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(57) ABSTRACT 
The present invention relates to digital signal processors 
with an integrated module configured to compute a Coor 
dinate Rotation Digital Computer (CORDIC) in a pipeline. 
The pipelined module can advantageously complete com 
putation of one CORDIC computation for each clock pulse 
applied to the CORDIC module, thereby providing a 
CORDIC computation for each clock pulse. One embodi 
ment advantageously computes a first portion of a compu 
tation with a lookup table and a second portion in accor 
dance with a CORDIC algorithm. Advantageously, data in a 
CORDIC pipeline is automatically advanced in response to 
read instructions and can be automatically advanced from 
the beginning of the pipeline to the end of the pipeline to 
reinitialize the pipeline. This allows information to be 
retrieved from the CORDIC pipeline with relatively little 
overhead The automatic starting and stopping of the 
CORDIC pipeline advantageously allows the retrieval of 
computations from efficient pipeline architectures on an 
as-needed basis. 
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HARDWARE FUNCTION GENERATOR SUPPORT 
IN A DSP 

RELATED APPLICATION 

0001) This application claims the benefit under 35 U.S.C. 
S119(e) of U.S. Provisional Application No. 60/231,280, 
filed Sep. 8, 2000, the entirety of which is hereby incorpo 
rated by reference. 

BACKGROUND OF THE INVENTION 

0002) 1. Field of the Invention 
0003. The present invention generally relates to digital 
signal processing. In particular, the present invention relates 
to a Coordinate Rotation Digital Computer (CORDIC) in a 
digital signal processor (DSP). 
0004 2. Description of the Related Art 
0005) A Coordinate Rotation Digital Computer 
(CORDIC) algorithm performs vector coordinate rotations 
by using simple iterative shifts and add/subtract operations, 
which are relatively easy to implement in hardware. Advan 
tages of the CORDIC algorithm have been well documented 
by U.S. Pat. No. 4,896.287 to O'Donnell, et al., U.S. Pat. No. 
4.937,775 to Engeler, et al., and U.S. Pat. No. 5.684,435 to 
Bergen, the entireties of which are hereby incorporated by 
reference. 

0006. The CORDIC algorithm can be used in function 
generators. Function generators are an integral part of many 
DSP algorithms. Digital communication and signal process 
ing systems use representations of sine, cosine, tangent and 
hyperbolic functions to perform fundamental operations 
Such as coherent detection, rectangular to polar conversions, 
decoding of Quadrant Amplitude Modulation (QAM) and 
M-ARY modulated signals, and the like. In addition, the 
CORDIC algorithm can be used in Direct Digital Synthesis 
(DDS) of frequencies. 
0007 One conventional technique to generate trigono 
metric functions is via a lookup table stored in a Read Only 
Memory (ROM). Disadvantageously, the amount of data 
that is stored in a ROM lookup table can quickly surpass 
practical size and cost limitations. The storage area of a 
ROM chip increases almost exponentially with increases in 
resolution. By contrast, where a ROM lookup table is 
relatively small and inexpensive, the number of available 
functions and the resolution of the data available are limited. 

0008 Another conventional technique is to compute 
trigonometric functions through polynomial Software rou 
tines executed in a digital signal processor (DSP). Disad 
vantageously, typical software implementations of function 
generation are relatively slow. Typical software routines use 
iterative techniques, and take relatively time consuming 
multiple cycles to generate a trigonometric function. 
0009 Function generation can be performed by a 
CORDIC. However, many conventional implementations of 
a CORDIC iterate numerous times to perform a calculation 
for function generation. Thus, a microprocessor or DSP 
reading the output of the CORDIC waits until computation 
is complete. Where a conventional CORDIC is pipelined, 
execution can be faster, but conventional pipelined 
CORDICs have relatively little integration with other hard 
ware. Disadvantageously, other hardware, Such as micro 
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processors and DSPs, closely monitor or control conven 
tional pipelined CORDICs or store the results of the 
conventional pipelined CORDIC in relatively large and 
expensive memory devices. 

SUMMARY OF THE INVENTION 

00.10 Embodiments of the invention quickly and effi 
ciently process the CORDIC algorithm in a pipeline. Advan 
tageously, data in the CORDIC pipeline is automatically 
advanced in response to read instructions and can be auto 
matically advanced from the beginning of the pipeline to the 
end of the pipeline to reinitialize the pipeline. This allows a 
controller or a digital signal processor (DSP) to efficiently 
retrieve information from the CORDIC pipeline with rela 
tively little overhead. The automatic starting and stopping of 
the CORDIC pipeline advantageously allows the retrieval of 
computations from efficient pipeline architectures on an 
as-needed basis and advantageously avoids having to store 
relatively large amounts of computations from a pipeline in 
memory. 

0011. One embodiment of the present invention includes 
a design of a modified CORDIC Function Generator that can 
be used in a DSP core. The modified CORDIC Function 
Generator is pipelined to provide a new output on every 
clock edge. A relatively small initial latency allows the 
modified CORDIC Function Generator time to process new 
data through the pipeline. 

0012. In one embodiment, an architecture for an Execu 
tion Block, which can be implemented in the DSP core, 
advantageously uses the CORDIC Function Generator to 
reduce both chip area and DSP idle cycles. An example of 
a Radix-2 butterfly illustrates how this CORDIC Function 
Generator improves the implementation of such DSP algo 
rithms. 

