(19)
 United States
 (12) Patent Application Publication Kroth et al.

(10) Pub. No.: US 2010/0009961 A1
(43) Pub. Date:

Jan. 14, 2010

Inventors:
Heiko Kroth, Leimen (DE); Tim Feuerstein, Neckargemuend (DE); Frank Richter,
HD-Handschuhsheim (DE); Jurgen Boer, Wiesbaden (DE); Michael Essers, Schoenau (DE); Bert Nolte, Schoenau (DE); Matthias Schneider, Dossenheim (DE); Matthias Hochguertel, Schriesheim (DE); Fritz-Frieder Frickel, Deidesheim (DE); Arthur Taveras, Southborough, MA (US); Christoph Steeneck, Dossenheim (DE)

Correspondence Address:
HOFFMANN \& BARON, LLP 6900 JERICHO TURNPIKE SYOSSET, NY 11791 (US)

Assignee:
Alantos Pharmaceuticals Holding, Inc., Cambridge, MA (US)
(21) Appl. No.:

12/492,254

Jun. 26, 2009
Related U.S. Application Data
(63) Continuation of application No. 11/409,481, filed on Apr. 21, 2006, now Pat. No. 7,553,861.

Publication Classification
(51) Int. Cl.

A61K 31/397	(2006.01)
A61K 31/5377	(2006.01)
A61K 31/41	(2006.01)
A61K 31/40	(2006.01)
C07D 413/14	(2006.01)
C07D 403/02	(2006.01)
C07D 207/00	(2006.01)

(52) U.S. Cl. 514/210.18; 514/232.2; 514/381;

514/423; 544/107; 548/253; 548/528

ABSTRACT
The present invention relates generally to pyrrolidine and thiazolidine DPP-IV inhibitor compounds. The present invention also provides synthetic methods for preparation of such compounds, methods of inhibiting DPP-IV using such compounds and pharmaceutical formulations containing them for treatment of DPP-IV mediated diseases, in particular, Type-2 diabetes

DIPEPTIDYL PEPTIDASE-IV INHIBITORS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of U.S. application Ser. No. 11/409,481, filed Apr. 21, 2006, now U.S. Pat. No. $7,553,861$, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to pyrrolidine and thia-zolidine-based inhibitors of dipeptidyl peptidase-IV (DPPIV) and to methods for treating diabetes, particularly Type-2 diabetes as well as impaired glucose tolerance, impaired glucose homeostasis and complications associated with diabetes by inhibiting DPP-IV with such cyclic amido and cyclic ureido pyrrolidine and thiazolidine inhibitors.

BACKGROUND OF THE INVENTION

[0003] Diabetes results from the occurrence of one or more of several causative factors, and is characterized by an abnormal elevation in levels of plasma glucose (hyperglycemia). Persistent or uncontrolled hyperglycemia results in an increased probability of premature morbidity and mortality. Abnormal glucose homeostasis is usually associated with changes in the lipid, lipoprotein and apolipoprotein metabolism, or due to other metabolic and hemodynamic diseases.
[0004] Patients afflicted with Type-2 diabetes mellitus or noninsulin dependent diabetes mellitus (NIDDM), are especially at increased risk of suffering from macrovascular and microvascular complications, including coronary heart disease, stroke, peripheral vascular disease, hypertension, nepHropathy, neuropathy and retinopathy. Therapeutic control of glucose homeostasis, lipid metabolism and hypertension are critical in the clinical management and treatment of Type- 2 diabetes mellitus.
[0005] The currently available therapeutics for treating available Type-2 diabetes, although effective, have recognized limitations. Compounds based on sulfonylureas (e.g. tolbutamide, glipizide, etc.), which stimulate the pancreatic beta-cells to secrete more insulin, are limited by the development of inhibitor resistant tissues, causing them to become inefficient or ineffective, even at high doses. Biguanide compounds, on the other hand, increase insulin sensitivity so as to cause correction of hyperglycemia to some extent. However, clinically used biguanides such as phenformin and metformin can induce side-effects such as lactic acidosis, nausea and diarrhea.
[0006] The more recent glitazone-type compounds (i.e. 5-benzylthiazolidine-2,4-diones) substantially increase insulin sensitivity in muscle, liver and adipose tissue resulting in either partial or complete correction of the elevated plasma levels of glucose without occurrence of hypoglycemia. Currently used glitazones are agonists of the peroxisome proliferator activated receptor (PPAR), which is attributed to be responsible for their improved insulin sensitization. However, serious side effects (e.g. liver toxicity) have been known to occur with some glitazones such as, for example, troglitazone. Compounds that are inhibitors of the dipeptidyl pepti-dase-IV ("DPP-IV", "DPP-4" or "DP-IV") enzyme are also under investigation as drugs that may be useful in the treat-
ment of diabetes, and particularly Type-2 diabetes. See for example, WO 97/40832, WO 98/19998, and U.S. Pat. No. 5,939,560.
[0007] DPP-IV is a membrane bound non-classical serine aminodipeptidase which is located in a variety of tissues (intestine, liver, lung, kidney) as well as on circulating T-lymphocytes (where the enzyme is known as CD-26). It is responsible for the metabolic cleavage of certain endogenous peptides (GLP-1(7-36), glucagon) in vivo and has demonstrated proteolytic activity against a variety of other peptides (e.g. GHRH, NPY, GLP-2, VIP) in vitro.
[0008] The usefulness of DPP-IV inhibitors in the treatment of Type-2 diabetes is based on the fact that DPP-IV in vivo readily inactivates glucagon like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP). GLP-1 (7-36) is a 29 aminoacid peptide derived by post-translational processing of proglucagon in the small intestine. GLP-1(7-36) has multiple actions in vivo including the stimulation of insulin secretion, inhibition of glucagon secretion, the promotion of satiety, and the slowing of gastric emptying. Based on its physiological profile, the actions of GLP-1(7-36) are expected to be beneficial in the prevention and treatment of Type-2 diabetes, and potentially obesity. To support this claim, exogenous administration of GLP-1(7-36) (continuous infusion) in diabetic patients has demonstrated efficacy in this patient population. GLP-1(7-36) is degraded rapidly in vivo and has been shown to have a short half-life in vivo ($\mathrm{t} 1 / 2$ of about 1.5 min). Based on a study of genetically bred DPP-IV KO mice and on in vivo/in vitro studies with selective DPP-IV inhibitors, DPPIV has been shown to be the primary degrading enzyme of GLP-1(7-36) in vivo. GLP-1(7-36) is degraded by DPP-IV efficiently to GLP-1(9-36), which has been speculated to act as a physiological antagonist to GLP-1(7-36). Inhibition of DPP-IV in vivo should, therefore, potentiate endogenous levels of GLP-1(7-36) and attenuate formation of its antagonist GLP-1(9-36) and serve to ameliorate the diabetic condition.
[0009] GLP-1 and GIP are incretins that are produced upon ingestion of food, and which stimulate production of insulin. Inhibition of DPP-IV causes decreased inactivation of the incretins, which in turn, results in an increase in their effectiveness in stimulating pancreatic production of insulin. DPPIV inhibition therefore, results in an increase in the level of serum insulin. Since the incretins are produced upon consumption of food only, DPP-IV inhibition is not expected to increase insulin levels when not required, thereby precluding excessive lowering of blood sugar (hypoglycemia). Inhibition of DPP-IV, is therefore, is expected to increase insulin levels without increasing the risk of hypoglycemia, thereby lowering deleterious side effects associated with currently used insulin secretagogues. Although DPP-IV inhibitors have not been studied extensively as therapeutics for diseases other than diabetes, they are expected to have other potential therapeutic utilities.

SUMMARY OF THE INVENTION

[0010] The present invention relates to a class of pyrroli-dine-based inhibitors of dipeptidyl peptidase-IV (DPP-IV). In particular, the present invention provides a new class of pyrrolidine and thiazolidine DPP-IV inhibiting compounds ("DPP-IV inhibitors").
[0011] One aspect of the present invention includes a compound of formula (I):
[0012] and all stereoisomers, diastereomers, racemic mixtures and pharmaceutically acceptable salts thereof and all polymorphs; wherein A is:

B is:

-continued

and D is:

