Office de la Propriete Canadian CA 2464844 A1 2004/12/25

Intellectuelle Intellectual Property
du Canada Office (21) 2 464 844
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2004/05/22 (51) CLInt.”/Int.CI." GOBF 17/00
(41) Mise a la disp. pub./Open to Public Insp.: 2004/12/25 (71) Demandeur/Applicant:

MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
DUNBAR, GEOFFREY T., US;
MOHAMMED, SOHAIL BAIG, US;
RUDOLPH, ERIC, US

(74) Agent: SMART & BIGGAR

(30) Prionte/Priority: 2003/06/25 (10/603,328) US

(54) Titre : PROCESSEUR DE MEDIA POUR INFRASTRUCTURE DE MEDIA
(54) Title: MEDIA FOUNDATION MEDIA PROCESSOR

.. A 191

! (SYSTEMMEMORY . o

5 (ROM) 131 :

| i

T {RAW 132 120 190 195 i

; ;

| 1L s |™ (rogessi o T e
: UNIT INTERFACE INTERFACE ¢ m

| [AEPLICATION : 197
; PROGRA S 135 :

i :

| OTHER PROGRAM SYSTEMBUS :

. MODULES ~ 136] | '

: ; 121 150 :

g " NONTELO ISk , LOCAL AREA NETWORK
: NON-VO E%RY NON %@ MEMORY NPUt

: RFAC INTERFACE

1

| PROGRAM INTER
. e

e e A S O SR Gkl wkh e gy =y

172

173
TABLET 164

REMOTE
MICROPHONE o COMPUTER

163

OTHER PROGRAM o oo ooo comos

148 Yoy 181 e
KEYBOARD 185—{ REMOTE
APPLICATION
PROGRAM

(57) Abréegée/Abstract:
A system and method for a media processor separates the functions of topology creation and maintenance from the functions of

processing data through a topology. The system includes a control layer including a topology generating element to generate a
topology describing a set of input multimedia streams, one or more sources for the input multimedia streams, a sequence of

<o
SoTEEN S /7
S
B - sn e A
-
R
o

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2464844 A1 2004/12/25

(21) 2 4064 844
(13) A1

(57) Abrege(suite)/Abstract(continued):
operations to perform on the multimedia data, and a set of output multimedia streams, and a media processor to govern the

passing of the multimedia data as described In the topology and govern the performance of the sequence of multimedia operations
on the multimedia data to create the set of output multimedia streams. The core layer includes the input media streams, the
sources for the input multimedia streams, one or more transforms to operate on the multimedia data, stream sinks, and media

sinks to provide the set of output multimedia streams.

CA 02464844 2004-04-22

ABSTRACT OF THE DISCLOSURE

A system and method for a media processor separates the functions of topology creation
and maintenance from the functions of processing data through a topology. The system
includes a control layer including a topology generating element to generate a topology
describing a set of input multimedia streams, one or more sources for the input
multimedia streams, a sequence of operations to perform on the multimedia data, and a
set of output multimedia streams, and a media processor to govern the passing of the
multimedia data as described in the topology and govern the performance of the sequence
of multimedia operations on the multimedia data to create the set of output multimedia
streams. The core layer includes the input media streams, the sources for the input
multimedia streams, one or more transforms to operate on the multimedia data, stream

sinks, and media sinks to provide the set of output multimedia streams.

CA 02464844 2004-04-22

MEDIA FOUNDATION MEDIA PROCESSOR

TECHNICAL FIELD

[0001] This invention relates generally to computing and, more particularly, relates to
handling multimedia data in a computing environment.

BACKGROUND OF THE INVENTION
[0002] As the abilities of computers expand into entertainment genres that once required
separate electronic components, increased efficiency and user-friendliness 1s desirable. One
solution is Microsoft’s® DirectShow®, which provides playback of multimedia streams
from local files or Internet servers, capture of multimedia streams from devices, and format
conversion of multimedia streams. DirectShow® enables playback of video and audio
content of file types such as Windows Media Audio, Windows Media Video, MPEG,
Apple® QuickTime®, Audio-Video Interleaved (AVI), and WAYV. DirectShow® includes
a system of pluggable filter components. Filters are objects that support DirectShow®

interfaces and can operate on streams of data by reading, copying, modifying and writing

data to a file. The basic types of filters include a source filter, which takes the data from
some source, such as a fille on disk, a satellite feed, an Internet server, or a VCR, and
introduces it into the filter graph which is a connection of filters. The filter graph provides a
transform filter, which converts the format of the data, a sync and source filter which
receives data and transmits the data; and a rendering filter, which renders the data, such as
rendering the data to a display device. The data could also be rendered to any location that
accepts media. Other types of filters included in DirectShow® include effect filters, which

add effects without changing the data type, and parser filters, which understand the format

ASANAW LR A "z S T 0 A0 S NS SRR R - AR O DR LD I D0 ATl AT A e S I e it N

CA 02464844 2004-04-22

of the source data and know how to read the correct bytes, create times stamps, and perform
seeks.

[0003] Therefore, all data passes from filter to filter along with a good deal of control
information. When filters are connected using the pins, a filter graph is created. To control
the data flow and connections in a filter graph, DirectShow® includes a filter graph
manager. [he filter graph manager assists in assuring that filters are connected in the
proper order, but the data and much of the control do not pass through the filter graph
manager. Filters must be linked appropriately. For example, the filter graph manager must
search for a rendering configuration, determine the types of filters available, link the filters
in the appropriate order for a given data type and provide an appropriate rendering filter.
[0004] While filters allowed a great deal of reuse of programs, the use of filters also created
some unanticipated problems. One of the problems created by filters is the large number of
API’s for the filters which came into being. Each filter essentially has a separate API.
Therefore, a given filter must be capable of interfacing to the API for every filter to which it
might attach. Also, the use of filters creates the problem of shutting down a given filter
problematic. When a given filter in a graph is shut down, any filter that interfaces with the
shut down filter requires a different associated interface. In general, programming a filter
to gracefully handle the loss of an interface is difficult, as the state of the filter can be
unknown when the interface is lost. The loss of interfaces, therefore, tends to lead to
unpredicted behavior in the filters and ultimately to ill behaved programs. Further, the
overall control in DirectShow® is distributed between two blocks. The interface between
the filters controls the data flow while the filter manager controls the instantiation and

removal of filters. Distributing the control in this manner makes software design

