

(12) UK Patent Application (19) GB (11) 2 382 582 (13) A

(43) Date of A Publication 04.06.2003

(21) Application No 0128658.2	(51) INT CL ⁷ E21D 11/38, C08L 23/00 25/00 29/00 31/00 33/00, C09K 17/40, E02D 31/02, E21D 5/00
(22) Date of Filing 30.11.2001	
<hr/>	
(71) Applicant(s)	(52) UK CL (Edition V)
William Ivor Stone The Manor House, Stanton Lacy, Ludlow, Shropshire, SY8 2AE, United Kingdom	C3M MFWY MFZ M120 M122 M136 M145 M146 M153 M155 M156 M158 M160 M200 C3V VAX VBX VDS U1S S1747
Joao Jacinto 26 Munday Avenue, Bedforview 2008, South Africa	(56) Documents Cited
Gebhard Bargehr 61 York Road, Kensington South 2094, South Africa	EP 1054046 A2 WO 2000/047533 A1 US 6096373 A US 4686252 A US 4661161 A US 4468484 A US 3713297 A
(72) Inventor(s)	(58) Field of Search
William Ivor Stone	UK CL (Edition T) C3M MFC MFNY MFWY MFZ MXAL MXC INT CL⁷ C08J 5/10, C08L 23/00 25/00 27/00 29/00 31/00 33/00 53/00 101/00, C09K 17/00 17/42 17/48, E02D 29/00 31/00, E21D 5/00 11/00 11/38 Other: Online: WPI, EPODOC, PAJ
(74) Agent and/or Address for Service	
Marks & Clerk 27 Imperial Square, CHELTENHAM, GL50 1RQ, United Kingdom	

(54) Abstract Title

Two-component composition comprising polymer resins and gypsum

(57) A composition comprising component A and component B; wherein component A comprises: gypsum, an alkaline polymer resin, and a hydration inhibitor; and wherein component B comprises: an acidic polymer resin, a filler, and an activator.

The polymer component may comprise polymers derived from ethylenically unsaturated monomers such as vinyl, acrylates, methacrylates and styrene. The composition can be applied to substrate surfaces such as subterranean mines to provide a membrane giving structural reinforcement and to prevent the release of gases and moisture.

Also claimed is a membrane formed on the surface of a substrate and comprising a continuous polymeric film and gypsum.

GB 2382 582 A

POLYMER MODIFIED GYPSUM MEMBRANE AND
USES THEREFOR

This invention relates to a composition containing a polymer
5 component and gypsum and its utility as a membrane coating on various target
substrates. It is useful in the construction industry as coatings for sandwich
panels, molding, duct-work, piping and cladding systems. It also is useful in
traffic paint applications and other transportation industry safety coatings. It is
of particular value, though, as a semi-impervious reinforcing membrane on the
10 internal surfaces of subterranean mines. Further, this invention provides a
method for applying the novel composition to rapidly set up on these substrate
surfaces. In addition, the invention may be used in the manufacture of fibre
reinforced composite structures and composite construction components, for
example laminated panels for use in cladding. Although the description below
15 relates primarily to the use of the invention as a reinforcing membrane for use
in subterranean mines, the invention is not limited to such applications and
may be used in, for example, any of the applications mentioned hereinbefore.

Particular problems exist in underground mining operations for coal,
20 gold, platinum and the like in which it is necessary to provide support to the
wall and ceiling surfaces of the mine shafts as soon after excavation as
possible. This is because the recently excavated rock facing may be

susceptible to cracking and spalling. If exposed for too long a period of time, rock fragments will begin to fall away from the wall and ceiling surfaces of the newly excavated rocks. This presents an obvious hazard to both mining personnel and machinery.

5

An additional problem that must be addressed by any coating membrane is the prevention of gas exchange, such as methane, from the newly exposed rock surfaces. The spread of such gases throughout the mining tunnel system can pose serious health threats to the mining personnel. Further, any 10 coating must be virtually impervious to moisture, thus setting up a barrier between the excavated rock and the internal mine environment.