wherein
[0013] E and G are independently 6-membered aryl, or 5 -membered heteroaryl or 6-membered heteroaryl;
[0014] E may be substituted with one or more R^{1} groups;
[0015] G may be substituted with one or more R^{2} groups;
[0016] X and Y are divalent and are each independently: a bond, $\mathrm{CR}^{4} \mathrm{R}^{5}, \mathrm{O}, \mathrm{NR}^{4}, \mathrm{~S}, \mathrm{~S}=\mathrm{O}, \mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}(=\mathrm{O}),(\mathrm{C}=\mathrm{O}) \mathrm{N}$ $\left(\mathrm{R}^{4}\right), \mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4},-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-$, $C\left(R^{4} R^{5}\right) \quad C\left(R^{4} R^{5}\right) C\left(R^{4} R^{5}\right)-\quad C\left(R^{4} R^{5}\right) C\left(R^{4} R^{5}\right) C$ $\left(R^{4} R^{5}\right) C\left(R^{4} R^{5}\right)-\quad C\left(R^{4}\right)=C\left(R^{5}\right)-\quad C\left(R^{4} R^{5}\right) N^{4}-$, $\underset{-\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-, \quad-\left(\mathrm{C}=\mathrm{NR}^{a}\right)-, \quad \mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{NR}^{4} \mathrm{NR}^{5},}{\mathrm{C}}$, $\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{4}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}, \mathrm{NS}(=\mathrm{O})$ ${ }_{2} \mathrm{R}^{4}$; or aryl, heteroaryl, cycloalkyl or heterocyclic ring, all of which may be optionally substituted;
[0017] R^{1} and R^{2} are each independently: halogen, CF_{3}, $\mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}$, $\mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{2}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}$ $\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH- $\mathrm{CN}, \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \mathrm{~S}(\mathrm{O})_{t}$
$\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}$ - $\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-$ $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all of which may be optionally substituted;
[0018] R^{3} is absent or is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}$, $\mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ C_{6})-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)- $\mathrm{NH}-\mathrm{CN}, \quad \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O})$ $\mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}$ (O)- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocyclyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all of which may be optionally substituted;
[0019] R^{α} is hydrogen, $\mathrm{CN}, \mathrm{NO}_{2}$, alkyl, haloalkyl, $\mathrm{S}(\mathrm{O})$ ${ }_{t} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, or $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}$; each occurrence of R^{4}, R^{5}, R^{20} and R^{21} are each independently: hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and aminoalkyl are all optionally substituted, or R^{4} and R^{5} when taken together with the nitrogen to which they are attached complete a 3 - to 8 -membered ring containing carbon atoms and may optionally contain a heteroatom selected from O, S, or NR^{50} and the 3 - to 8 -membered ring may be optionally substituted;
[0020] R^{50} is, in each occurrence, $\mathrm{R}^{20}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{~S}(\mathrm{O})$ ${ }_{t} \mathrm{NR}^{20} \mathrm{R}^{21}, \quad \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{OR}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{R}^{20} \mathrm{C}\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NR}^{20} \mathrm{R}^{21}, \mathrm{C}\left(=\mathrm{NR}^{20}\right) \mathrm{NR}^{21} \mathrm{R}^{a}, \mathrm{C}\left(=\mathrm{NOR}^{20}\right) \mathrm{R}^{21}$ or $\mathrm{C}(\mathrm{O})$ $\mathrm{NR}^{20} \mathrm{R}^{21}$;
[0021] each occurrence of R^{7} and R^{8} are each independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)- $\mathrm{NH}-\mathrm{CN}, \quad \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{OR}^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$
$\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0022] R^{9} is H or $\mathrm{C}_{1-\sigma}$ alkyl;
[0023] R^{10} is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)- $\mathrm{NH}-\mathrm{CN}, \quad \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\quad\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, $\mathrm{B}(\mathrm{OH})_{2}$, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0024] R^{11} and R^{12} are each independently: halogen, CF_{3}, $\mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{3}$, $\mathrm{CO}_{2} \mathrm{H}, \quad \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, ~ \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, ~ \mathrm{OC}(\mathrm{O})$ $\mathrm{NR}^{2} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}$ $\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, O- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) NR^{4} - $\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-$ $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0025] $\mathrm{R}^{13 a}$ and $\mathrm{R}^{13 b}$ are each independently R^{5} or together are $=\mathrm{O}$;
[0026] $\mathrm{R}^{14 a}$ and $\mathrm{R}^{14 b}$ are each independently R^{5} or together are $=\mathrm{O}$;
[0027] $\mathrm{R}^{13 c}$ and $\mathrm{R}^{14 c}$ are each independently R^{5};
[0028] Q^{a} is CH or N ;
[0029] U is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(=\mathrm{NR}^{4}\right)-$, $\left(\mathrm{CR}^{4} \mathrm{R}^{5}-\right)_{p}$, $\mathrm{NR}^{50}, \quad \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{C}(=\mathrm{O}), \quad(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{4}\right), \quad \mathrm{N}\left(\mathrm{R}^{4}\right)(\mathrm{C}=\mathrm{O})$, $\mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \mathrm{N}\left(\mathrm{R}^{4}\right) \mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4},-\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}$ $\left(\mathrm{R}^{5}\right)-\quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p} \mathrm{NR}^{50}-, \mathrm{N}\left(\mathrm{R}^{50}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p},-\mathrm{O}-\mathrm{C}$ $\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})_{t}-, \quad-(\mathrm{C}=\mathrm{O}) \mathrm{O}-$, $-\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-\quad\left(\mathrm{C}=\mathrm{NR}^{a}\right)-\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{NR}^{2} \mathrm{NR}^{5}$, $\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{a}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{NR}^{4} \mathrm{NR}^{4}, \mathrm{NS}(=\mathrm{O})$
${ }_{2} \mathrm{R}^{4}$, or an optionally substituted aryl, heteroaryl, cycloalkyl or heterocyclic ring, all of which may be optionally substituted;
[0030] W is - $\mathrm{CH}_{2}-,-\mathrm{S}-,-\mathrm{CHF}-$ or $-\mathrm{CF}_{2}-$;
[0031] Z is C or N ;
[0032] m is 1 , or 2 ;
[0033] n is 0,1 , or 2 ;
[0034] p is 0 to 6 ;
[0035] q is 0 to 6 ; and
[0036] t is 0,1 , or 2 .
[0037] Another aspect of the present invention includes a method of preparing a compound of the following formula:

comprising (a) coupling prolinamide with fumarylchloride to provide a compound of the following formula:

[0038] (b) dehydrating the carboxamides of the compound from step (a) to cyano to provide a compound of formula:

and (c) cleaving the $\mathrm{C}=\mathrm{C}$ bond with an oxidizing agent either: (1) in the presence of methanol, and then adding a reducing agent to the reaction mixture, or (2) and reacting the cleavage products with a reducing agent and subsequently adding methanol to the cleavage product mixture.
[0039] A further aspect of the present invention provides a method of preparing a compound of the following formula:

comprising: (a) coupling a compound of formula:

with fumaryl chloride to provide a compound of formula

[0040] (b) dehydrating the carboxamide in the compound from step (a) to provide a compound of formula:

and (c) cleaving the $\mathrm{C}=\mathrm{C}$ bond with an oxidizing agent either: (1) in the presence of methanol, and then adding a reducing agent to the reaction mixture, or (2) and reacting the cleavage products with a reducing agent and subsequently adding methanol to the cleavage product mixture.
[0041] Another aspect of the present invention provides a compound of formula A compound of formula (I):

A-B-D
wherein A is:

[0042] B is:

(a)

[0043] and
[0044] D is:

wherein
[0045] E and G are independently selected from 6-membered aryl, 5 -membered heteroaryl, 6 -membered heteroaryl, and 5-6-membered saturated or partially saturated carbocyclic or heterocyclic rings;
[0046] E may be substituted with one or more R^{1} groups;
[0047] G may be substituted with one or more R^{2} groups;
[0048] R^{1} and R^{2} are independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}$, $\mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}$
(O) $\mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, $\mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}$ (O)R ${ }^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0049] R^{3} is absent or is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}$, $\mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)-NH-CN, $\mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O})$ $\mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}$ (O)- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0050] R^{a} is hydrogen, $\mathrm{CN}, \mathrm{NO}_{2}$, alkyl, haloalkyl, $\mathrm{S}(\mathrm{O})$ ${ }_{t} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, or $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}$;
[0051] each occurrence of R^{4}, R^{5}, R^{20} and R^{21} are each independently: hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and aminoalkyl are all optionally substituted, or R^{4} and R^{5} when taken together with the nitrogen to which they are attached complete a 3- to 8 -membered ring containing carbon atoms and may be optionally containing a heteroatom selected from O, S, or NR^{50} and the 3 - to 8 -membered ring may be optionally substituted;
[0052] R^{50} is, in each occurrence, $\mathrm{R}^{20}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{~S}(\mathrm{O})$ ${ }^{2} R^{20} \mathrm{R}^{21}, \quad \mathrm{~S}(\mathrm{O}) \mathrm{R}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{OR}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{R}^{20} \mathrm{C}\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NR}^{20} \mathrm{R}^{21}, \mathrm{C}\left(=\mathrm{NR}^{20}\right) \mathrm{NR}^{21} \mathrm{R}^{a}, \mathrm{C}\left(=\mathrm{NOR}^{20}\right) \mathrm{R}^{21}$ or $\mathrm{C}(\mathrm{O})$ $\mathrm{NR}^{20} \mathrm{R}^{21}$;
[0053] each occurrence of R^{7} and R^{8} are each independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)- $\mathrm{NH}-\mathrm{CN}, \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$
$\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}\right.$ - C_{6})-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0054] R^{9} is H or C_{1-6} alkyl;
[0055] R^{10} is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)- $\mathrm{NH}-\mathrm{CN}, \quad \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, ~ \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{OR}^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, $\mathrm{B}(\mathrm{OH})_{2}$, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0056] R^{11} and R^{12} are each independently: halogen, CF_{3}, $\mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}$, $\mathrm{CO}_{2} \mathrm{H}, \quad \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a}, \quad\left(\mathrm{CO}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, $\mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{OR}^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR R^{5}, ($\mathrm{C}_{0}-$ $\left.\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-$ $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkeny1, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0057] $\mathrm{R}^{13 a}$ and $\mathrm{R}^{13 b}$ are each independently R^{5} or together are $=\mathrm{O}$;
[0058] $\mathrm{R}^{14 a}$ and $\mathrm{R}^{14 b}$ are each independently R^{5} or together are $=\mathrm{O}$;
[0059] $\mathrm{R}^{13 c}$ and $\mathrm{R}^{14 c}$ are each independently R^{5};
[0060] Q^{a} is CH or N ;
[0061] U is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(=\mathrm{NR}^{4}\right)-,-\left(\mathrm{CR}^{4} \mathrm{R}^{5}-\right)_{p}$, $\mathrm{NR}^{50}, \mathrm{~S}(=\mathrm{O})_{2}, \mathrm{C}(=\mathrm{O}), \quad(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{4}\right), \quad \mathrm{N}\left(\mathrm{R}^{4}\right)(\mathrm{C}=\mathrm{O})$, $\mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \mathrm{N}\left(\mathrm{R}^{4}\right) \mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4},-\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}$ $\left(\mathrm{R}^{5}\right)-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p} \mathrm{NR}^{50}-, \mathrm{N}\left(\mathrm{R}^{50}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p}-, \mathrm{O}-\mathrm{C}$ $\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})_{t}-, \quad-(\mathrm{C}=\mathrm{O}) \mathrm{O}-$, - $\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-\quad\left(\mathrm{C}=\mathrm{NR}^{a}\right)-, \mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{NR}^{4} \mathrm{NR}^{5}$, $\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{4}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}, \mathrm{NS}(=\mathrm{O})$
${ }_{2} \mathrm{R}^{4}$, or an optionally substituted aryl, heteroaryl, cycloalkyl or heterocyclic ring, all of which may be optionally substituted;
[0062] W is - $\mathrm{CH}_{2}-,-\mathrm{S}-,-\mathrm{CHF}-$ or $-\mathrm{CF}_{2}-$;
[0063] Z is C or N ;
[0064] m is 1 , or 2 ;
[0065] n is 0,1 , or 2 ;
[0066] p is 0 to 6 ;
[0067] q is 0 to 6 ; and
[0068] t is 0,1 , or 2
wherein: when E and G are both phenyl either:
[0069] (1) at least one of R^{1} or R^{2} is present and is:
[0070] $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{20} \mathrm{R}^{4}$, $\mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{4}, \mathrm{SO}_{3} \mathrm{H}$, $\mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, O ($\left.\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{OR}^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) NR^{4} - $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-$ $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, $\left(\mathrm{C}_{5-20}\right)$ alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted; and wherein OR^{4} is alkoxy, OR^{4} is (C_{5-20}) alkoxy; or (2) and when B is (b) R^{7} and R^{8} are not selected from hydrogen, hydroxy, hydroxymethyl, and phenyl; or (3) and when B is (b) or (f), R9 is: C_{1-6} alkyl.
[0071] Another aspect of the present invention provides a compound of formula A compound of formula (I):

