A machine for spreading material.

A machine for spreading material, in particular granular and/or pulverulent material such as fertilizer. The machine comprises a frame (2), a hopper (3) and one or more spreading members (4, 5, 57), means (28, 56) being provided at or near the hopper (3, 56), with the aid of which the position and/or the shape of the upper surface of the material contained therein can be measured in such a manner that on the basis thereof it is possible to establish the quantity of material still present in the hopper and that already spread therefrom. The means (28) include elements (29 to 36) extending in the hopper and extending, respectively, at least along part of the upper surface level of the quantity of material in the hopper or include a distance measuring device (65) provided above the hopper (58) for measuring the position of the upper surface level of the quantity of material in the hopper.
A MACHINE FOR SPREADING MATERIAL

The invention concerns a machine for spreading material, in particular granular and/or pulverulent material such as fertilizer, which machine comprises a frame, a hopper and at least one spreader member.

It is an object of the invention to obtain with a machine of the above-defined type in a simple manner a proper indication as to the quantity of material spread by the spreader member per unit of time, per unit of length to be travelled and/or per surface unit to be spread.

According to the invention, this can be achieved by providing means at or near the hopper, with the aid of which means the position and/or the shape of the upper surface of the quantity of material contained therein can be measured, the arrangement being such that on the basis of this position it is possible to establish the quantity of material still present in the hopper and that already spread therefrom, respectively. Thus, there can be performed a measurement which is based on the quantity of material contained in the hopper at a given instant, so that from this information can be established the quantity of material already spread. This provides a proper indication as to how much material has been spread per unit of time, per unit of length to be travelled and/or per unit of surface. During operation, the material level in the hopper will drop, so that the said level is a proper indication as to the quantity of material still present therein as well as as to that which has already been spread therefrom.

A simple embodiment of the machine according to the invention is obtained when the means include an element which extends at least along part of the upper surface of the quantity of material in the hopper for a given quantity of material therein. It can be established easily whether the location of the level of the quantity of material in the hopper is identical to that of the element, so that the quantity of material still present therein can be derived from this observation.

In a further embodiment of the machine according to the invention, a plurality of elements are arranged in the hopper at different heights. In this situation, each element extends at least along part of the upper surface of the various quantities of material present in the hopper. Thus, each of the elements provides an indication as to the quantity of material still present in the hopper. In order to obtain a proper indication, an element is preferably in the form of an elongate member. The elongate member may be designed simply as a rod. The rod-shaped elements can easily be observed by the driver of the machine. Thus, the driver is given in a simple manner an indication as to the quantity of material still contained in the hopper.

In a further embodiment of the machine according to the invention, the elements extend, seen in plan view, at least approximately through the centre of the hopper. When the level of the quantity of material in the hopper drops, the level will drop to a greater extent in the centre thereof than near the walls, because e.g. the discharge member of the hopper is located, seen in plan view, in a central position in the hopper. For that reason, the rod-shaped elements will have downwardly curved portions near the centre of the hopper, all this in accordance with the curve in the upper surface of the quantity of material in the hopper.

The flow of the material from the hopper to the discharge member thereof will advantageously remain possible when a plurality of elements together are mounted on at least one support which preferably extends upwardly.

An advantageous embodiment of the machine according to the invention is obtained when the elements are applied detachably to the hopper. An advantageous construction is obtained when the elements are connected to a connecting member which is fitted detachably to the upper edge of the hopper. Thus, the elements can be removed from the hopper or be placed therein as an integral whole.

An indication as to the quantity of material still present in the hopper is obtained in a simple manner when the elements according to the invention are provided with indicator means that show the quantity of material present in the hopper when the upper surface thereof is flush with the relevant element.

In accordance with a further embodiment of the machine according to the invention, there is mounted above the hopper a distance measuring device, by means of which can be measured the position of the upper surface of the quantity of material present therein. Using the distance measuring device, it is possible to determine rapidly and in an accurate manner the position of the upper surface of the quantity of material and hence the quantity of material contained in the hopper itself. This in particular so, because by means of the distance measuring device the upper surface of the quantity of material in the hopper can be observed advantageously and rapidly in a plurality of points.