Mine tunnel systems are made up of different areas. The main access tunnels tend to be much larger than regions referred to as "stopes". Stopes are 15 the primary excavation areas of the mine. It is advantageous to apply a coating membrane to both areas. Each area, however, presents its own unique problems.

Conventional coatings in the main access areas are cementitious. These 20 coatings require large equipment to perform the application process. They are often used in these areas because of the adequate amount of room available to accommodate heavy application equipment. One type of cementitious coating

is referred to as "shotcrete". As disclosed in U.S. Patent No. 4,046,357, shotcrete is a slurry made up of Portland cement which is sprayed under pressure onto the internal surfaces of the larger access areas. The problems with use of these types of coatings are that the application process is very 5 messy, creating "splash back" and excessive dripping. Further, these coatings often take a long time to set up, from 15 minutes to over four hours. This time frame, coupled with the need to clean up from the messy application process, may require shutting down the recently coated area to vehicular traffic or other activities, thus adversely affecting productivity.

10

These types of heavy cementitious coatings have proven to be unacceptable in the stope regions of the mine because these regions are very confining with ceiling heights sometimes no greater than 1.2 to 1.5 meters. Lighter weight resin systems, which can be applied with lighter weight and 15 smaller equipment are preferable. Polyesters and polyurethanes had been tried and had shown some promise but are now widely banned in mining operations due to safety and health concerns. They tend to generate toxic fumes upon curing and exhibit poor resistance to flammability. Neither of these results are desirable in a closed environment such as a subterranean mine system.

20

Gypsum formulations have been widely used for mining operations. Gypsum is inexpensive but it has its drawbacks. For example, gypsum forms

a notoriously poor moisture barrier. Resistance to moisture seeping out of the excavated rock is important in mining operations. If moisture is allowed to seep into the mine shafts and tunnels, at the very least, it will create a very unpleasant working environment for the miners, and in the worst case, will 5 cause erosion or pooling on walkways or roadbeds, requiring constant preventative or rehabilitative maintenance. Organic polymer resins have been blended with gypsum materials with the objective of resolving this problem. However, such systems have always been designed around using gypsum as the primary film forming barrier. The addition of polymer resins as a 10 secondary, non-continuous barrier only reduces severity of moisture permeability. Also, as with shotcrete, due to the difficulty in applying a heavy gypsum based coating onto the internal surfaces of such a confining work environment as the stope regions of a mine, this type of coating is undesirable here, as well.

15

As a result of the difficulties attendant with the use of gypsum or cement based coatings, coupled with the current ban on polyester and polyurethane coatings, there has existed for some time a need for a non-toxic, moisture and gas impermeable coating which may be applied with light weight 20 equipment and which will set very rapidly upon contact with excavated rock surfaces. The present invention presents a viable solution to these problems.

The present invention provides a composition which comprises, as its primary ingredients, a polymer resin and gypsum. The polymer resin is in the form of an aqueous emulsion. The composition is prepared in two separate components, one containing a resin and the gypsum and a set retarder to prevent the premature setting of the gypsum. The second component contains a different resin, a filler and a set activator, which, when combined with the first component, will initiate the setting of the gypsum.

The composition may be supplied to the work site in two components, one consisting primarily of the polymer resin and the other containing the gypsum. The two components are applied to the target surface either separately or immediately after being blended where they rapidly react to form a quick setting membrane.

One aspect of the invention is a composition containing components A and B, wherein component A comprises:

- gypsum,
- an alkaline polymer resin, and
- a set retarder,

and component B comprises:

- an acidic polymer resin,
- a filler, and

- a set activator.

A second aspect of the invention is a method for applying a membrane coating onto a substrate surface. This method is particularly well suited for 5 application onto the newly excavated surfaces of a subterranean mine system. During application, components A and B are applied at a volume ratio of from 7 to 3, respectively, to 3 to 7. The optimum ratio may be determined by considering factors such as the surface to be treated, the time required for cure and other processing concerns.