0013. One embodiment according to the invention 
includes a method of computing correlation in a digital 
signal processor (DSP). The method includes receiving 
receiver data in quadrature, digitally generating a sine wave 
and a cosine wave with a pipelined Coordinate Rotation 
Digital Computer (CORDIC), and multiplying the receiver 
data by the first portion of the sine wave and the first portion 
of the cosine wave in a Multiplier Accumulator (MAC) 
block to determine an amount of correlation. In one embodi 
ment, the sine wave and the cosine wave generated by the 
CORDIC algorithm are of substantially constant magnitude. 
0014) Another embodiment according to the invention is 
a method of digitally generating a sine wave and a cosine 
wave. The method includes (a) receiving an angle J incre 
ment value, where the angle increment value is related to a 
change in an angle by which the sine wave and the cosine 
wave change during a time increment, (b) computing a new 
angle value by combining the angle increment value with an 
existing angle value, (c) calculating a sine and a cosine of the 
new angle value to compute a value of a step of the sine 
wave and a value of a step of the cosine wave, respectively, 
(d) maintaining the computed values of the steps of the sine 
wave and of the cosine wave such that the values are ready 
to be read upon receipt of a read instruction, (e) performing 
the following when a read instruction has been received, 
(e)(i) providing the computed values of the steps of the sine 
wave and of the cosine wave in response to a receipt of the 
read instruction, (e)(ii) storing the new angle value as the 
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existing angle value, (e)(iii) computing another value for the 
new angle value by combining the angle increment value 
with the existing angle value, (f) inhibiting further compu 
tations of values of other steps of the sine wave and of the 
cosine wave when a read instruction has not been received, 
and (g) repeating steps (b), (c), (d), (e), and (f). 
00.15 One embodiment of the invention includes a 
method of generating a digital sine wave and a digital cosine 
wave in a digital signal processor (DSP). The method 
includes computing a portion of the sine wave and a portion 
of the cosine wave by looking up points in a lookup table, 
and computing a remaining portion of the sine wave and the 
cosine wave in accordance with a pipelined CORDIC. 
0016 One embodiment of the invention includes a 
method of providing an intermittent clock signal to a pipe 
lined process. The intermittent clock signal automatically 
advances and stops advancing computations in the pipelined 
process in accordance with the rate at which data is retrieved 
from the pipelined process. The method includes receiving 
a system clock signal and generating clock pulses of the 
intermittent clock signal from the system clock signal for a 
predetermined period after decoding of a first instruction 
received in a DSP. The first instruction can correspond to a 
start instruction. The method further includes inhibiting 
clock pulses of the intermittent clock signal after termination 
of the predetermined period and providing a clock pulse of 
the intermittent clock signal from the system clock signal in 
response to a decoding of a second instruction. The second 
instruction can be a read instruction. In one embodiment, the 
predetermined period is the latency of a pipeline from 
beginning to end. 
0017. One embodiment according to the invention 
includes a method of generating a function in a digital signal 
processor (DSP). The method includes receiving a first 
instruction, Such as a start instruction, which initiates a 
computation according to a Coordinate Rotation Digital 
Computer (CORDIC) algorithm. The method computes the 
CORDIC algorithm in a pipeline and automatically discon 
tinues further computations of the CORDIC algorithm in the 
pipeline when a computed output is ready. The method 
provides the computed output of the CORDIC algorithm in 
response to a second instruction Such as a read instruction. 
0018. One embodiment of the invention is a process of 
controlling a pipelined circuit with a read instruction. The 
process includes receiving a plurality of instructions and 
detecting the occurrence of the read instruction. In response 
to the detection of the read instruction, the process advances 
computations through one stage or segment of the pipelined 
circuit and generates an output of the pipelined circuit. 
0019. One embodiment of the invention is a process that 
includes detecting a start instruction, which loads the begin 
ning of the pipelined circuit and automatically sequences the 
stages of the pipelined circuit until new data is ready to be 
read at the output. Where the received instruction does not 
correspond to the read instruction or to S the start instruc 
tion, one embodiment of the invention pauses the pipelined 
circuit One embodiment of the invention includes a DSP that 
includes a CORDIC unit, a register file, and at least one of 
a Multiplier Accumulator (MAC), an Arithmetic Logic Unit 
(ALU), and a Shifter. The CORDIC computes steps of sine 
waves and cosine waves. The register file provides argu 
ments to the CORDIC unit and the at least one of the MAC, 
the ALU, and the Shifter. 
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0020. One embodiment of the invention is a CORDIC 
that includes a plurality of computation stages arranged in a 
pipeline, a reset unit, an output circuit, and a timing circuit. 
The reset unit is adapted to receive a reset instruction and to 
reset the plurality of computation stages in response to the 
reset instruction. The output circuit is adapted to provide a 
computation from the plurality of computation stages in the 
pipeline in response to read computation instruction. The 
timing circuit is adapted to advance calculations through the 
pipeline in response to a start instruction. The timing circuit 
is further configured to automatically discontinue advancing 
the calculations through the pipeline when a calculation has 
progressed to an end of the pipeline, and the timing circuit 
is further configured to generate another computation in 
response to the read CORDIC instruction. 
0021 One embodiment according to the invention 
includes a control circuit for a pipelined CORDIC. The 
control circuit can also be used to control other pipelined 
circuits. The control circuit includes a reset circuit, a first 
sequencing unit, and a second sequencing unit. The reset 
circuit is adapted to reset at least a portion of the pipelined 
stages of the pipelined CORDIC. The first sequencing unit 
is adapted to automatically enable clock pulses to the 
pipelined CORDIC such that a new calculation can progress 
from a beginning of the pipelined CORDIC to an end of the 
pipelined CORDIC. The first sequencing unit is also con 
figured to automatically disable the automatic application of 
clock pulses to the pipelined CORDIC when the computa 
tion is available at the end of the pipelined CORDIC. The 
second sequencing unit is adapted to provide a clock pulse 
to the pipelined CORDIC to advance a calculation from one 
stage to another, where the second sequencing unit is con 
figured to provide the clock pulse in response to an instruc 
tion to read an output of the pipelined CORDIC. 

BRIEF DESCRIPTION OF THE DRAWING 

0022. These and other features of the invention will now 
be described with reference to the drawings summarized 
below. These drawings and the associated description are 
provided to illustrate preferred embodiments of the inven 
tion, and are not intended to limit the scope of the invention. 
0023 FIG. 1 illustrates an execution block according to 
an embodiment of the invention. 

0024 FIG. 2 illustrates a pipelined sine?cosine genera 
tion unit according to an embodiment of the invention. 
0025 FIG. 3 illustrates a process of quadrature modula 
tion/demodulation with the pipelined sine(cosine according 
to an embodiment of the invention. 

0026 FIG. 4 illustrates a process of pipeline control 
according to an embodiment of the invention. 
0027 FIG. 5 illustrates a pipeline control circuit accord 
ing to an embodiment of the invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0028. Although this invention is described in terms of 
certain preferred embodiments, other embodiments that are 
apparent to those of ordinary skill in the art, including 
embodiments which do not provide all of the benefits and 
features set forth herein, are also within the scope of this 
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invention. Accordingly, the scope of the present invention is 
defined only by reference to the appended claims. 

0029. One use of a Coordinate Rotation Digital Computer 
(CORDIC) algorithm is to generate functions such as trigo 
nometric, logarithmic, hyperbolic and linear functions. 
Another use of the CORDIC algorithm is to convert between 
Polar and Cartesian coordinates. The CORDIC algorithm 
performs vector coordinate rotations using simple iterative 
shifts and add/subtract operations. The general (Givens) 
rotation transform expressed in Equations 1A and 1B rotates 
a vector by an angle (p. 