An advantageous embodiment is obtained when the distance measuring device continuously scans the upper surface of the contents of the hopper in accordance with a fixed pattern. In a
further embodiment of the machine according to the invention, the measurements obtained by the distance measuring device are processed electronically in an electronic mechanism, the arrangement being such that the quantity of material spread per unit of time and/or per unit of surface area can be displayed on a display device connected to the mechanism.

For a better understanding of the invention and to show how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:

Figure 1 is a plan view of a machine according to the invention, which machine is coupled to the lifting hitch of a tractor;

Figure 2 is a side view of the machine of Figure 1, taken in the direction of the arrow II in Figure 1;

Figure 3 is a front view of the machine, taken in the direction of the arrow III in Figure 1, part of the front side of the hopper having been omitted;

Figure 4 shows, to an enlarged scale, an indicator device;

Figure 5 is a side view of the indicator device, taken in the direction of the arrow V in Figure 4;

Figure 6 is a side view of a second embodiment of a machine according to the invention, and

Figure 7 is a plan view of the machine in accordance with Figure 6.

Figures 1 to 5 illustrate a machine 1 for spreading granular and/or pulverulent material. The machine is particularly suitable for spreading e.g. fertilizer. The machine 1 comprises a frame 2, to which are mounted a hopper 3 and two spreader members 4 and 5. The spreader members 4 and 5 are arranged at equal heights and are located next to each other relative to the direction of operative travel 11 of the machine. The spreader members are rotatable about upwardly extending rotary shafts 6.

The frame 2 includes connecting members 7, by means of which the machine can be coupled to the three-point lifting hitch 8 of e.g. a tractor 9 or a suchlike vehicle. Projecting from its leading end, the machine has a drive shaft 10 which can be coupled in a manner not shown in further detail via an intermediate shaft to the power take-off shaft of the tractor or a suchlike vehicle. By means of transmission members (not shown), the drive shaft 10 is connected to the spreader members 4 and 5.

Seen in plan view, the hopper 3 has a rectangular upper section 12 whose longitudinal sides constitute the front wall 13 and the rear wall 14, which said walls extend transversely to the direction of operative travel 11. The side walls 15 of the upper section 12 extend parallel to the direction of operative travel 11 of the machine. The hopper 3 has a lower section 17 which, seen in plan view, is also rectangular. The lower section 17 comprises two discharge nozzles 18 and 19 which are located adjacent to each other and transversely to the direction of operative travel 11. The lower section 17 has a front wall 21 and a rear wall 22, which said walls extend transversely to the direction of operative travel 11. The lower section 17 has side walls 23 which are located in planes that extend parallel to the direction of operative travel 11. The front wall 21, the rear wall 22 and the side walls 23 are arranged such relative to each other that they constitute a pyramid, the said walls converging downwardly. The discharge nozzles 18 and 19 are separated by partitions 24. Together with the other walls of the lower section 17, the partitions 24 constitute pyramid-shaped discharge portions in the form of the downwardly tapering discharge nozzles 18 and 19. The discharge nozzles 18 and 19 end in cylindrical discharge members 25 which constitute part of the lower section 17 and of the discharge nozzles 18 and 19. The upper sides of the partitions 24 extend to approximately halfway the total height 26 of the hopper 3.

