
(19) United States
US 20060282489A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0282489 A1
Khan et al.

(54) HARDWARE FUNCTION GENERATOR
SUPPORT IN A DSP

(76) Inventors: Shoab A. Khan, Rawalpindi (PK);
Rehan Hameed, Rancho Santa
Margarita, CA (US); Hassan Farooq,
Rancho Santa Margarita, CA (US)

Correspondence Address:
PATENTMETRIX
14252 CULVER OR BOX 914
IRVINE, CA 92604 (US)

(21) Appl. No.: 11/390.988

(22) Filed: Mar. 27, 2006

Related U.S. Application Data

(63) Continuation of application No. 09/951,764, filed on
Sep. 10, 2001, now Pat. No. 7,031,992.

(60) Provisional application No. 60/231,280, filed on Sep.
8, 2000.

27 N
NTAL 274

FREQUENCY-22 ONTRO-1

- als 3-4-5.E."

(43) Pub. Date: Dec. 14, 2006

Publication Classification

(51) Int. Cl.
G06F 7/5 (2006.01)

(52) U.S. Cl. .. 708/422
(57) ABSTRACT
The present invention relates to digital signal processors
with an integrated module configured to compute a Coor
dinate Rotation Digital Computer (CORDIC) in a pipeline.
The pipelined module can advantageously complete com
putation of one CORDIC computation for each clock pulse
applied to the CORDIC module, thereby providing a
CORDIC computation for each clock pulse. One embodi
ment advantageously computes a first portion of a compu
tation with a lookup table and a second portion in accor
dance with a CORDIC algorithm. Advantageously, data in a
CORDIC pipeline is automatically advanced in response to
read instructions and can be automatically advanced from
the beginning of the pipeline to the end of the pipeline to
reinitialize the pipeline. This allows information to be
retrieved from the CORDIC pipeline with relatively little
overhead The automatic starting and stopping of the
CORDIC pipeline advantageously allows the retrieval of
computations from efficient pipeline architectures on an
as-needed basis.

1/4 MIRROR

DATA BUS

Patent Application Publication Dec. 14, 2006 Sheet 1 of 5 US 2006/0282489 A1

772

f04
-

SHIFTER CORDC

Of f77 1 ?e?? -
NSTRUCTION DECODER

EXECUTON BLOCK f02

48

AG 7

Patent Application Publication Dec. 14, 2006 Sheet 3 of 5 US 2006/0282489 A1

RECEIVE INPUT
SEQUENCE

USE CORDC TO GENERATE
COSNE WAVE AND SINE

WAVE STEP

MULTIPLY

322

A62 3

Patent Application Publication Dec. 14, 2006 Sheet 4 of 5 US 2006/0282489 A1

START

427

RECEIVE
NSTRUCTION

442

RESET
INSTRUCTION

2
RESET

PIPELINED
STAGES

162

START
INSTRUCTION

?

ADVANCE
PIPELINE

COMPUTATION
AVAILABLE

2

172

READ
INSTRUCTION

474

OUTPUT
COMPUTATION

ADVANCE
PIPELINE

A762. 4

US 2006/0282489 A1 Patent Application Publication Dec. 14, 2006 Sheets of 5

XOOTO ENITEc}{d}

2,767

US 2006/0282489 A1

HARDWARE FUNCTION GENERATOR SUPPORT
IN A DSP

RELATED APPLICATION

0001) This application claims the benefit under 35 U.S.C.
S119(e) of U.S. Provisional Application No. 60/231,280,
filed Sep. 8, 2000, the entirety of which is hereby incorpo
rated by reference.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. The present invention generally relates to digital
signal processing. In particular, the present invention relates
to a Coordinate Rotation Digital Computer (CORDIC) in a
digital signal processor (DSP).
0004 2. Description of the Related Art
0005) A Coordinate Rotation Digital Computer
(CORDIC) algorithm performs vector coordinate rotations
by using simple iterative shifts and add/subtract operations,
which are relatively easy to implement in hardware. Advan
tages of the CORDIC algorithm have been well documented
by U.S. Pat. No. 4,896.287 to O'Donnell, et al., U.S. Pat. No.
4.937,775 to Engeler, et al., and U.S. Pat. No. 5.684,435 to
Bergen, the entireties of which are hereby incorporated by
reference.

0006. The CORDIC algorithm can be used in function
generators. Function generators are an integral part of many
DSP algorithms. Digital communication and signal process
ing systems use representations of sine, cosine, tangent and
hyperbolic functions to perform fundamental operations
Such as coherent detection, rectangular to polar conversions,
decoding of Quadrant Amplitude Modulation (QAM) and
M-ARY modulated signals, and the like. In addition, the
CORDIC algorithm can be used in Direct Digital Synthesis
(DDS) of frequencies.
0007 One conventional technique to generate trigono
metric functions is via a lookup table stored in a Read Only
Memory (ROM). Disadvantageously, the amount of data
that is stored in a ROM lookup table can quickly surpass
practical size and cost limitations. The storage area of a
ROM chip increases almost exponentially with increases in
resolution. By contrast, where a ROM lookup table is
relatively small and inexpensive, the number of available
functions and the resolution of the data available are limited.

0008 Another conventional technique is to compute
trigonometric functions through polynomial Software rou
tines executed in a digital signal processor (DSP). Disad
vantageously, typical software implementations of function
generation are relatively slow. Typical software routines use
iterative techniques, and take relatively time consuming
multiple cycles to generate a trigonometric function.
0009 Function generation can be performed by a
CORDIC. However, many conventional implementations of
a CORDIC iterate numerous times to perform a calculation
for function generation. Thus, a microprocessor or DSP
reading the output of the CORDIC waits until computation
is complete. Where a conventional CORDIC is pipelined,
execution can be faster, but conventional pipelined
CORDICs have relatively little integration with other hard
ware. Disadvantageously, other hardware, Such as micro

Dec. 14, 2006

processors and DSPs, closely monitor or control conven
tional pipelined CORDICs or store the results of the
conventional pipelined CORDIC in relatively large and
expensive memory devices.

SUMMARY OF THE INVENTION

00.10 Embodiments of the invention quickly and effi
ciently process the CORDIC algorithm in a pipeline. Advan
tageously, data in the CORDIC pipeline is automatically
advanced in response to read instructions and can be auto
matically advanced from the beginning of the pipeline to the
end of the pipeline to reinitialize the pipeline. This allows a
controller or a digital signal processor (DSP) to efficiently
retrieve information from the CORDIC pipeline with rela
tively little overhead. The automatic starting and stopping of
the CORDIC pipeline advantageously allows the retrieval of
computations from efficient pipeline architectures on an
as-needed basis and advantageously avoids having to store
relatively large amounts of computations from a pipeline in
memory.

