an endoscope while maintaining a pressure differential between the interior of the endoscope and an exterior of the endoscope of at most about five psi.

In a further aspect, the invention features a computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to cause the occurrence of a process. The process includes determining a pressure differential between the interior of an endoscope and the exterior of the endoscope while the endoscope is disposed in a treatment chamber, and regulating a pressure in the interior of the endoscope based on the pressure differential while the endoscope is disposed in the treatment chamber.

In certain embodiments, the methods allow data (e.g., data corresponding to the current status, historical status, and/or historical use for one or more reusable instruments, such as an endoscope) to be efficiently and accurately maintained, updated and accessed. Such data can include, for example, the sterilization status of the reusable instrument (e.g., the reusable medical instrument), the payment status of a client account associated with the reusable medical instrument (e.g., fully paid,
delinquent, etc.), the maintenance status of the reusable instrument (e.g., whether the instrument has been used more than a predetermined number of times since it last underwent a maintenance procedure), and the supply status of the reusable instrument (e.g., whether the instrument has been used more than a predetermined number of times since the user was last provided appropriate supplies for the instrument).

Efficient, accurate and practical methods of charging a client for use of a medical instrument (e.g., a reusable medical instrument, such as an endoscope) are provided. The methods can allow, for example, for the client to be charged on a pay-per-use basis, or a pay-per-batch basis (per predetermined number of uses). The client can pay before or after use of the reusable instrument. In some embodiments, the charge to the client can be based on a number of factors, such as, for example, the identity of the client (e.g., whether the client is a private individual, a member of a professional organization, a private insurance agency, a private health maintenance organization, or a government agency), the number of times the client has used the medical instrument, the total number of times the client has used the reusable instrument, the number of times the client has used the treatment chamber (e.g., sterilization chamber, disinfection chamber), the total number of times the client has used any reusable instrument (e.g., as tracked by the system), the total number of times the client has used any treatment chamber (e.g., as tracked by the system), the time of day that the client used the instrument, and the frequency (e.g., on a per year basis, on a per month basis, on a per week basis) that the client has used the instrument.

Endoscopes are provided that have an indicator that provides the identity of the endoscope (as unique from all endoscopes). The identity can be based, for example, on the serial number of the endoscope or the product number of the endoscope.

Sensing devices are provided that can read information (e.g., identity, sterilization status, procedure enablement status) for a reusable instrument (e.g., reusable medical instrument, such as an endoscope). The sensing devices can be included in a system (e.g., a treatment chamber, such as a sterilization chamber), or the devices can be, for example, hand held. This can reduce the complexity associated with maintaining and tracking reusable instruments (e.g., reusable
medical instruments, such as endoscopes), as well as reduce the complexity associated with billing for their use.

Endoscopes are provided that are untethered (can be used without external light sources, power sources, communication cables, etc.). This can reduce the cost and/or complexity associated with using, assembling and/or maintaining an endoscope.

Endoscopes are provided that can wirelessly transmit information (e.g., video data, endoscope position data) for display, for example, on an external monitor. This can reduce the complexity associated with using an endoscope in a medical procedure.

Reusable instrument treatment chambers (e.g., sterilization chambers, disinfection chambers) are provided that can be used to clean a reusable instrument (e.g., reusable medical instrument, such as an endoscope) to remove detritus with reduced cost and/or complexity.

Reusable instruments (e.g., reusable medical instruments) are provided that can be coupled to a pressure regulator to reduce pressure differentials during treatment (e.g., sterilization) of the instruments. This can result in a longer useful lifetime for the instruments. This can also reduce the presence of moisture (e.g., steam, water droplets) in undesirable portions of the interior of the reusable medical instrument (e.g., on optics in the elongated portion of an endoscope).

Features, objects and advantages of the invention are in the description, drawings and claims.

Brief Description of the Drawings

Fig. 1 is a flow chart of an embodiment of a method of using, cleaning, sterilizing and tracking an endoscope;

Fig. 2 is a perspective view of an embodiment of an endoscope;

Fig. 3 is a cross-sectional view of the manipulation portion of the endoscope of Fig. 2;

Fig. 4 is a cross-sectional view of the elongated portion of the endoscope of Fig. 2;

Fig. 5 is a schematic diagram of an embodiment of a system for reading an identity indicator;
Fig. 6 is a partial cross-sectional view of the elongated portion of the endoscope of Fig. 2;

Fig. 7 is a schematic diagram of an embodiment of a system for wirelessly transmitting data from the endoscope of Fig. 2;

Fig. 8 is a cross-sectional view of an embodiment of a sterilization chamber;
Fig. 9 is a schematic diagram of an embodiment of a system for reading an identity indicator;

Fig. 10 is a partial cross-sectional view of the sterilization chamber of Fig. 8;
Fig. 11 is a partial cross-sectional view of the sterilization chamber of Fig. 8;
Fig. 12 is a partial cross-sectional view of the sterilization chamber of Fig. 8;
Fig. 13 is a partial cross-sectional view of the sterilization chamber of Fig. 8 containing the endoscope of Fig. 2;

Fig. 14 is a schematic diagram of an embodiment of a system for reading an identity indicator;

Fig. 15 is a cross-sectional view of an embodiment of an endoscope holder;
Fig. 16 is a cross-sectional view of an embodiment of a docking station for the endoscope holder of Fig. 15; and

Fig. 17 is a flow chart for an embodiment of a method of charging a client for use of an endoscope.

Detailed Description

Fig. 1 is a flow chart of a method 100 of using an endoscope in a medical procedure, and subsequently cleaning and sterilizing the endoscope. First, the sterilization status (whether the endoscope has been sterilized since last used in a medical procedure) and the medical procedure enablement status (the status of one or more medical procedure enablement status factors, such as, for example, payment status, maintenance status, supply status) are determined (110). If the sterilization status and medical procedure enablement status are appropriate, the endoscope is used in a medical procedure (120), and the sterilization status and medical procedure enablement status of the endoscope are then updated (130). The endoscope is subsequently matched with an appropriate sterilization chamber (140), cleaned to at least partially remove detritus from the endoscope (150), and sterilized (160).

Finally, the sterilization status and medical procedure enablement status of the endoscope are again updated (170).
Method 100 also allows certain information associated with the endoscope to be tracked during the process. As an example, the sterilization status of the endoscope can be tracked. This information can be used, for example, to reduce the risk of using the endoscope in multiple medical procedures without sterilizing the endoscope between uses. As another example, the medical procedure enablement status of the endoscope can be tracked. This information can be used, for example, to determine whether a client associated with the endoscope has been making appropriate payments for use of the endoscope (e.g., to disable the endoscope if the client account is delinquent), to reduce the risk of using the endoscope if it has not been properly maintained (e.g., to disable the endoscope if the endoscope has been used more than a predetermined number of times since it last underwent a maintenance procedure), and/or to reduce the risk that an operator will run out of supplies for the endoscope (e.g., to disable the endoscope if the endoscope has been used more than a predetermined number of times since the client was last provided supplies for the endoscope).

Endoscope Design

Fig. 2 is a perspective view of an endoscope 1000 having a manipulation portion 1100 coupled to an elongated portion 1200. Manipulation portion 1100 is generally configured to remain outside a subject during use of endoscope 1000, and elongated portion 1200 is generally configured to be at least partially disposed within a subject during use of endoscope 1000. As explained below, endoscope 1000 is untethered (can be operated as an individual unit without being physically connected to external devices, such as light sources, power sources, communication cables or the like). Typically, endoscope 1000 is formed of one or more materials that can withstand sterilization conditions. Exemplary materials include Sil-Kore (W.L. Gore & Associates, Incorporated), Radel R-5000 (A.L. Hyde Company), stainless steel, autoclavable polytetrafluoroethylenes and autoclavable polypropylenes.

In general, endoscope 1000 is configured to be disposed within a body cavity (e.g., colon, stomach, esophagus, bronchi, larynx, urethra, kidneys, bladder, ear, nose) of a subject (e.g., a human, an animal) during use in a medical procedure.
Examples of endoscopes include colonoscopes, gastroscopes, cystoscopes, laparoscopes, arthroscopes, and transesophageal ultrasonic instruments.

As shown in Figs. 2 and 3, manipulation portion 1100 includes an opening 1105, a seal 1110 in opening 1105, a control device 1120 (e.g., a switch, a hand wheel, a joystick), a control device 1130 (e.g., a switch, a valve, a hand wheel, a joystick), and a wireless transmitter 1125 (e.g., an IEEE 802.11 standard compatible wireless transmitter, a SIG Bluetooth standard compatible wireless transmitter), an image processor 1155 coupled to transmitter 1125, an identity indicator 1140, a sterilization status indicator 1150, a medical procedure enablement status indicator 1160, a sterilization chamber match indicator 1165, a light source 1170 (e.g., an incandescent light source, a florescent light source, a solid-state light source, an arc light source, a gas discharge light source) and corresponding power source 1175 (e.g., a battery, such as a rechargeable battery) housed inside wall 1180 of manipulation region 1100.

Referring to Fig. 2, elongated portion 1200 includes a proximal end 1210 coupled to manipulation portion 1100, a flexible portion 1215, and a distal end 1220. Referring to Figs. 4 and 5, elongated portion 1200 has a wall 1230 that houses steering cables 1240, 1250, 1260 and 1270 that extend to distal end 1220, and are sealed at distal end 1220. Cables 1240, 1250, 1260 and 1270 are coupled (e.g., mechanically coupled, electrically coupled) to control devices 1120 and/or 1130 so that elongated portion 1200 can be positioned using the control device(s). Wall 1230 also houses an optical guide 1280 (e.g., a fiber optic conductor, a light transmissive cylinder, or a liquid-filled tube) that extends to distal end 1220, and is sealed at distal end 1220. Optical guide 1280 is optically coupled to light source 1270 (e.g., by contacting a flat surface of light source 1170 with a flat surface of optical guide 1280) so that light emitted by light source 1170 can travel along optical guide 1280 to distal end 1220. Wall 1230 further houses a working channel 1275 that extends to distal end 1220, and is open at distal end 1220. Working channel 1275 can be used, for example, to couple a medical tool at distal end 1220 with a control device on manipulation portion 1100, thereby allowing manipulation of the medical instrument using the control device. Wall 1230 also houses an optical image cable 1290 (e.g., a fiber optic conductor, wires conducting a video signal) adjacent distal end 1220, and is sealed at distal end 1220.
Use of Endoscope in a Medical Procedure

Generally, before using endoscope 1000 in a medical procedure, the sterilization status of endoscope 1000 (whether endoscope 1000 has been sterilized since last used in a medical procedure) and the medical procedure enablement status of endoscope 1000 (the status of one or more medical procedure enablement status factors, such as, for example, payment status, maintenance status, supply status) are determined. The sterilization status of endoscope 1000 can generally be determined by inspecting sterilization indicator 1150, and/or by using identity indicator 1140 (see discussion below). Similarly, the medical procedure enablement status of endoscope 1000 can generally be determined by inspecting medical procedure enablement status indicator 1160, and/or by using identity indicator 1140 (see discussion below). After verifying that both the sterilization status and the enablement status of endoscope 1000 are appropriate (e.g., endoscope 1000 has been sterilized since last used in a medical procedure, the account for the client associated with endoscope 1000 is not delinquent, endoscope 1000 has not been used more than a predetermined number of times since last undergoing a maintenance procedure, endoscope 1000 has not been used more than a predetermined number of times since the client was last provided supplies for endoscope 1000), endoscope 1000 can be used in a medical procedure.

Sterilization Status Indicator

In general, sterilization status indicator 1150 can be disposed in the interior of endoscope 1000 (e.g., in the interior of manipulation portion 1100, in the interior of elongated portion 1200), disposed on an exterior surface of endoscope 1000 (on an exterior surface of manipulation portion 1100, on the exterior surface of manipulation portion 1100), or integrally formed with endoscope 1000 (integrally formed with manipulation portion 1100, integrally formed with elongated portion 1200).

In some embodiments, sterilization status indicator 1150 can be visually inspected to determine the sterilization status of endoscope 1000. As an example, indicator 1150 can be formed of a material that changes color when exposed to sterilization conditions (e.g., from red to green), and again changes color (e.g., from...
green to red) when more than a predetermined period of time lapses after sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids). As another example, indicator 1150 can be formed of a material that forms an image whose visibility changes (e.g., from nonvisible to visible, or from visible to nonvisible) when exposed to a sterilization cycle (e.g., so that a word, such as STERILIZED, appears on endoscope 1000 when exposed to sterilization, or so that a word, such as NONSTERILIZED, becomes nonvisible on endoscope 1000 when exposed to sterilization), and whose image reverts back to its prior state (visible to nonvisible, or nonvisible to visible) when more than a predetermined period of time lapses after sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids). As a further example, indicator 1150 can be a marker (e.g., a colored marker) used in conjunction with a sleeve that moves to a certain position with respect to indicator 1150 when exposed to sterilization (e.g., sleeve moves to cover indicator 1150, or sleeve moves to expose indicator 1150), and that moves to a different position (e.g., sleeve moves to expose indicator 1150, or sleeve moves to cover indicator 1150) when more than a predetermined period of time lapses after sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids).