The hopper 3 comprises means 28, by means of which can be established the quantity of material contained in the hopper 3. The means 28 include elongate elements 29 to 36 which extend in the hopper. Each of the elements 29 to 36 consists of a rod-shaped member which, when the machine is in the vertical position, extends therein substantially in the horizontal direction. Each of the elements 29 to 36 designed as rod-shaped members extends between two facing walls of the hopper. In this situation, the rod-shaped members 29 to 36 extend between the respective side walls 15 and 23 of the hopper. Seen in plan view, the rod-shaped members 29 to 36 are positioned in the middle between the front and rear walls of the hopper, i.e. in the centre thereof, taken in the direction of operative travel 11. The centre lines of the rod-shaped members 29 to 36 are all located in the same plane which, the machine being in the vertical position, extends vertically and transversely to the direction of operative travel 11. The rod-shaped members 29 to 36 are all located at different heights in the hopper, the uppermost element 36 being located near the upper side of the hopper and the lowermost element 29 extending, at least partly, taken in a direction from top to bottom, into the discharge nozzles 18 and 19. The rod-shaped elements 29 to 36 extend through the centres of the two discharge nozzles 18 and 19. Each of the elements 29 to 36 is curved slightly downwardly over each of the two halves of its length. The uppermost element 36 is curved to the least extent, whereas the elements...
located in lower positions are curved downwardly to an ever increasing extent, the lowermost element 29 being curved farthest. The lowest bends of each of the elements are located approximately above the centres of the discharge nozzles 18 and 19 and of the discharge members 25 arranged therebelow, respectively.

Each of the rod-shaped elements 29 to 36 is mounted on two tubular supporting members 40 and 41, which supporting members 40 and 41 extend upwardly and, the implement being in the vertical position, vertically. The supporting members 40 and 41 are positioned centrally above the discharge members 25. The centre lines of the supporting members 40 and 41 coincide with the centre lines 45 and 46 of the discharge nozzles 18 and 19 and of the discharge members 25, respectively. The spreader members 4 and 5 are situated above the centres of the discharge nozzles 18 and 19 and of the discharge members 25, respectively. When the machine is in the vertical position, the connecting members 42 and 43 extend horizontally. The connecting members 42 and 43 extends through apertures provided in the tubular supports 40 and 41 and, preferably, is secured thereto in the region of the said apertures e.g. by welding. The lower ends of the supporting members 40 and 41 are located below the point where the partitions 24 of the discharge nozzles 18 and 19 meet, while the upper ends thereof are located near the upper edge of the hopper 3. The upper ends of the supporting members 40 and 41 are connected to connecting members 42 and 43, respectively. When the machine is in the vertical position, the connecting members 42 and 43 extend horizontally. The connecting members 42 and 43 are also tubular and extend parallel to the direction of operative travel 11. Each of the connecting members 42 and 43 extends between the upper side of the front wall 13 and that of the rear wall 14. The connecting members 42 and 43 are connected detachably to the upper side of the hopper 3 by means of easily detachable locking devices 44. Preferably, the locking devices 44 are spring-loaded locking pins which fit in e.g. apertures provided in the upper sides of the front and rear walls 13 and 14, respectively.

Halfway its length, each of the rod-shaped elements 29 to 36 is provided with an indicator device 47. The indicator devices 47 are positioned above the side at which the walls 24 are contiguous. The indicator devices 47 are located near the longitudinal plane 49 of the machine, which longitudinal plane 49 extends parallel to the direction of operative travel 11. The hopper 3 is symmetrical relative to the said longitudinal plane 49. Each of the indicator devices 47 consists of a plate-shaped member which is connected to the relevant element 29 to 36 e.g. by means of welding. In this situation, the indicator devices 47 have their lower ends connected to the side of the rod-shaped elements 29 to 36 that is the leading side with respect to the direction of operative travel 11. From their connection to the relevant element, the plate-shaped indicator devices extend obliquely upwardly and rearwardly, the arrangement being such as is apparent in particular from Figure 5. Each of the indicator devices is provided with an indication number 48. The numbers on the indicator devices 47 of the respective elements 29 to 36 differ, the lowermost indicator device showing the lowest number of the various numbers shown. In this embodiment, the lowermost indicator device 47 has the number "200" and the uppermost indicator device 47 the number "1800". From bottom to top, the numbers on the individual indicator devices in the row are stepped up by "200" from member to member. In this embodiment there are provided eight elements. The upper side of the hopper is provided with an indicator device 50 of an identical construction as the indicator devices 47. Preferably, the indicator device 50 is fitted to the rear wall 14. The indicator device 50 has a number which exceeds by "100" the number shown on the indicator device 47 of the uppermost element 36.