STt fardadi e vaakia st eaopital N i A s g a bR i A | AT PR LAl e R At et T e L = ' = . : ' o e s adelimnip G L VIR A R R s e T e T et e e e

CA 02464844 2004-04-22

cumbersome as there are inevitably some control functions which cross the boundary
between the blocks. Another problem with DirectShow is that the filters shoulder the
responsibility of media format negotiation and buffer management functionality. Filters
communicate with other filters to accomplish this task. The dependency on filters causes
applications building on DirectShow susceptible to bugs and inefficiencies that could be
programmed into a filter. Thus, a badly written filter could easily bring down the filter
graph and an application associated with the filter graph.

[000S] There 15 a need to address the problems with the DirectShow® architecture. More
particularly, there is a need to improve control of processing of multimedia data and

address the dependency on filters for communications among multimedia components.

SUMMARY OF THE INVENTION
[0006] Accordingly, systems and methods of processing multimedia data separate control
functions and from data handling functions, thereby providing efficient processing of
multimedia streams. A method provides for creating a topology of connections between
one or more multimedia components in a topology generating element, the topology
describing a set of input multimedia streams, one or more sources for the input multimedia
streams, a sequence of operations to perform on the multimedia data, and a set of output
multimedia streams. The method further provides for transmitting the topology to a media
processor, and passing data according to the topology, the passing governed by the media
processor. The topology generating element, which can be a topology loader or an

application, performs outside the scope governed by the media processor. The media

processor governs performing the sequence of multimedia operations on the multimedia

vele1s o il NI N e e Y TR RN 260 AEG R LM R NS e ¢ 10 e '

CA 02464844 2004-04-22

data to create the set of output multimedia streams. In one embodiment, the multimedia
components are software objects.

[0007] Another embodiment provides a method for changing a first topology in use by a
media processor while the media processor is active. According to the method, the media
processor preserves the present state of the media processor, receives instructions to convert
the first topology into a second topology, and updates the first topology to the second
topology in accordance with the instructions. The instructions can contain the difference
between the first topology and the second topology. After updating the first topology to the
second topology, the media processor resumes the interface activity after updating the first
topology to the second topology, sends messages to an application. Betore the topology
changes the media processor can be configured to allow message calls. The instructions to
convert the first topology can be received via a message from an external source to initiate
the process of changing the first topology.

[0008]) Another embodiment is directed to a method of determining how to use a set of
multimedia components to perform a sequence of multimedia operations on one or more
streams of multimedia data. The method is recursive in that the use of the multimedia
components is determined by querying prior components for available sample data. The
method includes locating one or more multimedia components with outputs connected to an
input of a sink device, querying the multimedia components to determine 1f a sample 1s
available, the querying can include checking inputs to the multimedia components if a
sample is not available. If the inputs do not have a sample available, checking a media
source feeding the multimedia components for a sample. If the media source does not have

a sample available, the method provides for performing an end of file function or declaring

AN i M | R RO AN Lt et B e - KT G e e e ey e M A T D 2 e Nt b

CA 02464844 2004-04-22

an error condition. If a sample is available, the method provides for moving the sample to a
next multimedia component of the multimedia components.

[0009] Another embodiment 1s directed to a method for retrieving a section of a media
stream, which can be referred to as “scrubbing.” The method includes caching the section
of a media stream. The cached section of the media stream can contain a presentation point
of the media stream. The method then provides for receiving a request from an external
source to the media processor to retrieve the cached section of the media stream, and
searching to identify whether the section of the media stream was cached. If the section of
the media stream was cached, the method provides for transferring the requested cached
section. The caching can be according to user settings in an application, which can include
whether or not to cache, a number of frames and a number of samples to be contained in the

cached section. In one embodiment, the cached section is continuous video data.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] While the appended claims set forth the features of the present invention with
particularity, the invention, together with its objects and advantages, may be best
understood from the following detailed description taken in conjunction with the
accompanying drawings of which:
[0011} Figure 1 is a block diagram generally illustiating an exemplary distributed
computing system with which the present invention can be implemented;
[0012] Figure 2 is a block of a media foundation system in accordance with embodiments

of the present invention.

CA 02464844 2004-04-22

[0013] Figure 3 is a flow chart of an example of data flow in the media engine required to
play a DVD in accordance with embodiments of the present invention.

[0014] Figure 4 is a block diagram illustrating how data flow is implemented in the media
processor. in accordance with embodiments of the present invention.

[0015) Figure 5 is a flowchart of a dynamic topology change in the media processor in
accordance with embodiments of the present invention.

[0016] Figure 6 is a flowchart exemplifying a process of scrubbing in accordance with

embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0017] Turning to Figure 1, an exemplary computing device 100 on which the invention
may be implemented is shown. The computing device 100 is only one example of a
suitable computing device and is not intended to suggest any limitation as to the scope of
use or functionality of the invention. For example, the exemplary computing device 100 is
not equivalent to any of the computing devices 10-17 illustrated in Figure 1. The
exemplary computing device 100 can implement one or more of the computing devices 10-
17, such as through memory partitions, virtual machines, or similar programming
techniques, allowing one physical computing structure to perform the actions described
below as attributed to multiple structures.

[0018] The invention may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components, data structures, etc, that perform

particular tasks or implement particular abstract data types. In distributed computing

DO ke e SOt o e A A et e A AN A AR A LU LA B = E e R e € T et e A LI e AN A AR G I MU A S AR e T e

CA 02464844 2004-04-22

environments, tasks can be performed by remote processing devices that are linked through
a communications network. In a distributed computing environment, program modules
may be located in both local and remote computer storage media including memory storage
devices.

[0019] Components of computer device 100 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121 that couples various
system components including the system memory to the processing unit 120. The system
bus 121 may be any of several types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By
way of example, and not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA)
bus, Video Electronics Standards Associate (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as Mezzanine bus.