10

A third aspect of the invention is a membrane which forms on the surface of a substrate comprising a continuous polymeric resin film and cured gypsum. Even though the membrane is very thin, it is substantially impervious to gas and moisture seepage out of the substrate. The membrane 15 may be from 0.1 to 10mm thick, depending on the working environment and application conditions.

Application is most conveniently done by use of pressurized spray applicators. Component A and component B may be fed via separate hose or 20 duct systems to either a single or dual applicator nozzles, where both are sprayed either simultaneously, as through dual nozzles, or as a blend, via a single nozzle, onto the target excavated rock surface. By applying pre-

determined volumes of components A and B, the person performing the task of applying the membrane is not left with the task of trying to calibrate the amounts of both components being sprayed so as to optimize cure times and coating thicknesses. This optimization has already been determined prior to 5 formulating and delivering components A and B to the work site.

At the moment components A and B are combined, the activator from component B will initiate the setting of the gypsum from component A. Since it is originally in a hemi-hydrate state, as it sets, the gypsum will require 10 water. The gypsum rapidly withdraws water from the polymer resins, which are in an emulsified state. This then causes the polymers to "film over" the surface of the substrate. It is this polymeric film that provides resistance to the escape of gases and moisture from the newly exposed rock surface.

15 The membrane formed by the application of the present composition provides excellent resistance to the exchange of gases, such as methane, which might leach out from the newly exposed rock. Further, it provides a coating which is substantially impervious to moisture. The present composition readily adheres to various substrates, especially newly excavated subterranean 20 rock, which helps to reinforce the exposed facing of these rocks so as to prevent fragments from "calving" off and falling onto either mining personnel or their equipment.

An additional advantage associated with this invention relates to its ease of handling. It is possible to eliminate measuring or the addition of ingredients at the point of use. Since the two components, A and B, are applied at pre-determined rates, the application equipment may be relatively simple in design. Components A and B may be mixed off site and transported to the work site in closed containers. Although various application techniques may be used, it may be preferable to use a spray applicator, especially if the target substrate is the recently excavated rock surface of a subterranean mine.

10 Once at the point of use, the two components may then be fed into spray equipment and sprayed together onto the surface to be treated. The blended components will then set up very rapidly to form a membrane on the rock surface.

15 The membrane coating thickness may vary as conditions warrant, but generally, they range from 0.1 to 10mm. The preferred thickness is in the range of 0.5 to 5mm and most preferably from 1 to 2 mm. The novel polymer/gypsum composition of the present invention will set up quickly on the treated rock surface. A final membrane coating thickness in the range of 1 to 2 mm will set up in less than 3 minutes and most probably in approximately 20 1 minute.

The polymer resins useful in this invention are primarily derived from polymers of ethylenically unsaturated monomers and include vinyl resins and polymers of acrylates and methacrylates. Examples include methyl acrylate, butyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl 5 methacrylate, hexyl methacrylate and lauryl methacrylate. Other polymer resins which may be used are styrene, vinyl acetate, vinyl versatate and vinyl chloride. Copolymers of two or more of these classes of monomers can be employed as desired depending on the properties required in the final membrane composition. The term "copolymer" as used herein is intended to 10 include polymer blends as well as true copolymers. An example of a suitable alkaline copolymer is AC339, which is an acrylate polymer, available from the Rohm and Haas Co. of Philadelphia, PA. An example of a suitable acidic copolymer is HA16, also available from Rohm and Haas, which is an acrylate/acrylamide copolymer.

15

When selecting monomers or monomer blends for use in the composition of the invention, it is necessary to keep in mind the various properties of each monomer. For example, polystyrene is alkali-resistant and water resistant, but its long term aging properties are not very good. For some 20 applications, this negative feature may be an acceptable accommodation. Polyvinylacetate has low water resistance but in certain applications, e.g., when the composition is applied to a subterranean surface which is

substantially devoid of moisture, this may be acceptable. The acrylate and methacrylate resins have good long term aging properties and good water and alkali resistance, but they may require flow additives to improve their flow characteristics. For applications where having good flow characteristics is not an issue, the choice of this resin is not a problem and may in fact be desired based on the many other valuable properties exhibited by the acrylate class of resins. The amount of polymer resin present in either component A or component B is from 20 –99 parts, based on the total weight of the respective component.