Prior to use, the machine 1 is connected to a tractor or a suchlike vehicle, as is shown e.g. in Figures 1 and 2, and is moved in the direction indicated by the arrow 11. During travel and spreading of the material, the spreader members 4 are caused to rotate via the drive shaft 10 from the power take-off shaft of the tractor. The material to be spread is carried along in the hopper 3 and fed therefrom to the spreader members 4 and 5 via the discharge nozzles 18 and 19 and the respective discharge members 25. During travel, the spreader members spread the material over a strip of a greater or lesser width either to one side or to both sides of the machine. The discharge members 25 are provided with one or a plurality of outlet apertures whose passage size is adjustable at wish in order to be able to control the quantity of material to be fed from the hopper to the spreader members 4 and 5 per unit of time.

A predetermined quantity of material is to be spread via the spreader members 4 and 5 per unit of time and/or per unit of length to be driven, so as to ensure that the material is spread in the desired quantity per unit of surface area. To achieve this, it is desirable that a check can be made of the quantity of material fed from the hopper 3 to the spreader members 4 and 5 per unit of time and/or per unit of length to be driven. According to the invention, an indication as to the quantity of material flown from the hopper can be obtained in a...
simple manner via the measuring means 28 con-
stituted by the measuring elements 29 to 36.

When the material is spread during operation, it
flows from the hopper 3 via the discharge noz-
zles 18 and 19 to the respective discharge mem-
bers 25. As a result thereof, the material, in particu-
lar at first that located in the hopper 3 straight
above the discharge members 25, will flow down-
wards. Because of the flow of the material from the
hopper 3, the upper surface layer of the quantity of
material in the hopper will sag and be deformed in
a certain manner. In particular, the material over
the discharge members 25 will collapse at an ear-
lier instant due to the flow-out of the material
therethrough. Thus, the upper surface of the quan-
tity of material in the hopper 3 will start to deform
such that the said quantity starts sagging straight
above the discharge members 25. After the ma-
terial has collapsed to some extent straight above
the discharge members 25, the material will start to
flow from the periphery of the spots straight above
the discharge members towards the centre
thereabove, so that the upper surface of the quan-
tity of material in the hopper 3 will obtain a certain
shape. The change in position of the surface of the
upper side of the material in the hopper 3 can be
established in practice for any shape of hopper.
The measuring elements 29 to 36 are shaped in de-
pendence on this establishment. Starting from e.g.
a hopper which is filled to the top, the upper
surface of which filling extends horizontally when
the machine is in the vertical position, the material
will start to flow from the hopper through the dis-
charge member to the spreader members 4 and 5
during operation. The indicator device 50 displays
an indication as to the quantity of material spread.
Thus, by using simple means which are in essence
trouble-free, it is possible to establish the quantity
of material that has been spread via the spreader
members per unit of length driven and/or per unit
of time.

Together with the supporting members 40 and
41 and the connecting members 42 and 43, the
measuring elements 29 to 36 form an integral
whole, thereby constituting the measuring means
28. If so desired, these measuring means can be
removed from the hopper and be mounted therein
again, respectively. Due to the fact that the sup-
porting members 40 and 41 are mounted in a
vertical position and that the elements 29 to 36 are
arranged such that one element is straight above
the other, and preferably above the centre of the
discharge nozzles and of the discharge members,
respectively, the total assembly of the measuring
means 28 will hardly have any negative effect on
the flow of the material from the hopper via the
discharge members 25. An additional advantage is
obtained when the rod-shaped members 29 to 38
are of a round cross-section. The position of the
indicator devices 47 and 50 is such that the indica-
tor means can be observed in a simple manner
from the driver's seat of the tractor. Also the num-
bers 48 are preferably of such a structure that they
can be read easily as soon as they get free from
the material in the hopper 3.