A-B-D
wherein A is:

B is:
[0072]

-continued

[0073] and
[0074] D is:

wherein
[0075] E, G, and Minclude a three ring system wherein M shares two carbon atoms with each of E and G;
[0076] E, G and M are each independently selected from a 5-7-membered saturated or partially saturated carbocyclic ring, a 5-7 membered saturated or partially saturated heterocyclic ring, a 5-6-membered aromatic ring, and a 5-6-membered heteroaromatic ring;
[0077] E may be substituted with one or more R^{1} groups;
[0078] G may be substituted with one or more R^{2} groups;
[0079] R^{1} and R^{2} are independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}$, $\mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}$ (O) $\mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN,O-(C6-C6)-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-NR ${ }^{4} R^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}$ (O) $\mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0080] R^{3} is absent or is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}$, $\mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ C_{6})-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR $\mathrm{N}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)-NH-CN, O- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O}) \mathrm{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O})$ $\mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}$ (O) - $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted;
[0081] R^{a} is hydrogen, $\mathrm{CN}, \mathrm{NO}_{2}$, alkyl, haloalkyl, $\mathrm{S}(\mathrm{O})$ ${ }_{t} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, or $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}$;
[0082] each occurrence of R^{4}, R^{5}, R^{20} and R^{21} are each independently: hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and aminoalkyl are all optionally substituted, or R^{4} and R^{5} when taken together with the nitrogen to which they are attached complete a 3 - to 8 -membered ring containing carbon atoms and may be optionally containing a heteroatom selected from O, S, or NR^{50} and the 3 - to 8 -membered ring may be optionally substituted;
[0083] R^{50} is, in each occurrence, $\mathrm{R}^{20}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{~S}(\mathrm{O})$ ${ }_{t} \mathrm{NR}^{20} \mathrm{R}^{21}, \quad \mathrm{~S}(\mathrm{O}) \mathrm{R}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{OR}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{R}^{20} \mathrm{C}\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NR}^{20} \mathrm{R}^{21}, \mathrm{C}\left(=\mathrm{NR}^{20}\right) \mathrm{NR}^{21} \mathrm{R}^{a}, \mathrm{C}\left(=\mathrm{NOR}^{20}\right) \mathrm{R}^{21}$ or $\mathrm{C}(\mathrm{O})$ $\mathrm{NR}^{20} \mathrm{R}^{21}$;
[0084] each occurrence of R^{7} and R^{8} are each independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}$,
$\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)- $\mathrm{NH}-\mathrm{CN}, \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-akyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR $\mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\right.$ C_{6})-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$ $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{5}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alky1, cycloalkyl, cycloalkylalkyl, heterocycloalky1, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0085] R^{9} is $\mathrm{H}_{\text {or }} \mathrm{C}_{1-5}$ alkyl;
[0086] R^{10} is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O)- $\mathrm{NH}-\mathrm{CN}, \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{CO}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$ $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, $\mathrm{B}(\mathrm{OH})_{2}$, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloakylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0087] R^{11} and R^{12} are each independently: halogen, CF_{3}, $\mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{\frac{3}{3}}$, $\mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{4}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a}, \quad\left(\mathrm{CO}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, $\mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{OR}^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}\right.$ - $\left.\mathrm{C}_{6}\right)$-alkyl-C (O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{C}}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-$ $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalky1, haloalkyl, alkenyl, alkyny1, ary1, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0088] $\mathrm{R}^{13 a}$ and $\mathrm{R}^{13 b}$ are each independently R^{5} or together are $=0$;
[0089] $\mathrm{R}^{14 a}$ and $\mathrm{R}^{14 b}$ are each independently R^{5} or together are $=0$;
[0090] $\mathrm{R}^{13 c}$ and $\mathrm{R}^{14 c}$ are each independently R^{5};
[0091] Q^{a} is CH or N ;
[0092] U is $-\mathrm{C}(\mathrm{O})-\mathrm{C}\left(=\mathrm{NR}^{4}\right)-,\left(\mathrm{CR}^{4} \mathrm{R}^{5}-\right)_{p}$, $\mathrm{NR}^{50}, \quad \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{C}(=\mathrm{O}), \quad(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{4}\right), \quad \mathrm{N}\left(\mathrm{R}^{4}\right)(\mathrm{C}=\mathrm{O})$, $\mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \mathrm{N}\left(\mathrm{R}^{4}\right) \mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4},-\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}$ $\left(\mathrm{R}^{5}\right)-, \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p} \mathrm{NR}^{50}-, \mathrm{N}\left(\mathrm{R}^{50}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p}-, \mathrm{O}-\mathrm{C}$ $\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(-\mathrm{O})_{t}-, \quad-(\mathrm{C}=\mathrm{O}) \mathrm{O}-$, $-\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-,-\left(\mathrm{C}=\mathrm{NR}^{a}\right)-\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{NR}^{4} \mathrm{NR}^{5}$, $\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{4}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}, \mathrm{NS}(=\mathrm{O})$ ${ }_{2} \mathrm{R}^{4}$, or an optionally substituted aryl, heteroaryl, cycloalkyl or heterocyclic ring, all of which may be optionally substituted;

```
[0093] W is \(-\mathrm{CH}_{2}-,-\mathrm{S}-,-\mathrm{CHF}-\) or \(-\mathrm{CF}_{2}-\);
[0094] Z is C or N ;
[0095] m is 1 , or 2;
[0096] n is 0,1 , or 2 ;
[0097] p is 0 to 6 ;
[0098] \(q\) is 0 to 6 ; and
[0099] t is 0,1 , or 2
```