[0020] Computing device 100 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computing
device 100 and includes both volatile and nonvolatile media, removable and non-removable
media. By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media implemented in any method
or technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,

digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic

T M b et 1 by (e AT 25 WS TN NAF-2H Y RLr Mg pe o * e et s et T RO e RN MR L LA e MR TR R v e

CA 02464844 2004-04-22

tape, magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to store the desired information and which can be accessed by computing
device 100. Communication media typically embodies computer readable instructions, data
structures, program modules or other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information delivery media. The term
"modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example, and
not limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of the any of the above should also be included within the
scope of computer readable media.

[0021] The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation, Figure 1 illustrates operating
system 134, application programs 135, other program modules 136, and program data 137.
10022} The computing device 100 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Figure 1 illustrates
a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic

media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile

WL T e W GOSN HR S R R AR R e e s Y Ay e e e R e e L d DI S LR TN, © PP e R e e BT BTl

CA 02464844 2004-04-22

magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable,
nonvolatile optical disk 156 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is typically connected to the system
bus 121 through a non-removable memory interface such as interface 140, and magnetic
disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a
removable memory interface, such as interface 150.

[0023] The drives and their associated computer storage media discussed above and
illustrated in Figure 1, provide storage of computer readable instructions, data structures,
program modules and other data for the computing device 100. In Figure 1, for example,
hard disk drive 141 is illustrated as storing operating system 144, application programs 143,
other program modules 146, and program data 147. Note that these components can either
be the same as or different from operating system 134, application programs 135, other
program modules 136, and program data 137. Operating system 144, application programs
145, other program modules 146, and program data 147 are given different numbers hereto
illustrate that, at a minimum, they are different copies. A user may enter commands and
information into the computing device 100 through input devices such as a keyboard 162
and pointing device 161, commonly referred to as a mouse, trackball or touch pad. Other
input devices (not shown) may include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often connected to the processing

unit 120 through a user input interface 160 that is coupled to the system bus, but may be

. = "ot HRIART :;:;;M“’*w"d.i‘w,h'“m;;mmwm.m‘..\N““’.,m,hm.“hu... eloes v var aman il L L R LI T L Y | L L A T TL R T ""W“\"":WM«M“(M"aﬁll&k»w‘*"l-l":' Jreecimewmade d0 0

CA 02464844 2004-04-22

connected by other interface and bus structures, such as a parallel port, game port or a
universal serial bus (USB). A monitor 191 or other type of display device is also connected
to the system bus 121 via an interface, such as a video interface 190. In addition to the
monitor, computers may also include other peripheral output devices such as speakers 197
and printer 196, which may be connected through a output peripheral interface 195.

[0024] The computing device 100 operates in a networked environment, such as that shown
in Figure 1, using logical connections to one or more remote computers. Figure 1 illustrates
a general network connection 171 to a remote computing device 180. The general network
connection 171 can be any of various different types of network connections, including a
Local Area Network (LAN), a Wide-Area Network (WAN), networks conforming to the
Ethernet protocol, the Token-Ring protocol, or other logical or physical networks such as
the Internet or the World Wide Web.

[0025) When used in a networking environment, the computing device 100 is connected to
the general network connection 171 through a network interface or adapter 170, which can
be a network interface card, a modem, or similar networking device. In a networked
environment, program modules depicted relative to the computing device 100, or portions
thereof, may be stored in the remote memory storage device. Those skilled in the art will
appreciate that the network connections shown are exemplary and other means of
establishing a communications link between the computers may be used.

[0026] In the description that follows, the invention will be described with reference to acts
and symbolic representations of operations that are performed by one or more computing
devices, unless indicated otherwise. As such, it will be understood that such acts and

operations, which are at times referred to as being computer-executed, include the

10

" TITILS s b "'l""-':“‘u‘“mu& i“!I‘ul‘hm.“wmm:,.,,.;...,.|~|.||‘-u|.<-u. Tqgpe ¢ 17 mvonnd ' AT o e d vt e cr NpAia g Tt LY L ey aadd &smmmw_amt*\u - N AN

CA 02464844 2004-04-22

manipulation by the processing unit of the computing device of electrical signals
representing data in a structured form. This manipulation transforms the data or maintains
it at locations in the memory system of the computing device, which reconfigures or
otherwise alters the operation of the computing device in a manner well understood by
those skilled in the art. The data structures where data is maintained are physical locations
of the memory that have particular properties defined by the format of the data. However,
while the invention is being described in the foregoing context, it is not meant to be limiting
as those of skilled in the art will appreciate that several of the acts and operation described
hereinafter may also be implemented 1n hardware.

[0027] Referring to Figure 2, a block diagram illustrates a media foundation system 200.
Core layer 211 includes media source 210, transforms 208, and media sink 230. Media
foundation system 200 is shown coupled to application 202 to receive and send media
streams. Control layer 201 includes media engine 260, media session 240, media processor
220 and topology loader 250. Data flows through the media foundation 200 by beginning
with a media source 210 into media session 240 and then into media processor 220. From
media processor 220 the data will flow into transforms 208 and back to media processor
220 one or more times. The data will then flow from media processor 220 into media
session 240 and then into stream sinks 212. Media engine 260 provides control to an
interface to the application 202 and provides overall control of control layer 201, and the
topology loader 250 ensures that events prescribed in a topology occur. The media
foundation system 200 provides interfaces and a layout for connecting streaming media

objects.

11

. UL R A EIARA L T R RN W i el 2y a1 W IS e BB A e L e T e e = S T e ol A NI RO . RN AW e il gt

CA 02464844 2004-04-22

(0028] The core layer includes media source component 210, and media sink component
230. Also included are stream sources 214 which operate under the control of media source
210; and stream sinks 212 which operate under the control of media sink 230. Stream
sources 214 transfer multimedia data from storage or capture devices to control layer 201
and stream sinks 212 transfer multimedia data from media engine 260 to rendenng or
storage devices (not shown). Media source component 210 implements state machines
which provide control of stream sources 214. Media sink component 230 implements state
machines which provide control of stream sinks 212. In each case, the state processing and
data movement are separated.