Figures 6 and 7 show a machine 54 which
comprises a frame 55 to which are fitted a hopper
56 and a spreader member 57. The frame 55
includes connecting means 58, by means of which
the machine can be coupled to the lifting hitch of a
tractor or a suchlike vehicle in a similar manner as
is shown for the first embodiment, for which reason
this is not illustrated in further detail in this embo-
diment. In this embodiment, the hopper 56 is, seen
in plan view, rectangular and square. In the vertical
position of the machine, the upper portion of the
hopper 56 has vertical sides 59. This upper portion
is contiguous to a portion 60 which tapers down-
wardly to form a nozzle. This nozzle portion 60 also
has a square cross-section with equal sides which
converge downwardly and end in a cylindrical dis-
charge member 61. Like the discharge members
25, this discharge member 61 is provided with
discharge outlets which can be closed to a greater
or lesser extent by means of a closing member in
such a manner that the quantity of material which
can flow to the spreader member 57 via the dis-
charge member per unit of time is adjustable. In
this embodiment, there is provided only one
spread member 57 which, during operation, can
be caused to rotate in the desired direction. To that
end, the spreader member 57 is coupled via trans-
mision members (not shown) to a drive shaft 62
which, like the drive shaft 10 in the previous embodiment, can be coupled to e.g. the power take-off shaft of a tractor or a suchlike vehicle. A supporting arm 63 is mounted to the side of the hopper which, taken in the direction of operative travel 69 of the machine shown in Figures 6 and 7, is the leading side. This supporting arm 63 extends obliquely upwardly in such a manner that its end, seen in plan view, is located near the centre of the hopper. The supporting member 63 is designed as a supporting arm and is provided with a carrier 64 at its upper side. On this carrier 64 there is mounted a measuring device 65 in the form of a distance measuring device. Preferably, the measuring device 65 is provided capably of movement about two pivot pins 66 and 67, which pivot pins are arranged perpendicularly to each other and extend horizontally when the machine is in the vertical position. In this embodiment, these pivot pins are positioned such that the pivot pin 66 extends in the direction of travel 69 and the pivot pin 67 perpendicularly thereto.

The measuring device 65 is drivable such by e.g. a stepper motor that, during operation of the machine, it can be given a constant movement about the pivot pins 66 and 67. The measuring device 65 and its mode of movement are such that the measuring device can measure the distance to the upper surface of the quantity of material in the hopper 56.

During operation, the implement is coupled via the connecting members 58 to the lifting hitch of a tractor or a suchlike vehicle. The drive shaft 62 is connected to the power take-off shaft via an intermediate shaft, thereby providing that, during operation, the spreader member 57 is caused to rotate about an upwardly extending rotary axis 68. In this embodiment, the rotary axis 68 coincides with the centre line of the hopper 56 and extends vertically when the machine is in the vertical position. During operation, the machine is moved in the direction indicated by the arrow 69, so that the material is spread by the spreader member through a predetermined width relative to the direction of operative travel to either one side or to both sides thereof, the arrangement being such as that in the previous embodiment. During operation, the material to be spread is carried along in the hopper 56 and fed therefrom to the spreader member 57 via the discharge member 61. As has been described in the foregoing with reference to the first embodiment, it will be the object to spread the material in a predetermined quantity per unit of surface area and/or per unit of time. The quantity actually spread, which is adjustable via the setting of the discharge member, e.g. in dependence on the rate of travel and the spread width, can be checked during operation. In accordance with the invention, an indication as to the quantity of material actually flowing from the hopper per unit of time and/or per unit of length to be driven and spread by the spreader member is obtained on the basis of the location and the shape of the surface of the upper level of the quantity of material in the hopper.