0011. One embodiment of the present invention includes
a design of a modified CORDIC Function Generator that can
be used in a DSP core. The modified CORDIC Function
Generator is pipelined to provide a new output on every
clock edge. A relatively small initial latency allows the
modified CORDIC Function Generator time to process new
data through the pipeline.

0012. In one embodiment, an architecture for an Execu
tion Block, which can be implemented in the DSP core,
advantageously uses the CORDIC Function Generator to
reduce both chip area and DSP idle cycles. An example of
a Radix-2 butterfly illustrates how this CORDIC Function
Generator improves the implementation of such DSP algo
rithms.

0013. One embodiment according to the invention
includes a method of computing correlation in a digital
signal processor (DSP). The method includes receiving
receiver data in quadrature, digitally generating a sine wave
and a cosine wave with a pipelined Coordinate Rotation
Digital Computer (CORDIC), and multiplying the receiver
data by the first portion of the sine wave and the first portion
of the cosine wave in a Multiplier Accumulator (MAC)
block to determine an amount of correlation. In one embodi
ment, the sine wave and the cosine wave generated by the
CORDIC algorithm are of substantially constant magnitude.
0014) Another embodiment according to the invention is
a method of digitally generating a sine wave and a cosine
wave. The method includes (a) receiving an angle J incre
ment value, where the angle increment value is related to a
change in an angle by which the sine wave and the cosine
wave change during a time increment, (b) computing a new
angle value by combining the angle increment value with an
existing angle value, (c) calculating a sine and a cosine of the
new angle value to compute a value of a step of the sine
wave and a value of a step of the cosine wave, respectively,
(d) maintaining the computed values of the steps of the sine
wave and of the cosine wave such that the values are ready
to be read upon receipt of a read instruction, (e) performing
the following when a read instruction has been received,
(e)(i) providing the computed values of the steps of the sine
wave and of the cosine wave in response to a receipt of the
read instruction, (e)(ii) storing the new angle value as the

US 2006/0282489 A1

existing angle value, (e)(iii) computing another value for the
new angle value by combining the angle increment value
with the existing angle value, (f) inhibiting further compu
tations of values of other steps of the sine wave and of the
cosine wave when a read instruction has not been received,
and (g) repeating steps (b), (c), (d), (e), and (f).
00.15 One embodiment of the invention includes a
method of generating a digital sine wave and a digital cosine
wave in a digital signal processor (DSP). The method
includes computing a portion of the sine wave and a portion
of the cosine wave by looking up points in a lookup table,
and computing a remaining portion of the sine wave and the
cosine wave in accordance with a pipelined CORDIC.
0016 One embodiment of the invention includes a
method of providing an intermittent clock signal to a pipe
lined process. The intermittent clock signal automatically
advances and stops advancing computations in the pipelined
process in accordance with the rate at which data is retrieved
from the pipelined process. The method includes receiving
a system clock signal and generating clock pulses of the
intermittent clock signal from the system clock signal for a
predetermined period after decoding of a first instruction
received in a DSP. The first instruction can correspond to a
start instruction. The method further includes inhibiting
clock pulses of the intermittent clock signal after termination
of the predetermined period and providing a clock pulse of
the intermittent clock signal from the system clock signal in
response to a decoding of a second instruction. The second
instruction can be a read instruction. In one embodiment, the
predetermined period is the latency of a pipeline from
beginning to end.
0017. One embodiment according to the invention
includes a method of generating a function in a digital signal
processor (DSP). The method includes receiving a first
instruction, Such as a start instruction, which initiates a
computation according to a Coordinate Rotation Digital
Computer (CORDIC) algorithm. The method computes the
CORDIC algorithm in a pipeline and automatically discon
tinues further computations of the CORDIC algorithm in the
pipeline when a computed output is ready. The method
provides the computed output of the CORDIC algorithm in
response to a second instruction Such as a read instruction.
0018. One embodiment of the invention is a process of
controlling a pipelined circuit with a read instruction. The
process includes receiving a plurality of instructions and
detecting the occurrence of the read instruction. In response
to the detection of the read instruction, the process advances
computations through one stage or segment of the pipelined
circuit and generates an output of the pipelined circuit.
0019. One embodiment of the invention is a process that
includes detecting a start instruction, which loads the begin
ning of the pipelined circuit and automatically sequences the
stages of the pipelined circuit until new data is ready to be
read at the output. Where the received instruction does not
correspond to the read instruction or to S the start instruc
tion, one embodiment of the invention pauses the pipelined
circuit One embodiment of the invention includes a DSP that
includes a CORDIC unit, a register file, and at least one of
a Multiplier Accumulator (MAC), an Arithmetic Logic Unit
(ALU), and a Shifter. The CORDIC computes steps of sine
waves and cosine waves. The register file provides argu
ments to the CORDIC unit and the at least one of the MAC,
the ALU, and the Shifter.

Dec. 14, 2006

0020. One embodiment of the invention is a CORDIC
that includes a plurality of computation stages arranged in a
pipeline, a reset unit, an output circuit, and a timing circuit.
The reset unit is adapted to receive a reset instruction and to
reset the plurality of computation stages in response to the
reset instruction. The output circuit is adapted to provide a
computation from the plurality of computation stages in the
pipeline in response to read computation instruction. The
timing circuit is adapted to advance calculations through the
pipeline in response to a start instruction. The timing circuit
is further configured to automatically discontinue advancing
the calculations through the pipeline when a calculation has
progressed to an end of the pipeline, and the timing circuit
is further configured to generate another computation in
response to the read CORDIC instruction.
0021 One embodiment according to the invention
includes a control circuit for a pipelined CORDIC. The
control circuit can also be used to control other pipelined
circuits. The control circuit includes a reset circuit, a first
sequencing unit, and a second sequencing unit. The reset
circuit is adapted to reset at least a portion of the pipelined
stages of the pipelined CORDIC. The first sequencing unit
is adapted to automatically enable clock pulses to the
pipelined CORDIC such that a new calculation can progress
from a beginning of the pipelined CORDIC to an end of the
pipelined CORDIC. The first sequencing unit is also con
figured to automatically disable the automatic application of
clock pulses to the pipelined CORDIC when the computa
tion is available at the end of the pipelined CORDIC. The
second sequencing unit is adapted to provide a clock pulse
to the pipelined CORDIC to advance a calculation from one
stage to another, where the second sequencing unit is con
figured to provide the clock pulse in response to an instruc
tion to read an output of the pipelined CORDIC.

BRIEF DESCRIPTION OF THE DRAWING

0022. These and other features of the invention will now
be described with reference to the drawings summarized
below. These drawings and the associated description are
provided to illustrate preferred embodiments of the inven
tion, and are not intended to limit the scope of the invention.
0023 FIG. 1 illustrates an execution block according to
an embodiment of the invention.