[0029] Media source 210, media sink 230 and transforms 208, together with stream sources
214 and stream sinks 212 include objects that make up part of core layer 211. These
components are programmatic objects which implement a predefined function. Media
source 210 and stream sources 214 provide either capture or retrieval of multimedia data
and provide this data to media session 240, The sources of data include but are not limited
to a disk such as a hard drive, CD, or DVD, the internet, random access memory (RAM),
video RAM, video cameras, scanners, still image cameras, and microphones. Media sink
230 includes objects which control the transfer of data in stream sinks 212. Stream sinks
212 consist of objects which accept data from control layer 201 for storage or rendering.
Sinks of data include but are not limited to a disk such as a hard drive, writable CD, or
writable DVD, a broadcast over a computer network, such as the Internet, printers, display
devices such as monitors, and speakers. The data for both the media source 210 and media

sink 230 can be transported over many mediums including but not limited to Ethernet,

12

: eoud N« e)1 e R RO U5TH L3P S b 110ttt S e e R S e s AN AL M L b st e

CA 02464844 2004-04-22

wireless networks, analog cables before digitization, USB, IEEE 1384, paralle] port, serial
port, and disk interfaces.

[0030] Transforms 208 include objects which manipulate the data. These transforms can
include encoders, decoders, splitters, multiplexers, audio processing such as bass and treble
control for adding effects such as reverb, video processing such as adjusting color masks,
image sharpening, and contrast or brightness control. The encoders and decoders handle
both audio, video, and image data. Video data types can include MPEG, Apple
Quicktime®, AVI, and H.263 and Windows Media Video (WMYV). Note that many of the
video standards are true multimedia standards in that these standards have provisions to
transfer both audio and video. Image data formats include JPEG, GIF, Fax, and Tiff.
Audio standards can include MP3, PCM, ADPCM, as well as standards for CD playback
and Windows Media Audio (WMA). Transforms 208 can be used to convert data from one
format to another. For example, a transform 208 can convert a JPEG 1mage into a format
suitable for display on a monitor.

[0031] Turning to figure 3, a flow chart of a typical multimedia process 1s show. Assume a
user wishes to view a DVD. An application will be Jaunched to allow the user to view a
DVD. The application has a graphical user interface (GUI) allowing the user to perform
such functions as play, stop, pause, fast forward, and rewind. In block 302, the user selects
the play button and the application sends a message to the media engine component of
media foundation. The message contains the information that the application wishes to
view a DVD. In block 304, the media engine sends messages to media session and the
topology loader telling these blocks to start playing a DVD. In block 306, the topology

loader sets up the topology. The topology provides a path that the data streams take

13

v e et o U e B . AN CE M a0t AN M L e L Sy Rt AR A e AR AT AN b AP S Mt s s e

CA 02464844 2004-04-22

through the media and stream sources, the transforms, and the media and stream sinks. In
block 308, the topology loader wall pass this topology on to the media processor. The
media processor sets up and implements the topology. In block 310, the media processor
will send messages to the core layer components to instantiate the objects called out by the
topology loader. In addition to calling the core layer objects in the proper order and passing
data between the objects, the data rate is controlled such that the audio and video are
synchronized and rendered at the desired rate. The data rate can be determined in the media
session. In block 312, the media session will query each object to determine that the
desired rate can be supported and pass a message to the media processor with the rate
information. In block 314, the media processor determines the clock rate of a rate
determining object in the core level, usually a media sink, and sets this clock rate. In block
316, the media processor then calls the core level and passes data between objects as
required by the topology. The data is ultimately rendered to the speakers and monitor by
media sinks.

[0032) The media processor is the object that performs the data flow as described by a
topology. The media processor is initialized with a topology describing the data flow, and
exposes itself to the user via the media source interface. Thus, once configured, the media
processor actually looks like a media source to the user. Media processor exposes a number
of media streams based on the topology. There will be one media stream for each output
node in the topology.

[0033] Figure 4 shows a topology. The data flow is driven by user calls to fetch a sample
on one of the media processor’s media streams. Consider the upper path in Figure 4. The

data flow works by starting with an output object in the topology (sink object 412) and

14

T oA W RO o WA O i T 41 e bt I s e e AT SR G AT MR sl

CA 02464844 2004-04-22

walking recursively through a list of objects which generate data. The process in the upper
path of Figure 4 starts with sink object 412. The only output node connected to input 416 1s
output 418 connected to transform object 408. If transform object 408 has a sample
available, then media processor 220 reads the sample and writes the sample to sink object
412. If transform object 408 does not have a sample available, then media processor 220
looks at the input of transform object 408, which is shown as 420, which is connected to
output 422 for transform object 404. Transform object 404 is then queried for a sample. If
a sample 1s available, the sample is read by media processor 220 and written to transform
object 408. If no sample is available, then media processor 220 again moves one node to
the left, and queries media stream object 403 for an available sample. Media stream object
403 are loaded via source object 402. If a sample is available from media stream object
403, the sample is retrieved from media stream object 403 to transform object 404. If no
sample is found, then media processor will request that media stream object 403 read a
source. Any time that a valid sample is found and passed to the next block, the process
starts over. The process is completed by operating with the objects once the data is located.
Transform object 404 operates on the data and passes the transformed data to transform
object 408 to operate on the data and then passes the transformed data to sink object 412 to
complete the process of generating a sample at the output. In one embodiment, the media
processor keeps a list objects that have inputs to other objects. With this list, the media
processor can look at the output object and determine from which object the media
processor needs to retrieve media data.