In certain embodiments, sterilization status indicator 1150 contains information indicating the sterilization status of endoscope 1000 (e.g., sterilized since last used in a medical procedure, or not sterilized since last used in a medical procedure) that is designed to be read by a sensor (e.g., a hand held sensor) to determine the sterilization status of endoscope 1000 without knowing the identity of endoscope 1000. Such indicator/sensor systems include, for example, magnetic systems, inductance systems, electrical systems, optical systems, and/or mechanical
systems. As an example, indicator 1150 and the sensor can be complimentary components of a mating key and socket mechanism. As another example, indicator 1150 and the sensor can be complimentary components of a passive electrical system (e.g., indicator 1150 is a passive electrical device, and the sensor is a sensor for such passive electrical devices). As a further example, indicator 1150 and the sensor can be complimentary components of a magnetic system (e.g., indicator 1150 is a magnetic binary code and the sensor has Hall effect sensors). As another example, indicator 1150 and the sensor can be complimentary components of a bar code system (e.g., indicator 1150 can be a bar code, and the sensor can be a bar code reader). As a further example, indicator 1150 and the sensor can be complimentary components to a dot code system (e.g., indicator 1150 can be a dot code, and the sensor can be a dot code reader). As a further example, indicator 1150 and the sensor can be complimentary components of an induction system (e.g., a passive induction system, such as a TIRIS system from Texas Instruments).

Alternatively or additionally, endoscope 1000 can be designed so that the sterilization status of endoscope 1000 can be determined by turning on power source 1175 and determining whether light is emitted by light source 1170 (e.g., by visually inspecting the distal end of optical guide 1280). As an example, endoscope 1000 can be designed so that, during sterilization, a thermal switch (e.g., a bimetallic switch) positions a flag outside the optical path between light source 1170 and optical guide 1280, and so that, when more than a predetermined period of time lapses after sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids), the flag is positioned between light source 1170 and optical guide 2180 so that the flag blocks optical communication between light source 1170 and guide 1280. As another example, endoscope 1000 can be designed so that, during a sterilization cycle, a thermal switch (e.g., bimetallic spring) causes the focus to shift when the sterilization chamber begins to heat up, and resets the focus after the sterilization cycle. As an additional example, endoscope 1000 can be designed so that, during sterilization, an electrical connection between power source 1175 and light source 1170 is connected, and so that, when more than a predetermined period of time lapses after
sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids), the electrical connection between power source 1175 and light source 1170 is disconnected. As a further example, endoscope 1000 can be designed so that, during sterilization of endoscope 1000, power source 1175 is recharged (by removing power source 1175 from endoscope 1000 and charging power supply 1175 in a separate compartment while endoscope 1000 is being sterilized, or by charging power source 1175 during sterilization without removal from endoscope 1000), and so that when more than a predetermined period of time lapses after sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids), power source 1175 is discharged.

Alternatively or additionally, endoscope 1000 can be designed so that the sterilization status of endoscope 1000 can be determined by turning on power source 1175 and determining whether light transmitted from distal end 1220 along optical image cable 1290 to manipulation portion 1100 (e.g., by determining whether processor 1155 receives a signal from cable 1290). As an example, endoscope 1000 can be designed so that, during sterilization, a thermal switch (e.g., a bimetallic switch) positions a flag outside the optical path between the distal end of cable 1290 and processor 1155, and so that, when more than a predetermined period of time lapses after sterilization (e.g., more than about one day, more than about one week) or when endoscope 1000 is exposed to conditions similar to those experienced during a medical procedure (e.g., when endoscope 1000 is held at a temperature of about 37°C, when endoscope 1000 is exposed to body fluids), the flag is positioned between the distal end of cable 1290 and processor 1155 so that the flag blocks optical communication between the distal end of cable 190 and processor 1155.

Alternatively or additionally, endoscope 1000 can be designed so that the sterilization status of endoscope 1000 can be determined by determining whether an articulation mechanism of endoscope 1000 works. For example, endoscope 1000 can be designed so that, during a sterilization cycle, a thermal switch (e.g.,
bimetallic spring) applies a brake to an articulation mechanism when the autoclave heats up, and the sterilization system releases the brake upon completion of the sterilization cycle.

Medical Procedure Enablement Status Indicator

In general, medical procedure enablement status indicator 1160 can be disposed in the interior of endoscope 1000 (e.g., in the interior of manipulation portion 1100, in the interior of elongated portion 1200), disposed on an exterior surface of endoscope 1000 (on an exterior surface of manipulation portion 1100, on the exterior surface of manipulation portion 1100), or integrally formed with endoscope 1000 (integrally formed with manipulation portion 1100, integrally formed with elongated portion 1200).

In some embodiments, medical procedure enablement status indicator 1160 can be visually inspected to determine the medical procedure enablement status of endoscope 1000. As an example, indicator 1160 can be formed of a material that has one color if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), and a different color if the factor has a different status (account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired). As another example, indicator 1160 can be formed of a material that forms an image that has one visibility status (e.g., nonvisible, visible) if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), and a different visibility status (e.g., visible or nonvisible) if the factor has a different status (account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired). As a further example, indicator 1160 can be a
marker (e.g., a colored marker) used in conjunction with a sleeve that moves to a certain position with respect to indicator 1160 (e.g., sleeve moves to cover indicator 1160, or sleeve moves to expose indicator 1160) if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), and that moves to a different position (e.g., sleeve moves to expose indicator 1160, or sleeve moves to cover indicator 1160) if the factor has a different status (account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired).

In certain embodiments, medical procedure enablement status indicator 1160 contains information regarding the medical procedure enablement status of endoscope 1000 (e.g., account payment status, endoscope 1000 maintenance status, endoscope 1000 supply status) that is designed to be read by a sensor (e.g., a handheld sensor) to determine the medical procedure enablement status of endoscope 1000 without knowing the identity of endoscope 1000. Such indicator/sensor systems include, for example, magnetic systems, inductance systems, electrical systems, optical systems, and/or mechanical systems. As an example, indicator 1160 and the sensor can be complimentary components of a mating key and socket mechanism. As another example, indicator 1160 and the sensor can be complimentary components of a passive electrical system (e.g., indicator 1160 is a passive electrical device, and the sensor is a sensor for such passive electrical devices). As a further example, indicator 1160 and the sensor can be complimentary components of a magnetic system (e.g., indicator 1160 is a magnetic binary code and the sensor has Hall effect sensors). As another example, indicator 1160 and the sensor can be complimentary components of a bar code system (e.g., indicator 1160 can be a bar code, and the sensor can be a bar code reader). As a further example, indicator 1160 and the sensor can be complimentary components to a dot code system (e.g., indicator 1160 can be a dot code, and the sensor can be a dot code reader). As a further example, indicator 1160 and the sensor can be complimentary
components of an induction system (e.g., a passive induction system, such as a TIRIS system from Texas Instruments).

Alternatively or additionally, endoscope 1000 can be designed so that the medical procedure enablement status of endoscope 1000 can be determined by turning on power source 1175 and determining whether light is emitted by light source 1170 (e.g., by visually inspecting the distal end of optical guide 1280). As an example, endoscope 1000 can be designed so that, if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), a flag is positioned outside the optical path between light source 1170 and optical guide 1280, and so that, if the factor has a different status (account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired), the flag is positioned between light source 1170 and optical guide 1280 so that the flag blocks optical communication between light source 1170 and guide 1280. As another example, endoscope 1000 can be designed so that, if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), the optics in endoscope 1000 are properly focused, and so that, if the factor has a different status (account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired), the optics are not properly focused. As an additional example, endoscope 1000 can be designed so that, if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), an electrical connection between power source 1175 and light source 1170 is connected, and so that, if the factor has a different status (account delinquent, more than a predetermined number
of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired), the connection is disconnected. As a further example, endoscope 1000 can be designed so that, if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), power source 1175 is charged, and so that, if the factor has a different status (account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired), power source 1175 is discharged.

Alternatively or additionally, endoscope 1000 can be designed so that the medical procedure enablement status of endoscope 1000 can be determined by turning on power source 1175 and determining whether light transmitted from distal end 1220 along optical image cable 1290 to manipulation portion 1100 (e.g., by determining whether processor 1155 receives a signal from cable 1290). As an example, endoscope 1000 can be designed so that, if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), a flag is positioned outside the optical path between the distal end of cable 1290 and processor 1155, and so that if the medical procedure enablement status factor associated with endoscope 1000 has a different status (e.g., account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired), the flag is positioned between the distal end of cable 1290 and processor 1155 so that the flag blocks optical communication between the distal end of cable 190 and processor 1155.

Alternatively or additionally, endoscope 1000 can be designed so that the medical procedure enablement status of endoscope 1000 can be determined by determining whether an articulation mechanism of endoscope 1000 works. For
example, endoscope 1000 can be designed so that, if a given medical procedure enablement status factor associated with endoscope 1000 has a particular status (e.g., fully paid, less than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, less than a predetermined number of uses of endoscope 1000 since supply materials were acquired), an articulation element functions properly, and so that, if the factor has a different status (e.g., account delinquent, more than a predetermined number of uses of endoscope 1000 since its last maintenance procedure, more than a predetermined number of uses of endoscope 1000 since supply materials were acquired), the articulation element is prevented from functioning properly (e.g., by applying a brake to the articulation mechanism).

Identity Indicator

In some embodiments, the sterilization status and/or medical procedure enablement status of endoscope 1000 is determined by reading identity indicator 1140 (e.g., without reading sterilization status indicator 1150 and/or medical procedure enablement status indicator 1160). Referring to Fig. 6, an identity sensor 1142 reads data from identity indicator 1140 (data corresponding to the identity of endoscope 1000), and passes the data to data processor 1144 (e.g., a computer). Based on the data from indicator 1140, data processor 1144 accesses appropriate data (e.g., sterilization status data, medical procedure enablement status data) for endoscope 1000 contained in a database stored on a data storage device 1146 (e.g., a hard disk drive, a random access memory, a read-only memory).

In certain embodiments, data processor 1144 may be in communication with one or more status adjustment devices (e.g., a sterilization status adjustment device, a medical procedure enablement status adjustment device) so that processor 1144 can instruct the device to change the status of one or more indicators for endoscope 1000 (e.g., to change the status of sterilization status indicator 1150, to change the status of medical procedure enablement device status indicator 1160) based on the information that processor 1144 receives from device 1146. Processor 1144 can also send appropriate data to device 1146 to update data contained in the database contained on device 1146 for endoscope 1000 (e.g., to update data in the database for endoscope 1000 to indicate that the sterilization status for endoscope 1000 has changed, to update data in the database for endoscope 1000 to indicate that the
medical procedure enablement status for endoscope 1000 has changed). For example, referring to Fig. 6, processor 1144 is in communication with a status adjustment device 1500 (e.g., a sterilization indicator status adjustment device, a medical procedure enablement status adjustment device) that is configured to change the status of an indicator 1502 (e.g., a sterilization status indicator, a medical procedure enablement status indicator) for endoscope 1000, and processor 1144 is also in communication with device 1146 to appropriately update data in the database for endoscope 1000.

In some embodiments, status adjustment device 1500 forms a complimentary component of indicator 1502 (e.g., a magnetic device, an inductance device, an electrical device, an optical device, a mechanical device). As an example, device 1500 and indicator 1502 can be complimentary components of a mating key and socket mechanism so that device 1500 can change the position of indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1502. As another example, device 1500 and indicator 1502 can be complimentary components of a passive electrical system so that device 1500 can change a passive electrical property of indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1502. As a further example, device 1500 and indicator 1502 can be complimentary components of a magnetic system so that device 1500 can change a magnetic property of indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1502. As another example, device 1500 and indicator 1502 can be complimentary components of a bar code system so that device 1500 can change the bar code of indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1502. As a further example, device 1500 and indicator 1502 can be complimentary components of a dot code system so that device 1500 can change the dot code of indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1502. As another example, device 1500 and indicator 1502 can be complimentary components of an induction system so that device 1500 can change the passive induction properties of indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1502. As an additional example, device 1500 can be capable of heating endoscope 1500 to affect a color change in indicator 1502, thereby changing the status of endoscope 1000 as indicated by indicator 1500. As a further example, indicator 1502 can be
capable of heating endoscope 1000 to affect a change in the visibility (e.g., visible to
nonvisible, nonvisible to visible) of indicator 1502, thereby changing the status of
endoscope 1000 as indicated by indicator 1502. As another example, indicator 1502
can be capable of changing the position of a sleeve relative to indicator 1502 (e.g.,
indicator 1502 covered by sleeve to indicator 1502 not covered by sleeve, indicator
1502 not covered by sleeve to indicator 1502 covered by sleeve) on endoscope 1000,
thereby changing the status of endoscope 1000 as indicated by indicator 1502.

In certain embodiments, status adjustment device 1500 can adjust the status
of endoscope 1000 (e.g., sterilization status, medical procedure enablement status)
without interacting with indicator 1502 (e.g., sterilization status indicator, medical
procedure enablement status indicator). As an example, device 1500 can be capable
of changing (e.g., by thermally activating a bimetallic spring) the position of a flag
so that the flag is positioned in/outside the optical path between light source 1175
and the distal end of optical guide 1280. As another example, device 1500 can be
capable of changing (e.g., by thermally activating a bimetallic spring) the focus of
the optics in endoscope 1000. As an additional example, device 1500 can be
capable of connecting/disconnecting (e.g., by thermally activating a bimetallic
switch) an electrical connection between power source 1175 and light source 1170,
or between a power source and a video camera. As a further example, device 1500
can be capable of charging/discharging power source. As another example, device
1500 can be capable of applying/removing a brake on an articulation mechanism of
endoscope 1000.