3'-x cos (p-y sin (p 

y'=y cos (p+x sin (p. Eqs. 1A and 1B 

0030 The transform can be rearranged as shown in 
Equations 2A and 2B. 

0031. The rotation angle s can be selected such that 
tan(p)=t2', i.e., powers of two, which can be implemented 
by shift operations. An overall rotation angle can be reached 
by applying successively smaller rotations. At each iteration, 
i, the direction of rotation is decided. This further simplifies 
Equations 2A and 2B to Equations 3A and 3B. 

xi = k, x, -y;2 oil Eqs. 3A and 3B 

where: 

1 
k = 

1 + 2-2 

O; e - 1, 1} 

0032 Since, k, is a constant multiplier that affects mag 
nitude, k, can be pre-calculated and easily compensated. 
Equation 4 illustrates the accumulation in the rotation angles 
at each iteration. 

z-zi-o, tan(2) Eq. 4 

0033) Conventionally, the values of tan' (2) are stored 
in a relatively small Read Only Memory (ROM) lookup 
table (LUT). The CORDIC algorithm can be applied in 
rotation mode or in vectoring mode. The rotation mode 
rotates the input vector by the angle specified through Zo. 
Successive iterations rotate in the direction to attempt to 
reduce this angle Z. Therefore, the direction to rotate is 
dependent on Z, and is expressed as Equation 5. 

0034. The vectoring mode rotates the input vector 
through an angle such that the resulting vector lies on the 
X-axis. Successive iterations rotate in the direction to reduce 
the y-component, y. Therefore, the direction to rotate is 
dependent on y, and is expressed as Equation 6. 
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0035. The initial values of the system variables, X, yo. 
and Zo determine the function computed. Examples of uses 
for the vectoring mode include Cartesian to Polar conver 
Sion, calculation of arctangents, and calculation of vector 
magnitude. 

0036 Generally, if the CORDIC algorithm can compute 
a function, the inverse of the function can also be computed 
The CORDIC equations can be modified to introduce a 
coordinate system factor, m. The coordinate systems are 
hyperbolic (m=1), linear (m=0) and circular (m=-1). These 
extensions allow the CORDIC algorithm to compute linear 
and hyperbolic functions. 

0037. One implementation of the CORDIC algorithm 
uses comparators for each stage to determine the direction of 
rotation A modified CORDIC algorithm for Direct Digital 
Frequency Synthesis (DDFS) or DDS simplifies a CORDIC 
computation by determining the d ion of rotation directly 
from the bits r representing the angle (p, as shown in 
Equation 7. 

1 bit= Eq. 7 
-1 bit = 0 

0038) The modified CORDIC algorithm uses (p=2 
instead of (p=tan' (2) as sub-angles. This modifies the 
standard CORDIC equations to the equations expressed in 
Equations 8A-D. 

Eqs. 8A, 8B, 8C, and 8D 

xi = kix; +y; ...) 1 it - 
y; 1 = kily; + x; tan(2) 

0039 Table 1 illustrates that the values of tan(2) and 2 
are similar for values of i>(WordLength/3). The similarity 
can simplify the hardware to relatively simple hardwired 
shifts for values of i>(WordLength/3). In one embodiment, 
the first (WordLength/3) stages are merged together and 
implemented with ROM. 

TABLE 1. 

i 2-i tan2. 2 (20-bit hex) tan2 (20-bit hex) 

1 O.SOOO OS463 Ox4OOOO Ox45ED4 
2 O.2SOO O.2533 Ox2OOOO Ox2OAFO 
3 O.12SO 0.1257 Ox1OOOO Ox1O157 
4 O.0625 O.O629 Ox08OOO OxO8O2A 
5 O.O312 O.O313 OXO4(OOO Ox04OOS 
6 O.O156 O.O156 OxO2OOO OxO2OOO 
7 O.OO78 O.OO78 OXO1 OOO OxO1OOO 
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TABLE 1-continued 

i 2-i tan2. 2 (20-bit hex) tan2 (20-bit hex) 
8 O.OO39 O.OO39 Ox008OO OxOO800 
9 O.OO2O O.OO2O Ox00400 Ox00400 

0040 FIG. 1 illustrates an Execution Block 100 of a DSP 
with a CORDIC Assist 104 according to an embodiment of 
the invention. The CORDIC Assist 104 is pipelined such that 
a function generated output, Such as a sine?cosine output, is 
available at every clock style of the CORDIC Assist 104. 
The Execution Block 100 further includes an Instruction 
Decoder 102 and a Local Register File 112. The Execution 
Block 100 can further include other DSP functional units 
typical of a DSP such as a Multiplier Accumulator (MAC) 
106, an Arithmetic Logic Unit (AU) 108, and a Shifter 110. 
In the illustrated embodiment, the CORDIC Assist 104 
shares the Local Register File 112 and the Instruction 
Decoder 102 with the other DSP functional units. 

0041. In one embodiment, the core of the DSP has a 
scalable and configurable architecture, which allows the 
designer to plug-in a variety of functional units without 
changing the external interfaces of the block with the rest of 
the core. The Instruction Decoder 102 can be centralized or 
distributed. In one embodiment, the Instruction Decoder102 
is distributed, and a program sequencer of the core dis 
patches instructions to multiple execution blocks. The dis 
patched instructions are then decoded by the distributed 
instruction decoders of the specific blocks. 
0042. In one embodiment, a function generation process, 
Such as sine?cosine generation, is initiated early. In one 
embodiment, the function generation process is initiated 
early by approximately the amount of time equal to the 
initial latency of the pipelined process, such that an output 
of the function generation process is available in response to 
a read instruction. 

0043. In one embodiment, the Execution Block 100 can 
execute two instructions per cycle. Thus, the Execution 
Block 100 includes multiple read ports available from the 
Local Register File 112. However, it will be understood by 
one of ordinary skill in the art that other embodiments of the 
Execution Block 100 according to the invention can execute 
a wide variety of instructions per cycle, and can even include 
multiple cycles per instruction. 

0044) In one embodiment, the CORDIC Assist 104 
responds to at least two specific instructions. These instruc 
tions are a startCORDIC instruction and a readCORDIC 
instruction. In one embodiment, the startCORDIC instruc 
tion passes two parameters to the CORDIC Assist 104. 
These parameters are an initial phase angle and an increment 
value. 

0045. After initial latency cycles, which vary depending 
on the number of stages or segments of the pipeline, the 
result of the first computation progresses through the stages 
or segments of the pipelined CORDIC Assist 104 and to the 
output of the CORDIC Assist 104. In one embodiment, the 
result of the CORDIC computation is not automatically 
written to a register file in the Local Register File 112. 
Rather, the computed result is retained until an explicit read 
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instruction, e.g., a readCORDIC instruction, is applied to the 
CORDIC Assist 104, which then transfers the computed 
result to a register in the Local Register File 112. The 
following sequence of instructions further illustrates how to 
use the CORDIC Assist 104. 