0024 FIG. 2 illustrates a pipelined sine?cosine genera
tion unit according to an embodiment of the invention.
0025 FIG. 3 illustrates a process of quadrature modula
tion/demodulation with the pipelined sine(cosine according
to an embodiment of the invention.

0026 FIG. 4 illustrates a process of pipeline control
according to an embodiment of the invention.
0027 FIG. 5 illustrates a pipeline control circuit accord
ing to an embodiment of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0028. Although this invention is described in terms of
certain preferred embodiments, other embodiments that are
apparent to those of ordinary skill in the art, including
embodiments which do not provide all of the benefits and
features set forth herein, are also within the scope of this

US 2006/0282489 A1

invention. Accordingly, the scope of the present invention is
defined only by reference to the appended claims.

0029. One use of a Coordinate Rotation Digital Computer
(CORDIC) algorithm is to generate functions such as trigo
nometric, logarithmic, hyperbolic and linear functions.
Another use of the CORDIC algorithm is to convert between
Polar and Cartesian coordinates. The CORDIC algorithm
performs vector coordinate rotations using simple iterative
shifts and add/subtract operations. The general (Givens)
rotation transform expressed in Equations 1A and 1B rotates
a vector by an angle (p.

3'-x cos (p-y sin (p

y'=y cos (p+x sin (p. Eqs. 1A and 1B

0030 The transform can be rearranged as shown in
Equations 2A and 2B.

0031. The rotation angle s can be selected such that
tan(p)=t2', i.e., powers of two, which can be implemented
by shift operations. An overall rotation angle can be reached
by applying successively smaller rotations. At each iteration,
i, the direction of rotation is decided. This further simplifies
Equations 2A and 2B to Equations 3A and 3B.

xi = k, x, -y;2 oil Eqs. 3A and 3B

where:

1
k =

1 + 2-2

O; e - 1, 1}

0032 Since, k, is a constant multiplier that affects mag
nitude, k, can be pre-calculated and easily compensated.
Equation 4 illustrates the accumulation in the rotation angles
at each iteration.

z-zi-o, tan(2) Eq. 4

0033) Conventionally, the values of tan' (2) are stored
in a relatively small Read Only Memory (ROM) lookup
table (LUT). The CORDIC algorithm can be applied in
rotation mode or in vectoring mode. The rotation mode
rotates the input vector by the angle specified through Zo.
Successive iterations rotate in the direction to attempt to
reduce this angle Z. Therefore, the direction to rotate is
dependent on Z, and is expressed as Equation 5.

0034. The vectoring mode rotates the input vector
through an angle such that the resulting vector lies on the
X-axis. Successive iterations rotate in the direction to reduce
the y-component, y. Therefore, the direction to rotate is
dependent on y, and is expressed as Equation 6.

Dec. 14, 2006

0035. The initial values of the system variables, X, yo.
and Zo determine the function computed. Examples of uses
for the vectoring mode include Cartesian to Polar conver
Sion, calculation of arctangents, and calculation of vector
magnitude.

0036 Generally, if the CORDIC algorithm can compute
a function, the inverse of the function can also be computed
The CORDIC equations can be modified to introduce a
coordinate system factor, m. The coordinate systems are
hyperbolic (m=1), linear (m=0) and circular (m=-1). These
extensions allow the CORDIC algorithm to compute linear
and hyperbolic functions.

0037. One implementation of the CORDIC algorithm
uses comparators for each stage to determine the direction of
rotation A modified CORDIC algorithm for Direct Digital
Frequency Synthesis (DDFS) or DDS simplifies a CORDIC
computation by determining the d ion of rotation directly
from the bits r representing the angle (p, as shown in
Equation 7.

1 bit= Eq. 7
-1 bit = 0

0038) The modified CORDIC algorithm uses (p=2
instead of (p=tan' (2) as sub-angles. This modifies the
standard CORDIC equations to the equations expressed in
Equations 8A-D.

Eqs. 8A, 8B, 8C, and 8D

xi = kix; +y; ...) 1 it -
y; 1 = kily; + x; tan(2)

0039 Table 1 illustrates that the values of tan(2) and 2
are similar for values of i>(WordLength/3). The similarity
can simplify the hardware to relatively simple hardwired
shifts for values of i>(WordLength/3). In one embodiment,
the first (WordLength/3) stages are merged together and
implemented with ROM.

TABLE 1.

i 2-i tan2. 2 (20-bit hex) tan2 (20-bit hex)

1 O.SOOO OS463 Ox4OOOO Ox45ED4
2 O.2SOO O.2533 Ox2OOOO Ox2OAFO
3 O.12SO 0.1257 Ox1OOOO Ox1O157
4 O.0625 O.O629 Ox08OOO OxO8O2A
5 O.O312 O.O313 OXO4(OOO Ox04OOS
6 O.O156 O.O156 OxO2OOO OxO2OOO
7 O.OO78 O.OO78 OXO1 OOO OxO1OOO

US 2006/0282489 A1

TABLE 1-continued

i 2-i tan2. 2 (20-bit hex) tan2 (20-bit hex)
8 O.OO39 O.OO39 Ox008OO OxOO800
9 O.OO2O O.OO2O Ox00400 Ox00400

0040 FIG. 1 illustrates an Execution Block 100 of a DSP
with a CORDIC Assist 104 according to an embodiment of
the invention. The CORDIC Assist 104 is pipelined such that
a function generated output, Such as a sine?cosine output, is
available at every clock style of the CORDIC Assist 104.
The Execution Block 100 further includes an Instruction
Decoder 102 and a Local Register File 112. The Execution
Block 100 can further include other DSP functional units
typical of a DSP such as a Multiplier Accumulator (MAC)
106, an Arithmetic Logic Unit (AU) 108, and a Shifter 110.
In the illustrated embodiment, the CORDIC Assist 104
shares the Local Register File 112 and the Instruction
Decoder 102 with the other DSP functional units.

0041. In one embodiment, the core of the DSP has a
scalable and configurable architecture, which allows the
designer to plug-in a variety of functional units without
changing the external interfaces of the block with the rest of
the core. The Instruction Decoder 102 can be centralized or
distributed. In one embodiment, the Instruction Decoder102
is distributed, and a program sequencer of the core dis
patches instructions to multiple execution blocks. The dis
patched instructions are then decoded by the distributed
instruction decoders of the specific blocks.
0042. In one embodiment, a function generation process,
Such as sine?cosine generation, is initiated early. In one
embodiment, the function generation process is initiated
early by approximately the amount of time equal to the
initial latency of the pipelined process, such that an output
of the function generation process is available in response to
a read instruction.

0043. In one embodiment, the Execution Block 100 can
execute two instructions per cycle. Thus, the Execution
Block 100 includes multiple read ports available from the
Local Register File 112. However, it will be understood by
one of ordinary skill in the art that other embodiments of the
Execution Block 100 according to the invention can execute
a wide variety of instructions per cycle, and can even include
multiple cycles per instruction.