Performing a Medical Procedure

After verifying that both the sterilization status and medical procedure
enablement status of endoscope 1000 are appropriate, endoscope 1000 can be used
by an operator (e.g., a surgeon) in a medical procedure as follows.

The operator turns on power source 1175 (e.g., using a control device on
manipulation portion 1100) so that light travels from light source 1170 and along
optical guide 1280 to distal end 1220 where the light illuminates a region inside the
subject that is adjacent distal end 1220. Referring to Figs. 7 and 8, optical image
cable 1290 is coupled to an image processor 1155, which, in turn, is coupled to
wireless transmitter 1125 so that visual data received by cable 1290 is wirelessly
transmitted by transmitter 1125. Transmitter 1125 is coupled to a data processor 1255 (e.g., via a wireless receiver), which, in turn, is coupled to a display device 1265 (e.g., a video monitor) so that the data transmitted by transmitter 1125 is displayed on display device 1265. The operator of endoscope 1000 analyzes the displayed information, and uses control devices 1120 and/or 1130 to manipulate flexible portion 1215 via steering guides 1240, 1250, 1260 and/or 1270 to adjust the position of elongated portion 1200 within the subject. Alternatively or additionally, wireless transmitter 1125 can be used in conjunction with a receiver (e.g., an RF receiver) to provide data corresponding to the position of distal end 1220 within the subject, and the wirelessly received signal can be used, for example, to position endoscope 1000 within the subject. Alternatively or additionally, endoscope 1000 can include a receiver configured to receive a wireless transmission (e.g., from a wireless transmitter outside the subject). Optionally, a medical tool (e.g., a cauterizing apparatus, a cutting apparatus, a clamping apparatus, an irrigation apparatus, a suction apparatus, a pressurization apparatus, an inspection apparatus, a marking apparatus, an illumination apparatus, a retrieval apparatus) can be positioned at distal end 1220 and coupled to a control device on manipulation portion 1100 through working channel 1175 so that the medical instrument can be manipulated (e.g., based on the visual information and/or position information) using a control device (e.g., positioned on manipulation portion 1100).

Updating Endoscope Status

After using endoscope 1000 in a medical procedure, the sterilization status and/or medical procedure enablement status of endoscope 1000 can be updated. In some embodiments, using endoscope 1000 in a medical procedure automatically updates sterilization status of endoscope 1000 (e.g., as indicated by sterilization status indicator 1150) to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure. As an example, indicator 1150 may change color (e.g., green to red) to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure. As another example, indicator 1150 may display a word (e.g., NONSTERILIZED) to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure. As a further example, indicator 1150 may cover/not cover a marker on endoscope 1000 to indicate that
endoscope 1000 has not been sterilized since last used in a medical procedure. In some embodiments, the distal end of optical guide 1280 may not emit light when power source 1175 is turned on to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure. In certain embodiments, an articulation element may fail to function properly to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure.

In certain embodiments, using the endoscope in a medical procedure automatically updates the medical procedure enablement status of endoscope 1000 (e.g., as indicated by indicator 1160) to indicate that endoscope 1000 should not be used in a medical procedure and/or to prevent endoscope 1000 from being used in a medical procedure (e.g., by disabling endoscope 1000 from being capable of being used in a medical procedure). As an example, indicator 1160 may change color (e.g., green to red) to indicate that endoscope 1000 should not be used in a medical procedure. As another example, indicator 1160 may display a word (e.g., DISABLED) to indicate that endoscope 1000 should not be used in a medical procedure. As a further example, indicator 1150 may cover/not cover a marker on endoscope 1000 to indicate that endoscope 1000 should not be used in a medical procedure. In some embodiments, the distal end of optical guide 1280 may not emit light when power source 1175 is turned on to indicate that endoscope 1000 has been disabled from being used in a medical procedure. In certain embodiments, an articulation element may fail to function properly to indicate that endoscope 1000 has been disabled from being used in a medical procedure.

In some embodiments, the sterilization status and/or medical procedure enablement status of endoscope 1000 is updated using identity indicator 1140 (e.g., without updating sterilization status indicator 1150 and/or medical procedure enablement status indicator 1160). For example, again referring to Fig. 6, identity sensor 1142 reads data from identity indicator 1140 (data corresponding to the identity of endoscope 1000), and passes the data to data processor 1144. Processor 1144 sends appropriate data to device 1146 to update data contained in the database contained on device 1146 for endoscope 1000 (e.g., to update data in the database for endoscope 1000 to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure). Processor 1144 may instruct status adjustment device 1500 to update the status of an indicator (e.g., a sterilization status indicator) using
an appropriate status adjustment device (see discussion above). In some embodiments, processor 1144 may read certain data for endoscope 1000 in the database for endoscope 1000 on device 1146 (e.g., medical procedure enablement status data), and update the status of the corresponding indicator (e.g., medical procedure enablement status indicator) for endoscope 1000 (see discussion above).

Cleaning and Sterilization of Endoscope

In general, after use in a medical procedure, endoscope 1000 is cleaned to remove detritus, and then sterilized.

Sterilization Chamber

Fig. 9 is a cross-sectional view of a sterilization chamber 2000 configured to clean and sterilize endoscope 1000. Sterilization chamber 2000 has a wall 2050 that houses an identity sensor 2100, a sterilization status adjustment device 2200, a medical procedure enablement status adjustment device 2300, a sterilization match sensor 2250, a cleaning device 2400 designed to clean the interior of working channel 1275, a cleaning device 2500 designed to clean the exterior surface of wall 1230, a fluid emission device 2600 designed to emit a fluid into working channel 1275, a pressure regulator 1145, a pressure sensor 2700, a temperature sensor 2800, a timer 2900, and a communication device 2950 (e.g., a wireless transmitter, a transmitter electrically connected to processor 1144, a transmitter optically connected to processor 1144, a wireless receiver, a receiver electrically connected to processor 1144, a receiver optically connected to processor 1144, a wireless transmitter/receiver, a transmitter/receiver electrically connected to processor 1144, a transmitter/receiver optically connected to processor 1144). Each of sensor 2100, device 2200, device 2300, sensor 2250, device 2300, device 2400, device 2500, sensor 2700, sensor 2800, sensor 2900, and/or device 2950 can be integral with chamber 2000, disposed in the interior of chamber 2000, or disposed on the exterior of chamber 2000.

Matching Endoscope and Sterilization Chamber

Sterilization chamber 2000 is designed to ensure that endoscope 1000 is properly matched with chamber 2000 (e.g., to avoid damage to endoscope 1000 due
to exposure to improper sterilization conditions, to avoid ineffective sterilization of endoscope 1000 due to improper sterilization conditions, to be able to monitor use of endoscope 1000). Sterilization chamber 2000 is also designed to be capable of interacting with the database for endoscope 1000 stored on device 1146 (e.g., to determine status information for endoscope 1000, to update status information for endoscope 1000, to determine status information for chamber 2000, to update status information for chamber 2000).

In general, sterilization chamber match indicator 1165 can be disposed in the interior of endoscope 1000 (e.g., in the interior of manipulation portion 1100, in the interior of elongated portion 1200), disposed on an exterior surface of endoscope 1000 (on an exterior surface of manipulation portion 1100, on the exterior surface of manipulation portion 1100), or integrally formed with endoscope 1000 (integrally formed with manipulation portion 1100, integrally formed with elongated portion 1200).

In certain embodiments, sterilization chamber match indicator 1165 contains information that can be read by sterilization chamber match sensor 2250 to determine if endoscope 1000 matches sterilization chamber 2000 without knowing the identity of endoscope 1000. Such indicator/sensor systems include, for example, magnetic systems, inductance systems, electrical systems, optical systems, and/or mechanical systems. As an example, indicator 1165 and sensor 2250 can be complimentary components of a mating key and socket mechanism. As another example, indicator 1165 and sensor 2250 can be complimentary components of a pressure interlock mechanism. As another example, indicator 1165 and sensor 2250 can be complimentary components of a passive electrical system (e.g., indicator 1165 is a passive electrical device, and sensor 2250 is a sensor for such passive electrical devices). As a further example, indicator 1165 and sensor 2250 can be complimentary components of a magnetic system (e.g., indicator 1165 is a magnetic binary code and sensor 2250 has Hall effect sensors). As another example, indicator 1165 and sensor 2250 can be complimentary components of a bar code system (e.g., indicator 1165 can be a bar code, and sensor 2250 can be a bar code reader). As a further example, indicator 1165 and sensor 2250 can be complimentary components to a dot code system (e.g., indicator 1165 can be a dot code, and sensor 2250 can be a dot code reader).
complimentary components of an induction system (e.g., a passive induction system, such as a TIRIS system from Texas Instruments).

In some embodiments, the match between endoscope 1000 and sterilization chamber 2000 can be determined using identity indicator 1140 (e.g., without using indicator 1165. Referring to Fig. 10, identity sensor 2100 reads data from identity indicator 1140 (data corresponding to the identity of endoscope 1000), and passes the data to data processor 1144 via device 2950. Processor 1144 retrieves appropriate data to device 1146 to determine whether endoscope 1000 matches sterilization chamber 2000. If endoscope 1000 does not match sterilization chamber 2000, then processor 1144 instructs a power supply 1148 to shut down sterilization chamber 2000.

Cleaning Endoscope to Remove Detritus

After determining that endoscope 1000 matches sterilization chamber 2000, chamber 2000 cleans endoscope 1000 to remove detritus.

Referring to Fig. 11, cleaning device 2400 (e.g., a brush, a fluid emission device, a radiation emission device, a pipe cleaner, a thread, a rope) is disposed within working channel 1275, and relative motion occurs between working channel 1275 and cleaning device 2400 so that cleaning device 2400 interacts with different regions of working channel 1275 to clean working channel 1275 (e.g., to brush off detritus, to blow off detritus with fluid). In general, the manner in which cleaning device 2400 is disposed in working channel 1275, and relative motion occurs can be varied as desired. In some embodiments, cleaning device 2400 is stationary and configured so that, as endoscope 1000 is disposed in sterilization chamber 2000, device 2400 is placed within channel 1275. In certain embodiments, cleaning device 2400 is movable within sterilization chamber 2000 so that, after endoscope 1000 is disposed in sterilization chamber 2000, device 2400 is moved into working channel 1275. In some embodiments, after at least partially disposing device 2400 within channel 1275, cleaning device 2400 moves within channel 1275 while channel 1275 is stationary. In certain embodiments, after at least partially disposing device 2400 within channel 1275, working channel 1275 moves while device 2400 is stationary. Generally, the movement of cleaning device 2400 and/or channel 1275 can be manual controlled, automated or both.
Referring to Fig. 12, before or while cleaning device 2400 cleans channel 1275, cleaning device 2500 (e.g., a brush, a fluid emission device, a radiation emission device, a pipe cleaner, a thread, a rope) and the exterior surface of wall 1230 are positioned adjacent each other, and relative motion occurs between cleaning device 2500 and wall 1230 so that cleaning device 2500 interacts with different regions of the exterior of wall 1230 to clean wall 1230 (e.g., to brush off detritus, to blow off detritus with fluid). In general, the manner in which cleaning device 2500 and wall 1230 are disposed adjacent each other and relative motion occurs can be varied as desired. In some embodiments, cleaning device 2500 is stationary and configured so that, as endoscope 1000 is disposed in sterilization chamber 2000, device 2500 is placed adjacent the exterior of wall 1230. In certain embodiments, cleaning device 2500 is movable within sterilization chamber 2000 so that, after endoscope 1000 is disposed in sterilization chamber 2000, device 2500 is moved adjacent the exterior of wall 1230. In some embodiments, after disposing the exterior of wall 1230 and device 2500 adjacent each other, cleaning device 2500 moves adjacent different regions of the exterior of wall 1230 while wall 1230 is stationary. In certain embodiments, after disposing the exterior of wall 1230 and device 2500 adjacent each other, wall 1230 moves while device 2500 is stationary. In general, the movement of cleaning device 2500 and/or wall 1230 can be manually controlled, automated or both.

Referring to Fig. 13, alternatively or additionally, fluid emission device 2600 (e.g., a steam emission nozzle, a steam emission hose, a gas emission nozzle, a gas emission hose, a cleaning fluid emission nozzle, a cleaning emission hose) can be positioned adjacent working channel 1275 at distal end 1220, and device 2600 can emit a fluid into channel 1275 to clean channel 1275. In general, the manner in which cleaning device 2600 and channel 1275 are disposed adjacent each other can be varied as desired. In some embodiments, cleaning device 2600 is stationary and configured so that, as endoscope 1000 is disposed in sterilization chamber 2000, device 2600 is placed adjacent channel 1275 at distal end 1220. In certain embodiments, cleaning device 2600 is movable within sterilization chamber 2000 so that, after endoscope 1000 is disposed in sterilization chamber 2000, device 2600 is moved adjacent channel 1275 at distal end 1220. In general, the movement of cleaning device 2600 and/or channel 1275 can be manually controlled, automated or...
both. Cleaning device 2600 can emit, for example, one or more enzymatic cleaning fluids, disinfectant fluids, and/or sterilization fluids.

Sterilization of Endoscope

After cleaning endoscope 1000 to remove detritus, endoscope 1000 is sterilized. Generally, sterilization includes sealing sterilization chamber 2000, evacuating chamber 2000, and introducing pressurized steam into chamber 2000. The steam pressure, steam temperature, and the amount of time to which the endoscope is exposed to the steam can be selected on the particular type of endoscope (e.g., materials, size, uses).