0046) in: startCORDIC (R1,R2) 
0047) 
0048) 
0049) 
0050 
0051) 

0052. In the sample instructions shown above, an initial 
angle is specified in R1, and the increment in angle is 
specified in R2. In the illustrated embodiment, the sine and 
the cosine values of initial angle are ready in cycle n+5 and 
are available to be read in cycle n+5 or a later cycle, i.e., the 
number of latency cycles is 5. In the illustrated embodiment, 
the sine and the cosine of the next value (R1+R2) are 
immediately available to be read in the next cycle after the 
readCORDIC instruction is applied. Another sample 
sequence of instructions is provided below: 

0053 n+6: readCORDIC (R4); sin/cos (R1+R2) 
0054 n+7: readCORDIC (R6); sin/cos (R1+2*R2) 
0.055 n+8: <instre 
0056) 

n+1: <instre, <instr> 
n+2: <instre, <instr> 
n+3: <instre, <instr> 
n+4: <instre, <instr> 
n+5: readCORDIC(R4) 

n+9: <instre 

0057 n+10: readCORDIC (R4); sin/cos (R1+3*R2) 
0.058. In one embodiment, the CORDIC Assist 104 also 
Supports a register-interlocking mechanism, which stalls the 
pipeline if the user, DSP controller, and the like, issues the 
first readCORDIC instruction before the end of the initial 
latency cycles. In one embodiment, if a startCORDIC 
instruction is issued after a subsequent startCORDIC 
instruction, then the second instruction result is received at 
the output. 
0059) The CORDIC Assist 104 can further be configured 
to respond to a resetCORDIC instruction. In one embodi 
ment, the resetCORDIC instruction initializes the stages or 
segments in the CORDIC Assist 104 that are computed such 
as CORDIC stages, but does not reset a stage where data is 
merely retrieved, as in a ROM lookup table. 
0060 FIG. 2 illustrates a pipelined sine?cosine genera 
tion unit 200 according to an embodiment of the invention. 
The architecture of the illustrated pipelined sine/cosine 
generation unit 200 advantageously incorporates the instruc 
tion based control of the CORDIC Assist 104 described 
earlier in connection with FIG. 1. 

0061 The pipelined sine?cosine generation unit 200 
includes an accumulator 202, a 1/4 multiplier 220, an Output 
Select unit 222, a first quadrant L/4 mirror 224, a Read Only 
Memory (ROM) Lookup Table (LUT) 226, and a multi 
stage butterfly pipeline 228. 
0062) The accumulator 202 generates the angle value for 
which the remaining portions of the pipelined sine?cosine 
generation unit 200 compute the sine function and cosine 
function. In the illustrated embodiment, the accumulator 202 
includes a multiplexer 204, a data register 206, and an adder 
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208. An initial angle 210, i.e., the stating angle, is provided 
as an input to the multiplexer 204. When the pipelined 
sine?cosine generation unit 200 begins to process the sine 
function and the cosine function of the initial angle 210, the 
multiplexer 204 is configured to select the initial angle 210 
and to pass the initial angle 210 as an input to the data 
register 206, which latches the state of the initial angle 210. 
In one embodiment, the initial angle 210 is loaded into the 
data register 206 through a data bus 230. An output 214 of 
the data register 206, which contains the angle that enters the 
first stage of the computational stages, is provided as an 
input to the JL/4 multiplier 220, the Output Select unit 222, 
and the first quadrant L/4 mirror 224. 
0063. The output 214 of the data register 206 is also 
provided as an input to the adder 208. The adder 208 forms 
part of a feedback path that increments the angle output of 
the data register 206. The adder 208 sums the output 214 of 
the data register 206 with a frequency control word 212. In 
one embodiment, the frequency control word 212 is stored 
in a register that is loaded through the data bus 230, and the 
frequency control word from the register is provided as an 
input to the adder 208. The value of the frequency control 
word determines an amount of increment to the angle, i.e., 
determines the step size of the angle. The adder 208 sums the 
frequency control word 212 with the output 214 of the data 
register 206, and provides the sum as an input to the 
multiplexer 204. 
0064. The multiplexer 204 is configured to select the 
summed output of the adder 208 when the accumulator 202 
is stepping the angle. The output of the multiplexer 204 is 
provided as an input to the data register 206. When the data 
register 206 is triggered or re-latched, the data register 
latches the output of the multiplexer 204, and the output 214 
of the data register has incremented by the amount of the 
frequency control word. The output 214 of the data register 
206 is again applied to the adder 208, thereby allowing the 
accumulator 202 to continue to increment the angle provided 
by the output 214 of the data register 206. 
0065 Due to the symmetry of sine and cosine waves, the 
cosines and sines of an entire 360-degree range need not be 
computed. Rather, a more limited range. Such as 45 degrees 
or 90 degrees, can be computed, and the computed sines and 
cosines can be inverted and/or Swapped to rotate the com 
puted result by, for example, a multiple of 90 degrees. In one 
embodiment, the output 214 of the data register 206 con 
taining the angle is provided with 20 bits of precision. In one 
embodiment, the two most significant bits of the output 214 
of the data register 206 are provided as inputs to the Output 
Select unit 222. The two most significant bits indicate the 
quadrant of the angle. The Output Select unit 222 inverts and 
swaps the output of the multi-stage butterfly pipeline 228 to 
rotate the cosine and sine computations of the multi-stage 
butterfly pipeline 228 to their original quadrant. 
0.066 The output 214 of the accumulator 202 is a nor 
malized angle (p which is converted to an actual radian value 
(pO, L/4). In one embodiment, the output 214 of the accu 
mulator 202 is provided as an input to the hardwired JL/4 
multiplier 220, which converts the normalized angle (p to 
radians. In one embodiment, the hardwired JL/4 multiplier 
220 generates five partial products to achieve more than 16 
bits of precision. 
0067. In the illustrated embodiment, an output of the 
hardwired JL/4 multiplier 220 is provided as an input to the 
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first Quadrant L/4 mirror 224. In one embodiment, the first 
Quadrant L/4 mirror 224 is a subtractor that replaces the 
angle (p as 0. It? 4 by JL/2-1 whenever the original phase 
accumulation angle 0, i.e., the output of the third TL/4 
multiplier 220, is in the upper half of the first quadrant. In 
one embodiment, a third most significant bit of the output 
214 of the data register 206, which is illustrated in FIG. 2 
by a one-bit wide signal from the data register 206 to the first 
Quadrant L/4 mirror 224, indicates whether the rotated angle 
is in the upper half or the lower half of the first quadrant. 
0068 To achieve 16 bits of output precision, one embodi 
ment of the pipelined sine/cosine generation unit 200 
includes 16 butterfly stages. In the illustrated embodiment, 
the pipelined sine/cosine generation unit 200 substitutes the 
first four stages of the pipeline with a Read Only Memory 
(ROM) Lookup Table (LUT) 226 and implements the next 
twelve pipelined Stages by cascading 12 butterfly stages in 
the multi-stage butterfly pipeline 228. In one embodiment, 
the ROM LUT 226 includes 16 words of data. Table II 
illustrates one example of the contents of the ROM LUT 
226. 