[0034] In one embodiment, the list tracks the type of node holding the objects and other

information about the objects. Each type of object has a different manner of generating

15

- - - -, g - - - H I O T TR
Vh et gumt caessboaezz) ANEING SINE - mez v = s - R T Nl = o 3 M eGSOV DRI M A e T et e e S WA RS ACA I AT

CA 02464844 2004-04-22

data at the media processor’s request. Transform nodes contain transform objects, which
have a set of calls that are used to provide input media samples and generate output media
samples. Tee nodes provide an indication for the media processor to copy samples as
needed. Tee nodes should be described before we start referring to them. Source nodes
have a media stream, which provides an asynchronous call by which the media processor
asks the stream for data, and the stream later provides the data when the data is available.
[0035] Embodiments are directed to a data flow using media processor 220. In an
embodiment, the data flow is asynchronous. That is, a user makes a call to generate data
for a given media stream, and media processor 220 then generates the data, and notifies the
user when the data is available. In one embodiment, components referenced by a topology
do not make calls to each other. Rather, media processor 220 is responsible for all
communication. By having a centrally located communication method data flow is
consistent, and there is greater interoperability between components.

[0036] In one embodiment, media processor 220 does not address each aspect of the data
flow. For example, in one embodiment, media processor 220 has no control over media
samples.

[0037] In terms of the overall media foundation architecture, the media processor is
commonly used in the context of the media engine. Media engine 260 is the component
that an application 202 uses directly when using Media Foundation architecture shown in
Figure 2. Media engine 260 can be configured by the application 202 specifying the source
of data (generally a filename, URL, or device, or a complex configuration that specifies
multiple simple sources), and the destination of the data (such as an output multimedia file,

or a rendenng device like a video card). Media engine 260 is then controlled at runtime

16

CA 02464844 2004-04-22

through such commands as Start, Stop, etc. Thus, media engine 260 uses the other Media
Foundation components to accomplish this functionality, and 1s the main object that an
application 202 uses to perform multimedia operations. Media processor 220 can be
controlled directly by a media processing session, and used in conjunction with topology
loader 250. The media processing session is the object media engine 260 uses to operate
media sources 210, media processor 220, media sinks 230, and topology loader 250.

[0038] In one embodiment, media processor 220 supports tee objects and transform objects
with more than one input or output. For example, a transition is generally implemented as a
transform object, and the transform object would have two inputs and one output.

[0039] In the case in which a node has more than one input, the media processor 220
performs the following method: when trying to generate input data for the transform, media
processor 220 selects just one of the inputs based on the timestamps of the previous media
samples and generates data for that input. Every time media processor 220 provides an
input sample to a transform object, media processor 220 attempt to generate output data for
the transform. If the transform does not generate any data, media processor 220 provides
an input sample to the transform object, possibly the same input that was already used.
[0040] In the case where a node has more than one output, media processor 220 needs more
information about the outputs. The topology loader will indicate the properties of the
output, which can be either primary or discardable.

|0041] The primary output is used as the primary memory allocator for samples passed to
the input nodes. Discardable outputs are not guaranteed to get all samples that go into the
node; if the user hasn’t requested a sample for that output when an input sample has been

generated, then the discardable output will simply not receive the sample. The discardable

17

.y . R TN TELUE e T "'ﬁﬂﬁﬂ%'ﬂﬂummmm-wl‘ﬁw“““"“'“"’" P LA EEEEEE LERNTT LY T e L EEECRTETPETYT) w"‘“d“‘ﬂ““l’.m\wiﬂk{ﬁkﬂ'"“l“lw"‘f I et et B W

CA 02464844 2004-04-22

concept is useful in scenarios wherein it is preferable to lose data rather than slow
processing down, such as a preview display in an encoder application.

[0042]) An important capability of a multimedia system is the ability to change the
properties of the multimedia session while running. For instance, a playback application
might switch from playback in windowed mode into full screen mode. Or an encoding
application might switch from encoding one camera to another camera. The disclosed
media foundation system handles these capabilities via a change in the topology.

[0043] However, in an embodiment, media processor 220 never changes the topology
itself; topology changes are always be done by another component and then communicated
to the media processor. If media processor 220 is being controlled by media session 240,
media session 240 1s responsible for using the topology loader to create full topologies for
media processor 220 and then communicating these full topologies to the media processor.
However, in one embodiment any direct user of the media processor can also perform
topology changes on the media processor.

[0044] In one embodiment topology changes can be static or dynamic. A static topology
change takes place when media processor 220 is not processing data and represents a full
replacement of the old topology with the new topology. A dynamic topology change takes
place when media processor is running and also may change only part of the topology while
maintaining other parts of the topology intact.

[0045] There are several mechanisms through which a dynamic topology change can be
generated. The first is media source generated. In this case, one of the media sources
internal to media processor 220 detects that its format has changed in some manner; a

media stream has changed, a media stream has ended, or a new media stream has been

18

CA 02464844 2004-04-22

created. The media source notifies media processor 220 that the change has occurred; media
processor 220 forwards this notification on to the user to process, and stops processing data.
The user is responsible for creating the new topology and sending it on to the media
processor. The second is topology generated. In this case, the topology itself contains
information that it will change at some point; one or more of the topology objects has an
expiration time set as a property. When media processor 220 detects that the expiration time
has been reached, it notifies the user, and stops processing data. The final type is user
generated. In this case the user simply sets a new topology on media processor 220 while
media processor 220 is running. In all cases, media processor 220 reacts to the topology
change in the same manner:

[0046] Referring to Figure 5, the steps in a dynamic topology change are shown in a
flowchart. In block 502, a topology change is requested of the media processor. In block
504, media processor 220 first makes any notifications to the user that are required, for
instance that a media source has changed formats. In block 506, media processor 220 stops
processing and maintains its state such that it can resume processing on any nodes that
remain in the new topology. Media processor 220 also puts itself into a state such that any
attempt by the user to continue running will simply wait until the topology change is
complete. In block 508, media processor 220 then receives the new topology. The new
topology could come from the topology loader or the application. In block 510, media
processor 220 updates its internal topology to match the new topology. In block 512, media
processor 220 informs the application that the new topology is in place and resumes

processing.