In general, sterilization of endoscope 1000 involves first evacuating chamber 2000, and then pressurizing chamber 2000 with steam. Elongated portion 1200 of endoscope 1000 typically has one or more components that are sealed at distal end 1220 (e.g., steering cables, an optical guide, an optical image cable), which can cause pressure differentials to occur during the sterilization process. For example, during evacuation of chamber 2000, endoscope 1000 can partially expand due to a pressure differential between the exterior of endoscope 1000 (relatively low pressure) and the region of endoscope 1000 that is sealed at distal end 1220 (relatively high pressure), and, during pressurization of chamber 2000, endoscope 1000 can partially collapse due to a pressure differential between the exterior of endoscope 1000 (relatively high pressure) and the region of endoscope 1000 that is sealed at distal end 1220 (relatively low pressure).

Fig. 13 shows a cross-section of a portion of endoscope 1000 that is sealed at distal end 1220, and in fluid communication with opening 1105. Opening 1105 is in fluid communication with a gas supply/vacuum apparatus 1135 via a pressure regulator 1145 (e.g., a valve). As the pressure in chamber 2000 is reduced during evacuation, pressure regulator 1145 opens to allow apparatus 1135 to reduce the pressure (e.g., by pumping out gas) in the portion of endoscope 1000 that is sealed at distal end 1220 so that the pressure differential between the exterior of endoscope 1000 and the portion of endoscope 1000 that is sealed at distal end 1220 is relatively small (e.g., less than about five psi, less than about four psi, less than about three psi, less than about two psi, less than about one psi, less than 0.5 psi, less than 0.2 psi) during evacuation. After evacuation, as the pressure in chamber 2000 is increased,
pressure regulator 1145 opens to allow apparatus 1135 to increase the pressure (e.g., by pumping in gas) in the portion of endoscope 1000 that is sealed at distal end 1220 so that the pressure differential between the exterior of endoscope 1000 and the portion of endoscope 1000 that is sealed at distal end 1220 is relatively small (e.g., less than about five psi, less than about four psi, less than about three psi, less than about two psi, less than about one psi, less than 0.5 psi, less than 0.2 psi) during pressurization. In general, pressure regulator 1145 can be manually controlled, automated, or both. In certain embodiments, pressure regulator 1145 can be varied continuously between a fully on position and a fully off position. In some embodiments, pressure regulator 1145 has only a fully on position and a fully off position.

In certain embodiments, pressure sensor 2700, temperature sensor 2800, and/or timer 2900 are used to determine whether the proper sterilization conditions (steam pressure, steam temperature, time that endoscope 1000 was exposed to the steam) were met (e.g., sterilization chamber 2000 operates under set sterilization conditions, and sensors 2700, 2800, and/or 2900 are used to verify that the conditions were met). In some embodiments, pressure sensor 2700, temperature sensor 2800 and/or timer 2900 can be used to monitor and adjust the steam pressure, steam temperature, and time of exposure (e.g., sensors 2700, 2800, and/or 2900 are used to control the conditions used during sterilization of endoscope 1000) to assist in sterilizing endoscope 1000 under appropriate conditions. Sensors 2700, 2800, and/or 2900 can be manually operated, automated, or both.

Updating Endoscope Status

After sterilizing endoscope 1000, the sterilization status and/or medical procedure enablement status of endoscope 1000 can be updated.

In some embodiments, sterilizing endoscope 1000 in a sterilizer automatically updates sterilization status of endoscope 1000 (e.g., as indicated by sterilization status indicator 1150) to indicate that endoscope 1000 has not been sterilized since last used in a medical procedure. As an example, indicator 1150 may change color (e.g., red to green) to indicate that endoscope 1000 has been sterilized since last used in a medical procedure. As another example, indicator 1150 may display a word (e.g., STERILIZED) to indicate that endoscope 1000 has
been sterilized since last used in a medical procedure. As a further example, indicator 1150 may cover/not cover a marker on endoscope 1000 to indicate that endoscope 1000 has been sterilized since last used in a medical procedure. In some embodiments, the distal end of optical guide 1280 emits light when power source 1175 is turned on to indicate that endoscope 1000 has been sterilized since last used in a medical procedure. In certain embodiments, an articulation element functions properly to indicate that endoscope 1000 has been sterilized since last used in a medical procedure.

 In certain embodiments, using the endoscope in a medical procedure automatically updates the medical procedure enablement status of endoscope 1000 (e.g., as indicated by indicator 1160) to indicate that endoscope 1000 is enabled for use in a medical procedure. As an example, indicator 1160 may change color (e.g., red to green) to indicate that endoscope 1000 is enabled for use in a medical procedure. As another example, indicator 1160 may display a word (e.g., ENABLED) to indicate that endoscope 1000 is enabled for use in a medical procedure. As a further example, indicator 1150 may cover/not cover a marker on endoscope 1000 to indicate that endoscope 1000 is enabled for use in a medical procedure. In some embodiments, the distal end of optical guide 1280 may emit light when power source 1175 is turned on to indicate that endoscope 1000 is enabled for use in a medical procedure. In certain embodiments, an articulation element functions properly to indicate that endoscope 1000 is enabled for use in a medical procedure.

 In some embodiments, the sterilization status and/or medical procedure enablement status of endoscope 1000 is updated using identity indicator 1140 (e.g., without updating sterilization status indicator 1150 and/or medical procedure enablement status indicator 1160). Referring to Fig. 15, identity sensor 2100 reads data from identity indicator 1140 (data corresponding to the identity of endoscope 1000), and passes the data to data processor 1144 via communication device 2950. Processor 1144 sends appropriate data to device 1146 to update data in the database contained on device 1146 for endoscope 1000 (e.g., to update data in the database for endoscope 1000 to indicate that endoscope 1000 has been sterilized since last used in a medical procedure). Processor 1144 may also instruct sterilization status adjustment device 2200 to update sterilization status indicator 1150 as appropriate.
(see discussion above), and/or processor 1144 may also instruct medical procedure enablement adjustment device 2300 to update medical procedure enablement adjustment status indicator 1160 as appropriate (see discussion above).

5 **Endoscope Holder**

In certain embodiments sterilization chamber 2000 does not have identity sensor 2100, sterilization status adjustment device 2200, medical procedure enablement status adjustment device 2300, sterilization match sensor 2250, pressure sensor 2700, temperature sensor 2800, and/or timer 2900. In such embodiments, one or more of these components can be coupled to a device that can fit into sterilization chamber 2000 so that, while chamber 2000 itself does not have one or more of these components, the sterilization system still does have all these components disposed within chamber 2000 during sterilization. For example, Fig. 16 shows an endoscope holder 3000 (e.g., a tray) that can be repeatedly fit into sterilization chamber 2000, and that can be repeatedly removed from sterilization chamber 2000. Holder 3000 includes identity sensor 2100, sterilization status adjustment device 2200, medical procedure enablement status adjustment device 2300, sterilization match sensor 2250, pressure sensor 2700, temperature sensor 2800, and timer 2900.

Holder 3000 can be used as follows. Endoscope 1000 is placed in holder 3000, holder 3000 is placed in sterilization chamber 2000, and the match between endoscope 1000 and chamber 2000 is determined. If chamber 2000 and endoscope 1000 are not properly matched, chamber 2000 is shut down (see discussion above). Otherwise, the process continues. In some embodiments, holder 3000 and endoscope 1000 are configured so that cleaning devices 2400, 2500 and/or 2600 are appropriately positioned as tray 3000 is placed into chamber 2000. Sterilization chamber 2000 then goes through a sterilization cycle, sterilization conditions are checked, and the status of endoscope 1000 is updated (see discussion above). Each of sensor 2100, device 2200, device 2300, sensor 2250, sensor 2700, sensor 2800, sensor 2900, and/or transmitter 2950 can be integral with holder 3000, disposed in the interior of holder 3000, or disposed on the exterior of holder 3000.
Endoscope Holder Docking Station

In some embodiments, holder 3000 does not include identity sensor 2100, sterilization status adjustment device 2200, medical procedure enablement status adjustment device 2300, sterilization match sensor 2250, pressure sensor 2700, temperature sensor 2800, and/or timer 2900. Referring to Fig. 17, in such embodiments, a docking station 4000 for holder 3000 can contain these components. Docking station 4000 can be used as follows. Holder 3000 is used as described above. After the sterilization cycle, holder 3000 is removed from chamber 2000 and connected to docking station 4000 (which may be remote from chamber 2000). The sterilization conditions are checked, and the status of endoscope 1000 is updated (see discussion above). Each of sensor 2100, device 2200, device 2300, sensor 2250, sensor 2700, sensor 2800, sensor 2900, and/or transmitter 2950 can be integral with docking station 4000, disposed in the interior of docking station 4000, or disposed on the exterior of docking station 4000. In some embodiments, docking station 4000 is configured to be electrically coupled, optically coupled and/or wirelessly coupled with holder 3000. In certain embodiments, docking station 4000 is configured to hold endoscope holder 3000 without such coupling with holder 3000.

Charging for use of Endoscope

Fig. 18 shows a flow chart for a method 5000 that can be used to charge a client for use of endoscope 1000. First, the client uses endoscope 1000 (5100), and this information is communicated to a data processor (5200). The data processor then communicates with a data storage device containing a database with data for endoscope 1000 (5300). The data processor uses the data for endoscope 1000 to calculate the client charge for using endoscope 1000 (5400). Depending on the type of account the client has, the data processor debits the account (e.g., by updating the database for endoscope 1000 contained on device 1446 to reduce the charge from the credit for the account) and forwards this information to the client, or the data processor bills the account (e.g., by updating the database for endoscope 1000 contained on device 1446 to indicate that the client has been sent a bill for the charge) and forwards the bill to the client (5500).
In general, this method can be performed as follows. The client uses endoscope 1000, and as data is communicated from endoscope 1000 to data processor 1144 and data storage device 1146 to update the data for endoscope 1000 in the database contained on device 1146 to indicate that the sterilization status and/or medical procedure enablement status of endoscope 1000 has changed, the database is updated to indicate that endoscope 1000 has undergone another use in a medical procedure. This can take place after use of endoscope 1000 (e.g., after use of endoscope 1000 but before cleaning of endoscope 1000, when endoscope 1000 is cleaned, when endoscope 1000 is matched with sterilization chamber 2000, after matching with sterilization chamber 2000 but before sterilization of endoscope 1000) and/or after sterilization of endoscope 1000 (e.g., after sterilization of endoscope 1000 but before the next use of endoscope 1000 in a medical procedure), but generally not both (see discussion above). During this process, processor 1144 recognizes that endoscope 1000 has undergone a use in a medical procedure, and processor 1144 communicates this to database 1146 (e.g., the database can contain information regarding the number of times endoscope 1000 has been used in a medical procedure). Processor 1144 then retrieves the appropriate data from the database to calculate the charge to the client, and processor 1144 retrieves appropriate data from the database to determine the type of account the client has (e.g., credited, noncredited) to determine how to charge the client. Processor 1144 then provides appropriate instructions so that the client is informed of the charge (e.g., by displaying the charge information on a video monitor so that a person can read this information and forward it to the client, by printing the information on a sheet that is forwarded to the client, by electronically/optically/wirelessly communicating this information to the client).

Various information can be contained in the database for endoscope 1000 that is stored on device 1146 and that is used by processor 1144 to determine the client charge for using endoscope 1000. In some embodiments, the information can include the identity of the client. For example, the client charge may depend upon whether the client is a private patient, a private doctor, a doctor who is part of a professional organization, a health maintenance organization, a private insurance company, or a government agency. In certain embodiments, the information can include the number of times the client has used endoscope 1000. For example, the
rate per use may change (e.g., increase, decrease) as the number of uses increases. In some embodiments, the information can include the number of times that the client has used endoscope 1000 since the client was last billed. For example, the client can be billed based on a predetermined number of uses, as opposed to being billed on a per use basis. In certain embodiments, the information can include the total number of times that the client has used an endoscope in the system. For example, the client may be associated with multiple endoscopes through an account, and the total number of uses for the multiple endoscopes can be stored in the database so that the client charge per endoscope use can change (e.g., increase, decrease) as the total number of endoscope uses increases. In some embodiments, the information can include the total number of times that the client has used a sterilization chamber in the system. For example, the client may have access to multiple sterilization chambers, and the total number of sterilization chamber uses can be stored in the database so that the charge per use can change (e.g., increase, decrease) as the total number of sterilization system uses increases. In certain embodiments, the information can include the time of day that endoscope 1000 was used. For example, the charge per use can be lower if endoscope 1000 was used during off peak hours. In some embodiments, the information can include the frequency of use of endoscope 1000. For example, the charge per use can change (e.g., increase, decrease) as the number of uses per unit time increases.

In some embodiments, the client is charged before use of endoscope 1000 in a medical procedure (e.g., before each use, before each predetermined number of uses). In certain embodiments, the client is charged after use of endoscope 1000 in a medical procedure (e.g., after each use, after each predetermined number of uses).

While certain embodiments have been described, other embodiments are possible.

As an example, while the systems and methods have been described for use with endoscopes, other reusable medical instruments can be used in the systems and methods. A reusable medical instrument, as referred to herein, means a medical instrument that, after being used in a medical procedure, is treated (e.g., cleaned, disinfected, and/or sterilized) so that the device can be used again in a medical procedure. Examples of reusable medical instruments include laparoscopes, video imaging cameras and/or associated electronics, CCD imaging cameras and/or
associated electronics, CMOS imaging cameras and/or associated electronics, wound closure devices (e.g., staplers, suturing devices), ultrasonic probes, umbilical cables, umbilicals for cutters, umbilicals for shavers, umbilicals for staplers, and endarterectomy devices.