TABLE II 

X y 

32745 1027 
32617 3069 
323.63 5099 
31983 7109 
31473 9095 
3O845 11041 
30096 12946 
29230 14798 
28245 16599 
27155 18329 
25957 19990 
24659 21570 
23261 23071 
21777 24477 
2O2OS 25789 
18557 26999 

0069. The outputs of the multi-stage butterfly pipeline 
228 is provided as an input to the Output Select unit 222. 
After the Output Select unit 222 rotates the outputs of the 
multi-stage butterfly pipeline 228 as dictated by indication 
of the original quadrant of the angle that is provided by the 
most significant bits of the output 214 of the data register 
206. 

0070 The sample code, below, is written in an assembly 
language for a DSP core. The “I to the left of a line of code 
indicates an instruction that can execute in parallel with the 
prior instruction. The sample code illustrates how the pipe 
lined sine?cosine generation unit 200 can simplify and 
accelerate an operation, such as a computation of a Fast 
Fourier Transform (FFT), in a DSP. The following sample 
code corresponds to a 16-point FFT implemented by a 
radix-2 butterfly. 

if initial setup phase 
N = 16; 
k = 0; 
Ns = Nas1: 
arO = dk 
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-continued 

| ar1 = dk+Ns: 
ar2 = store buffer address: 
StartCORDIC(r10,r11): 

for Ns repeat 
{ 

rOI = *arO 
| r2I = *ar1; 

0071 FIG. 3 illustrates a process 300 of quadrature 
modulation/demodulation with a pipelined sine?cosine gen 
eratoraccording to an embodiment of the invention. In a first 
step 310, the process receives data from an input sequence. 
In one embodiment, the data is from a receiver. The data can 
be initially stored in a memory device and received by the 
process later in non real time. The process advances from the 
first step 310 to a second step 320. 
0072. In the second step 320, the process generates 
values for a step of a cosine wave and a step of a sine wave. 
In one embodiment, the process computes the values of the 
cosine wave and the sine wave by computing the cosine 
function and the sine function in a pipelined CORDIC 
function generator. Advantageously, a pipelined CORDIC 
Function Generator can generate steps of the cosine wave 
and the sine wave with relatively little latency and without 
having to generate or store a relatively large lookup table. In 
one embodiment, the pipelined CORDIC automatically 
starts and stops as described earlier in connection with FIG. 
2. The process advances from the second step 320 to a third 
step 330. 
0073. In the third step 330, the process multiplies the 
cosine wave and sine wave outputs of the pipelined 
CORDIC Function Generator with the received data to 
generate in-phase (cosine) or the quadrature-phase (sine) 
modulated or demodulated products. 
0074 FIG. 4 illustrates a process 400 of pipeline control 
according to an embodiment of the invention. The process 
advantageously controls a pipelined process, such as a 
pipelined CORDIC, such that the pipelined process can be 
easily integrated with a controller, digital signal processor, 
and the like. The illustrated process starts at a receive 
instruction step 401. In the receive instruction step 401, the 
process receives an Instruction related to the control of the 
pipelined process. For example, a microprocessor, micro 
controller, digital signal processor, and the like can access 
the pipelined process by issuing instructions to the pipeline 
control process. The process advances from the receive 
instruction step 401 to a reset decision block 402. 
0075. In the reset decision block 402, the process deter 
mines whether the received instruction corresponds to a 
command to reset the CORDIC. Where the received instruc 
tion is a reset instruction, such as a resetCORDIC instruc 
tion, the reset decision block 402 proceeds to a reset step 
404. Where the command is other than the reset instruction, 
the reset decision block 402 proceeds to a start decision 
block 406. 
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0076. In the reset step 404, the process resets those 
circuits in the pipelined process that are calculated. In one 
embodiment, where the pipelined process is a CORDIC, the 
reset step 404 resets all the CORDIC stages or butterfly 
stages. In another embodiment, where the pipelined process 
is a combination of a lookup table stage and of CORDIC 
stages, the reset step 404 resets the CORDIC stages or 
butterfly stages but does not reset the lookup table stage. The 
process returns from the reset step 404 to the start of the 
process. 

0077. In the start decision block 406, the process deter 
mines whether the received instruction corresponds to a start 
instruction for the pipeline. Typically, a start instruction is 
applied to a pipelined process when the starting data has 
changed. One example of an appropriate time to issue a start 
instruction is where the pipelined process synthesizes a 
frequency, and the synthesized frequency has changed by 
updating an amount of an angle increment When the 
received instruction is a start instruction, such as a start 
CORDIC instruction, the process proceeds from the start 
decision block 406 to a first advance pipeline step 408. 
When the received instruction is other than the start instruc 
tion, the process proceeds from the start decision block 406 
to a read decision block 412. 

0078. In the first advance pipeline step 408, the process 
advances data from one stage or segment of the pipelined 
process to another. For example, a stage or segment can 
advance data in response to a rising or a falling edge of a 
clock signal. In one embodiment, the process controls the 
pulsing of the clock signal used to enable sequencing 
through the pipelined process. It will be understood by one 
of ordinary skill in the art that a variety of techniques can be 
used to control sequencing through the pipelined process, 
including for example, providing an enable signal as an 
input to the stages or segments of the pipelined process. The 
process advances from the first advance pipeline step 408 to 
a computation available decision block 410. 

0079. In the computation available decision block 410. 
the process determines whether the new computation is 
available at the end of the pipelined process. That is, the 
process determines whether data has advanced far enough in 
the pipelined process to have progressed from the beginning 
stage or segment to the last stage or segment, i.e., whether 
the initial latency of the pipelined process has concluded. In 
one embodiment, the process counts the number of activa 
tions of the pipeline sequencing and compares the count to 
a known count of the number of stages or segments to 
determine whether the new computation is available at the 
end of the pipelined process. When the new computation is 
available, the process returns from the computation avail 
able decision block 410 to the start of the process, and awaits 
the next instruction. When the new computation is not yet 
available, the process returns from the computation avail 
able decision block 410 to the first advance pipeline step 408 
to continue to advance data through the pipelined process. 