19

nsteare s Wbt Bt ol b i SR HTRRE 0 XA R 17 g b s s 000 St el St) o RN RAGHES AL N BT Pt SO Ny s e '

CA 02464844 2004-04-22

{0047] Media processor 220 is designed to support runmng at arbitrary rates. The media
source interface is a pull interface; that is, the user can pull samples as quickly as possible.
So from this sense media processor 220 automatically supports arbitrary rates. However, in
many cases the media sources or transforms also have optimizations or improved behavior
when they know the rate. Thus, when the user tells media processor 220 explicitly to run at
a given rate, media processor 220 will query any media sources and transforms in the
topology to determine their rate capabilities. If the given rate is supported by all media
sources and transforms, media processor 220 will then set the rate of all media source
objects and transform objects such that the media sources and transform objects can make
appropriate changes to their behavior. Running the multimedia stream in reverse 1s a
special case of a rate change.

[0048] Scrubbing is defined as being able to quickly seek within the multimedia
presentation and retrieve a small number of media samples at that position. Due to the
complexity of decoding multimedia data, scrubbing is more complex than seeking into the
multimedia presentation and simply takes too long. This is particularly true for compressed
video data, which often has a large time delay between independently decodable key
frames.

[0049] To optimize scrubbing, media processor 220 has logic to enable caching a certain
amount of pre-decoded samples, generally near the current position of the presentation,
such that a seek to one of these pre-decoded samples will allow media processor 220 to
generate the desired sample in a timely manner. This caching behavior is configurable by
the application, to allow the tradeoff between memory usage and good scrubbing

performance.

20

. S s 3 e o BT A ot <1 Ao SR QA I IRERCITE IRAL T L SN Tt s e M A YYIACHRMA U VTN A a8 T 4 T AN T R E R R s) A e Gl SRR 3¢ S S e N

CA 02464844 2004-04-22

[0050] Figure 6 is a flowchart of the process used to optimize scrubbing. Block 602
provides that media processor 220 applies logic to each sample generated at a node
regarding caching of sample data. Decision block 604 provides that when deciding whether
to cache sample data, media processor first determines if the sample data has been cached.
If yes, block 606 provides for doing nothing. If no, block 608 provides for media processor
220 to determine caching settings, as set by the user. The caching settings can include an
identification of nodes for which nodes caching is desired, the frequency of caching, the
maximum amount of memory to use for caching, and the like. Block 610 provides for
applying the settings to determine to cache the sample or not and caching as necessary.
[0051] Block 612 provides for media processor 220 to receive a data “seek” issued by
application 202. A data seek can be a request, for example, for the next frame of data to
enable a frame by frame advance of a video stream. Upon receiving the seek, media
processor 220, for each node, checks to see if the requested data is present in cache in
decision block 614. If present, block 616 provides for sending the data back to application
202 instead of regenerating the sample data. If not present, block 618 provides for using
the appropriate transform, source or other appropriate component to generate the sample
data.

[0052] Some video decoders support a mode in which pre-decoded samples can be used to
initialize the state of the decoder. In this case, it is possible to cache only a fraction of the
pre-decoded samples and still maintain good scrubbing performance. For instance, if every
fourth pre-decoded sample 1s cached and the user seeks to one of the samples not in the

cache, at most, three samples need be decoded to generate the desired output sample.

ol Ina et} ee e . - - - - ~ - VAT e e e Y TR N A u'umwmw‘ﬂm““'.'?"““““"““‘w”lm" IR I T TR TLALE . oast] PR L) T TE NS w|..||1,n....QW‘Q|WWMW§W!MW§3‘MWMWWH-u OV LET B PETE L T *

CA 02464844 2004-04-22

{0053] In view of the many possible embodiments to which the principles of this invention
may be applied, it should be recognized that the embodiment described herein with respect
to the drawing figures is meant to be illustrative only and should not be taken as limiting
the scope of invention. For example, those of skill in the art will recognize that the
elements of the illustrated embodiment shown in software may be implemented in hardware
and vice versa or that the illustrated embodiment can be modified in arrangement and detail
without departing from the spirit of the invention. Therefore, the invention as described
herein contemplates all such embodiments as may come within the scope of the following

claims and equivalents thereof.

CA 02464844 2004-04-22

CLAIMS
WE CLAIM:
. A method of processing multimedia data, the method comprising:

creating a topology of connections between one or more multimedia components in a
topology generating element, the topology describing a set of input multimedia streams, one
or more sources for the input multimedia streams, a sequence of operations to perform on
the multimedia data, and a set of output multimedia streams;

transmitting the topology to a media processor; and

passing data according to the topology, the passing governed by the media processor.

2. The method of claim 1 further comprising performing the sequence of multimedia

operations on the multimedia data to create the set of output multimedia streams.

3. The method of claim 1 wherein the multimedia components are software objects.

4. The method of claim 1 wherein the topology generating element is a topology
loader.

5. The method of claim 1 wherein the topology generating element is an application
program.

6. The method of claim 1 wherein the media processor exposes the multimedia data to

an application.

7. The method of claim 1 wherein the media processor accepts the multimedia data via

being configured as a media sink.

8. A system for processing multimedia data, the system comprising:
a control layer configured to receive instructions from an application, the control layer
including;:

a topology generating element configured to generate a topology describing a set of

input multimed:a streams, one or more sources for the input multimedia streams, a

VU e st e e R IR W et N S ke N N TR MR i) e < v

CA 02464844 2004-04-22

sequence of operations to perform on the multimedia data, and a set of output multimedia
streams; and

a media processor configured to govern the passing of the multimedia data as
described in the topology and govern the performance of the sequence of multimedia
operations on the multimedia data to create the set of output multimedia streams;
a core layer coupled to the control layer, the core layer configured to include:;

the input media streams;

the sources for the input multimedia streams;

one or more transforms configured to operate on the multimedia data;

one or more stream sinks coupled to the control layer; and

one or more media sinks configured to provide the set of output multimedia streams.
9. The system of claiam 8 wherein the multimedia components are software objects.

10. The system of claim 8 wherein the topology generating element is a topology

loader.

11. The system of claim 8 wherein the topology generating element is an application

program.

12. The system of claim 8 wherein the media processor exposes the multimedia data to

an application.

13. The system of claim 8 wherein the media processor accepts the multimedia data via

being configured as a media sink.