0044) In one embodiment, the CORDIC Assist 104
responds to at least two specific instructions. These instruc
tions are a startCORDIC instruction and a readCORDIC
instruction. In one embodiment, the startCORDIC instruc
tion passes two parameters to the CORDIC Assist 104.
These parameters are an initial phase angle and an increment
value.

0045. After initial latency cycles, which vary depending
on the number of stages or segments of the pipeline, the
result of the first computation progresses through the stages
or segments of the pipelined CORDIC Assist 104 and to the
output of the CORDIC Assist 104. In one embodiment, the
result of the CORDIC computation is not automatically
written to a register file in the Local Register File 112.
Rather, the computed result is retained until an explicit read

Dec. 14, 2006

instruction, e.g., a readCORDIC instruction, is applied to the
CORDIC Assist 104, which then transfers the computed
result to a register in the Local Register File 112. The
following sequence of instructions further illustrates how to
use the CORDIC Assist 104.

0046) in: startCORDIC (R1,R2)
0047)
0048)
0049)
0050
0051)

0052. In the sample instructions shown above, an initial
angle is specified in R1, and the increment in angle is
specified in R2. In the illustrated embodiment, the sine and
the cosine values of initial angle are ready in cycle n+5 and
are available to be read in cycle n+5 or a later cycle, i.e., the
number of latency cycles is 5. In the illustrated embodiment,
the sine and the cosine of the next value (R1+R2) are
immediately available to be read in the next cycle after the
readCORDIC instruction is applied. Another sample
sequence of instructions is provided below:

0053 n+6: readCORDIC (R4); sin/cos (R1+R2)
0054 n+7: readCORDIC (R6); sin/cos (R1+2*R2)
0.055 n+8: <instre
0056)

n+1: <instre, <instr>
n+2: <instre, <instr>
n+3: <instre, <instr>
n+4: <instre, <instr>
n+5: readCORDIC(R4)

n+9: <instre

0057 n+10: readCORDIC (R4); sin/cos (R1+3*R2)
0.058. In one embodiment, the CORDIC Assist 104 also
Supports a register-interlocking mechanism, which stalls the
pipeline if the user, DSP controller, and the like, issues the
first readCORDIC instruction before the end of the initial
latency cycles. In one embodiment, if a startCORDIC
instruction is issued after a subsequent startCORDIC
instruction, then the second instruction result is received at
the output.
0059) The CORDIC Assist 104 can further be configured
to respond to a resetCORDIC instruction. In one embodi
ment, the resetCORDIC instruction initializes the stages or
segments in the CORDIC Assist 104 that are computed such
as CORDIC stages, but does not reset a stage where data is
merely retrieved, as in a ROM lookup table.
0060 FIG. 2 illustrates a pipelined sine?cosine genera
tion unit 200 according to an embodiment of the invention.
The architecture of the illustrated pipelined sine/cosine
generation unit 200 advantageously incorporates the instruc
tion based control of the CORDIC Assist 104 described
earlier in connection with FIG. 1.

0061 The pipelined sine?cosine generation unit 200
includes an accumulator 202, a 1/4 multiplier 220, an Output
Select unit 222, a first quadrant L/4 mirror 224, a Read Only
Memory (ROM) Lookup Table (LUT) 226, and a multi
stage butterfly pipeline 228.
0062) The accumulator 202 generates the angle value for
which the remaining portions of the pipelined sine?cosine
generation unit 200 compute the sine function and cosine
function. In the illustrated embodiment, the accumulator 202
includes a multiplexer 204, a data register 206, and an adder

US 2006/0282489 A1

208. An initial angle 210, i.e., the stating angle, is provided
as an input to the multiplexer 204. When the pipelined
sine?cosine generation unit 200 begins to process the sine
function and the cosine function of the initial angle 210, the
multiplexer 204 is configured to select the initial angle 210
and to pass the initial angle 210 as an input to the data
register 206, which latches the state of the initial angle 210.
In one embodiment, the initial angle 210 is loaded into the
data register 206 through a data bus 230. An output 214 of
the data register 206, which contains the angle that enters the
first stage of the computational stages, is provided as an
input to the JL/4 multiplier 220, the Output Select unit 222,
and the first quadrant L/4 mirror 224.
0063. The output 214 of the data register 206 is also
provided as an input to the adder 208. The adder 208 forms
part of a feedback path that increments the angle output of
the data register 206. The adder 208 sums the output 214 of
the data register 206 with a frequency control word 212. In
one embodiment, the frequency control word 212 is stored
in a register that is loaded through the data bus 230, and the
frequency control word from the register is provided as an
input to the adder 208. The value of the frequency control
word determines an amount of increment to the angle, i.e.,
determines the step size of the angle. The adder 208 sums the
frequency control word 212 with the output 214 of the data
register 206, and provides the sum as an input to the
multiplexer 204.
0064. The multiplexer 204 is configured to select the
summed output of the adder 208 when the accumulator 202
is stepping the angle. The output of the multiplexer 204 is
provided as an input to the data register 206. When the data
register 206 is triggered or re-latched, the data register
latches the output of the multiplexer 204, and the output 214
of the data register has incremented by the amount of the
frequency control word. The output 214 of the data register
206 is again applied to the adder 208, thereby allowing the
accumulator 202 to continue to increment the angle provided
by the output 214 of the data register 206.
0065 Due to the symmetry of sine and cosine waves, the
cosines and sines of an entire 360-degree range need not be
computed. Rather, a more limited range. Such as 45 degrees
or 90 degrees, can be computed, and the computed sines and
cosines can be inverted and/or Swapped to rotate the com
puted result by, for example, a multiple of 90 degrees. In one
embodiment, the output 214 of the data register 206 con
taining the angle is provided with 20 bits of precision. In one
embodiment, the two most significant bits of the output 214
of the data register 206 are provided as inputs to the Output
Select unit 222. The two most significant bits indicate the
quadrant of the angle. The Output Select unit 222 inverts and
swaps the output of the multi-stage butterfly pipeline 228 to
rotate the cosine and sine computations of the multi-stage
butterfly pipeline 228 to their original quadrant.
0.066 The output 214 of the accumulator 202 is a nor
malized angle (p which is converted to an actual radian value
(pO, L/4). In one embodiment, the output 214 of the accu
mulator 202 is provided as an input to the hardwired JL/4
multiplier 220, which converts the normalized angle (p to
radians. In one embodiment, the hardwired JL/4 multiplier
220 generates five partial products to achieve more than 16
bits of precision.
0067. In the illustrated embodiment, an output of the
hardwired JL/4 multiplier 220 is provided as an input to the