0080. In the read decision block 412, the process deter 
mines whether the received instruction corresponds to a 
command to read data from the pipelined process. When the 
received instruction is a read instruction, the process pro 
ceeds from the read decision block 412 to an output com 
putation step 414. When the received instruction is other 
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than the read instruction, Such as a “no operation' instruc 
tion, the process returns from the read decision block 412 to 
the start of the process. 
0081. In the output computation step 414, the process 
enables an output of the pipelined process. For example, 
when the final data is stored in an output register, the process 
can enable a tri-stateable gate to couple the contents of the 
output register on a data bus, where the contents are read by 
a controller, DSP, MAC, and the like. The process advances 
from the output computation step 414 to a second advance 
pipeline step 416. 
0082 In the second advance pipeline step 416, the pro 
cess advances the pipelined process by a single stage or 
segment, i.e., data moves from one segment to the next 
segment. In one embodiment, the process advances data in 
the second advance pipeline step 416 by providing a single 
clock pulse to the pipelined stages or segments. 
0083. The illustrated process repeats indefinitely. The 
skilled practitioner will appreciate that the reset decision 
block 402, the start decision block 406, and the read decision 
block 412 can appear in the process in any order. 
0084 FIG. 5 illustrates a pipeline control circuit 500 
according to an embodiment of the invention. The illustrated 
pipeline control circuit 500 includes an instruction decoder 
502 and a pipeline control unit 504. The pipeline control 
circuit 500 controls the resetting and the progressing of data 
through the segments of a pipelined circuit, such as a 
pipelined CORDIC 550. It will be understood by one of 
ordinary skill in the art that the pipeline control circuit 500 
can control a wide variety of pipelined circuits and that the 
pipelined CORDIC 550 shown in FIG.5 is illustrative of but 
one example. Other examples of pipelined circuits include 
divider circuits, relatively high-precision multiplier circuits 
Such as 64x64, relatively high-precision adder circuits, 
floating point units, and the like. 
0085. The instruction decoder 502 receives instructions 
506 from a microprocessor, digital signal processor, state 
machine, and the like. It will be understood by one of 
ordinary skill in the art that the instruction decoder 502 can 
be a part of a larger instruction decoder for a larger circuit 
such as the Execution Block 100 described earlier in con 
nection with FIG. 1. The illustrated instruction decoder 502 
generates a reset signal 510, a read signal 512, and a start 
signal 514 in response to the instructions 506. In one 
embodiment, the instruction decoder 502 further includes a 
select input driven by, for example, an address decoder, that 
activates the instruction decoder 502. 

0.086 The reset signal 510 is provided as an input to the 
pipelined circuit, which is shown in FIG. 5 as the pipelined 
CORDIC 550. The pipelined CORDIC 550 includes mul 
tiple stages or segments. In some pipelined circuits, not all 
of the segments of the pipeline need to be reset. For the 
purposes of example, the pipelined CORDIC 550 includes a 
Lookup Table (LUT) circuit 552 as a first stage, a first 
CORDIC stage 554 as a second stage, a second CORDIC 
stage 556 as a third stage, and a third CORDIC stage 558 as 
a fourth stage. In the pipelined CORDIC 550 shown in FIG. 
5, the reset signal 510 is applied as an input to the first 
CORDIC stage 554, the second CORDIC stage 556, and the 
third CORDIC stage 558, but not to the LUT circuit 552. 
0087. The read signal 512 and the start signal 514 are 
provided as inputs to the pipeline control unit 504. A clock 
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signal 508 is also provided as an input to the pipeline control 
unit 504. In response to an activation of the read signal 512, 
the pipeline control unit 504 activates the pipelined circuit 
so that data passes from one pipeline stage to another, Such 
as from the first CORDIC stage 554 to the second CORDIC 
stage 556. In one embodiment, the pipeline control unit 504 
activates one pulse of a pipeline clock signal 516 in response 
to the activation of the read signal 512. The pulse of the 
pipeline clock signal 516 is applied as an input to the stages 
of the pipelined circuit, which are activated in response to 
the pulse. A flip flop circuit can be used to generate a single 
pulse on the pipeline clock signal 516 in response to the 
activation of the read signal 512. In one embodiment, the 
pipeline control circuit 500 includes a wait state generator 
that instructs the controller, DSP MAC, and like devices that 
reads the output of the pipelined circuit to temporarily wait 
until the data has propagated through the pipeline and is 
available to be read. 

0088. The pipeline control unit 504 generates a series of 
pulses in response to an activation of the start signal 514. 
The pipeline control unit 504 generates at least enough 
pulses on the pipeline clock signal 516 in response to the 
activation of the start signal 514 Such that data can sequence 
through each stage of the pipelined circuit and a computa 
tion is available to be read at an output 560. In one 
embodiment, the pipeline control unit 504 generates the 
same number of pulses on the pipeline clock signal 516 as 
the number of stages in the pipelined circuit. 
0089. A variety of techniques can be used to generate the 
series of pulses by the pipeline control unit 504. For 
example, one embodiment of the pipeline control unit 504 
includes a counter to track the number of pulses that are 
applied by the pipeline clock signal 516. The counter can be 
reset in response to the start signal 514, and the counter can 
increment to a predetermined count. While the counter is 
counting, the pipeline control unit 504 provides clock pulses 
over the pipeline clock signal 516 by, for example, coupling 
the clock signal 508 to the pipeline clock signal 516. 
0090. In another embodiment, a counter is preloaded in 
response to the start signal 514 and decrements down to Zero 
to track the number of pulses that are applied by the pipeline 
clock signal 516. While the counter decrementing, the 
pipeline control unit 504 couples the clock signal 508 to the 
pipeline clock signal 516 to generate the series of pulses. 
When the counter counts down to Zero, the counter is 
disabled and the pulsing of the pipeline clock signal 516 
stops. 

0091. In another embodiment, the stages of the pipelined 
circuit receive a continuous 5 clock signal Such as the clock 
signal 508, and the pipeline control unit 504 generates 
control signals that selectively enable and disable the stages 
of the pipelined circuit by controlling an enable input in the 
registers of the pipelined circuit. 
0092. The pipelined circuits and the pipeline control 
circuits disclosed herein can be fabricated in a broad variety 
of ways. In one embodiment, the circuits are integrated into 
dedicated hardware such as a custom application specific 
integrated circuit (ASIC), a field programmable gate array 
(FPGA), a programmable logic device (PLD), and the like. 
In one embodiment, the pipelined circuits, the pipeline 
control circuits, or both are integrated with a digital signal 
processor (DSP) core. 
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0093 Various embodiments of the present invention have 
been described above. Although this invention has been 
described with reference to these specific embodiments, the 
descriptions are intended to be illustrative of the invention 
and are not intended to be limiting. Various modifications 
and applications may occur to those skilled in the art without 
departing from the true spirit and scope of the invention as 
defined in the appended claims. 

What is claimed is: 
1. A method of computing correlation in a digital signal 

processor (DSP), the method comprising: 
receiving receiver data in quadrature; 
relieving at least a first portion of a sine wave and at least 

a first portion of a cosine wave by reference to a lookup 
table; 

digitally generating a second portion of the sine wave and 
a second portion of the cosine wave in multiple stages 
of a pipelined Coordinate Rotation Digital Computer 
(CORDIC), where the generated sine wave and the 
generated cosine wave are of Substantially constant 
magnitude; and 

multiplying the receiver data by the sine wave and by the 
cosine wave in a Multiplier Accumulator (MAC) block 
to determine an amount of correlation. 