During the flow of the material from the hopper, the position of the material and the shape of the upper layer thereof in the hopper will change. As a result thereof, the distance from the upper surface of the quantity of material in the hopper relative to the measuring device 65 will change during operation. Starting from a horizontal position of the upper surface of the quantity of material and the machine being in the vertical position, the material will flow, seen in plan view, from the centre towards the discharge member 61, because of its central position in the hopper. As a result thereof, the upper surface of the quantity of material will start to sag from the centre and it will start to cave in there. According as this depression reaches a certain value, the material will flow from around the centre of the upper surface towards the centre, so that during the entire procedure of emptying of the hopper the upper surface of the quantity of material will pass through a certain change pattern as regards shape. The change of this pattern can be established empirically in dependence on the flow of different quantities of material from the hopper. The distance from this upper surface to the distance measuring device can be observed by the distance measuring device during operation. Via the distance measuring device and an electronic mechanism (not shown in further detail) coupled thereto, this observation can be translated in dependence on the empirically established values in such manner that on a display device (not shown) can be displayed to the driver of e.g. the tractor to which the machine is coupled the quantity of material that is spread per unit of time and/or per unit of length to be driven. During operation, the distance measuring device will perform a predetermined movement about the pivot pins 66 and 67 in such a manner that it passes through an imaginary pattern along e.g. a line 72. This pattern can be passed through from e.g. the point 73 to the point 74. This line 72 can be passed through in accordance with the arrows shown therein. As in this embodiment, the line 72 may follow a zigzag course having parallel portions 77 which extend transversely to the direction of operative travel 69. It is, for example, possible to continuously measure in spaced-apart points 75 on this line the distance between the level of the material in the hopper and the distance measuring device. This line 72 may, for example, be assumed to be in the region of the upper side of the hopper 56. When the surface level of the quantity of material in the hopper falls
to below the upper side of the hopper 56, the distance will be measured via the shown line in points of the upper surface level of the quantity of material that are located in the extension between the measuring device and the line shown. Thus, during operation and dropping of the level of the quantity of material in the hopper, the change in the position of the level in the hopper can be measured continuously. Thus, a proper indication as to the quantity of material present in the hopper is obtained and, hence, one as to the quantity of material fed from the hopper to the spreader member and spread by the spreader member, respectively, per unit of time and/or per unit of length driven. In dependence on the rate of travel and on the width through which the material is spread, this indication will furnish a clue as to the quantity of material spread per unit of surface area. The data as to the rate of travel and the spread width can be inputted in e.g. the electronic mechanism either manually or automatically on the basis of the rate of travel and the spread width. Optionall, the measuring points 75 may be spaced apart by a greater or lesser distance 76 in dependence on e.g. the required measuring accuracy and/or on the shape of the hopper, in dependence wherein the upper surface level of the material in the hopper can change.

The data produced by the measuring device 65 can be conveyed to an electronic calculating mechanism or to a display device, respectively, connected e.g. via flexible connections to the measuring device 65. Thus, the display device e.g. constituting part of the electronic calculating mechanism can be mounted near the driver's seat, from where the machine is operated by the driver. If so desired, via the electronic mechanism there can be provided an automatic control of the discharge member, so that e.g. this discharge member can be set in dependence on the rate of travel of the machine. If the indication obtained via the measuring device 65 does not tally with the flow out of the desired quantity of material per unit of time and/or per distance covered, then the flow rate can be adjusted via the discharge member 61.

Using the machine according the invention, of which two embodiments are shown in the preceding constructional examples, there can be provided a simple machine, by means of which the desired quantity of material to be spread can be obtained and checked in an advantageous manner.

The invention is not limited to the features described in the foregoing but also relates to all the details shown in the accompanying drawings, whether they have been described or not.