Dec. 14, 2006

first Quadrant L/4 mirror 224. In one embodiment, the first
Quadrant L/4 mirror 224 is a subtractor that replaces the
angle (p as 0. It? 4 by JL/2-1 whenever the original phase
accumulation angle 0, i.e., the output of the third TL/4
multiplier 220, is in the upper half of the first quadrant. In
one embodiment, a third most significant bit of the output
214 of the data register 206, which is illustrated in FIG. 2
by a one-bit wide signal from the data register 206 to the first
Quadrant L/4 mirror 224, indicates whether the rotated angle
is in the upper half or the lower half of the first quadrant.
0068 To achieve 16 bits of output precision, one embodi
ment of the pipelined sine/cosine generation unit 200
includes 16 butterfly stages. In the illustrated embodiment,
the pipelined sine/cosine generation unit 200 substitutes the
first four stages of the pipeline with a Read Only Memory
(ROM) Lookup Table (LUT) 226 and implements the next
twelve pipelined Stages by cascading 12 butterfly stages in
the multi-stage butterfly pipeline 228. In one embodiment,
the ROM LUT 226 includes 16 words of data. Table II
illustrates one example of the contents of the ROM LUT
226.

TABLE II

X y

32745 1027
32617 3069
323.63 5099
31983 7109
31473 9095
3O845 11041
30096 12946
29230 14798
28245 16599
27155 18329
25957 19990
24659 21570
23261 23071
21777 24477
2O2OS 25789
18557 26999

0069. The outputs of the multi-stage butterfly pipeline
228 is provided as an input to the Output Select unit 222.
After the Output Select unit 222 rotates the outputs of the
multi-stage butterfly pipeline 228 as dictated by indication
of the original quadrant of the angle that is provided by the
most significant bits of the output 214 of the data register
206.

0070 The sample code, below, is written in an assembly
language for a DSP core. The “I to the left of a line of code
indicates an instruction that can execute in parallel with the
prior instruction. The sample code illustrates how the pipe
lined sine?cosine generation unit 200 can simplify and
accelerate an operation, such as a computation of a Fast
Fourier Transform (FFT), in a DSP. The following sample
code corresponds to a 16-point FFT implemented by a
radix-2 butterfly.

if initial setup phase
N = 16;
k = 0;
Ns = Nas1:
arO = dk

US 2006/0282489 A1

-continued

| ar1 = dk+Ns:
ar2 = store buffer address:
StartCORDIC(r10,r11):

for Ns repeat
{

rOI = *arO
| r2I = *ar1;

0071 FIG. 3 illustrates a process 300 of quadrature
modulation/demodulation with a pipelined sine?cosine gen
eratoraccording to an embodiment of the invention. In a first
step 310, the process receives data from an input sequence.
In one embodiment, the data is from a receiver. The data can
be initially stored in a memory device and received by the
process later in non real time. The process advances from the
first step 310 to a second step 320.
0072. In the second step 320, the process generates
values for a step of a cosine wave and a step of a sine wave.
In one embodiment, the process computes the values of the
cosine wave and the sine wave by computing the cosine
function and the sine function in a pipelined CORDIC
function generator. Advantageously, a pipelined CORDIC
Function Generator can generate steps of the cosine wave
and the sine wave with relatively little latency and without
having to generate or store a relatively large lookup table. In
one embodiment, the pipelined CORDIC automatically
starts and stops as described earlier in connection with FIG.
2. The process advances from the second step 320 to a third
step 330.
0073. In the third step 330, the process multiplies the
cosine wave and sine wave outputs of the pipelined
CORDIC Function Generator with the received data to
generate in-phase (cosine) or the quadrature-phase (sine)
modulated or demodulated products.
0074 FIG. 4 illustrates a process 400 of pipeline control
according to an embodiment of the invention. The process
advantageously controls a pipelined process, such as a
pipelined CORDIC, such that the pipelined process can be
easily integrated with a controller, digital signal processor,
and the like. The illustrated process starts at a receive
instruction step 401. In the receive instruction step 401, the
process receives an Instruction related to the control of the
pipelined process. For example, a microprocessor, micro
controller, digital signal processor, and the like can access
the pipelined process by issuing instructions to the pipeline
control process. The process advances from the receive
instruction step 401 to a reset decision block 402.
0075. In the reset decision block 402, the process deter
mines whether the received instruction corresponds to a
command to reset the CORDIC. Where the received instruc
tion is a reset instruction, such as a resetCORDIC instruc
tion, the reset decision block 402 proceeds to a reset step
404. Where the command is other than the reset instruction,
the reset decision block 402 proceeds to a start decision
block 406.

Dec. 14, 2006

0076. In the reset step 404, the process resets those
circuits in the pipelined process that are calculated. In one
embodiment, where the pipelined process is a CORDIC, the
reset step 404 resets all the CORDIC stages or butterfly
stages. In another embodiment, where the pipelined process
is a combination of a lookup table stage and of CORDIC
stages, the reset step 404 resets the CORDIC stages or
butterfly stages but does not reset the lookup table stage. The
process returns from the reset step 404 to the start of the
process.

0077. In the start decision block 406, the process deter
mines whether the received instruction corresponds to a start
instruction for the pipeline. Typically, a start instruction is
applied to a pipelined process when the starting data has
changed. One example of an appropriate time to issue a start
instruction is where the pipelined process synthesizes a
frequency, and the synthesized frequency has changed by
updating an amount of an angle increment When the
received instruction is a start instruction, such as a start
CORDIC instruction, the process proceeds from the start
decision block 406 to a first advance pipeline step 408.
When the received instruction is other than the start instruc
tion, the process proceeds from the start decision block 406
to a read decision block 412.

0078. In the first advance pipeline step 408, the process
advances data from one stage or segment of the pipelined
process to another. For example, a stage or segment can
advance data in response to a rising or a falling edge of a
clock signal. In one embodiment, the process controls the
pulsing of the clock signal used to enable sequencing
through the pipelined process. It will be understood by one
of ordinary skill in the art that a variety of techniques can be
used to control sequencing through the pipelined process,
including for example, providing an enable signal as an
input to the stages or segments of the pipelined process. The
process advances from the first advance pipeline step 408 to
a computation available decision block 410.

0079. In the computation available decision block 410.
the process determines whether the new computation is
available at the end of the pipelined process. That is, the
process determines whether data has advanced far enough in
the pipelined process to have progressed from the beginning
stage or segment to the last stage or segment, i.e., whether
the initial latency of the pipelined process has concluded. In
one embodiment, the process counts the number of activa
tions of the pipeline sequencing and compares the count to
a known count of the number of stages or segments to
determine whether the new computation is available at the
end of the pipelined process. When the new computation is
available, the process returns from the computation avail
able decision block 410 to the start of the process, and awaits
the next instruction. When the new computation is not yet
available, the process returns from the computation avail
able decision block 410 to the first advance pipeline step 408
to continue to advance data through the pipelined process.