As another example, while the above-described systems and methods have been described with respect to sterilization chambers and sterilization processes, more generally, the systems and methods can be used with any treatment that is used for a reusable medical instrument between uses of the instrument in a medical procedure. As an example, rather than a sterilization chamber and process, the systems and methods can use a disinfection chamber and process. In some embodiments, the treatment of the reusable medical instrument between uses in a medical procedure can include cleaning, disinfection and/or sterilization.

As a further example, the status checking and/or data updating for a reusable medical instrument can be done at any stage in the process that is desired. For example, the status of the reusable device can be checked and/or updated before use in a medical procedure, after the device is used in a medical procedure (e.g., between use in a medical procedure and treatment), and/or after the device is treated (e.g., sterilized and/or disinfected). In some embodiments, the status of the reusable medical instrument is checked and/or updated between use in a medical procedure and treatment, but not after treatment. In certain embodiments, the status of the reusable medical instrument is checked and/or updated after treatment, but not between use in a medical procedure and treatment. Similarly, data associated with the reusable medical instrument can be updated before the device is used in a medical procedure, after the device is used in a medical procedure (e.g., between use in a medical procedure and treatment), and/or after the device is treated.

While endoscopes having a light source in the manipulation portion have been described, endoscopes having one or more lights sources located in the elongated portion of the endoscope (e.g., at the distal end) can also be used. One or more of the light sources can be external to the endoscope (e.g., connected to the manipulation portion via an electrical connection, an optical connection, and/or a wireless connection).

While endoscopes having an internal power source have been described, endoscopes having an external power source (e.g., connected to the manipulation
portion via an electrical connection, an optical connection, and/or a wireless connection) can be used.

While endoscopes having a wireless transmitter on the elongated portion have been described, endoscopes having an electrically connected and/or optically connected transmitter on the elongated portion can be used.

While endoscopes having a flexible portion 1215 have been described, in some embodiments region 1215 can be rigid or semi-rigid.

In some embodiments, the manipulation portion of an endoscope can have one or more oculars, one or more umbilicals, one or more connectors, and/or one or more valves. In embodiments in which the manipulation portion has an umbilical, the endoscope can be designed so that the cable automatically changes the status of the endoscope (e.g., sterilization status, medical procedure enablement status) when the umbilical is separated from the endoscope or is separated at its distal end (e.g., from the video processor, gas/vacuum/irrigation supply, and/or light source), and/or the umbilical can mechanically reset to indicate a change in status after use.

In certain embodiments, a light source can be formed of one or more LEDs (e.g., one or more red LEDs, one or more blue LEDs, one or more green LEDs, and/or one or more white LEDs).

In some embodiments, a medical instrument can have one or more joysticks that are used as control devices. Medical instruments containing such control devices are described, for example, in commonly owned and co-pending U.S. Provisional Patent Application Serial No. 60/389,168, filed June 17, 2002, and entitled “Mechanical Joystick Steering Mechanism for Borescope, Endoscope, Catheter, Guide Tube, and Working Tool,” the contents of which are hereby incorporated by reference.

In some embodiments, the systems can be used to provide methods of maintaining the condition of a reusable medical instrument. For example, the database can maintain a record of the number of times the reusable medical instrument has been used in a medical procedure since it last underwent a maintenance procedure. The data processor can retrieve this information from the database, and, when the database indicates that the reusable medical instrument has undergone the predetermined number of uses since last undergoing a maintenance procedure, the processor can disable the reusable medical instrument from use in a
medical procedure. The database can then instruct the client that the reusable medical instrument has been disabled.

In certain embodiments, the systems can be used to provide methods of maintaining supplies associated with uses of a reusable medical instrument (e.g., cytology brushes, baskets, snares, graspers, forceps). For example, the database can maintain a record of the number of times the reusable medical instrument has been used in a medical procedure since the client associated with the instrument was provided supplies for the instrument. The data processor can retrieve this information from the database, and, when the database indicates that the reusable medical instrument has undergone the predetermined number of uses since the client was last provided the supplies, the processor can instruct a medical procedure enablement status adjustment device for the instrument to disable the reusable medical instrument from use in a medical procedure. The database can then instruct the client that the reusable medical instrument has been disabled. In some embodiments, a user or handler of the instrument can provide the data processor with information regarding the medical procedure that is intended to be used with the instrument, and the data processor can interact with the database to determine whether sufficient supplies are available for the instrument to be used in the particular procedure.

While reusable medical instruments and medical procedures have been described, other instruments and procedures can also be used. For example, the instruments can be designed to be reusable for industrial uses (e.g., for inspecting the interior of an aircraft engine), and the procedures can be industrial procedures (e.g., inspecting the interior of an aircraft engine).

While the pressure regulator and gas/vacuum source have been described as being coupled to a treatment chamber (e.g., a sterilization chamber), other embodiments can be used. For example, the pressure regulator and/or gas/vacuum source can be coupled to a holder (e.g., a tray) for the reusable instrument (e.g., a reusable medical instrument, such as an endoscope).

Other embodiments are in the claims.
Claims

1. A method of charging a client for use of a reusable instrument, the method comprising:
 charging the client for use of the reusable instrument, the charge to the client
 being at least partially based on a number of times the client has used the reusable
 instrument since last being charged for use of the reusable instrument.

2. The method of claim 1, wherein the charge to the client is at least partially
 based on a total number of reusable instrument uses associated with the client.

3. The method of claim 1, wherein the charge to the client is at least partially
 based on a total number of treatment system uses associated with the client, the
 treatment system being designed to treat a reusable instrument.

4. The method of claim 1, wherein the charge to the client is at least partially
 based on a frequency of uses of the reusable instrument.

5. The method of claim 1, wherein the charge to the client is at least partially
 based on a frequency of uses of a total number of reusable instruments associated
 with the client.

6. The method of claim 1, wherein the charge to the client is at least partially
 based on a time of day when the reusable instrument is used.

7. The method of claim 1, wherein the charge to the client is at least partially
 based on an average time of day that the client uses a reusable instrument.

8. The method of claim 1, wherein the charge to the client is at least partially
 based on an amount of time that the client has had the reusable instrument.

9. The method of claim 1, wherein the client is charged after each use of the
 reusable instrument.
10. The method of claim 1, wherein the client is charged before each use of the reusable instrument.

11. The method of claim 1, wherein the client is charged after a predetermined number of uses of the reusable instrument.

12. The method of claim 1, wherein the client is charged before a predetermined number of uses of the reusable instrument.

13. The method of claim 1, further comprising determining the client based on an identity of the reusable instrument.

14. The method of claim 13, wherein determining the client includes communicating data associated with the identity of the reusable instrument to a data processor.

15. The method of claim 14, wherein the data processor is remote from the reusable instrument.

16. The method of claim 14, wherein determining the client further includes communicating data associated with the client from a data storage instrument to the data processor.

17. The method of claim 13, further comprising determining a payment status of the client.

18. The method of claim 17, further comprising preventing the reusable instrument from being used in a procedure based on the payment status of the client.

19. The method of claim 1, further comprising determining a payment status of the client.
20. The method of claim 19, further comprising preventing the reusable instrument from being used in a procedure based on the payment status of the client.

21. The method of claim 1, further comprising determining an identity of the reusable instrument.

22. The method of claim 21, wherein determining the identity of the reusable instrument includes reading recognition data from the reusable instrument.

23. The method of claim 22, further comprising communicating the recognition data to a data processor.

24. The method of claim 23, further comprising communicating between the data processor and a data storage device to determine a client associated with the reusable instrument.

25. The method of claim 23, wherein the data processor is remote from the reusable instrument.

26. The method of claim 23, wherein determining the client further includes communicating data associated with the client from a data storage instrument to the data processor.

27. The method of claim 1, further comprising providing the reusable instrument and a treatment system to the client, the treatment system being designed to treat a reusable instrument.

28. The method of claim 27, wherein the treatment system is a sterilization system or a disinfection system.

29. The method of claim 1, wherein the client includes a person that used the reusable instrument, a company affiliated with a person that used the reusable instrument, a subject on whom the reusable instrument was used, a person associated
with a subject on whom the reusable instrument was used, an insurance company, or a government agency.

30. The method of claim 1, wherein the reusable instrument is an endoscope.

31. A method of charging a client for use of a reusable instrument, the reusable instrument having an identity, the method comprising:
 reading recognition data from the reusable instrument to determine the identity of the reusable instrument;
 determining the client based on the identity of the reusable instrument; and
 charging the client based on data associated with the client.

32. The method of claim 31, wherein the data associated with the client includes a number of times the reusable instrument has been used by the client.

33. The method of claim 31, wherein the data associated with the client includes a total number of reusable instrument uses associated with the client.

34. The method of claim 31, wherein the data associated with the client includes a total number of treatment system uses associated with the client.

35. The method of claim 31, wherein determining the client includes communicating the recognition data to a data processor.

36. The method of claim 35, wherein the data processor is remote from the reusable instrument.

37. The method of claim 35, wherein determining the client further includes communicating data associated with the client from a data storage instrument to the data processor.

38. The method of claim 31, wherein the recognition data is read from the reusable instrument using a instrument selected from the group consisting of
magnetic instruments, inductance instruments, electrical instruments, optical instruments, and mechanical instruments.

39. The method of claim 31, further comprising determining a payment status of the client.

40. The method of claim 39, further comprising preventing the reusable instrument from being used in a procedure based on the payment status of the client.

41. The method of claim 31, further comprising providing the reusable instrument and a treatment system to the client, the treatment system being designed to treat a reusable instrument.

42. The method of claim 41, wherein the treatment system is a sterilization system or a disinfection system.

43. The method of claim 31, wherein the client is selected from the group consisting of a person that used the reusable instrument, a company affiliated with a person that used the reusable instrument, a subject on whom the reusable instrument was used, a person associated with a subject on whom the reusable instrument was used, an insurance company, and a government agency.

44. The method of claim 31, wherein the reusable instrument is an endoscope.

45. A method of managing a condition of a reusable instrument, the reusable instrument having an identity, the method comprising: determining the identity of the reusable instrument; and determining, based on the identity of the reusable instrument, a number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure.

46. The method of claim 45, wherein determining the identity of the reusable instrument includes reading recognition data from the reusable instrument.
47. The method of claim 46, wherein determining the number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure includes communicating the recognition data to a data processor.

48. The method of claim 47, wherein the data processor is remote from the reusable instrument.

49. The method of claim 47, wherein determining the number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure further includes communicating data associated with the reusable instrument from a data storage instrument to the data processor.

50. The method of claim 45, further comprising preventing the reusable instrument from being used in a procedure based on the number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure.

51. The method of claim 45, further comprising performing a maintenance procedure on the reusable instrument based on the number of times the reusable instrument has been used since the reusable instrument last underwent a maintenance procedure.

52. The method of claim 51, further comprising charging a client associated with the reusable instrument for performance of the maintenance procedure.

53. The method of claim 45, wherein the reusable instrument is an endoscope.

54. A method of maintaining a supply material associated with uses of a reusable instrument, the reusable instrument having an identity, the method comprising:
 determining the identity of the reusable instrument; and
determining, based on the identity of the reusable instrument, a number of times the reusable instrument has been used since the supply material was last acquired by a client associated with the reusable instrument.

55. The method of claim 54, wherein determining the identity of the reusable instrument includes reading recognition data from the reusable instrument.

56. The method of claim 55, wherein determining the number of times the reusable instrument has been used since the supply material was last acquired by the client includes communicating the recognition data for the reusable instrument to a data processor.

57. The method of claim 56, wherein the data processor is remote from the reusable instrument.

58. The method of claim 56, wherein determining the number of times the reusable instrument has been used since the supply material was last acquired by the client further includes communicating data associated with the reusable instrument from a data storage instrument to the data processor.

59. The method of claim 54, further comprising preventing the reusable instrument from being used in a procedure based on the number of times the reusable instrument has been used since the supply material was last provided to the client.

60. The method of claim 54, further comprising providing the supply material to the client based on the number of times the reusable instrument has been used since the supply material was last provided to the client.

61. The method of claim 60, further comprising charging the client for providing the supply material.

62. The method of claim 54, wherein the reusable instrument is an endoscope.
63. A method of preventing use of a reusable instrument, the reusable instrument having an identity, the method comprising:
 determining a client associated with the reusable instrument based on the identity of the reusable instrument; and
 preventing the reusable instrument from being used in a procedure based on data associated with the client.

64. The method of claim 63, wherein the data associated with the client is a payment status of an account associated with the client.

65. The method of claim 63, wherein preventing the reusable instrument from being used in a procedure includes disabling the reusable instrument from being capable of being used in a procedure.

66. The method of claim 65, further comprising informing the client that the reusable instrument has been disabled.

67. The method of claim 66, further comprising, after disabling the reusable instrument, allowing the reusable instrument to be used in a procedure based on data from an account associated with the client.

68. The method of claim 63, further comprising informing the client that the reusable instrument is being prevented from being used in a procedure.