14. A method of changing a first topology in use by a media processor while the media
processor is active, the method comprising:

preserving the present state of the media processor;

receiving one or more instructions to convert the first topology into a second topology; and
updating the furst topology to the second topology in accordance with the one or more

instructions.

24

d SREEERRL TR ERU TSt PR S/ S v v -CRT o D RIS N T L SR I

CA 02464844 2004-04-22

15. The method of claim 14 wherein the one or more instructions contain the difference

between the first topology and the second topology.

16. The method of claim 14 wherein the media processor resumes the interface activity

after updating the first topology to the second topology.

17. The method of claim 16 wherein the media processor sends messages to an

application upon resuming interface activity.

18. The method of claim 16 wherein the media processor allows message calls until a

topology change is complete.

19. The method of claim 14 wherein the media processor receives a message from an

external source to initiate the process of changing the first topology.

20. A method of determining how to use a set of multimedia components to perform a
sequence of multimedia operations on one or more streams of multimedia data in a media
processor, the method comprising:

locating one or more multimedia components with outputs connected to an input of a sink
device;

querying the multimedia components to determine if a sample is available, the querying
including checking inputs to the multimedia components if a sample is not available;

if the inputs do not have a sample available, checking a media source feeding the
multimedia components for a sample;

if the media source does not have a sample available, performing an end of file function or
declaring an error condition;

if a sample is available, moving the sample to a next multimedia component of the

muitimedia components.

21. A method for retrieving a section of a media stream, the method comprising:
caching the section of a media stream, the cached section of the media stream containing a

presentation point of the media stream;

235

- Nt el iR Iy o et g NI GRS Sl 22 o= g eel DR PV AT TP - I RO TS ¥C. IO O | FIVLARNNRey (RN PR RS .S TR I E 2 3] QW"-“M* LR L0 i b -~ N

CA 02464844 2004-04-22

receiving a request from an external source to the media processor to retrieve the cached
section of the media stream;
searching to identify whether the section of the media stream was cached; and

if the section of the media stream was cached, transferring the requested cached section.

22. The method of claim 21 wherein the section of media stream is cached according to

user settings in an application.
23. The method of claim 21 wherein the external source 1s an application program.

24. The method of claim 21 wherein a number of samples contained in the cached

section is programmable.
25. The method of claim 21 wherein the media stream represents video data.

26. The method of claim 21 wherein a number of frames contained in the cached section

Is programmable.

27. The method of claim 21 wherein the cached section of media data 1s continuous.

28. A computer readable medium having stored therein instructions for performing acts
for processing multimedia data, the acts comprising:

creating a topology of connections between one or more multimedia components in a
topology generating element, the topology describing a set of input multimedia streams, one
or more sources for the input multimedia streams, a sequence of operations to perform on
the multimedia data, and a set of output multimedia streams;

transmitting the topology to a media processor; and

passing data according to the topology, the passing governed by the media processor.

29. The computer readable medium of claim 28 further comprising performing the
sequence of multimedia operations on the multimedia data to create the set of output

multimedia streams.

30. The computer readable medium of claim 28 wherein the multimedia components are

software objects.

26

et ateas gnn ot ey d o A AR AT IR A ey M E YT advetat b ST L et et SE R ELACI LLELI TRt RIRREA R TRIL Lo oty SN EPRRTORE-t NPT Y T TR R B T3 [PO TR T SOV eops AT AP IR R BR R TP LU TR . '

CA 02464844 2004-04-22

31. The computer readable medium of claim 28 wherein the topology generating

element is a topology loader.

32. The computer readable medium of claim 28 wherein the topology generating

element is an application program.

33. The computer readable medium of claim 28 wherein the media processor exposes

the multimedia data to an application.

34. The computer readable medium of claim 28 wherein the media processor accepts

the multimedia data via being configured as a media sink.

35. A computer readable medium having stored therein instructions for performing acts
for changing a first topology in use by a media processor while the media processor is
active, the acts comprising:

halting interface activity in the media processor;

preserving the present state of the media processor,

receiving one or more instructions to convert the first topology to a second topology; and
updating the first topology to the second topology in accordance with the one or more
instructions, the media processor continuing processing the first topology until each
multimedia component called by the first topology is in a state to allow the first topology to

be changed.

36. The computer readable medium of claim 35 wherein the one or more instructions

contain the difference between the first topology and the second topology.

37. The computer readable medium of claim 35 wherein the multimedia components

include at least a media source and a media transform.

38. The computer readable medium of claim 35 wherein the media processor further

resumes the interface activity after updating the first topology to the second topology.

39. The computer readable medium of claim 38 wherein the media processor further

sends messages to an application upon resuming interface activity.

27

e et el A G MMM HHAN 0 RS o N T NI o - e G e Il e g 007 A AR A T o ANl o A 41 AN A G R ettt BT

CA 02464844 2004-04-22

40. The computer readable medium of claim 35 wherein the media processor receives a

message from an external source to initiate the process of changing the first topology.

41. A computer readable medium having stored therein instructions for performing acts
for determining how to use one or more multimedia components to perform operations on
multimedia data in a media processor, the acts comprising:

locating the one or more multimedia components that are directly generating multimedia
samples for a sink device;

querying the multimedia components to determine if a sample is available, the querying
including checking inputs to the objects if a sample is not available;

if the inputs do not have a sample available, checking a source feeding the objects for a
sample;

if the source does not have a sample available, performing an end of file functionality or
declaring an error condition;

if a sample is available, moving the sample 1o a second object.

42. The computer readable medium of claim 41 wherein the multimedia components are

specified in a topology.

43. A computer readable medium having stored therein instructions for performing acts
for retrieving a section of a media stream, the acts comprising;:

caching the section of 2 media stream, the cached section of the media stream containing a
presentation point of the media stream;

receiving a request from an external source to the media processor to retrieve the cached
section of the media stream;

searching to identify whether the section of the media stream was cached;

if the section of the media stream was cached, transferring the requested cached section.

44. The computer readable medium of claim 43 wherein the section of media stream is

cached according to user settings in an application.