0080. In the read decision block 412, the process deter
mines whether the received instruction corresponds to a
command to read data from the pipelined process. When the
received instruction is a read instruction, the process pro
ceeds from the read decision block 412 to an output com
putation step 414. When the received instruction is other

US 2006/0282489 A1

than the read instruction, Such as a “no operation' instruc
tion, the process returns from the read decision block 412 to
the start of the process.
0081. In the output computation step 414, the process
enables an output of the pipelined process. For example,
when the final data is stored in an output register, the process
can enable a tri-stateable gate to couple the contents of the
output register on a data bus, where the contents are read by
a controller, DSP, MAC, and the like. The process advances
from the output computation step 414 to a second advance
pipeline step 416.
0082 In the second advance pipeline step 416, the pro
cess advances the pipelined process by a single stage or
segment, i.e., data moves from one segment to the next
segment. In one embodiment, the process advances data in
the second advance pipeline step 416 by providing a single
clock pulse to the pipelined stages or segments.
0083. The illustrated process repeats indefinitely. The
skilled practitioner will appreciate that the reset decision
block 402, the start decision block 406, and the read decision
block 412 can appear in the process in any order.
0084 FIG. 5 illustrates a pipeline control circuit 500
according to an embodiment of the invention. The illustrated
pipeline control circuit 500 includes an instruction decoder
502 and a pipeline control unit 504. The pipeline control
circuit 500 controls the resetting and the progressing of data
through the segments of a pipelined circuit, such as a
pipelined CORDIC 550. It will be understood by one of
ordinary skill in the art that the pipeline control circuit 500
can control a wide variety of pipelined circuits and that the
pipelined CORDIC 550 shown in FIG.5 is illustrative of but
one example. Other examples of pipelined circuits include
divider circuits, relatively high-precision multiplier circuits
Such as 64x64, relatively high-precision adder circuits,
floating point units, and the like.
0085. The instruction decoder 502 receives instructions
506 from a microprocessor, digital signal processor, state
machine, and the like. It will be understood by one of
ordinary skill in the art that the instruction decoder 502 can
be a part of a larger instruction decoder for a larger circuit
such as the Execution Block 100 described earlier in con
nection with FIG. 1. The illustrated instruction decoder 502
generates a reset signal 510, a read signal 512, and a start
signal 514 in response to the instructions 506. In one
embodiment, the instruction decoder 502 further includes a
select input driven by, for example, an address decoder, that
activates the instruction decoder 502.

0.086 The reset signal 510 is provided as an input to the
pipelined circuit, which is shown in FIG. 5 as the pipelined
CORDIC 550. The pipelined CORDIC 550 includes mul
tiple stages or segments. In some pipelined circuits, not all
of the segments of the pipeline need to be reset. For the
purposes of example, the pipelined CORDIC 550 includes a
Lookup Table (LUT) circuit 552 as a first stage, a first
CORDIC stage 554 as a second stage, a second CORDIC
stage 556 as a third stage, and a third CORDIC stage 558 as
a fourth stage. In the pipelined CORDIC 550 shown in FIG.
5, the reset signal 510 is applied as an input to the first
CORDIC stage 554, the second CORDIC stage 556, and the
third CORDIC stage 558, but not to the LUT circuit 552.
0087. The read signal 512 and the start signal 514 are
provided as inputs to the pipeline control unit 504. A clock

Dec. 14, 2006

signal 508 is also provided as an input to the pipeline control
unit 504. In response to an activation of the read signal 512,
the pipeline control unit 504 activates the pipelined circuit
so that data passes from one pipeline stage to another, Such
as from the first CORDIC stage 554 to the second CORDIC
stage 556. In one embodiment, the pipeline control unit 504
activates one pulse of a pipeline clock signal 516 in response
to the activation of the read signal 512. The pulse of the
pipeline clock signal 516 is applied as an input to the stages
of the pipelined circuit, which are activated in response to
the pulse. A flip flop circuit can be used to generate a single
pulse on the pipeline clock signal 516 in response to the
activation of the read signal 512. In one embodiment, the
pipeline control circuit 500 includes a wait state generator
that instructs the controller, DSP MAC, and like devices that
reads the output of the pipelined circuit to temporarily wait
until the data has propagated through the pipeline and is
available to be read.

0088. The pipeline control unit 504 generates a series of
pulses in response to an activation of the start signal 514.
The pipeline control unit 504 generates at least enough
pulses on the pipeline clock signal 516 in response to the
activation of the start signal 514 Such that data can sequence
through each stage of the pipelined circuit and a computa
tion is available to be read at an output 560. In one
embodiment, the pipeline control unit 504 generates the
same number of pulses on the pipeline clock signal 516 as
the number of stages in the pipelined circuit.
0089. A variety of techniques can be used to generate the
series of pulses by the pipeline control unit 504. For
example, one embodiment of the pipeline control unit 504
includes a counter to track the number of pulses that are
applied by the pipeline clock signal 516. The counter can be
reset in response to the start signal 514, and the counter can
increment to a predetermined count. While the counter is
counting, the pipeline control unit 504 provides clock pulses
over the pipeline clock signal 516 by, for example, coupling
the clock signal 508 to the pipeline clock signal 516.
0090. In another embodiment, a counter is preloaded in
response to the start signal 514 and decrements down to Zero
to track the number of pulses that are applied by the pipeline
clock signal 516. While the counter decrementing, the
pipeline control unit 504 couples the clock signal 508 to the
pipeline clock signal 516 to generate the series of pulses.
When the counter counts down to Zero, the counter is
disabled and the pulsing of the pipeline clock signal 516
stops.

0091. In another embodiment, the stages of the pipelined
circuit receive a continuous 5 clock signal Such as the clock
signal 508, and the pipeline control unit 504 generates
control signals that selectively enable and disable the stages
of the pipelined circuit by controlling an enable input in the
registers of the pipelined circuit.
0092. The pipelined circuits and the pipeline control
circuits disclosed herein can be fabricated in a broad variety
of ways. In one embodiment, the circuits are integrated into
dedicated hardware such as a custom application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a programmable logic device (PLD), and the like.
In one embodiment, the pipelined circuits, the pipeline
control circuits, or both are integrated with a digital signal
processor (DSP) core.

US 2006/0282489 A1

0093 Various embodiments of the present invention have
been described above. Although this invention has been
described with reference to these specific embodiments, the
descriptions are intended to be illustrative of the invention
and are not intended to be limiting. Various modifications
and applications may occur to those skilled in the art without
departing from the true spirit and scope of the invention as
defined in the appended claims.