2. The method as defined in claim 1, wherein the 
CORDIC corresponds to a Modified CORDIC. 

3. A method of digitally generating a sine wave and a 
cosine wave in a plurality of digital steps, the method 
comprising: 

(a) receiving an angle increment value, where the angle 
increment value is related to a change in an angle by 
which the sine wave and the cosine wave change in a 
step; 

(b) computing a new angle value by combining the angle 
increment value with an existing angle value; 

(c) calculating a sine and a cosine of the new angle value 
to compute a value of a step of the sine wave and a 
value of a step of the cosine wave, respectively; 

(d) maintaining the computed values of the steps of the 
sine wave and of the cosine wave such that the values 
are ready to be read upon receipt of a read instruction; 

(e) performing the following when a read instruction has 
been received: 

(i) providing the computed values of the steps of the 
sine wave and of the cosine wave in response to a 
receipt of the read instruction; 

(ii) storing the new angle value as the existing angle 
value; and 

(iii) computing another value for the new angle value 
by combining the angle increment value with the 
existing angle value; and 

(f) inhibiting further computations of values of other steps 
of the sine wave and of the cosine wave when a read 
instruction has not been received. 

4. The method as defined in claim 3, further comprising 
repeating (b), (c), (d), (e), and (f). 
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5. The method as defined in claim 3, wherein the calcu 
lating the sine and the cosine of the new angle value further 
comprises: 

phase shifting the new angle value to a phase shifted angle 
value, where the phase shifted angle value conforms to 
a 90-degree range; 

Swapping a sine computation and a cosine computation 
when the phase shifted angle value is in a first 45-de 
gree portion of the 90-degree range and mirroring the 
phase angle around 45 degrees; 

not swapping the sine computation and the cosine com 
putation when the phase shifted angle value is in the 
other 45-degree portion of the 90-degree range; 

computing a portion of the sine wave and the cosine wave 
of the phase shifted angle value by applying the phase 
shifted angle value as an input to a lookup table; 

applying an output of the lookup table as an input to a 
pipelined CORDIC; and 

compensating the output of the pipelined Coordinate 
Rotation Digital Computer (CORDIC) in accordance 
with an amount of phase shift applied to the phase 
shifted angle value to generate the sine and the cosine 
of the new angle value. 

6. The method as defined in claim 5, wherein the pipelined 
CORDIC conforms to a modified CORDIC. 

7. The method as defined in claim 5, further comprising: 
receiving an initial angle value and an indication to start 

a computation of the sine wave and the cosine wave; 
using the initial angle value as the existing angle value; 
automatically advancing computations in the pipelined 
CORDIC to compute the new angle value until the sine 
and the cosine of the initial angle is available at an 
output; and 

automatically stopping the sequencing of the pipelined 
CORDIC and the computing of the new angle value 
until a read instruction has been received. 

8. The method as defined in claim 7, wherein receiving the 
initial angle as the existing angle value further comprises 
combining the initial angle with the angle increment value, 
and applying the combination of the initial angle value with 
the angle increment value as the existing angle value. 

9. The method as defined in claim 3, further comprising 
receiving an initial angle value for the sine wave and the 
cosine wave. 

10. A method of generating a digital sine wave and a 
digital cosine wave in a digital signal processor (DSP), the 
method comprising: 

storing a plurality of coarse data points in a lookup table; 
receiving an angle value; 
applying a first portion of the angle value as an input to 

the lookup table and retrieving a coarse data point; and 
applying a second portion of the angle value and applying 

the retrieved coarse data point as an input to a Coor 
dinate Rotation Digital Computer (CORDIC). 

11. The method as defined in claim 10, wherein the lookup 
table stores data within for angle value within about a 
45-degree range and further comprising: 
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converting the angle value to a modified value within a 
quadrant by applying a phase shift that is an integer 
multiple of 45 degrees, where such integer multiple 
includes 0, 1, 2, 3, 4, 5, 6, and 7: 

applying a first portion and a second portion of the 
modified value to the lookup table and the CORDIC, 
respectively, to produce a sine output and a cosine 
output; and 

compensating for the conversion of the angle value by 
Selectively phase-shifting and by selectively Swapping 
the sine and the cosine outputs of the CORDIC. 

12. The method as defined in claim 11, wherein the 
compensating further comprises: 

using the cosine output as the cosine output and using the 
sine output as the sine output when the CORDIC 
calculates an angle within a first 45 degree portion of a 
quadrant; and 

Swapping the cosine output and the sine output such that 
the cosine output is the sine output and the sine output 
is the cosine output when the CORDIC calculates an 
angle within the other 45 degree portion of the quad 
rant. 

13. A method of providing an intermittent clock signal 
comprising: 

receiving a system clock signal; 
generating clock pulses of the intermittent clock signal 

from the system clock signal for a predetermined 
period after decoding of a first instruction received in a 
DSP; 

inhibiting clock pulses of the intermittent clock signal 
after termination of the predetermined period; and 

providing a clock pulse of the intermittent clock signal 
from the system clock signal in response to a decoding 
of a second instruction. 

14. The method as defined in claim 13, where the prede 
termined period corresponds to an initial latency of a pipe 
lined CORDIC for a new computation to progress from a 
being of the pipelined CORDIC to an end of the pipelined 
CORDIC. 

15. The method as defined in claim 13, wherein the 
predetermined period corresponds to a predetermined count 
of cycles of the system clock signal, and where the prede 
termined count of cycles corresponds to a number of latency 
cycles that it takes for a new computation to progress 
through a computational pipeline. 

16. The method as defined in claim 13, wherein the first 
instruction comprises a start instruction, and where the 
second instruction comprises a read instruction. 

17. The method as defined in claim 13, further compris 
1ng: 

triggering an increment of a count by applying the inter 
mittent clock signal to a counter; 

using the count to indicate an angle; and 
computing at least one trigonometric function of the 

angle. 
18. The method as defined in claim 17, wherein the at 

least one trigonometric function includes computation of a 
sine and a cosine of the angle. 
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19. A method of generating a function in a digital signal 
processor (DSP), the method comprising: 

receiving a first instruction, where the first instruction 
initiates a computation according to a Coordinate Rota 
tion Digital Computer (CORDIC) algorithm; 

computing the CORDIC algorithm in a pipeline; 
automatically discontinuing further computations of the 
CORDIC algorithm in the pipeline when a computed 
output is ready; and 

providing the computed output of the CORDIC algorithm 
in response to a second instruction. 

20. The method as defined in claim 19, wherein the 
CORDIC algorithm is computed in at least a first stage and 
a second stage, where the computation of the first stage is 
implemented by a lookup table, and where the second stage 
is implemented with a butterfly stage. 

21. The method as defined in claim 19, wherein the 
CORDIC algorithm comprises a Modified CORDIC algo 
rithm. 

22. The method as defined in claim 19, further compris 
1ng: 

predicting a desired time when a computation of the 
CORDIC algorithm is desired; and 

initiating the computation of the CORDIC algorithm 
before the desired time such that the computation is 
completed by the desired time. 