69. The method of claim 63, wherein the reusable instrument is an endoscope.

70. A method of maintaining a database for a reusable instrument, the method comprising:
 determining, each time the reusable instrument has been used in a procedure, that the reusable instrument has been used in a procedure; and
 updating, each time the reusable instrument has been used in a procedure, the database to indicate that the reusable instrument has been used in another procedure.
71. The method of claim 70, wherein determining that the reusable instrument has been used in a procedure includes determining an identity of the reusable instrument.

72. The method of claim 71, wherein determining the identity of the reusable instrument includes reading recognition data from the reusable instrument.

73. The method of claim 72, wherein updating the database includes communicating the recognition data to a data processor.

74. The method of claim 73, wherein the data processor identifies the database associated with the reusable instrument, and communicates the procedure use data to the database.

75. The method of claim 70, wherein the reusable instrument is an endoscope.

76. A method of charging a client, the method comprising: charging the client, the charge to the client being at least partially based on a number of times the client has treated a reusable instrument since last being charged.

77. The method of claim 76, wherein the treatment is sterilization, disinfection or cleaning.

78. The method of claim 76, wherein the charge to the client is at least partially based on a total number of treatment systems associated with the client.

79. The method of claim 76, wherein the charge to the client is at least partially based on a frequency of treatments.

80. The method of claim 76, wherein the charge to the client is at least partially based on a total number of uses of a treatment system.
81. The method of claim 76, wherein the charge to the client is at least partially based on a total number of treatment systems associated with the client.

82. The method of claim 76, wherein the charge to the client is at least partially based on a frequency of uses of a total number of treatment systems associated with the client.

83. The method of claim 76, wherein the charge to the client is at least partially based on a time of day when treatment is performed.

84. The method of claim 76, wherein the charge to the client is at least partially based on an average time of day that the client treats a reusable instrument.

85. The method of claim 76, wherein the charge to the client is at least partially based on an amount of time that the client has had a treatment system for treating the reusable instrument.

86. The method of claim 76, wherein the client is charged after each treatment of the reusable instrument.

87. The method of claim 76, wherein the client is charged before each treatment of the reusable instrument.

88. The method of claim 76, wherein the client is charged after a predetermined number of treatments of the reusable instrument.

89. The method of claim 76, wherein the client is charged before a predetermined number of treatments of the reusable instrument.

90. The method of claim 76, wherein the reusable instrument is an endoscope.
91. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause a process to occur, the process including:

charging a client for use of the reusable instrument, the charge to the client being at least partially based on a number of times the client has used a reusable instrument since last being charged for use of the reusable instrument.

92. The computer program product of claim 91, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

93. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

reading recognition data from a reusable instrument to determine an identity of the reusable instrument;

determining a client associated with the reusable instrument based on the identity of the reusable instrument; and

charging the client based on data associated with the client.

94. The computer program product of claim 93, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

95. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

determining an identity of the reusable instrument; and
determining, based on the identity of the reusable instrument, a
number of times the reusable instrument has been used since the reusable instrument
last underwent a maintenance procedure.

96. The computer program product of claim 95, wherein the computer readable
medium is selected from the group consisting of a hard disk drive, a random access
memory, and a read-only memory.

97. A computer program product residing on a computer readable medium
having a plurality of instructions stored thereon which, when executed by one or
more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

determining an identity of the reusable instrument; and

determining, based on the identity of the reusable instrument, a
number of times the reusable instrument has been used since the supply material was
last acquired by a client associated with the reusable instrument.

98. The computer program product of claim 97, wherein the computer readable
medium is selected from the group consisting of a hard disk drive, a random access
memory, and a read-only memory.

99. A computer program product residing on a computer readable medium
having a plurality of instructions stored thereon which, when executed by one or
more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

determining an account for a client based on an identity of a reusable
instrument; and

preventing the client from using the reusable instrument in a
procedure based on data associated with the client.

100. The computer program product of claim 99, wherein the computer readable
medium is selected from the group consisting of a hard disk drive, a random access
memory, and a read-only memory.
101. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

determining, each time a reusable instrument has been used in a procedure, that the reusable instrument has been used in a procedure; and

updating, each time the reusable instrument has been used in a procedure, the database to indicate that the reusable instrument has been used in another procedure.

102. The computer program product of claim 101, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

103. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

charging a client, the charge to the client being at least partially based on a number of times the client has treated a reusable instrument since last being charged.

104. The computer program product of claim 103, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

105. The method of claim 1, wherein the reusable instrument is a reusable medical instrument.

106. The method of claim 1, wherein the reusable instrument is a reusable medical instrument.
107. The method of claim 45, wherein the reusable instrument is a reusable medical instrument.

108. The method of claim 54, wherein the reusable instrument is a reusable medical instrument.

109. The method of claim 63, wherein the reusable instrument is a reusable medical instrument.

110. The method of claim 70, wherein the reusable instrument is a reusable medical instrument.

111. The method of claim 76, wherein the reusable instrument is a reusable medical instrument.

112. A reusable instrument having an identity, the reusable instrument comprising:

 an instrument body having an interior and an exterior; and

 an indicator configured to provide the identity of the reusable instrument, the indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

113. The instrument of claim 112, wherein the indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

114. The instrument of claim 112, wherein the indicator is a bar code, a dot code, a passive RF transmitter, a passive electrical device, a component of a mechanical key system, or a magnetically encoded device.

115. The instrument of claim 112, wherein the indicator is configured to be read by a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.
116. The instrument of claim 112, further comprising a treatment status indicator configured to indicate the treatment status of the reusable instrument, the treatment status indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

117. The instrument of claim 116, wherein the treatment status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

118. The instrument of claim 116, further comprising a procedure enablement status configured to indicate that the reusable instrument is disabled from being used in a procedure, the procedure enablement status indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

119. The instrument of claim 118, wherein the procedure enablement status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

120. The instrument of claim 112, further comprising a procedure enablement status configured to indicate that the reusable instrument is disabled from being used in a procedure, the procedure enablement status indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

121. The instrument of claim 120, wherein the procedure enablement status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

122. The instrument of claim 120, wherein the reusable instrument is an endoscope.
123. A system, comprising:
 a reusable instrument having an identity, the reusable instrument comprising:
 an instrument body having an interior and an exterior; and
 an indicator, the indicator being integral with the instrument body,
 disposed on the exterior of the instrument body, or disposed in the interior of the
 instrument body; and
 a data recognition device configured to read data from the indicator to
determine the identity of the reusable instrument.

124. The system of claim 123, wherein the reusable instrument is an endoscope.

125. The system of claim 123, wherein the data recognition device comprises a
 magnetic device, an inductance device, an electrical device, an optical device, or a
 mechanical device.

126. The system of claim 123, further comprising an article, the data recognition
device being coupleable to the article.

127. The system of claim 126, wherein the article is a component for a treatment
 system for the reusable instrument, a holder for a reusable instrument that is
 configured to be removably housed in a treatment chamber for the reusable
 instrument, or a docking station for a holder for a reusable instrument that is
 configured to be removably housed within a treatment chamber for the reusable
 instrument.

128. A reusable instrument, comprising:
 an instrument body having an interior and an exterior; and
 an indicator, the indicator being integral with the instrument body, disposed
 on the exterior of the instrument body, or disposed in the interior of the instrument
 body,
 wherein the indicator is configured to provide a serial number of the reusable
 instrument device, a product number of the reusable instrument, a treatment status of
the reusable instrument, a procedure enablement status of the reusable instrument, or a supply status of the reusable instrument.

129. The instrument of claim 128, wherein the reusable instrument is an endoscope.

130. The instrument of claim 128, wherein the indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

131. The instrument of claim 128, wherein the indicator comprises a bar code, a dot code, a passive RF transmitter, a passive electrical device, a component of a mechanical key system, or a magnetically encoded device.

132. The instrument of claim 128, wherein the indicator is configured to be read by a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

133. The instrument of claim 128, wherein the indicator provides a serial number of the reusable instrument or a product number of the reusable instrument, and the reusable instrument further includes a treatment status indicator configured to indicate the treatment status of the reusable instrument, the treatment status indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

134. The instrument of claim 133, wherein the treatment status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

135. The instrument of claim 133, further comprising a procedure enablement status configured to indicate that the reusable instrument is disabled from being used in a procedure, the procedure enablement status indicator being integral with the
instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

136. The instrument of claim 135, wherein the procedure enablement status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

137. The instrument of claim 128, wherein the indicator provides a serial number of the reusable instrument or a product number of the reusable instrument, and the reusable instrument further includes a procedure enablement status configured to indicate that the reusable instrument is disabled from being used in a procedure, the procedure enablement status indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

138. The instrument of claim 137, wherein the procedure enablement status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

139. The instrument of claim 128, wherein the indicator provides a treatment status of the reusable instrument, and the reusable instrument further includes a procedure enablement status indicator configured to indicate that the reusable instrument is disabled from being used in a procedure, the procedure enablement status indicator being integral with the instrument body, disposed on the exterior of the instrument body, or disposed in the interior of the instrument body.

140. The instrument of claim 139, wherein the procedure enablement status indicator comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

141. A system, comprising:

- a reusable instrument, comprising:
 - an instrument body having an interior and an exterior;
an indicator, the indicator being integral with the instrument body,
dispersed on the exterior of the instrument body, or disposed in the interior of the
instrument body; and

a data recognition device configured to read data from the indicator, the data
being a serial number of the reusable instrument, a product number of the
endoscopic device, a treatment status of the reusable instrument, or a procedure
enablement status of the reusable instrument.

142. The system of claim 141, wherein the reusable instrument is an endoscope.

143. The system of claim 141, wherein the data recognition device comprises a
magnetic device, an inductance device, an electrical device, an optical device, or a
mechanical device.

144. The system of claim 141, further comprising an article, the data recognition
device being coupleable to the article.

145. The system of claim 144, wherein the article is a component of a treatment
system for the reusable instrument, a holder for a reusable instrument that is
configured to be removably housed in a treatment chamber for the reusable
instrument, or a docking station for a holder for a reusable instrument that is
configured to be removably housed within a treatment chamber for the reusable
instrument.

146. A system, comprising:

an article, the article being a component of a treatment system for the
reusable instrument, a holder for a reusable instrument that is configured to be
removably housed in a treatment chamber for the reusable instrument, or a docking
station for a holder for a reusable instrument that is configured to be removably
housed within a treatment chamber for the reusable instrument; and

a data recognition device, the data recognition device being integral with the
article, disposed on an exterior of the article, or disposed in an interior of the article,
wherein the data recognition device is configured to read data from the reusable instrument to recognize a serial number of the reusable instrument, a product number of the reusable instrument, a treatment status of the endoscope, or a procedure enablement status of the reusable instrument.

147. The system of claim 146, wherein the recognition device comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

148. The system of claim 146, wherein the data recognition device comprises a bar code reader, a dot code reader, a passive RF receiver, a passive electrical device, a component of a mechanical key system, or a magnetic reader.

149. The system of claim 148, wherein the data recognition device is configured to read the serial number of the endoscope or the product number of the endoscope, and the system further includes a treatment status data recognition device configured to read the treatment status of the endoscope.

150. The system of claim 149, wherein the treatment status data recognition device comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

151. The system of claim 149, further comprising a procedure enablement status data recognition device configured to read the procedure enablement status of the endoscope.

152. The system of claim 151, wherein the procedure enablement status data recognition device comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

153. The system of claim 146, wherein the data recognition device is configured to read the serial number of the endoscope or the product number of the endoscope,
and the system further includes a procedure enablement status data recognition device configured to read the procedure enablement status of the endoscope.

154. The system of claim 153, wherein the procedure enablement status data recognition device comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

155. The system of claim 146, wherein the data recognition device is configured to read the treatment status of the endoscope, and the system further includes a procedure enablement status data recognition device configured to read the procedure enablement status of the endoscope.

156. The system of claim 155, wherein the procedure enablement status data recognition device comprises a magnetic device, an inductance device, an electrical device, an optical device, or a mechanical device.

157. The system of claim 146, further comprising a disabling device coupled to the article, the disabling device being configured to change a procedure enablement status of the endoscope to prevent the endoscope from being used in a procedure.

158. The system of claim 157, wherein the disabling device comprises a device selected from the group consisting of magnetic devices, inductance devices, electrical devices, optical devices, and mechanical devices.

159. The system of claim 157, further comprising a treatment status device coupled to the article, the treatment status device being configured to change a treatment status of the endoscope to indicate that the endoscope has been treated since it was last used in a procedure.

160. The system of claim 159, wherein the treatment status device comprises a device selected from the group consisting of magnetic devices, inductance devices, electrical devices, optical devices, and mechanical devices.
161. The system of claim 146, further comprising a treatment status device coupled to the article, the treatment status device being configured to change a treatment status of the endoscope to indicate that the endoscope has been treated since it was last used in a procedure.

162. The system of claim 161, wherein the treatment status device comprises a device selected from the group consisting of magnetic devices, inductance devices, electrical devices, optical devices, and mechanical devices.

163. A system, comprising:
 an article, the article being a component for a treatment system for the reusable instrument, a holder for a reusable instrument that is configured to be removably housed in a treatment chamber for the reusable instrument, or a docking station for a holder for a reusable instrument that is configured to be removably housed within a treatment chamber for the reusable instrument; and
 a disabling device coupled to the article, the disabling device being configured to change a procedure enablement status of a reusable instrument to prevent the reusable instrument from being used in a procedure.

164. The system of claim 163, wherein the reusable instrument is an endoscope.

165. The system of claim 163, wherein the disabling device comprises a device selected from the group consisting of magnetic devices, inductance devices, electrical devices, optical devices, and mechanical devices.