What is claimed is:
1. A method of computing correlation in a digital signal

processor (DSP), the method comprising:
receiving receiver data in quadrature;
relieving at least a first portion of a sine wave and at least

a first portion of a cosine wave by reference to a lookup
table;

digitally generating a second portion of the sine wave and
a second portion of the cosine wave in multiple stages
of a pipelined Coordinate Rotation Digital Computer
(CORDIC), where the generated sine wave and the
generated cosine wave are of Substantially constant
magnitude; and

multiplying the receiver data by the sine wave and by the
cosine wave in a Multiplier Accumulator (MAC) block
to determine an amount of correlation.

2. The method as defined in claim 1, wherein the
CORDIC corresponds to a Modified CORDIC.

3. A method of digitally generating a sine wave and a
cosine wave in a plurality of digital steps, the method
comprising:

(a) receiving an angle increment value, where the angle
increment value is related to a change in an angle by
which the sine wave and the cosine wave change in a
step;

(b) computing a new angle value by combining the angle
increment value with an existing angle value;

(c) calculating a sine and a cosine of the new angle value
to compute a value of a step of the sine wave and a
value of a step of the cosine wave, respectively;

(d) maintaining the computed values of the steps of the
sine wave and of the cosine wave such that the values
are ready to be read upon receipt of a read instruction;

(e) performing the following when a read instruction has
been received:

(i) providing the computed values of the steps of the
sine wave and of the cosine wave in response to a
receipt of the read instruction;

(ii) storing the new angle value as the existing angle
value; and

(iii) computing another value for the new angle value
by combining the angle increment value with the
existing angle value; and

(f) inhibiting further computations of values of other steps
of the sine wave and of the cosine wave when a read
instruction has not been received.

4. The method as defined in claim 3, further comprising
repeating (b), (c), (d), (e), and (f).

Dec. 14, 2006

5. The method as defined in claim 3, wherein the calcu
lating the sine and the cosine of the new angle value further
comprises:

phase shifting the new angle value to a phase shifted angle
value, where the phase shifted angle value conforms to
a 90-degree range;

Swapping a sine computation and a cosine computation
when the phase shifted angle value is in a first 45-de
gree portion of the 90-degree range and mirroring the
phase angle around 45 degrees;

not swapping the sine computation and the cosine com
putation when the phase shifted angle value is in the
other 45-degree portion of the 90-degree range;

computing a portion of the sine wave and the cosine wave
of the phase shifted angle value by applying the phase
shifted angle value as an input to a lookup table;

applying an output of the lookup table as an input to a
pipelined CORDIC; and

compensating the output of the pipelined Coordinate
Rotation Digital Computer (CORDIC) in accordance
with an amount of phase shift applied to the phase
shifted angle value to generate the sine and the cosine
of the new angle value.

6. The method as defined in claim 5, wherein the pipelined
CORDIC conforms to a modified CORDIC.

7. The method as defined in claim 5, further comprising:
receiving an initial angle value and an indication to start

a computation of the sine wave and the cosine wave;
using the initial angle value as the existing angle value;
automatically advancing computations in the pipelined
CORDIC to compute the new angle value until the sine
and the cosine of the initial angle is available at an
output; and

automatically stopping the sequencing of the pipelined
CORDIC and the computing of the new angle value
until a read instruction has been received.

8. The method as defined in claim 7, wherein receiving the
initial angle as the existing angle value further comprises
combining the initial angle with the angle increment value,
and applying the combination of the initial angle value with
the angle increment value as the existing angle value.

9. The method as defined in claim 3, further comprising
receiving an initial angle value for the sine wave and the
cosine wave.

10. A method of generating a digital sine wave and a
digital cosine wave in a digital signal processor (DSP), the
method comprising:

storing a plurality of coarse data points in a lookup table;
receiving an angle value;
applying a first portion of the angle value as an input to

the lookup table and retrieving a coarse data point; and
applying a second portion of the angle value and applying

the retrieved coarse data point as an input to a Coor
dinate Rotation Digital Computer (CORDIC).

11. The method as defined in claim 10, wherein the lookup
table stores data within for angle value within about a
45-degree range and further comprising:

US 2006/0282489 A1

converting the angle value to a modified value within a
quadrant by applying a phase shift that is an integer
multiple of 45 degrees, where such integer multiple
includes 0, 1, 2, 3, 4, 5, 6, and 7:

applying a first portion and a second portion of the
modified value to the lookup table and the CORDIC,
respectively, to produce a sine output and a cosine
output; and

compensating for the conversion of the angle value by
Selectively phase-shifting and by selectively Swapping
the sine and the cosine outputs of the CORDIC.

12. The method as defined in claim 11, wherein the
compensating further comprises:

using the cosine output as the cosine output and using the
sine output as the sine output when the CORDIC
calculates an angle within a first 45 degree portion of a
quadrant; and

Swapping the cosine output and the sine output such that
the cosine output is the sine output and the sine output
is the cosine output when the CORDIC calculates an
angle within the other 45 degree portion of the quad
rant.

13. A method of providing an intermittent clock signal
comprising:

receiving a system clock signal;
generating clock pulses of the intermittent clock signal

from the system clock signal for a predetermined
period after decoding of a first instruction received in a
DSP;

inhibiting clock pulses of the intermittent clock signal
after termination of the predetermined period; and

providing a clock pulse of the intermittent clock signal
from the system clock signal in response to a decoding
of a second instruction.

14. The method as defined in claim 13, where the prede
termined period corresponds to an initial latency of a pipe
lined CORDIC for a new computation to progress from a
being of the pipelined CORDIC to an end of the pipelined
CORDIC.

15. The method as defined in claim 13, wherein the
predetermined period corresponds to a predetermined count
of cycles of the system clock signal, and where the prede
termined count of cycles corresponds to a number of latency
cycles that it takes for a new computation to progress
through a computational pipeline.

16. The method as defined in claim 13, wherein the first
instruction comprises a start instruction, and where the
second instruction comprises a read instruction.

17. The method as defined in claim 13, further compris
1ng:

triggering an increment of a count by applying the inter
mittent clock signal to a counter;

using the count to indicate an angle; and
computing at least one trigonometric function of the

angle.
18. The method as defined in claim 17, wherein the at

least one trigonometric function includes computation of a
sine and a cosine of the angle.

Dec. 14, 2006

19. A method of generating a function in a digital signal
processor (DSP), the method comprising:

receiving a first instruction, where the first instruction
initiates a computation according to a Coordinate Rota
tion Digital Computer (CORDIC) algorithm;

computing the CORDIC algorithm in a pipeline;
automatically discontinuing further computations of the
CORDIC algorithm in the pipeline when a computed
output is ready; and

providing the computed output of the CORDIC algorithm
in response to a second instruction.

20. The method as defined in claim 19, wherein the
CORDIC algorithm is computed in at least a first stage and
a second stage, where the computation of the first stage is
implemented by a lookup table, and where the second stage
is implemented with a butterfly stage.