23. The method as defined in claim 19, wherein the 
CORDIC algorithm is initiated before the desired time by an 
amount of time Substantially equal to an initial latency 
period of the computation. 

24. A process of controlling a pipelined circuit with a read 
instruction comprising: 

receiving a plurality of instructions; 
determining when a received instruction corresponds to 

the read instruction; 
pausing sequencing of the pipelined circuit until the read 

instruction is detected; and 
sequencing the pipelined circuit Such that data progresses 

through one segment of the pipeline in response to 
receiving the read instruction; and 

generating an output of the pipelined circuit in response to 
receiving the read instruction. 

25. The process as defined in claim 24, wherein the 
pipelined circuit comprises a Coordinate Rotation Digital 
Computer (CORDIC). 

26. The process as defined in claim 24, further compris 
1ng: 

determining when the received instruction corresponds to 
a start instruction, where the start instruction further 
includes a first argument that provides an initial angle 
and a second argument that provides an amount of an 
increment; 

loading an angle generation stage of the pipelined circuit; 
automatically advancing the data through the pipelined 

circuit until data is available to be read at the output of 
the pipeline; and 
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pausing sequencing of the pipelined circuit until detection 
of an instruction selected from the group consisting of 
a read instruction and a write instruction. 

27. The process as defined in claim 26, wherein at least 
one of the first argument and the second argument is 
provided as a content in a register. 

28. A process of controlling a pipelined circuit with a start 
instruction comprising: 

receiving a plurality of instructions; 
pausing sequencing of the pipelined circuit until the start 

instruction is detected; and 
determining when a received instruction corresponds to 

the start instruction, where the start instruction includes 
a first argument that provides an initial angle and a 
second argument that provides an amount of an incre 
ment; and 

automatically advancing stages of the pipelined circuit 
until data based on the initial angle is available to be 
read at the output of the pipelined circuit. 

29. The process as defined in Cain 28, wherein at least one 
of the first argument and the second argument is provided as 
a content in a register. 

30. A digital signal processor (DSP) comprising: 
a Coordinate Rotation Digital Computer (CORDIC) unit 

configured to compute steps of a sine wave and a cosine 
wave of a constant magnitude and a selectable fre 
quency, where the frequency is selected by configura 
tion of a step size of a change in an angle between 
computed steps; 

at least one of a Multiplier Accumulator (MAC), an 
arithmetic logic unit (ALU), and a Shifter, and 

a register file to provide arguments to the CORDIC unit 
and the at least one of the MAC, the ALU, and the 
Shifter. 

31. The DSP as defined in claim 30, wherein the CORDIC 
unit further comprises: 

a lookup table adapted to store a plurality of intermediate 
values of sines and cosines of Substantially evenly 
spaced angles, where the lookup table is configured to 
receive a first portion of an angle value to address the 
plurality of intermediate values and to select an inter 
mediate value as an output at least partially in response 
to the first portion of the angle value; 

a pipelined CORDIC adapted to receive a second portion 
of the angle value and the output of the lookup table as 
inputs, where the pipelined CORDIC is configured to 
generate a sine step and a cosine step of the second 
portion of the angle value; 

an inhibit counter adapted to provide a first state of an 
inhibit signal upon reaching a predetermined count, 
where the inhibit counter is reset to a second state upon 
a reloading of the CORDIC, and where the predeter 
mined count is related to a latency in the pipelined 
CORDIC; and 

an angle generator adapted to incrementally step among a 
plurality of angles, where an output of the angle gen 
erator circuit is the angle value, where the angle gen 
erator is configured to increment in response to a 
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condition selected from the group consisting of a read 
instruction and the second state of the inhibit signal. 

32. The DSP as defined in claim 31, wherein the lookup 
table contains intermediate values of sines and cosines for 
16 angle values Substantially evenly spaced over approxi 
mately a 45-degree range. 

33. The DSP as defined in claim 31, firer comprising an 
Output Select circuit configured to selectively invert and to 
selectively Swap the sine step and the cosine step outputs of 
the pipelined CORDIC in response to an indication of a 
quadrant of the corresponding angle value from the angle 
generator. 

34. The DSP as defined in claim 31, further comprising a 
wait state generator configured to provide a wait state in 
response to a receipt of a read instruction and the second 
state of the inhibit signal. 

35. A Coordinate Rotation Digital Computer (CORDIC) 
comprising: 

a plurality of computation stages arranged in a pipeline; 
a reset unit adapted to receive a reset instruction and to 

reset the plurality of computation stages in response to 
the reset instruction; 

an output circuit adapted to provide a computation from 
the plurality of computation stages in the pipeline in 
response to read computation instruction; and 

a timing circuit adapted to advance calculations through 
the pipeline in response to a start instruction, where the 
timing circuit automatically discontinues advancing the 
calculations through the pipeline when a calculation 
has progressed to an end of the pipeline, where the 
timing circuit is further configured sequence the pipe 
line to generate another computation in response to the 
read CORDIC instruction. 

36. The CORDIC as defined in claim 35, wherein the 
plurality of computation stages includes a read only memory 
(ROM) lookup table. 

37. A control circuit for a pipelined Coordinate Rotation 
Digital Computer (CORDIC) comprising: 

a reset circuit adapted to reset at least a portion of the 
pipelined stages of the pipelined CORDIC; 

a first sequencing unit adapted to automatically enable 
clock pulses to the pipelined CORDIC such that a new 
calculation can progress from a beginning of the pipe 
lined CORDIC to an end of the pipelined CORDIC and 
to automatically disable the automatic application of 
clock pulses to the pipelined CORDIC when the com 
putation is available at the end of the pipelined 
CORDIC; and 

a second sequencing unit adapted to provide a clock pulse 
to the pipelined CORDIC to advance a calculation from 
one stage to another, where the second sequencing unit 
is configured to provide the clock pulse in response to 
an instruction to read an output of the pipelined 
CORDIC. 

38. The control circuit as defined in claim 37, wherein the 
reset circuit does not reset a ROM lookup table. 

39. The control circuit as defined in claim 37, wherein the 
first sequencing unit comprises a counter that can be reset in 
response to a detection of a start instruction, where the first 
sequencing unit enables clock pulses when a count main 
tained by the counter is in a first range of counts, and where 
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the first sequencing unit disables the automatic application pipelined stages of the pipelined CORDIC determines the 
of clock pulses when the count maintained by the counter is count at which the control circuit enables and disables the 
in a second range of counts. automatic application of clock pulses to the pipelined 

40. The control circuit as defined in claim 39, where the CORDIC. 
counter is incremented in response to an advancing of data 
from one pipelined stage to another, and the number of k . . . . 