wherein: when E and G are both phenyl either:
[0100] (1) at least one of R^{1} or R^{2} is present and is:
[0101] $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}$,
$\mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{2} \mathrm{R}^{4}, \mathrm{SO}_{3} \mathrm{H}$,
$\mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$
alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\right.$
$\left.\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{OR}^{4}$,
$\left(\mathrm{CO}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}(\mathrm{O})-\mathrm{NH}-$
$\mathrm{CN}, \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-
$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$
alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-
$\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-$
$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -
alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$,
hydrogen, (C_{5-20}) alkyl, cycloalkyl, cycloalkylalkyl, hetero-
cycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alk-
enyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl,
alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl,
cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocy-
cloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl,
heteroarylalkyl, alkoxyalkyl and aminoalkyl are all option-
ally substituted; and wherein OR^{4} is alkoxy, OR^{4} is $\left(\mathrm{C}_{5-20}\right)$
alkoxy; or (2) and when B is (b) R^{7} and R^{8} are not selected
from hydrogen, hydroxy, hydroxymethyl, and phenyl; or (3)
and when B is (b) or (f), R9 is: C_{1-5} alkyl.
[0102] Compounds of the present invention having one or more optically active carbons can exist as racemates and racemic mixtures, diasteromeric mixtures and individual diastereomers, enantiomeric mixtures and single enantiomers, tautomers, atropisomers, and rotamers, with all isomeric forms being included in the present invention. Compounds described in this invention containing olefinic double bonds include both E and Z geometric isomers. Also included in this invention are all salt forms, polymorphs, hydrates and solvates. All of the above mentioned compounds are included within the scope of the invention.
[0103] The present invention also provides methods of inhibiting the DPP-IV enzyme.
[0104] The present invention further provides methods of treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, such as diabetes and particularly Type- 2 diabetes.
[0105] The present invention also provides methods for obtaining the DPP-IV inhibiting compounds and pharmaceutical compositions comprising them either singly or in combination with one or more additional therapeutic agents for
the prevention or treatment of DPP-IV enzyme medicated diseases, particularly Type-2 diabetes.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0106] The terms "alkyl" or "alk", as used herein alone or as part of another group, denote optionally substituted, straight and branched chain saturated hydrocarbon groups, preferably having 1 to 10 carbons in the normal chain, most preferably lower alkyl groups. Exemplary unsubstituted such groups include methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl and the like. Exemplary substituents may include, but are not limited to, one or more of the following groups: halo, alkoxy, alkylthio, alkenyl, alkynyl, aryl (e.g., to form a benzyl group), cycloalkyl, cycloalkenyl, hydroxy or protected hydroxy, carboxyl (-COOH), alkyloxycarbonyl, alkylcarbonyloxy, alkylcarbonyl, carbamoyl ($\left.\mathrm{NH}_{2}-\mathrm{CO}-\right)$, substituted carbamoyl $\left(\left(\mathrm{R}^{4}\right)\left(\mathrm{R}^{5}\right) \mathrm{N}-\mathrm{CO}\right.$ - wherein R^{4} or R^{5} are as defined below, except that at least one of R^{4} or R^{5} is not hydrogen), amino, heterocyclo, mono- or dialkylamino, or thiol (-SH). [0107] The terms "lower alk" or "lower alkyl" as used herein, denote such optionally substituted groups as described above for alkyl having 1 to 4 carbon atoms in the normal chain.
[0108] The term "alkoxy" denotes an alkyl group as described above bonded through an oxygen linkage (-O-).
[0109] The term "alkenyl", as used herein alone or as part of another group, denotes optionally substituted, straight and branched chain hydrocarbon groups containing at least one carbon to carbon double bond in the chain, and preferably having 2 to 10 carbons in the normal chain. Exemplary unsubstituted such groups include ethenyl, propenyl, isobutenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, and the like. Exemplary substituents may include, but are not limited to, one or more of the following groups: halo, alkoxy, alkylthio, alkyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, hydroxy or protected hydroxy, carboxyl (-COOH), alkyloxycarbonyl, alkylcarbonyloxy, alkylcarbonyl, carbamoyl $\left(\mathrm{NH}_{2}-\mathrm{CO}-\right)$, substituted carbamoyl $\left(\left(\mathrm{R}^{4}\right)\left(\mathrm{R}^{5}\right) \mathrm{N}-\right.$ CO - wherein R^{4} or R^{5} are as defined below, except that at least one of R^{4} or R^{5} is not hydrogen), amino, heterocyclo, mono- or dialkylamino, or thiol (-SH).
[0110] The term "alkynyl", as used herein alone or as part of another group, denotes optionally substituted, straight and branched chain hydrocarbon groups containing at least one carbon to carbon triple bond in the chain, and preferably having 2 to 10 carbons in the normal chain. Exemplary unsubstituted such groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, and the like. Exemplary substituents may include, but are not limited to, one or more of the following groups: halo, alkoxy, alkylthio, alkyl, alkenyl, aryl, cycloalkyl, cycloalkenyl, hydroxy or protected hydroxy, carboxyl (- COOH), alkyloxycarbonyl, alkylcarbonyloxy, alkylcarbonyl, carbamoyl $\left(\mathrm{NH}_{2}-\mathrm{CO}-\right)$, substituted carbamoyl $\left(\left(\mathrm{R}^{4}\right)\left(\mathrm{R}^{5}\right) \mathrm{N}-\mathrm{CO}\right.$ - wherein R^{4} or R^{5} are as defined below, except that at least one of R^{4} or R^{5} is not hydrogen), amino, heterocyclo, mono- or dialkylamino, or thiol (-SH). [0111] The term "cycloalkyl", as used herein alone or as part of another group, denotes optionally substituted, saturated cyclic hydrocarbon ring systems, including bridged ring
systems, desirably containing 1 to 3 rings and 3 to 9 carbons per ring. Exemplary unsubstituted such groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, and adamantyl. Exemplary substituents include, but are not limited to, one or more alkyl groups as described above, or one or more groups described above as alkyl substituents.
[0112] The terms "ar" or "aryl", as used herein alone or as part of another group, denote optionally substituted, homocyclic aromatic groups, preferably containing 1 or 2 rings and 6 to 12 ring carbons. Exemplary unsubstituted such groups include, but are not limited to, phenyl, biphenyl, and naphthyl. Exemplary substituents include, but are not limited to, one or more nitro groups, alkyl groups as described above or groups described above as alkyl substituents.
[0113] The term "heterocycle" or "heterocyclic system" denotes a heterocyclyl, heterocyclenyl, or heteroaryl group as described herein, which contains carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and including any bicyclic or tricyclic group in which any of the above-defined heterocyclic rings is fused to one or more heterocycle, aryl or cycloalkyl groups. The nitrogen and sulfur heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom.
[0114] Examples of heterocycles include, but are not limited to, 1 H -indazole, 2 -pyrrolidonyl, $2 \mathrm{H}, 6 \mathrm{H}$-1,5,2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolinyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, b-carboliny1, chromanyl, chromenyl, cinnolinyl, decahydroquinoliny1, $\quad 2 \mathrm{H}, 6 \mathrm{H}-1,5,2$-dithiazinyl, dihydrofuro[2,3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazoliny1, imidazolyl, 1 H -indazoly1, indolenyl, indolinyl, indolizinyl, indolyl, isatinoyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2, 4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinylperimidinyl, oxindolyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridy1, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, carbolinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2, 4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, $1,2,3$-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, xanthenyl.
[0115] "Heterocyclenyl" denotes a non-aromatic monocyclic or multicyclic hydrocarbon ring system of about 3 to about 10 atoms, desirably about 4 to about 8 atoms, in which one or more of the carbon atoms in the ring system is/are
hetero element(s) other than carbon, for example nitrogen, oxygen or sulfur atoms, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. Ring sizes of rings of the ring system may include 5 to 6 ring atoms. The designation of the aza, oxa or thia as a prefix before heterocyclenyl define that at least a nitrogen, oxygen or sulfur atom is present respectively as a ring atom. The heterocyclenyl may be optionally substituted by one or more substituents as defined herein. The nitrogen or sulpHur atom of the heterocyclenyl may also be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. "Heterocyclenyl" as used herein includes by way of example and not limitation those described in Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W. A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley \& Sons, New York, 1950 to present), in particular Volumes $13,14,16,19$, and 28 ; and "J. Am. Chem. Soc.", 82:5566 (1960), the contents all of which are incorporated by reference herein. Exemplary monocyclic azaheterocyclenyl groups include, but are not limited to, 1,2,3,4-tetrahydrohydropyridine, 1,2-dihydropyridyl, 1,4dihydropyridyl, 1,2,3,6-tetrahydropyridine, 1,4,5,6tetrahydropyrimidine, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, and the like. Exemplary oxaheterocyclenyl groups include, but are not limited to, 3,4-dihydro-2H-pyran, dihydrofuranyl, and fluorodihydrofuranyl. An exemplary multicyclic oxaheterocyclenyl group is 7-oxabicyclo[2.2.1]heptenyl.
[0116] "Heterocyclyl," or "heterocycloalkyl," denotes a non-aromatic saturated monocyclic or multicyclic ring system of about 3 to about 10 carbon atoms, desirably 4 to 8 carbon atoms, in which one or more of the carbon atoms in the ring system is/are hetero element(s) other than carbon, for example nitrogen, oxygen or sulfur. Ring sizes of rings of the ring system may include 5 to 6 ring atoms. The designation of the aza, oxa or thia as a prefix before heterocyclyl define that at least a nitrogen, oxygen or sulfur atom is present respectively as a ring atom. The heterocyclyl may be optionally substituted by one or more substituents which may be the same or different, and are as defined herein. The nitrogen or sulpHur atom of the heterocyclyl may also be optionally oxidized to the corresponding N -oxide, S -oxide or S, S-dioxide.
[0117] "Heterocyclyl" as used herein includes by way of example and not limitation those described in Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W. A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley \& Sons, New York, 1950 to present), in particular Volumes $13,14,16,19$, and 28 ; and "J. Am. Chem. Soc.", 82:5566 (1960). Exemplary monocyclic heterocyclyl rings include, but are not limited to, piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,3-dioxolanyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
[0118] "Heteroaryl" denotes an aromatic monocyclic or multicyclic ring system of about 5 to about 10 atoms, in which one or more of the atoms in the ring system is/are hetero element(s) other than carbon, for example nitrogen, oxygen or sulfur. Ring sizes of rings of the ring system include 5 to 6 ring atoms. The "heteroaryl" may also be substituted by one or more substituents which may be the same or different, and
are as defined herein. The designation of the aza, oxa or thia as a prefix before heteroaryl define that at least a nitrogen, oxygen or sulfur atom is present respectively as a ring atom. A nitrogen atom of a heteroaryl may be optionally oxidized to the corresponding N -oxide. Heteroaryl as used herein includes by way of example and not limitation those described in Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W. A. Benjamin, New York, 1968), particularly Chapters $1,3,4,6,7$, and 9 ; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley \& Sons, New York, 1950 to present), in particular Volumes $13,14,16,19$, and 28; and "J. Am. Chem. Soc.", 82:5566 (1960). Exemplary heteroaryl and substituted heteroaryl groups include, but are not limited to, pyrazinyl, thienyl, isothiazolyl, oxazolyl, pyrazolyl, furazanyl, pyrrolyl, 1,2,4-thiadiazolyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1,2-a]pyridine, imidazo[2,1-b]thiazolyl, benzofurazanyl, azaindolyl, benzimidazolyl, benzothienyl, thienopyridyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, benzoazaindole, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, benzthiazolyl, dioxolyl, furanyl, imidazolyl, indolyl, indolizinyl, isoxazolyl, isoquinolinyl, isothiazolyl, morpholino, oxadiazolyl, oxazinyl, oxiranyl, piperazinyl, piperidinyl, pyranyl, pyrazinyl, pyridazinyl, pyrazolyl, pyridyl, pyrimidinyl, pyrrolyl, pyrrolidinyl, quinazolinyl, quinolinyl, tetrazinyl, tetrazolyl, 1,3,4-thiadiazolyl, 1,2,3-thiadiazolyl, 1,2,4thiadiazolyl, 1,2,5-thiadiazolyl, thiatriazolyl, thiazinyl, thiazolyl, thienyl, 5-thioxo-1,2,4-diazolyl, thiomorpholino, thiophenyl, thiopyranyl, triazolyl and triazolonyl.
[0119] The term "amino" denotes the radical $-\mathrm{NH}_{2}$ wherein one or both of the hydrogen atoms may be replaced by an optionally substituted hydrocarbon group. Exemplary amino groups include, but are not limited to, n-butylamino, tert-butylamino, methylpropylamino and ethyldimethylamino.
[0120] The term "cycloalkylalkyl" denotes a cycloalkylalkyl group wherein a cycloalkyl as described above is bonded through an alkyl, as defined above. Cycloalkylalkyl groups may contain a lower alkyl moiety. Exemplary cycloalkylalkyl groups include, but are not limited to, cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclopropylethyl, cyclopentylethyl, cyclohexylpropyl, cyclopropylpropyl, cyclopentylpropyl, and cyclohexylpropyl.
[0121] The term "arylalkyl" denotes an aryl group as described above bonded through an alkyl, as defined above.
[0122] The term "heteroarylalkyl" denotes a heteroaryl group as described above bonded through an alkyl, as defined above.
[0123] The term "heterocyclylalkyl" or "heterocycloalkylalkyl," denotes a heterocyclyl group as described above bonded through an alkyl, as defined above.
[0124] The terms "halogen", "halo", or "hal", as used herein alone or as part of another group, denote chlorine, bromine, fluorine, and iodine.
[0125] The term "haloalkyl" denotes a halo group as described above bonded though an alkyl, as defined above. Fluoroalkyl is an exemplary group.
[0126] The term "aminoalkyl" denotes an amino group as defined above bonded through an alkyl, as defined above.
[0127] The pHrase "bicyclic fused ring system wherein at least one ring is partially saturated" denotes an 8 - to 13 -membered fused bicyclic ring group in which at least one of the rings is non-aromatic. The ring group has carbon atoms and optionally $1-4$ heteroatoms independently selected from N, O
and S. Illustrative examples include, but are not limited to, indanyl, tetrahydronaphthyl, tetrahydroquinolyl and benzocycloheptyl.
[0128] The pHrase "tricyclic fused ring system wherein at least one ring is partially saturated" denotes a 9 - to 18 -membered fused tricyclic ring group in which at least one of the rings is non-aromatic. The ring group has carbon atoms and optionally 1-7 heteroatoms independently selected from N, O and S . Illustrative examples include, but are not limited to, fluorene, 10,11-dihydro-5H-dibenzo[a,d]cycloheptene and 2,2a,7,7a-tetrahydro-1H-cyclobuta[a]indene.
[0129] The term "pharmaceutically acceptable salts" refers to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as, but not limited to, hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as, but not limited to, acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2 -acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
[0130] The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two. Organic solvents include, but are not limited to, nonaqueous media like ethers, ethyl acetate, ethanol, isopropanol, or acetonitrile. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Company, Easton, Pa., 1990, p. 1445, the disclosure of which is hereby incorporated by reference.
[0131] The pHrase "pharmaceutically acceptable" denotes those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio.
[0132] "Substituted" is intended to indicate that one or more hydrogens on the atom indicated in the expression using "substituted" is replaced with a selection from the indicated group(s), provided that the indicated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., $=\mathrm{O}$) group, then 2 hydrogens on the atom are replaced.
[0133] Unless moieties of a compound of the present invention are defined as being unsubstituted, the moieties of the compound may be substituted. In addition to any substituents provided above, the moieties of the compounds of the present invention may be optionally substituted with one or more groups independently selected from, but not limited to:
[0134] $\quad \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl;
[0135] $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl;
[0136] $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkynyl;
[0137] CF_{3};
[0138] halo;
[0139] OH;
[0140] O- ($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl);
[0141] $\mathrm{OCH}_{2} \mathrm{~F}$;
[0142] OCHF_{2};
[0143] OCF_{3};
[0144] COCF_{3};
[0145] OC(O)-($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl);
[0146] $\mathrm{OC}(\mathrm{O}) \mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0147] $\mathrm{OC}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0148] OC(S)NH ($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl);
[0149] $\mathrm{OC}(\mathrm{S}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0150] ONO_{2}
[0151] SH;
[0152] $\mathrm{S}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0153] $\mathrm{S}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$;
[0154] $\mathrm{S}(\mathrm{O})_{2}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0155] SC(O)-($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl);
[0156] $\mathrm{SC}(\mathrm{O}) \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$;
[0157] NH_{2};
[0158] $\mathrm{N}(\mathrm{H})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$;
[0159] $\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0160] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$;
[0161] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0162] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O})-\mathrm{CF}_{3}$;
[0163] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O})-\mathrm{CF}_{3}$;
[0164] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{S})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0165] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{S})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0166] $\mathrm{N}(\mathrm{H}) \mathrm{S}(\mathrm{O})_{2}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0167] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$;
[0168] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0169] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)
[0170] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0171] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0172] $\left.\mathrm{N}(\mathrm{H}) \mathrm{S}(\mathrm{O})_{2} \mathrm{NH}_{2}\right)$;