45. The computer readable medium of claim 43 wherein the

28

L e T 1y e RN TR L 2 ARG L WP 12 St s e f et e e i i e e o UM A A s U IS AR A S LA S ndt iy by e '

CA 02464844 2004-04-22

46. The computer readable medium of claim 43 wherein the external source is an

application program.

47. The computer readable medium of claim 43 wherein a number of samples contained

1in the cached section is programmable.

48. The computer readable medium of claim 43 wherein the media stream represents

video data.

49. The computer readable medium of claim 43 wherein a number of frames contained

in the cached section is programmable.

50. The computer readable medium of claim 43 wherein the cached section of media

data is continuous.

gmart & Biggar
Ottawa, Canada
oatent Agems

29

CA 02464844 2004-04-22

SAVHOIONd
NOLLYOllddY
J1O0W3N

waindawos | %8
310NN

ell

NHOMLIN VY 30M

v 3
2 .
U2 \O
L 2
o v
2 ®
mh .m 11}
-

S52
= S WHOMLIN YINY W07
b
= oy
SH
5 B
o g
< A 16}
= 3 SYINYIdS
LY —

-
= = o (RPTY

(dvOAIA

9l
INOHdOHOIN

vk [137avL

cl}

HHOMIAN

!

m 091 0G1 12}

___, SNG WILSAS

m

, JIVIUILNI 0V43INI LINQ

_ émﬁ%ﬂ_ 030IA ONISS3I0ud

m G6) 061 4

" b soig

e __JEr_ (noY)_
. AHOWIW WIISAS) |

4350

JOVAUIINI
JOVAYIINI s

JOVIHIINI 30V44INI
AHONIN “JOA-NON AHONSN “10A-
J1AVAONIY Hmﬁozm@\.,zy%_z

vrl

NILSAS
ONILYYH3d0

-“ﬂ”---—-wﬂﬂﬂ--—m-—.-*--ﬂﬁﬂﬁ-ﬁww---m“-"’

A1 91 R TEN L AAN C AR I LU N R AR Oyt o L TR I A A

LTI SR LREE P A PP 1 (TU], N TP SRR R PP [11 S ELATL Y

CA 02464844 2004-04-22

MEDIA FOUNDATION MEDIA PROCESSOR
Eric Ruldolph
Attorucy Docket 221354, Telephone (815) 96.-.661

Application

Control Layer 201

Media Engine 260
Media Session 240
Topo Loader 250
Media '
Processor 220

.. L Y. X A B E B) .‘--..O.--Q-.Q..’--.‘. LA A N B E_ N N N B & 3 % K X K N & I B A N 2 I _B J b‘.ﬁﬁ“tt...“‘ﬁ’.ud.wQ..- - -y PYeogverarrwveaSédévyveoryuhh vocampw el b PO s ymp
v e E—— et Nv——

— Media
l Media SiTeam Transforms| | oo l Sink
Sinks |
208 212 l 230

210 214
Core Layer 211

Figure 2

s Wapibete ol s e e blpt 110 RIBOFE P 8 0 SO S s e e P i A LGN S Y et 1

CA 02464844 2004-04-22

MEDIA FOUNDATION MEDIA PROCESSOR
Eric Ruldolph
Attorney Docket 221354, Telephone (815) 96.,-. 661

FIG. 3

302
/

Application sends message to media
engine to start playing

2
W __L—— ot wishuiyhaly

Media engine sends message to media 304
session and topology loader asking for
media to play

Topology loader generates topology

-

Media processor sends messages to core | 308
level components requesting
implementation of topology

Media session queries each object to
determine if requested rate is supported

| - —312

| Media processor determines clock rate

:
L——*—mm

.. 314
Media processor moves data between /—
objects as required by topology

o aes wee et R R RS | e A e TN s e pwil e TR T G AR S At e

CA 02464844 2004-04-22

MEDIA FOUNDATION MEDIA PROCESSOR
Eric Ruldolph
Attorney Docket 221354, Telephone (815) 965 , 661

420 416

Q Transform
Object

408
Transform Transform Sink
Object » Object Object
406 410 414

N~

* BRI e Bl R L I RN BR - P 72 T PRSP P Y S R e O ORI, DIPTSR

CA 02464844 2004-04-22

MEDIA FOUNDATION MEDIA PROCESSOR

Eric Ruldolph ‘
Attorncy Docket 221354, Telephone (815) 965-. 061

FIG. 5
/502

External request for topology change
received by the media processor

. _ 504
Media processor notifies application of /
request

506
/-

Media processor stops processing data

508
Media processor receives updates to
present topology
510
/"
Media processor updates internal topology
512

Media processor informs application that
topology has been updated and resumes
processing data

S e eeneged, e LA T A T < MAIIR TSNEINANVITIRIAN A R e BA 7o fe *

CA 02464844 2004-04-22

MEDIA FOUNDATION MEDIA PROCESSOR
Eric Ruldolph
Attoruey Docket 221354, Telephone (815) 96 . 661

FIG. 6

Media processor applies logic to each
sample generated at a node regarding
caching of sample data.

606 X

Has sample
data been />

cached?

.\\
NO K 608

pon
- R s S aaaaa .,
R N Aty -—— Atk il Ayl ey

N e 604
AN

Do nothing —
YES

Determine caching settings, as set by the
user

| 610
.~

gl s geyinbrey

Apply settings and cache/not cache as
= directed

612

Media processor receives a data seek
requesting sample data

— 614
o * For each —“—‘——1 .
l Send requested data Y_ES node, is requested Generate da.tat using
| from cache data present in appropriaie
cache 7 / component

\/

PR i En e e v Th 2 AT S ARG TR ANEITIA] W A o M s WA (AN 220t et et ’

120

121 190
NON-REMO!&%LE REMOVAB USER
NON-VOL. MEMORY NON-V/ .ME%)RY INPUT

PROGRAM INTERFACE INTERFAC INTERFACE

k SeE AN G N S Ak ah emm g w=y

| MODEM
173
164

172

REMOTE
MICROPHONE 180 COE1MPUTER
163

OTHERPROGRAM | PR
MODULES AG'I%AM

148 L 161

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