Claims

1. A machine for spreading material, in particular granular and/or pulverulent material such as fertilizer, which machine (1) comprises a frame (2), a hopper (3) and at least one spreader member (4, 5), characterized in that means (28, 65) are provided at or near the hopper, with the aid of which means the position and/or the shape of the upper surface of the quantity of material contained therein can be measured, the arrangement being such that on the basis of this position and/or shape it is possible to establish the quantity of material still present in the hopper and that already spread therefrom, respectively.

2. A machine as claimed in claim 1, characterized in that the means (28) include an element (29 to 36) which extends at least along part of the upper surface level of the quantity of material in the hopper for a given quantity of material therein.

3. A machine as claimed in claim 2, characterized in that two or a plurality of elements (29 to 36) are provided in the hopper (3) at different heights, and that they are mounted jointly on at least one support (40, 41).

4. A machine as claimed in claim 3, characterized in that a support (40, 41) extends upwardly above a discharge member (25) of the hopper (3), the said discharge member having at least one discharge outlet for discharging the material from the hopper.

5. A machine as claimed in any one of claims 3 or 4, characterized in that two supports (40, 41) are arranged parallel to each other, to which supports the elements (29 to 36) are connected, each of the said supports (40, 41) being located above one of two discharge members (25) of the hopper.

6. A machine as claimed in any one of claims 3 to 17, characterized in that the means (28) are connected detachably to the hopper.

7. A machine as claimed in any one of claims 2 to 6, characterized in that each of the elements (29 to 36) is provided with an indication device (47) which indicates the quantity of material present in the hopper (3) when the upper surface level of this quantity of material is flush with the relevant element.
8. A machine as claimed in claim 1, characterized in that a distance measuring device (65) is provided above the hopper (56), by means of which the position of the upper surface level of the quantity of material in the hopper can be measured.

9. A machine as claimed in claim 8, characterized in that the distance measuring device (65) is provided above the hopper (3) capably of movement in such a manner that it can scan the upper surface level of the quantity of material in the hopper.

10. A machine as claimed in claim 8 or 9, characterized in that the distance measuring device (65) is driven by a stepper motor with the object of scanning the contents of the hopper (56).

11. A machine as claimed in any one of claims 8 to 10, characterized in that the distance measuring device (65) scans the position of the upper surface level of the quantity of material in the hopper (56) by means of ultrasonic or infrared waves.

12. A machine as claimed in any one of claims 8 to 11, characterized in that the measurements are processed electronically by the distance measuring device (65) in an electronic mechanism, the arrangement being such that the quantity of material spread per unit of time and/or per unit of surface area can be displayed on a display device connected to the said mechanism.

13. A machine as claimed in any one of claims 8 to 12, characterized in that the distance measuring device (65) is connected to the hopper (3).

14. A machine as claimed in any one of the preceding claims, characterized in that the machine includes a spreader member (4, 5 or 57) which is rotatable about an upwardly extending rotary axis (45, 46, 68) and to which the material is fed from the hopper during operation.

15. A machine as claimed in any one of the preceding claims, characterized in that the machine includes coupling members (7), by means of which the machine can be coupled to the lifting hitch (8) of a tractor or a suchlike vehicle.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (Int. Cl.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US-A-3 443 724 (BOSTON) * Column 2; figures 1-4 *</td>
<td>1,2</td>
<td>A 01 C 15/00</td>
</tr>
<tr>
<td>A</td>
<td>US-A-2 570 952 (HYLAND) * Columns 1-3; figures 1,2 *</td>
<td>1,2</td>
<td>B 65 D 90/48</td>
</tr>
<tr>
<td>A</td>
<td>FR-A-2 031 811 (LE DU) * Page 2; figure 1 *</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>TRANSPORT OPSLAG, vol. 11, no. 4, 23rd April 1987, page 21, Misset - Transprot + Opslag, Doetinchem, NL; "Niveaumeting van silo's en tanks"</td>
<td>1,8,11,12,13</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE HAGUE</td>
<td>06-12-1988</td>
<td>VERMANDER R.H.</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **&**: member of the same patent family, corresponding document