[0173] $\mathrm{N}(\mathrm{H}) \mathrm{S}(\mathrm{O})_{2} \mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0174] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0175] $\mathrm{N}(\mathrm{H}) \mathrm{S}(\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0176] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{~N}_{\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2} \text {; }}$
[0177] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0178] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0179] $\mathrm{N}(\mathrm{H}) \mathrm{S}(\mathrm{O})_{2} \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0180] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0181] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{S}) \mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0182] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{S}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0183] $\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{S}) \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0184] $\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{S}) \mathrm{NH}_{2}$;
[0185] NO_{2};
[0186] $\mathrm{CO}_{2} \mathrm{H}$;
[0187] $\mathrm{CO}_{2}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0188] $\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{OH}$;
[0189] $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{OH}:$
[0190] $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$;
[0191] $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0192] $\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0193] $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0194] $\mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{H})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0195] $\mathrm{C}(\mathrm{S}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0196] $\mathrm{C}(\mathrm{NH}) \mathrm{N}(\mathrm{H})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0197] $\mathrm{C}(\mathrm{NH}) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0198] $\mathrm{C}\left(\mathrm{NCH}_{3}\right) \mathrm{N}(\mathrm{H})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0199] $\mathrm{C}\left(\mathrm{NCH}_{3}\right) \mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0200] $\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0201] $\mathrm{C}(\mathrm{NH})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0202] $\mathrm{C}\left(\mathrm{NCH}_{3}\right)-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$;
[0203] $\mathrm{C}(\mathrm{NOH})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0204] $\mathrm{C}\left(\mathrm{NOCH}_{3}\right)-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$;
[0205] CN;
[0206] CHO ;
[0207] $\mathrm{CH}_{2} \mathrm{OH}$;
[0208] $\mathrm{CH}_{2} \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0209] $\mathrm{CH}_{2} \mathrm{NH}_{2}$;
[0210] $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H})-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl);
[0211] $\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text { alkyl }\right)_{2}$;
[0212] aryl;
[0213] heteroaryl;
[0214] cycloalkyl; and
[0215] heterocyclyl.
[0216] The term "cleave" or "cleaving" means splitting a complex molecule into at least two separate molecules. "Cleavage products" are the separate molecules which result from cleaving.
[0217] The term "metabolite" refers to a composition which results from a metabolic process. Examples of the results of metabolism on the compounds of the present invention include addition of - OH , hydrolysis, and cleavage.
[0218] The term "polymorphs" refers to the various crystalline structures of the compounds of the present invention. This may include, but is not limited to, crystal morphologies (and amorphous materials), all crystal lattice forms, and all salts. Salts of the present invention can be crystalline and may exist as more than one polymorpH. Each polymorpH forms another aspect of the invention. Hydrates as well as anhydrous forms of the salt are also encompassed by the invention.
[0219] "Teoc" is 2-(trimethylsilyl)ethoxycarbonyl
[0220] "Et" is ethyl $\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ or ethylene ($-\mathrm{CH}_{2} \mathrm{CH}_{2}-$).
[0221] "Me" is methyl $\left(-\mathrm{CH}_{3}\right)$ or methylene $\left(-\mathrm{CH}_{2}-\right)$.
[0222] "Boc" is tert-butyloxycarbonyl.
[0223] " PHCH_{2} " is benzyl.
[0224] The term "pharmaceutically-acceptable tricyclic moiety" is meant to include, but is not limited to, benzocycloheptapyridyl, benzodiazepinyl, and benzozapinyl
[0225] In another embodiment of the present invention, the DPP-IV inhibiting compounds are used in the manufacture of a medicament for the treatment of a disease mediated by an DPP-IV enzyme.
[0226] In another aspect, the DPP-IV inhibiting compounds of the present invention are used in combination with another disease modifying drug. Examples of other disease modifying drugs include, but are not limited to: (a) other dipeptidyl peptidase IV (DPP-IV) inhibitors such as Vildagliptin (Novartis), Sitagliptin (Merck\&Co.), Saxagliptin (BMS); (b) insulin sensitizers including (i) PPAR γ agonists such as the glitazones (e.g. troglitazone, pioglitazone, edaglitazone, rosiglitazone, and the like) and other PPAR ligands, including PPAR α / γ dual agonists such as muraglitazar (BMS) and tesaglitazar (AstraZeneca), and PPAR α agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), (ii) biguanides such as metformin and phenformin, and (iii) protein tyrosine phos-phatase-1B (PTP-1B) inhibitors; (c) insulin or insulin mimetics; (d) incretin and incretin mimetics such as (i) Exenatide available from Amylin Pharmaceuticals, (i) amylin and amylin mimetics such as pramlintide acetate, available as Symlin $(\mathbb{B}$), (iii) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists, (iv) GIP, GIP mimetics and GIP receptor agonists; (e)
sulfonylureas and other insulin secretagogues, such as tolbutamide, glyburide, glipizide, glimepiride, meglitinides, and repaglinide; (f) α-glucosidase inhibitors (such as acarbose and miglitol); (g) glucagon receptor antagonists; (h) PACAP, PACAP mimetics, and PACAP receptor agonists; (i) cholesterol lowering agents such as (i) HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, cerivastatin, fluvastatin, atorvastatin, itavastatin, and rosuvastatin, and other statins), (ii) sequestrants such as cholestyramine, colestipol and dialkylaminoalkyl derivatives of a cross-linked dextran, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPAR α agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), (v) PPAR α / γ dual agonists such as muraglitazar (BMS) and tesaglitazar (AstraZeneca), (vi) inhibitors of cholesterol absorption, such as beta-sitosterol and ezetimibe, (vii) acyl CoA:cholesterol acyltransferase inhibitors such as avasimibe, and (viii) antioxidants such as probucol; (J) PPAR δ agonists such as GW-501516 from GSK; (k) anti-obesity compounds such as fenfluramine, dexfenfluramine, phentemine, sibutramine, orlistat, neuropeptide Y1 or Y5 antagonists, MTP inhibitors, squalene synthase inhibitor, lipoxygenase inhibitor, ACAT inhibitor, Neuropeptide Cannabinoid CB-1 receptor antagonists, CB-1 receptor inverse agonists and antagonists, fatty acid oxidation inhibitors, appetite suppressants (1) adrenergic receptor agonists, melanocortin receptor agonists, in particular melanocortin-4 receptor agonists, ghrelin antagonists, and melanin-concentrating hormone (MCH) receptor antagonists; (m) ileal bile acid transporter inhibitors; (n) agents intended for use in inflammatory conditions such as aspirin, non steroidal anti-inflammatory drugs, glucocorticoids, azalfidine, and selective cyclooxygenase-2 inhibitors; (o) antihypertensive agents such as ACE inhibitors (enalapril, lisinopril, captopril, quinapril, fosinoprol, ramipril, spirapril, tandolapril), angiotensin-II (AT-1) receptor blockers (losartan, candesartan, irbesartan, valsartan, telmisartan, eprosartan), beta blockers and calcium channel blockers; and (p) glucokinase activators (GKAs); (q) agents which can be used for the prevention, delay of progression or treatment of neurodegenerative disorders, cognitive disorders or a drug for improving memory such as anti-inflammatory drugs, antioxidants, neuroprotective agents, glutamate receptor antagonists, acetylcholine esterase inhibitors, butyrylcholinesterase inhibitors, MAO inhibitors, dopamine agonists or antagonists, inhibitors of gamma and beta secretases, inhibitors of amyloid aggregation, amyloid beta peptide, antibodies to amyloid beta peptide, inhibitors of acetylcholinesterase, glucokinase activators, agents directed at modulating GABA, NMDA, cannabinoid, AMPA, kainate, phosphodiesterase (PDE), PKA, PKC, CREB or nootropic systems; (r) leukocyte growth promotors intended for the treatment and prevention of reduced bone marrow production, infectious diseases, hormone dependent disorders, inflammatory diseases, HIV, allergies, leukocytopenia, and rheumatism; (s) SGLT2 inhibitor; (t) glycogen phosphorylase inhibitor; (u) aP2 inhibitors; (v) aminopeptidase N inhibitor (w) vasopeptidase inhibitors like neprilysin inhibitors and/or ACE inhibitors or dual NEP/ ACE inhibitor; (x) growth hormone secretagogue for enhancing growth hormone levels and for treating growth retardation/dwarfism or metabolic disorders or where the disorder is an injury, or a wound in need of healing, or a mammalian patient recovering from surgery; (y) 5 -HT 3 or 5 -HT 4 receptor modulators (tegaserod, cisapride, nor-cisapride, renzapride, zacopride, mosapride, prucalopride, buspirone, norcisapride, cilansetron, ramosetron, azasetron, ondansetron, etc.); (Za) aldose reductase inhibitors; (Zb) sorbitol dehydro-
genase inhibitors; (Zc) AGE inhibitors; (Zd) erythropoietin agonist such as EPO, EPO mimetics, and EPO receptor agonists.
[0227] In a further aspect, the DPP-IV inhibiting compounds of the present invention are used in the treatment diseases or symptoms mediated by an DPP-IV enzyme. Examples of diseases or symptoms mediated by a DPP-IV enzyme include, but are not limited to, Type II (Type-2) Diabetes and Related Disorders, such as hyperglycemia, low glucose tolerance, insulin resistance, obesity, lipid disorders, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL levels, high LDL levels, atherosclerosis and its 30 sequelae, vascular restenosis, irritable bowel syndrome, inflammatory bowel disease, including Crohn's disease and ulcerative colitis, other inflammatory conditions, pancreatitis, abdominal obesity, neurodegenerative disease, retinopathy, nepHropathy, neuropathy, cataracts, glaucoma, glomerulosclerosis, foot ulcerations and unlcerative colitis, altered gastrointestinal motility, Syndrome X, ovarian hyperandrogenism, polycystic ovarian syndrome, premenstrual syndrome, other disorders where insulin resistance is a component. In Syndrome X, also known as Metabolic Syndrome, obesity is thought to promote insulin resistance, diabetes, dyslipidemia, hypertension, and increased cardiovascular risk, growth hormone deficiency, neutropenia, neuronal disorders, tumor invasion and metastasis, benign prostatic hypertrophy, gingivitis, osteoporosis, frailty of aging, intestinal injury, benign prostatic hypertrophy (BPH), and sperm motility/male contraception.
[0228] In a further aspect, the DPP-IV inhibiting compounds of the present invention are useful for the prevention, delay of progression or the treatment of an early cardiac or early cardiovascular diseases or damages, renal diseases or damages, heart Failure, or heart Failure associated diseases like (i) cardiovascular diseases or damages e.g. cardiac hypertrophy, cardiac remodelling after myocardial infarction, pulmonary congestion and cardiac fibrosis in dilated or in hypertrophic cardiomyopathy, cardiomyopathy such as dilated cardiomyopathy or hypertrophic cardiomyopathy, mesanglial hypertrophy, or diabetic cardiomyopathy, left or right ventricular hypertrophy, arrhythmia, cardiac dysrhythmia, syncopy, angina pectoris, cardiac bypass reocclusion, intermittent claudication, diastolic and/or systolic dysfunction, diabetic myopathy, stroke prevention in congestive heart failure, hypertrophic medial thickening in arteries and/or large vessels, mesenteric vasculature hypertrophy or artherosclerosis, preferably artherosclerosis in mammalian patients with hypertension of diabetes; (ii) renal diseases or damages like renal hyperfiltration such as after portal renal ablation, proteinuria in chronic renal disease, renal arteriopathy as a consequence of hypertension, nepHrosclerosis, hypertensive nepHrosclerosis or mesanglial hypertrophy; (iii) Heart Failure to be treated is secondary to idiopathic dilated cardiomyopathy and/or coronary ischemic disease;
[0229] In another aspect, the DPP-IV inhibiting compounds of the present invention are used for the prevention, the delay of the onset, the delay of progression or the treatment of neurodegenerative disorders, cognitive disorders and for improving memory (both short term and long term) and learning ability wherein the (i) neurodegenerative disorder is dementia, senile dementia, schizopHrenia, mild cognitive impairment, Alzheimer related dementia, Huntington's chores, tardive dyskinesia, hyperkinesias, mania, Morbus Parkinson, Steel-Richard syndrome, Down's syndrome, myasthenia gravis, nerve and brain trauma, vascular amyloidosis, cerebral haemorrhage I with amyloidosis, brain inflammation, Friedrich ataxia, acute confusion disorders, acute
confusion disorders with apoptotic necrocytosis, amyotrophic lateral sclerosis, glaucoma, and Alzheimer's disease; (ii) cognitive disorders like cognitive deficits associated with schizopHrenia, age-induced memory impairment, cognitive deficits associated with psychosis, cognitive impairment associated with diabetes, cognitive deficits associated with post-stroke, memory defects associated hypoxia, cognitive and attention deficits associated with senile dementia, attention deficits disorders, memory problems associated with mild cognitive impairment, impaired cognitice function associated with vascular dementia, cognitive problems associated with brain tumors, Pick's disease, cognitive deficits due to autism, cognitive deficits post electroconvulsive therapy, cognitive deficits associated with traumatic brain injury, amnesic disorders, deliriums, vitamin deficiency, dementias, impaired cognitive function associated with Parkinson's disease, atten-tion-deficit disorders; (iii) prevention of memory impairment as a result of Alzheimer disease, Creutzfeld-Jakob disease, Pick disease, Huntington disease, AIDS, brain injury, brain aneurysm, epilepsy, stroke, toxicant exposure, mental retardation in children, Huntington's disease; (iv) to improve learning speed and potential in educational and rehabilitation contexts.
[0230] In another aspect, the DPP-IV inhibiting compounds of the present invention are used for stimulating an immune response in a subject having or at risk of having cancer wherein the cancer is selected from the group consisting of basal cell carcinomas including cancers of the binary tract, bladder, urinary system, bone, brain, breast, cervical, endometrial, ovarian, uterine, choriocarcinoma, central nervous system, colon and rectal cancers, connective tissue cancer, cancer of the digestive system, esophageal, gastric, stomach, larynx, liver, pancreatic, colorectal, renal cancers; cancers of the urinary system; cancers of eye, head and neck, oral cavity, skin, prostate; cancers of biliary tract, testicular, thyroid; intra-epithelial neoplasm, leukemia, acute myeloid leukemia, acute lymphoid leukemia, chronic myeloid leukemia, chronic lymphoid leukemia; and other cancers of the respiratory system, lung, small cell lung, non-small cell lung; lymphoma, Hodgkin's lymphoma, Non-Hodgkin's lymphoma; melanoma, myeloma, neuroblastoma, retinoblastoma, fibrosarcoma (bone or connective tissue sarcoma), rhabdomyosarcoma; and other cancers including neoplastic conditions, adipose cell tumors, adipose cell carcinomas, such as liposarcoma;
[0231] In a further aspect, the DPP-IV inhibiting compounds of the present invention are useful for the treatment or prophylaxis of chronic inflammatory diseases such as autoimmune disorders like rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, allergies or asthma.
[0232] In another aspect, the DPP-IV inhibiting compounds of the present invention may be useful in the treatment of pain, neuropathic pain, rheumatoid pain, osteoarthritis pain, anesthesia adjunct in mammalian patients undergoing surgery, chronic pain in advanced cancer, treatment of refractory diarrhea, biliary pain caused by gallstones.
[0233] In a further aspect, the DPP-IV inhibiting compounds of the present invention are useful for the treatment of mammalian patients undergoing islet/pancreas transplantation, for the prevention or the delay of transplant rejection, or allograft rejection in transplantation, for improving pancreatic function by increasing the number and size of pancreatic beta-cells in the treatment of Type 1 diabetes patients, and for improving pancreatic function by increasing the number and size of pancreatic beta-cells in general.
[0234] Furthermore, the DPP-IV inhibiting compounds of the present invention are useful for the treatment of mammalian patients with acne, skin disorders (e.g. pigmentation disorders or psoriasis), scleroderma, mycoses; anxiety, anxiety neurosis, major depression disorder, drug abuse, alcohol addiction, insomnia, chronic fatigue, sleep apnea; anorexia nervosa; epilepsy; migrane; encephalomyelitis; osteoarthritis, osteoporosis, calcitonin-induced osteoporosis; male and female sexual dysfunction, infertility; Type 1 diabetes; immunosuppression, HIV infection; hematopoiesis, anemia; and for weight reduction.
[0235] In a further aspect, the DPP-IV inhibiting compounds of the present invention are useful for the prevention, delay of progression or treatment of (i) bacterial infections from Escherichia coli, Staphylococcus, Streptoococcus, Pseudomonas, Clostridium difficile infection, Legionella, Pneumococcus, HaemopHilus, Klebsiella, Enterobacter, Citrobacter, Neisseria, Shigella, Salmonella, Listeria, Pasteurella, Streptobacillus, Spirillum, Treponema, Actinomyces, Borrelia, Corynebacterium, Nocardia, Gardnerella, Campylobacter, Spirochaeta, Proteus, Bacteriodes, Helicobacter pylori, and anthrax infection; (ii) mycobacterial infection from tuberculosis and leprosy; (iii) viral infection from HIV, Herpes simplex virus 1, Herpes simplex virus 2, Cytomegalovirus, hepatitis A virus, hepatitis B virus, hepatitis C virus, human papilloma virus, Epstein Barr virus, rotavi-
rus, adenovirus, influenza A virus, respiratory syncytial virus, varicella-zoster virus, small pox, monkey pox and SARS; (iv) fungal infection from candidiasis, ringworm, histoplasmosis, blastomycosis, paracoccidioidomycosis, cryptococcosis, aspergillosis, chromomycosis, mycetoma infections, pseudallescheriasis, Tinea versicolor infection; (v) parasite infection from amebiasis, Trypanosoma cruzi, Fascioliasis, Leishmaniasis, Plasmodium, Onchocerciasis, Paragonimiasis, Trypanosoma brucei, Pneumocystis, Trichomonas vaginalis, Taenia, Hymenolepsis, Echinococcus, Schistosomiasis, neurocysticerosis, Necator americanus, and Trichuris trichuria. [0236] The compounds from this invention are suitable for oral, sublingual, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (aerosol inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. The compounds from this invention are conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.
[0237] The DPP-IV inhibiting compounds of the present invention are synthesized by the general method shown in Schemes 1-14.
[0238] Generic Schemes
[0239] General synthetic schemes for the preparation of tricyclic building blocks of this invention:

[0240] Commercially available bromotoluene derivatives were treated with n-butyllithium and heated, followed by treatment with dry-ice in an appropriate solvent to afford the desired compound. Alternatively, the acid can be prepared by Grignard reaction followed by treatment with dry-ice in an appropriate solvent. Esterification of the compound followed by NBS bromination and subsequent conversion to the phosphonium salt in a suitable solvent and heating affords the desired compound. Wittig reaction of the phosphonium salt with a suitable aldehyde in an appropriate solvent and heating, followed by saponification of the ester moiety and subsequent catalytic hydrogenation affords the desired compound. Cyclisation of the compound with polyphosphoric acid in sulfolane and heating affords the desired compound after purification. For $\mathrm{R}_{1}=$ COOMe the tricyclic product
from the polyphosphoric acid step was treated with thionylchloride in an alcohol. Reduction of the ketone with a metal hydride in an appropriate solvent yields the compound after purification. Treatment of the alcohol with thionylchloride in a suitable solvent affords the final desired compound. In order to obtain the compounds with $\mathrm{R}_{1}=\mathrm{R}_{2}=$ COOMe, the tricyclic product from the polyphosphoric acid step with $\mathrm{R}_{1}=\mathrm{COOH}$ and $\mathrm{R}_{2}=\mathrm{Br}$ was treated with CuCN in a suitable solvent, followed by saponification of the nitrile to the acid. Ester formation using thionylchloride in an alcohol and reduction of the ketone with a metal hydride in an appropriate solvent yields the compound after purification. Treatment of the alcohol with thionylchloride in a suitable solvent affords the final desired compound.
[0241] Alternative synthetic scheme for the preparation of tricyclic building blocks of this invention:

SCHEME 2

[0242] Commercially available bromotoluene derivatives are treated with Magnesium in a Grignard reaction followed by treatment with dry-ice in an appropriate solvent to yield the desired acid. This acid is then treated with sec-butyllithium in an appropriate solvent at lower temperature. The anion is added at lower temperature to a solution of a commercially available benzylchloride in an appropriate solvent to afford the desired compound. Cyclisation of the compound with polyphosphoric acid in sulfolane and heating affords the desired compound. To obtain the compounds with $\mathrm{R}_{1}=\mathrm{R}_{2}=$ COOMe, the tricyclic product from the polyphosphoric acid step with $R_{1}=R_{2}=\mathrm{Cl}$ was treated with KCN , a Pd-catalyst, a suitable ligand and a suitable base in an appropriate solvent to afford the dicyano compound, which was converted to the diacid by treatment with base in a suitable solvent. Ester formation using thionylchloride in an alcohol and reduction of the ketone with a metal hydride in an appropriate solvent yields the compound after purification. Treatment of the alcohol with thionylchloride in a suitable solvent affords the final desired compound.
[0243] General synthetic scheme for the preparation of aldehyde building blocks of this invention:
[0244] Commercially available prolinamide is treated with fumarylchloride in an appropriate solvent to afford the desired compound. This compound is then treated with oxalylchloride in dimethylformamide to afford the desired compound after purification. Alternatively, the coupling product of prolinamide with fumarylchloride can be treated with trifluoroacetic acid anhydride in a suitable solvent to afford the desired compound. Ozonolysis of this compound at $-78^{\circ} \mathrm{C}$. in a suitable solvent, followed by reductive workup affords the desired final compound as a mixture of the aldehyde and its methyl hemiacetal.
[0245] Treatment of 2-Aza-bicyclo[3.1.0]hexane-3-carboxylic acid amide, prepared according to WO $01 / 68603$, in the same manner as described above yields the desired final compound containing a cyclopropyl moiety at the 4,5 -position of the pyrrolidine moiety.

$$
\left\lvert\, \begin{aligned}
& \text { 1. } \mathrm{O}_{3},-78^{\circ} \mathrm{C} . \\
& \text { solvent } \\
& \text { 2. }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}
\end{aligned}\right.
$$

[0246] General synthetic scheme for the preparation of tricyclic compounds of this invention with $\mathrm{R}^{3}=\mathrm{H}$:
SCHEME 4