10

One of the properties which should be considered in the choice of a polymer is the "glass transition temperature" or "Tg". The glass transition temperature of a polymer is the temperature at which a polymer transitions from a rigid, glassy state at temperatures below Tg to a fluid or rubbery state at temperatures above Tg. The Tg of a polymer is typically measured by differential scanning calorimetry (DSC) using the mid-point in the heat versus temperature transition as the Tg value. A typical heating rate for the DSC measurement is 20°C/minute. The Tg of various homopolymers may be found, for example in Polymer Handbook, edited by J. Brandrup and E. H. Immergut, Interscience Publishers. The Tg of a polymer is calculated using the Fox equation (T. G. Fox, Bull. Am. Physics Soc., Vol. 1, Issue No. 3, page 123, 1956).

The preferred Tg for the polymer resin is in the range of -20° to 50°C, with the most preferred range being from 0° to 40°C. As for the examples cited earlier, the Tg of AC339 is 26°C and for HA16 it is 35°C.

5

The pH of the polymer is important in that it affects the stability of the formulation. Specifically, in order for the gypsum to remain stable and not set up after being formulated but before use, the specific polymer binder must be alkaline. Thus, the polymer formulated into component A must be alkaline.

10 The pH of the polymer in component B is not as critical since it does not come into contact with the gypsum until the two components are blended with the intent of causing the gypsum to set up. This polymer may be either acidic or alkaline. However, it may be preferable to use an acidic polymer since, once components A and B are blended, the resulting blend will have a final pH in

15 the neutral range, thus avoiding any potentially negative consequences from the formation of a membrane either too acidic or too alkaline.

20 The polymer resin may be emulsified or it may be in the form of a water redispersible powder. While either system may work in the operation of the present invention, it may be commercially more feasible to utilize emulsified polymer resins. Emulsions which are formulated for the composition of the invention may contain about 35 to 65% solids, preferably

45 to 55%, by volume. The concentration used will, of course, depend on the characteristics required in the final membrane coating and the speed of cure. However, since the continuous phase of the membrane formed consists of a polymer film and not a gypsum film, a high polymer loading is necessary to 5 achieve the objectives of the invention.

Numerous emulsion processes are known in the art. While any of these may be employed to create the specific polymer resin emulsions of the invention, reference is directed to "The Fundamental Principles of 10 Polymerization" by D'Alelio (Wiley, pub., 1952) and "Principles of Polymer Chemistry" by R.J. Flory (Cornell University Press, pub., 1969) as indicative 15 of suitable polymerization techniques.

The gypsum used in this invention may comprise a wide variety of 15 settable forms of calcium sulphate which may include anhydrous calcium sulphate and/or chemical gypsum, commonly called synthetic gypsum, as well as calcium sulphate hemihydrate.

There are primarily two types of hemihydrate ($\text{CaSO}_4 \cdot 1/2\text{H}_2\text{O}$) which 20 are commercially available and conventionally referred to as the alpha and beta forms. The alpha hemihydrate is conventionally prepared by placing lump gypsum into an autoclave and calcining it at controlled superatmospheric

pressure in the presence of steam. In contrast, beta hemihydrate is prepared by heating the dihydrate at atmospheric pressure in either a kettle or rotary calciner. Although the physical appearances of these two types of gypsum may be the same, they differ in the water/gypsum ratio required to produce 5 workable products. The dissimilarity in the physical nature of the gypsum particles of the two forms arises from the differences in their respective surface properties. The larger alpha crystals have low water absorption and smaller surface area per unit weight. This translates into a lower water requirement to cause setting up, or curing, of the gypsum. The lower the 10 weight of water in proportion to the weight of dry gypsum solids, the greater the strength of the final product after curing. The amount of gypsum used in the formulation of component A is from 50 to 80 parts, based on the total weight of component A. Preferably, 60-70 parts is used.