166. The system of claim 165, further comprising a treatment status device coupled to the article, the treatment status device being configured to change a treatment status of the endoscope to indicate that the endoscope has been treated since it was last used in a procedure.

167. The system of claim 166, wherein the treatment status device comprises a device selected from the group consisting of magnetic devices, inductance devices, electrical devices, optical devices, and mechanical devices.
168. A system, comprising:

an article, the article being a component for a treatment system for the
reusable instrument, a holder for a reusable instrument that is configured to be
removably housed in a treatment chamber for the reusable instrument, or a docking
station for a holder for a reusable instrument that is configured to be removably
housed within a treatment chamber for the reusable instrument; and

a treatment status device coupled to the article, the treatment status device
being configured to change a treatment status of a reusable instrument to indicate
that the reusable instrument has been treated since it was last used in a procedure.

169. The system of claim 168, wherein the reusable instrument is an endoscope.

170. The system of claim 168, wherein the article is a treatment chamber and the
treatment status is the treatment status.

171. The system of claim 170, wherein the treatment status device comprises a
device selected from the group consisting of magnetic devices, inductance devices,
electrical devices, optical devices, and mechanical devices.

172. A method, comprising:

reading data from a reusable instrument to determine the identity of the
reusable instrument.

173. The method of claim 172, wherein the reusable instrument is an endoscope.

174. The method of claim 172, further comprising determining, based on the
identity of the reusable instrument, whether the reusable instrument has been treated
since last used in a procedure.

175. The method of claim 174, wherein determining whether the reusable
instrument has been treated since last used in a procedure includes accessing a
database containing the treatment status of the reusable instrument.
176. The method of claim 172, further comprising preventing the reusable instrument from being used in a procedure based on the identity of the reusable instrument.

177. The method of claim 172, further comprising treating the reusable instrument based on the identity of the reusable instrument.

178. The method of claim 177, further comprising, after treating the reusable instrument, updating recognition data associated with the reusable instrument to indicate that the reusable instrument has been treated since it was last used in a procedure.

179. The method of claim 172, further comprising determining, based on the identity of the reusable instrument, whether to disable the reusable instrument from being used in a procedure.

180. The method of claim 179, wherein determining whether to disable the reusable instrument includes accessing a database containing the procedure enablement status of the reusable instrument.

181. A method, comprising:

reading recognition data from a reusable instrument, the recognition data being a serial number of the reusable instrument, a product number of the reusable instrument, a treatment status of the reusable instrument, a supply status of the reusable instrument, or a procedure enablement status of the reusable instrument.

182. The method of claim 181, wherein the reusable instrument is an endoscope.

183. The method of claim 181, further comprising determining, based on the recognition data, whether the reusable instrument has been treated since last used in a procedure.
184. The method of claim 181, further comprising preventing the reusable instrument from being used in a procedure based on the recognition data.

185. The method of claim 181, further comprising treating the reusable instrument based on the recognition data.

186. The method of claim 181, further comprising preventing the reusable instrument from being used in a procedure based on the recognition data.

187. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

reading data from a reusable instrument to determine the identity of the reusable instrument.

188. The computer program product of claim 187, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

189. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

reading recognition data from a reusable instrument, the recognition data being a serial number of the reusable instrument, a product number of the reusable instrument, a treatment status of the reusable instrument, a supply status of the reusable instrument, or a procedure enablement status of the reusable instrument.

190. The computer program product of claim 189, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.
191. The instrument of claim 112, wherein the reusable instrument is a reusable medical instrument.

192. The system of claim 123, wherein the reusable instrument is a reusable medical instrument.

193. The instrument of claim 128, wherein the reusable instrument is a reusable medical instrument.

194. The system of claim 141, wherein the reusable instrument is a reusable medical instrument.

195. The system of claim 146, wherein the reusable instrument is a reusable medical instrument.

196. The system of claim 163, wherein the reusable instrument is a reusable medical instrument.

197. The system of claim 168, wherein the reusable instrument is a reusable medical instrument.

198. The method of claim 172, wherein the reusable instrument is a reusable medical instrument.

199. The method of claim 181, wherein the reusable instrument is a reusable medical instrument.

200. An endoscopic device, comprising:

 an endoscope body having an interior and an exterior; and

 a communication device, the communication device being integral with the endoscope body, disposed on the exterior of the endoscope body, or disposed in the interior of the endoscope body,
wherein the communication device is a wireless transmitter or a wireless receiver.

201. The endoscopic device of claim 200, wherein the communication device is a wireless transmitter.

202. The endoscopic device of claim 201, wherein the transmitter comprises an RF transmission device.

203. The endoscopic device of claim 202, wherein the RF transmission device is an IEEE 802.11 standard compatible device, or a SIG Bluetooth standard compatible device.

204. The endoscopic device of claim 201, further comprising a device for generating video image data, wherein the wireless transmitter is configured to transmit the video image data.

205. The endoscopic device of claim 201, further comprising a device for generating data corresponding to a position of the endoscopic device, wherein the transmitter is configured to transmit the data corresponding to the position of the endoscopic device.

206. The endoscopic device of claim 200, wherein the communication device is a wireless receiver.

207. The endoscopic device of claim 200, further comprising an indicator configured to provide recognition data for the endoscopic device, the indicator being integral with the endoscope body, disposed on the exterior of the endoscope, or disposed in the interior of the endoscope.

208. The endoscopic device of claim 200, wherein the endoscopic device is untethered.
209. A system, comprising:

an endoscope body having an interior and an exterior; and

a first communication device, the first communication device being integral
with the endoscope body, disposed on the exterior of the endoscope body, or

disposed in the interior of the endoscope body; and

a second communication device,

wherein the first communication device is a wireless transmitter or a wireless
receiver, and the first and second communication devices are configured to
wirelessly transmit data therebetween.

210. The system of claim 209, wherein the first communication device is a
wireless receiver.

211. The system of claim 209, further comprising an article, the second
communication device being coupleable to the article.

212. The system of claim 211, wherein the article comprises a data processor, and
the second communication device is configured to communicate data received from
the transmitter to the data processor.

213. The system of claim 212, wherein the data processor is remote from the
endoscope body.

214. The system of claim 209, further comprising a video monitor coupled to the
data processor so that the video monitor can display a video image corresponding to
data received from the transmitter.

215. A method of communicating, the method comprising:

wirelessly communicating data between an endoscope and an article.

216. The method of claim 215, wherein the article is a communication device
capable of receiving wirelessly transmitted data from the endoscope so that the
endoscope and the article are in wireless communication with each other.
217. The method of claim 215, wherein the endoscope includes a communication device capable of receiving wirelessly transmitted data from the article so that the endoscope and the article are in wireless communication with each other.

218. The method of claim 215, wherein the wirelessly communicated data comprises video image data, or data corresponding to a position of the endoscopic device.

219. The method of claim 218, further comprising analyzing the wirelessly communicated data.

220. The method of claim 218, further comprising manipulating the endoscope based on the wirelessly communicated data.

221. The method of claim 218, further comprising performing a procedure with the endoscope based on the wirelessly communicated data.

222. The method of claim 215, further comprising manipulating the endoscope based on the wirelessly communicated data.

223. The method of claim 215, further comprising performing a procedure with the endoscope based on the wirelessly communicated data.

224. The method of claim 215, wherein the wirelessly communicated data comprises recognition data for the endoscope.

225. The method of claim 224, wherein the recognition data corresponds to an identity of the endoscope.

226. The method of claim 225, further comprising, based on the wirelessly communicated data, preventing use of the endoscope in a procedure.
227. The method of claim 225, further comprising, based on the wirelessly communicated data, treating the endoscope.

228. The method of claim 227, wherein treating the endoscope includes sterilizing the endoscope.

229. The method of claim 227, wherein treating the endoscope includes disinfecting the endoscope.

230. The method of claim 229, further comprising, based on the wirelessly communicated data, using the endoscope in a procedure.

231. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:
wirelessly communicating data between an endoscope and an article.

232. The computer program product of claim 230, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

233. A system, comprising:
a treatment chamber for treating a reusable instrument; and
a cleaning device coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the cleaning device is capable of interacting with an interior channel of the reusable instrument to at least partially clean the interior channel.

234. The system of claim 233, wherein the reusable instrument is an endoscope.

235. The system of claim 233, wherein the treatment chamber is a sterilization chamber or a disinfection chamber.
236. The system of claim 233, wherein the cleaning device is selected from the group consisting of brushes, fluid emission devices, radiation emission devices, a pipe cleaner, a thread, and a rope.

237. The system of claim 233, further comprising a cleaning device controller configured to control a position of the cleaning device within the treatment chamber so that the cleaning device can be moved from a first position in the treatment chamber to a second position in the treatment chamber that is different from the first position, the cleaning device being at least partially disposed within the interior channel of the reusable instrument when in the second position.

238. The system of claim 233, further comprising a second cleaning device coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the second cleaning device interacts with an exterior surface of the reusable instrument to at least partially clean the exterior surface of the reusable instrument.

239. The system of claim 238, further comprising a cleaning device controller configured to control a position of the second cleaning device within the treatment chamber so that the second cleaning device can be moved from a first position in the treatment chamber to a second position in the treatment chamber that is different from the first position, the second cleaning device being adjacent the exterior surface of the reusable instrument when in the second position.

240. The system of claim 238, further comprising a fluid source coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the fluid source can dispose a fluid into the interior channel of the reusable instrument.

241. The system of claim 240, further comprising a fluid source controller configured to control a position of the fluid source within the treatment chamber so that the fluid source can be moved from a first position in the treatment chamber to a
second position in the treatment chamber that is different from the first position, the fluid source being adjacent an opening in the interior channel of the reusable instrument when in the second position.

242. The system of claim 233, further comprising a fluid source coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the fluid source can dispose a fluid into the interior channel of the reusable instrument.

243. The system of claim 242, further comprising a fluid source controller configured to control a position of the fluid source within the treatment chamber so that the fluid source can be moved from a first position in the treatment chamber to a second position in the treatment chamber that is different from the first position, the fluid source being adjacent an opening in the interior channel of the reusable instrument when in the second position.

244. A system, comprising:
 a treatment chamber for treating a reusable instrument;
 a cleaning device coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the cleaning device interacts with an exterior surface of the reusable instrument to at least partially clean the exterior surface of the reusable instrument.

245. The system of claim 244, wherein the reusable instrument is an endoscope.

246. The system of claim 244, wherein the treatment chamber is a sterilization chamber or a disinfection chamber.

247. The system of claim 244, wherein the cleaning device is selected from the group consisting of brushes, fluid emission devices, radiation emission devices, a pipe cleaner, a thread, and a rope.
248. The system of claim 244, further comprising a cleaning device controller configured to control a position of the cleaning device within the treatment chamber so that the cleaning device can be moved from a first position in the treatment chamber to a second position in the treatment chamber that is different from the first position, the cleaning device being adjacent the exterior surface of the reusable instrument when in the second position.

249. The system of claim 244, further comprising a fluid source coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the fluid source can dispose a fluid into an interior channel of the reusable instrument.

250. The system of claim 249, further comprising a fluid source controller configured to control a position of the fluid source within the treatment chamber so that the fluid source can be moved from a first position in the treatment chamber to a second position in the treatment chamber that is different from the first position, the fluid source being adjacent an opening in the interior channel of the reusable instrument when in the second position.

251. A system, comprising:
 a treatment chamber for treating a reusable instrument;
 a fluid source coupled to the treatment chamber so that, when the reusable instrument is disposed in the treatment chamber, the fluid source is adjacent an opening in an interior channel of the reusable instrument so that the fluid source can dispose a fluid into an interior channel of the reusable instrument.

252. The system of claim 251, wherein the reusable instrument is an endoscope.

253. The system of claim 251, wherein the treatment chamber is a sterilization chamber or a disinfection chamber.

254. The system of claim 251, further comprising a fluid source controller configured to control a position of the fluid source within the treatment chamber so
that the fluid source can be moved from a first position in the treatment chamber to a second position in the treatment chamber that is different from the first position, the fluid source being adjacent an opening in the interior channel of the reusable instrument when in the second position.

255. The system of claim 251, wherein the fluid source comprises a fluid emission device.

256. The source of claim 251, wherein the fluid source is in contact with the opening in the reusable instrument.

257. A system, comprising:

a sterilization chamber; and

a first cleaning device coupled to the sterilization chamber so that, when an endoscope is disposed in the sterilization chamber, the first cleaning device is capable of interacting with an interior channel of the endoscope to at least partially clean the interior channel, the first cleaning device being selected from the group consisting of brushes, fluid emission devices, radiation emission devices, pipe cleaners, threads, ropes;

a first cleaning device controller configured to control a position of the first cleaning device within the sterilization chamber so that the first cleaning device can be moved from a first position in the sterilization chamber to a second position in the sterilization chamber that is different from the first position, the first cleaning device being at least partially disposed within the interior channel of the endoscope when in the second position;

a second cleaning device coupled to the sterilization chamber so that, when the endoscope is disposed in the sterilization chamber, the second cleaning device interacts with an exterior surface of the endoscope to at least partially clean the exterior surface of the endoscope, the cleaning device being selected from the group consisting of brushes, fluid emission devices, and radiation emission devices, pipe cleaners, threads, and ropes;

a second cleaning device controller configured to control a position of the second cleaning device within the sterilization chamber so that the second cleaning
device can be moved from a first position in the sterilization chamber to a second position in the sterilization chamber that is different from the first position, the second cleaning device being adjacent the exterior surface of the endoscope when in the second position;

5

a fluid source coupled to the sterilization chamber so that, when the endoscope is disposed in the sterilization chamber, the fluid source can dispose a fluid into the interior channel of the endoscope, the fluid source including a fluid emission device; and

a fluid source controller configured to control a position of the fluid source within the sterilization chamber so that the fluid source can be moved from a first position in the sterilization chamber to a second position in the sterilization chamber that is different from the first position, the fluid source being adjacent an opening in the interior channel of the endoscope when in the second position.