21. The method as defined in claim 19, wherein the
CORDIC algorithm comprises a Modified CORDIC algo
rithm.

22. The method as defined in claim 19, further compris
1ng:

predicting a desired time when a computation of the
CORDIC algorithm is desired; and

initiating the computation of the CORDIC algorithm
before the desired time such that the computation is
completed by the desired time.

23. The method as defined in claim 19, wherein the
CORDIC algorithm is initiated before the desired time by an
amount of time Substantially equal to an initial latency
period of the computation.

24. A process of controlling a pipelined circuit with a read
instruction comprising:

receiving a plurality of instructions;
determining when a received instruction corresponds to

the read instruction;
pausing sequencing of the pipelined circuit until the read

instruction is detected; and
sequencing the pipelined circuit Such that data progresses

through one segment of the pipeline in response to
receiving the read instruction; and

generating an output of the pipelined circuit in response to
receiving the read instruction.

25. The process as defined in claim 24, wherein the
pipelined circuit comprises a Coordinate Rotation Digital
Computer (CORDIC).

26. The process as defined in claim 24, further compris
1ng:

determining when the received instruction corresponds to
a start instruction, where the start instruction further
includes a first argument that provides an initial angle
and a second argument that provides an amount of an
increment;

loading an angle generation stage of the pipelined circuit;
automatically advancing the data through the pipelined

circuit until data is available to be read at the output of
the pipeline; and

US 2006/0282489 A1

pausing sequencing of the pipelined circuit until detection
of an instruction selected from the group consisting of
a read instruction and a write instruction.

27. The process as defined in claim 26, wherein at least
one of the first argument and the second argument is
provided as a content in a register.

28. A process of controlling a pipelined circuit with a start
instruction comprising:

receiving a plurality of instructions;
pausing sequencing of the pipelined circuit until the start

instruction is detected; and
determining when a received instruction corresponds to

the start instruction, where the start instruction includes
a first argument that provides an initial angle and a
second argument that provides an amount of an incre
ment; and

automatically advancing stages of the pipelined circuit
until data based on the initial angle is available to be
read at the output of the pipelined circuit.

29. The process as defined in Cain 28, wherein at least one
of the first argument and the second argument is provided as
a content in a register.

30. A digital signal processor (DSP) comprising:
a Coordinate Rotation Digital Computer (CORDIC) unit

configured to compute steps of a sine wave and a cosine
wave of a constant magnitude and a selectable fre
quency, where the frequency is selected by configura
tion of a step size of a change in an angle between
computed steps;

at least one of a Multiplier Accumulator (MAC), an
arithmetic logic unit (ALU), and a Shifter, and

a register file to provide arguments to the CORDIC unit
and the at least one of the MAC, the ALU, and the
Shifter.

31. The DSP as defined in claim 30, wherein the CORDIC
unit further comprises:

a lookup table adapted to store a plurality of intermediate
values of sines and cosines of Substantially evenly
spaced angles, where the lookup table is configured to
receive a first portion of an angle value to address the
plurality of intermediate values and to select an inter
mediate value as an output at least partially in response
to the first portion of the angle value;

a pipelined CORDIC adapted to receive a second portion
of the angle value and the output of the lookup table as
inputs, where the pipelined CORDIC is configured to
generate a sine step and a cosine step of the second
portion of the angle value;

an inhibit counter adapted to provide a first state of an
inhibit signal upon reaching a predetermined count,
where the inhibit counter is reset to a second state upon
a reloading of the CORDIC, and where the predeter
mined count is related to a latency in the pipelined
CORDIC; and

an angle generator adapted to incrementally step among a
plurality of angles, where an output of the angle gen
erator circuit is the angle value, where the angle gen
erator is configured to increment in response to a

Dec. 14, 2006

condition selected from the group consisting of a read
instruction and the second state of the inhibit signal.

32. The DSP as defined in claim 31, wherein the lookup
table contains intermediate values of sines and cosines for
16 angle values Substantially evenly spaced over approxi
mately a 45-degree range.

33. The DSP as defined in claim 31, firer comprising an
Output Select circuit configured to selectively invert and to
selectively Swap the sine step and the cosine step outputs of
the pipelined CORDIC in response to an indication of a
quadrant of the corresponding angle value from the angle
generator.

34. The DSP as defined in claim 31, further comprising a
wait state generator configured to provide a wait state in
response to a receipt of a read instruction and the second
state of the inhibit signal.

35. A Coordinate Rotation Digital Computer (CORDIC)
comprising:

a plurality of computation stages arranged in a pipeline;
a reset unit adapted to receive a reset instruction and to

reset the plurality of computation stages in response to
the reset instruction;

an output circuit adapted to provide a computation from
the plurality of computation stages in the pipeline in
response to read computation instruction; and

a timing circuit adapted to advance calculations through
the pipeline in response to a start instruction, where the
timing circuit automatically discontinues advancing the
calculations through the pipeline when a calculation
has progressed to an end of the pipeline, where the
timing circuit is further configured sequence the pipe
line to generate another computation in response to the
read CORDIC instruction.

36. The CORDIC as defined in claim 35, wherein the
plurality of computation stages includes a read only memory
(ROM) lookup table.

37. A control circuit for a pipelined Coordinate Rotation
Digital Computer (CORDIC) comprising:

a reset circuit adapted to reset at least a portion of the
pipelined stages of the pipelined CORDIC;

a first sequencing unit adapted to automatically enable
clock pulses to the pipelined CORDIC such that a new
calculation can progress from a beginning of the pipe
lined CORDIC to an end of the pipelined CORDIC and
to automatically disable the automatic application of
clock pulses to the pipelined CORDIC when the com
putation is available at the end of the pipelined
CORDIC; and

a second sequencing unit adapted to provide a clock pulse
to the pipelined CORDIC to advance a calculation from
one stage to another, where the second sequencing unit
is configured to provide the clock pulse in response to
an instruction to read an output of the pipelined
CORDIC.

38. The control circuit as defined in claim 37, wherein the
reset circuit does not reset a ROM lookup table.

39. The control circuit as defined in claim 37, wherein the
first sequencing unit comprises a counter that can be reset in
response to a detection of a start instruction, where the first
sequencing unit enables clock pulses when a count main
tained by the counter is in a first range of counts, and where

US 2006/0282489 A1 Dec. 14, 2006
11

the first sequencing unit disables the automatic application pipelined stages of the pipelined CORDIC determines the
of clock pulses when the count maintained by the counter is count at which the control circuit enables and disables the
in a second range of counts. automatic application of clock pulses to the pipelined

40. The control circuit as defined in claim 39, where the CORDIC.
counter is incremented in response to an advancing of data
from one pipelined stage to another, and the number of k