15 The composition of the invention contains a hydration inhibitor to prevent the setting of the gypsum. It is incorporated into the "A" component in an amount of from 0.1 to 2.0 parts, based on the total weight of component A. The hydration inhibitor is a polymer or copolymer of a polycarboxylic acid. Examples include acrylic acid, methacrylic acid, itaconic acid and fumaric 20 acid. Copolymers of acrylic acid or methacrylic acid and an alkyl ester of acrylic acid or methacrylic acid, or esters thereof, such as methyl acrylate, or polycarboxylic acid anhydrides are preferred hydration inhibitors. The

polymeric inhibitor may conveniently be in the form of the sodium or ammonium salt. A preferred hydration inhibiting copolymer may contain from about 50 to 99.9 percent acrylic acid and about 0.1 to about 50 percent acrylamide, by weight. More preferably, the copolymer consists of about 95 to 98 percent acrylamide, by weight, and about 1 to 5 percent, by weight, of acrylic acid. Examples of suitable hydration inhibitors are Acumer 9141, sold by the Rohm and Haas Co., Philadelphia, PA and Coatex TP-30.

An activator is included in the "B" component so that upon intermixing with the "A" component, setting of the gypsum will be initiated. This then leads to the formation of a polymer resin film on the targeted substrate. The amount of activator required will be based on the amount of alpha gypsum and hydration inhibitor present in the composition. The activator will preferably be added in an amount of from 0.1 to 6.0 weight percent, and more preferably from 0.1 to 4.0 weight percent, based on the weight of the solids content of component B. Suitable activators include metallic salts which can provide acidic cations. Preferable metallic salts are aluminum sulfate, calcium sulfate, ferric sulfate, zinc sulfate and ferric chloride. The most preferred activator for this composition is aluminum sulfate.

20

A filler may be used in the present composition to provide bulk to the formulation. Examples of suitable fillers are sand, mica, silica aluminate and

fly ash. A low density fly ash is commercially available as "Hollowfill". The filler is best added to component B and may be present in an amount of 30-50%, by weight. Preferably, filler may be added in an amount of 35-45%, by weight.

5

The composition of the invention will now be described by example. It should be understood that other ingredients are added to the composition in order to aid processing, handling or formulating. Ingredients which are traditionally utilized in coatings include anti-foamers, surfactants, rheology modifiers, set control agents, coalescing agents and expansion agents.

Legend: Ingredients

	Alkaline binder:	AC339: acrylic latex emulsion; Rohm and Haas
5	Co.	
	Antifoam:	S882, Wacker Silicones
	Surfactant:	X405/70, Triton
	Expansion agent:	Potassium Hydrogen Tartrate
	Coalescing agent:	Butyl Carbitol
10	Set control agent:	Sodium citrate
	Rheology Modifier:	RM 2020; acrylic polymer: Rohm and Haas Co.
	Hydration Inhibitor:	TP-30; polycarboxylate; Coatex Corp.
	Acidic binder	HA16:acrylic/acrylate polymer; Rohm and Haas
	Activator:	Aluminum sulphate
15	Gypsum:	Alpha hemi-hydrate
	Filler:	Millisil C-7; aluminum silicate

EXAMPLEComponent A (pre-mix)

5

ingredient parts by weight

alkaline binder 93.94

antifoam 1.00

surfactant 1.75

10 rheology modifier .11

hydration inhibitor 1.35

excess water 1.86

total 100.00

15

Formulated Component A

gypsum 69.23

pre-mix (A) 30.77

20

total 100.00

pH 8.4
 solids 83.8%
 density 1.84

5

Component B (pre-mix)

	<u>ingredient</u>	<u>parts by weight</u>
10	acidic binder	57.18
	defoamer	.57
	expansion control	.56
	coalescing agent	1.50
	activator	2.79
15	filler	143.0
	excess water	2.79
	total	208.40
20	pH	2.7
	solids	83.4%
	density	1.82

Formulation

	ratio by volume	ratio by weight
5 Component A	1	50.17
Component B	1	49.83

Application

10 Components A and B are then transported to the point of use in separate containers. The method of application is via spray application. Appropriate spray applicators may be acquired from the Sagola Co. in Spain. The container holding the aqueous dispersion of component A is attached to one of the feed systems. Similarly, the container holding the aqueous 15 dispersion of component B is attached to another feed system. Both components A and B are combined in equal volumes inside the spray applicator immediately prior to application. The blended solution is then sprayed onto a rock surface at 30 psi.