15 258. A method of cleaning an interior channel of a reusable instrument, the method comprising:

disposing the reusable instrument in a treatment chamber; and

at least partially disposing a cleaning device within the interior channel of the reusable instrument to clean the interior channel of the reusable instrument.

20 259. The method of claim 258, wherein the treatment chamber is a sterilization chamber or a disinfection chamber.

260. The method of claim 258, wherein the reusable instrument is an endoscope.

25 261. The method of claim 258, further comprising causing relative motion between the cleaning device and the reusable instrument so that the cleaning device passes into different portions of the interior channel of the reusable instrument.

30 262. The method of claim 261, wherein the interior channel is substantially stationary during cleaning.
263. The method of claim 261, wherein the cleaning device is substantially stationary during cleaning.

264. The method of claim 258, wherein the method includes contacting the cleaning device with the interior surface of the channel of the reusable instrument.

265. The method of claim 258, wherein the method includes contacting the interior channel of the reusable instrument with a cleaning solution emitted by the cleaning device.

266. The method of claim 258, wherein the method includes contacting the interior channel of the reusable instrument with a radiation emitted by the cleaning device.

267. The method of claim 258, further comprising cleaning an exterior surface of the reusable instrument.

268. The method of claim 258, further comprising disposing a fluid into the interior channel of the reusable instrument.

269. The method of claim 258, further comprising treating the reusable instrument.

270. A method of cleaning an exterior surface of a reusable instrument, the method comprising:

 disposing the reusable instrument in a treatment chamber; and
 disposing a cleaning device adjacent an exterior surface of the reusable instrument to remove contaminants from the exterior surface of the reusable instrument.

271. The method of claim 270, wherein the treatment chamber is a sterilization chamber or a disinfection chamber.
272. The method of claim 270, wherein the reusable instrument is an endoscope.

273. The method of claim 270, further comprising causing relative motion between the cleaning device and the reusable instrument so that the cleaning device passes along different regions of the exterior surface of the reusable instrument.

274. The method of claim 273, wherein the exterior surface of the reusable instrument is substantially stationary during cleaning.

275. The method of claim 273, wherein the cleaning device is substantially stationary during cleaning.

276. The method of claim 270, wherein the method includes contacting the cleaning device with the exterior surface of the reusable instrument.

277. The method of claim 270, wherein the method includes contacting the exterior surface of the reusable instrument with a cleaning solution emitted by the cleaning device.

278. The method of claim 270, wherein the method includes contacting the exterior surface of the reusable instrument with radiation emitted by the cleaning device.

279. The method of claim 270, further comprising disposing a fluid into an interior channel of the reusable instrument.

280. The method of claim 270, further comprising treating the reusable instrument.

281. A method of cleaning an interior channel of a reusable instrument, the method comprising:
 disposing the reusable instrument in a treatment chamber; and
disposing a fluid in an interior channel of the reusable instrument to clean the interior channel.

282. The method of claim 281, wherein the treatment chamber is a sterilization chamber or a disinfection chamber.

283. The method of claim 281, wherein the reusable instrument is an endoscope.

284. The method of claim 281, wherein the fluid is selected from the group consisting of cleaning fluids, treating fluids and gases.

285. The method of claim 281, further comprising treating the reusable instrument.

286. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

- disposing the reusable instrument in a treatment chamber; and
- at least partially disposing a cleaning device within the interior channel of the reusable instrument to clean the interior channel of the reusable instrument.

287. The computer program product of claim 286, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

289. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

- disposing the reusable instrument in a treatment chamber; and
disposing a cleaning device adjacent an exterior surface of the
reusable instrument to remove contaminants from the exterior surface of the reusable
instrument.

290. The computer program product of claim 289, wherein the computer readable
medium is selected from the group consisting of a hard disk drive, a random access
memory, and a read-only memory.

291. A computer program product residing on a computer readable medium
having a plurality of instructions stored thereon which, when executed by one or
more processors, cause the one or more processors to:
\hspace{1cm} cause the occurrence of a process, the process including:
\hspace{1cm} disposing a reusable instrument in a treatment chamber; and
\hspace{1cm} disposing a fluid into an interior channel of the reusable instrument to
clean the interior channel.

292. The computer program product of claim 291, wherein the computer readable
medium is selected from the group consisting of a hard disk drive, a random access
memory, and a read-only memory.

293. The system of claim 233, wherein the reusable medical instrument is a
reusable medical instrument.

294. The system of claim 244, wherein the reusable medical instrument is a
reusable medical instrument.

295. The system of claim 251, wherein the reusable medical instrument is a
reusable medical instrument.

296. The method of claim 258, wherein the reusable medical instrument is a
reusable medical instrument.
297. The method of claim 270, wherein the reusable medical instrument is a reusable medical instrument.

298. The method of claim 281, wherein the reusable medical instrument is a reusable medical instrument.

299. An endoscopic device, comprising:
 an endoscope body, including:
 an elongated portion having a proximal end, a distal end, and a longitudinal channel extending from the proximal end to the distal end, the longitudinal channel being sealed at the distal end; and
 a manipulation portion having an interior, the manipulation portion being coupled to the proximal end of the elongated portion; and
 a light source disposed in the interior of the manipulation portion, the light source being in optical communication with the distal end of the elongated portion through the longitudinal channel.

300. The endoscopic device of claim 299, wherein the light source is an incandescent light source, a fluorescent light source, an arc light source, a gas discharge light source, or a solid-state light source.

301. The endoscopic device of claim 299, further comprising a light conductive element housed within the longitudinal channel to provide the optical communication between the light source and the distal end of the elongated portion.

302. The endoscopic device of claim 301, wherein the light conductive element comprises a fiber optic conductor, a light transmissive cylinder, or a liquid-filled tube.

303. The endoscopic device of claim 299, wherein the endoscopic device is devoid of a light source outside the interior of the manipulation portion.
304. The endoscopic device of claim 299, wherein the light source is configured to provide sufficient light to the distal end of the elongated portion to use the endoscopic device in a procedure.

305. The endoscopic device of claim 299, further comprising a transmitter configured to wirelessly transmit data, the transmitter being integral with the endoscope body, disposed on an exterior of the endoscope body, or disposed in an interior of the endoscope body.

306. The endoscopic device of claim 299, further comprising an indicator configured to provide recognition data for the endoscopic device, the indicator being integral with the endoscope body, disposed on the exterior of the endoscope, or disposed in the interior of the endoscope.

307. The endoscopic device of claim 299, further comprising an indicator configured to provide recognition data for the endoscopic device, the indicator being integral with the endoscope body, disposed on an exterior of the endoscope, or disposed in an interior of the endoscope.

308. The endoscopic device of claim 299, wherein the endoscopic device is untethered.

309. An endoscopic device, comprising:

an endoscope body having an interior, an exterior, and an opening capable of allowing fluid communication between the interior and exterior; and

a pressure regulator coupled to the opening in the endoscope body so that the pressure regulator is capable of regulating fluid communication between the interior of the endoscope and the exterior of the endoscope.

310. The endoscopic device of claim 309, wherein the pressure regulator comprises a valve.
311. The endoscopic device of claim 309, wherein the pressure regulator is configured to maintain a pressure differential between the interior of the endoscope and the exterior of the endoscope of at most about five psi.

312. The endoscopic device of claim 309, further comprising a transmitter configured to wirelessly transmit data, the transmitter being integral with the endoscope body, disposed on the exterior of the endoscope body, or disposed in the interior of the endoscope body.

313. The endoscopic device of claim 309, further comprising an indicator configured to provide recognition data for the endoscopic device, the indicator being integral with the endoscope body, disposed on the exterior of the endoscope, or disposed in the interior of the endoscope.

314. The endoscopic device of claim 309, wherein the endoscope body includes a manipulation portion, and the endoscopic device further includes a light source disposed in the interior of the manipulation portion.

315. A system, comprising:

 an endoscope body having an interior, an exterior, and an opening capable of allowing fluid communication between the interior and exterior;
 a pressure regulator coupled to the opening in the endoscope; and
 a gas source coupled to the pressure regulator,

 wherein the pressure regulator and the gas source are configured so that the pressure gas source is capable of regulating fluid communication between the gas source and the interior of the endoscope body, and the gas source is capable of removing gas from the interior of the endoscope body or adding gas to the interior of the endoscope body.

316. The system of claim 315, wherein the pressure regulator comprises a valve.
317. The system of claim 316, further comprising an article, the article being a treatment chamber or a holder for a reusable medical instrument that is configured to be removably housed in a treatment chamber for the reusable medical instrument, wherein the endoscope disposed in the article.

318. The system of claim 317, wherein the pressure regulator is coupled to the article.

319. The system of claim 315, further comprising a controller for controlling a position of the pressure regulator between a first position and a second position, the pressure regulator allowing fluid communication between the gas source and the interior of the endoscope body in the first position, and the pressure regulator preventing fluid communication between the gas source and the interior of the endoscope body in second position.

320. A method of operating an endoscope, the endoscope having a proximal end, a distal end and a longitudinal channel extending from the proximal end to the distal end, the method comprising:
 generating light in the proximal end of the endoscope; and
 transmitting the light generated in the proximal end of the endoscope to the distal end of the endoscope through the longitudinal channel.

321. The method of claim 320, wherein the longitudinal channel houses an optical element, and the light is transmitted through the optical element from the proximal end of the endoscope to the distal end of the endoscope.

322. The method of claim 320, wherein light emitted from the distal end of the endoscope illuminates a region adjacent the distal end of the endoscope.

323. The method of claim 322, further comprising collecting video data from the illuminated region.
324. The method of claim 323, further comprising wirelessly transmitting the
video data from the endoscope.

325. The method of claim 324, further comprising viewing a video signal based
on the video data.

326. The method of claim 325, further comprising manipulating the endoscope
based on the video signal.

327. The method of claim 325, further comprising performing a procedure with
the endoscope based on the video signal.

328. A method of sterilizing an endoscope having an interior, an exterior, and a
distal end, the method comprising:
 sterilizing a portion of the interior of the endoscope while maintaining a
 pressure differential between the interior of the endoscope and the exterior of the
 endoscope of at most about five psi,
 wherein the portion of the interior of the endoscope is sealed at the distal end
 of the endoscope.

329. The method of claim 328, wherein the endoscope includes an elongated
portion having an interior channel, the elongated portion being configured to be
inserted in a subject during use of the endoscope in a medical procedure, and the
method includes sterilizing the interior channel of the elongated portion of the
endoscope.

330. The method of claim 328, further comprising, prior to sterilizing:
 reducing a pressure on the exterior of the endoscope; and
 obtaining a pressure differential between the interior of the endoscope and
the exterior of the endoscope of at most about five psi.

331. The method of claim 328, further comprising, prior to sterilizing:
 increasing a pressure on the exterior of the endoscope; and
obtaining a pressure differential between the interior of the endoscope and the exterior of the endoscope of at most about five psi.

332. The method of claim 328, wherein the pressure differential is maintained using a pressure regulator coupled to endoscope.

333. The method of claim 328, further comprising determining the pressure differential between the interior of the endoscope and the exterior of the endoscope, and regulating a pressure in the interior of the endoscope based on the pressure differential.

334. A method, comprising:

determining a pressure differential between the interior of the endoscope and the exterior of the endoscope while the endoscope is disposed in a treatment chamber; and

regulating a pressure in the interior of the endoscope based on the pressure differential while the endoscope is disposed in the treatment chamber.

335. The method of claim 334, wherein the pressure in the interior of the endoscope is increased if the pressure in the interior of the endoscope is more than a predetermined value below the a pressure on the exterior of the endoscope.

336. The method of claim 334, wherein the pressure in the interior of the endoscope is decreased if the pressure in the interior of the endoscope is more than a predetermined value above than a pressure on the exterior of the endoscope.

337. The method of claim 334, wherein the pressure is regulated while evacuating the treatment chamber.

338. The method of claim 334, wherein the pressure is regulated while pressurizing the treatment chamber.
339. The method of claim 334, wherein the pressure is regulated while sterilizing the endoscope.

340. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

transmitting light from a proximal end of an endoscope to a distal end of the endoscope through a longitudinal channel.

341. The computer program product of claim 340, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

342. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

sterilizing at least a portion of an interior of an endoscope while maintaining a pressure differential between the interior of the endoscope and an exterior of the endoscope of at most about five psi.

343. The computer program product of claim 342, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.

344. A computer program product residing on a computer readable medium having a plurality of instructions stored thereon which, when executed by one or more processors, cause the one or more processors to:

cause the occurrence of a process, the process including:

determining a pressure differential between the interior of an endoscope and the exterior of the endoscope while the endoscope is disposed in a treatment chamber; and
regulating a pressure in the interior of the endoscope based on the pressure differential while the endoscope is disposed in the treatment chamber.

345. The computer program product of claim 344, wherein the computer readable medium is selected from the group consisting of a hard disk drive, a random access memory, and a read-only memory.