Results

	set time:	1 minute
5	thickness:	2mm
	moisture permeability	low
	gas exchange	low

CLAIMS

I Claim:

1. A composition comprising component A and component B;

5 wherein component A comprises:

-gypsum,

-an alkaline polymer resin, and

-a hydration inhibitor; and

wherein component B comprises:

10 -an acidic polymer resin,

-a filler, and

-an activator.

2. The composition of claim 1 wherein both components A and B are

15 dispersed in water to create an aqueous dispersion.

3. The composition of claim 2 wherein the volume ratio of component A

to component B is from, and including, 7 to 3 to, and including, 3 to 7.

20 4. The composition of claim 1 wherein the polymer resins are derived

from polymers of ethylenically unsaturated monomers.

5. The composition of claim 4 wherein the ethylenically unsaturated monomers are selected from the group consisting of vinyl, acrylates, methacrylates, styrene, vinyl acetate, vinyl acetate and vinyl versatate.

5 6. The composition of claim 1 wherein the hydration inhibitor is an aqueous polycarboxylate.

7. The composition of claim 1 wherein set activator is selected from the group consisting of aluminum sulfate, potassium sulfate, calcium sulfate, 10 ferric sulfate, zinc sulfate and ferric chloride.

8. The composition of claim 7 wherein the set activator is aluminum sulfate.

15 9. The composition of claim 1 wherein the gypsum is calcium sulfate hemihydrate.

10. The composition of claim 9 wherein the calcium sulfate hemihydrate is alpha hemihydrate.

11. The composition of claim 1 wherein the amounts, by weight, of the ingredients of component A are: 20-99 parts alkaline polymer resin; 50-80

parts gypsum and 0.1-2.0 parts hydration inhibitor, based on the total weight of Component A.

12. The composition of claim 1 wherein the amounts of the ingredients of
5 component B are: 20-99 parts acidic polymer resin; 30-50 parts filler and 0.1-
6.0 parts activator, based on the total weight of component B.

13. A method of forming a membrane onto a substrate comprising applying
to said substrate the composition of claim 1.

10

14. The method of claim 13 wherein the substrate is the excavated rock
surface of a subterranean mine.

15. The method of claim 13 wherein the composition comprises
15 components A and B.

16. The method of claim 15 wherein the volume ratio of A:B is from 7:3 to
3:7.

17. The method of claim 16 wherein the volume ratio of A:B is 1:1.

18. The method of claim 13 wherein the components A and B are blended immediately prior to being applied to the substrate by means of a pressurized spray applicator.

5 19. The method of claim 13 wherein the thickness of the membrane is from 0.1mm to 10mm.

20. A membrane formed on the surface of a substrate comprising a continuous polymeric resin film and gypsum.

10

21. The membrane of claim 20 wherein the substrate is the rock surface of a subterranean mine.

22. The membrane of claim 20 wherein the thickness of the membrane is 15 from 0.1 to 10mm.

23. The membrane of claim 22 wherein the thickness of the membrane is from 0.5 to 5.0mm.

24. The membrane of claim 20 wherein the continuous polymeric resin film and gypsum are formed by applying onto the surface of the substrate the composition of claim 1.

Application No: GB 0128658.2
Claims searched: 1 to 19

Examiner: Matthew Clarke
Date of search: 18 April 2002

Category	Identity of document and relevant passage	Relevant to claims
A	US 3713297 A (HOCHBACH) see column 3 line 8 to column 5 line 60	

X	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.