[0249] Substituted or unsubstituted tricycles containing a nitrogen at the doubly benzylic position are treated with bromoacetylbromide and heated to afford the desired compounds. Treating these compounds with sodium azide or sodium cyanide in a suitable solvent and heating affords the desired azido or cyano compounds after purification. Catalytic hydrogenation or reduction with Lithium aluminium hydride in a suitable solvent affords the desired amine compounds. Using these amines for a nucleopHilic displacement reaction in a suitable solvent with a suitable bromo derivative yields the final desired product after purification.
[0250] General synthetic scheme for the preparation of tricyclic compounds of this invention having H, OH or no substituent at R^{3}

SCHEME 6

[0251] Substituted or unsubstituted tricyclic ketones with $Y=C\left(R_{4}\right)=C\left(R_{5}\right)$ are treated with malonic acid at elevated temperatures to afford the desired product after purification. These compounds are converted to the corresponding amides by treatment with isobutylchloroformate and ammonia. The amides are then converted to the desired amine products with $\mathrm{Y}=\mathrm{C}\left(\mathrm{R}_{4}\right)=\mathrm{C}\left(\mathrm{R}_{5}\right)$ by reduction with lithium aluminium hydride or to the desired amine products with $Y=C\left(R_{4} R_{5}\right) \mathrm{C}$ $\left(\mathrm{R}_{4} \mathrm{R}_{5}\right)$ by reduction with lithium aluminium hydride followed by catalytic hydrogenation with a suitable catalyst. Using these amines for a nucleopHilic displacement reaction in a suitable solvent with a suitable bromo derivative described above yields the final desired product after purification.
[0252] Treating tricyclic ketones in a Reformatskij reaction affords the desired product after purification. Reduction with LiAlH_{4} in a suitable solvent affords the alcohol products with $\mathrm{R}_{3}=\mathrm{OH}$ after purification. Activation of one of the hydroxyl
groups with sulfonylchlorides in a suitable solvent followed by treatment with NaN_{3} affords the desired compounds after purification. Reduction of the azide reaction products with a catalyst in a suitable solvent affords the desired amine compounds after purification. Using these amines for a nucleopHilic displacement reaction in a suitable solvent with a suitable bromo derivative described above yields the final desired products after purification.
[0253] Treating the amines with $\mathrm{R}_{3}=\mathrm{OH}$ with acid in a suitable solvent yields the desired unsaturated amine products. Using these amines for a nucleopHilic displacement reaction in a suitable solvent with a suitable bromo derivative described above yields the final desired products after purification.
[0254] General synthetic schemes (7-9) for the preparation of tricyclic compounds of this invention with $\mathrm{R}^{3}=$ nitrile, amide, tetrazolyl or N -alkyl-tetrazolyl

SCHEME 7

1. NaH , heat, solvent 2. sulfamidate, heat solvent

1. H_{2}, catalyst solvent, acid
2. D-CHO
solvent

$\mathrm{R}_{3}=\mathrm{CN}$

A-B-D
$\mathrm{R}_{3}=\mathrm{CN}$
[0255] Substituted or unsubstituted suberylchlorides are treated in a suitable solvent with a slight excess of AgCN and heated to afford the desired product after purification. The nitrile containing compound is then treated with sodium hydride in a suitable solvent and heated. The mixture is then treated at rt with a suitable dibromoalkene and heated to give an intermediate which after treatment with sodium azide or potassium phthalimide in an appropriate solvent and heating affords the desired compound after purification. Treating the mixture after the addition of sodium hydride at rt with a
suitable sulfamidate in an appropriate solvent affords the desired Teoc-protected compound after heating for several hours and subsequent purification.
[0256] Catalytic hydrogenation of compounds with $\mathrm{R}^{\prime}=\mathrm{N}_{3}$ in a suitable solvent and in the presence of a slight excess of acid affords the free amine compounds. Coupling of these amines with a suitable aldehyde (CHO-D) via reductive amination and subsequent purification affords the final desired compounds with $\mathrm{R}^{3}=\mathrm{CN}$.

SCHEME 8

[0257] Catalytic hydrogenation of compounds with $\mathrm{R}_{3}=\mathrm{CN}$ and $\mathrm{R}^{\prime}=\mathrm{N}_{3}$ in a suitable solvent and in the presence of a slight excess of acid affords the free amine compounds. Treatment of the hydrogenation products with sulphuric acid affords the desired compounds after purification. In case $\mathrm{R}_{1}=\mathrm{R}_{2} \neq \mathrm{COOH}$, the amines are reacted with a suitable aldehyde (D-CHO) in an appropriate solvent to yield the desired final compounds with $\mathrm{R}_{3}=\mathrm{CONH}_{2}$ and $\mathrm{R}_{1}=\mathrm{R}_{2} \neq \mathrm{COOH}$, $\mathrm{CONR}_{4} \mathrm{R}_{5}$, COOMe. In case $\mathrm{R}_{1}=\mathrm{COOH}$, the amines are treated with $\mathrm{Boc}_{2} \mathrm{O}$ in a suitable solvent to afford the Bocprotected amines. These compounds are then treated with ethylchloroformate, followed by treatment with an amine to yield the desired compounds after purification. The compounds are then treated with acid, followed by reaction with a suitable aldehyde (D-CHO) in an appropriate solvent to yield the desired final compounds with $\mathrm{R}_{3}=\mathrm{CONH}_{2}$ and $\mathrm{R}_{1}=\mathrm{CONR}_{4} \mathrm{R}_{5}$ after purification.
[0258] The compounds with $\mathrm{R}_{3}=\mathrm{CN}$ and $\mathrm{R}^{\prime}=\mathrm{N}$-phthaloyl are treated with an excess of trimethylsilyl azide and $\mathrm{Bu}_{2} \mathrm{SnO}$
in an appropriate solvent and heating to afford the desired compounds with $\mathrm{R}_{3}=$ tetrazolyl and $\mathrm{R}^{\prime}=\mathrm{N}$-phthaloyl. In case $\mathrm{R}_{1}=\mathrm{R}_{2} \neq \mathrm{COOH}$, the compounds are treated with hydrazine hydrate at elevated temperature in an appropriate solvent to yield the desired amines with $\mathrm{R}_{3}=$ tetrazoyl. The reaction of these amines with a suitable aldehyde (D-CHO) in an appropriate solvent affords the desired final compound with $\mathrm{R}_{3}=$ tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2} \neq \mathrm{COOH}, \mathrm{CONR}_{4} \mathrm{R}_{5}$, COOMe after purification. In case $R_{1}=$ COOMe, the compounds are treated with an appropriate amine in a suitable solvent to afford the free amine compounds. Protection of the amines with $\mathrm{Boc}_{2} \mathrm{O}$ affords the Boc-protected products after purification. Saponification of the ester moieties affords the desired fNH-Bocprotected carboxylic acid derivatives. The acid derivates are then treated with ethylchloroformate, followed by an amine to afford the desired products after acid treatment. The reaction of these amines with a suitable aldehyde (D-CHO) in an appropriate solvent affords the desired final compound with $\mathrm{R}_{3}=$ tetrazoyl and $\mathrm{R}_{1}=\mathrm{CONR}_{4} \mathrm{R}_{5}$ after purification.

[0259] The NH Teoc-protected compounds with $\mathrm{R}_{3}=\mathrm{CN}$ and $R_{1}=R_{2}=$ COOMe or $R_{1}=R_{2}=$ Hal were treated with hydroxylamine hydrochloride and an excess of base at elevated temperatures in an appropriate solvent to afford the desired compounds with $\mathrm{R}_{3}=\mathrm{CONH}_{2}$ after purification. The same NH Teoc protected compounds are also reacted with sodium azide and ammonium chloride in a suitable solvent to yield the desired compounds with $\mathrm{R}_{3}=$ tetrazoyl after purification. Further reaction of the compound with $\mathrm{R}_{3}=$ tetrazoyl with methyl iodide and base in a suitable solvent leads to the formation of the desired compound with $\mathrm{R}_{3}=\mathrm{N}-\mathrm{Me}$-tetrazoyl after purification. For the compounds with $\mathrm{R}_{3}=$ tetrazoyl, N -Me-tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2}=$ COOMe, Hal, the Teoc protecting group is removed by treatment with acid to afford the desired amine compounds. The reaction of these amines with a suitable aldehyde ($\mathrm{D}-\mathrm{CHO}$) in an appropriate solvent affords the desired final compound with $\mathrm{R}_{3}=$ tetrazoyl, $\mathrm{N}-\mathrm{Me}$ tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2}=$ COOMe, Hal after purification. For
the compounds with $\mathrm{R}_{3}=$ tetrazoyl, N-Me-tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{COOMe}$, the ester moieties are removed by treatment with base in an appropriate solvent to afford the desired dicarboxylic acid derivatives after purification. Treatment of these compounds with ethylchloroformate, followed by an amine yields the desired amine compounds with $\mathrm{R}_{3}=$ tetrazoyl, N -Me-tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2}=$ CONR4R5 after purification. Cleavage of the Teoc protecting group with acid affords the corresponding amine compounds. The reaction of these amines with a suitable aldehyde ($\mathrm{D}-\mathrm{CHO}$) in an appropriate solvent affords the desired final compounds with $\mathrm{R}_{3}=$ tetrazoyl, N -Me-tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CONR}_{4} \mathrm{R}_{5}$ after purification. To obtain the desired final compounds with $\mathrm{R}_{3}=$ tetrazoyl, N -Me-tetrazoyl and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{COOH}$ after purification, the amide formation steps 2 and 3 are omitted. [0260] General synthetic scheme for the preparation of tricyclic compounds of this invention with $\mathrm{R}^{3}=$ heteroaryl (e.g., oxadiazolone or trifluororoxadiazole)

SCHEME 10

$$
\begin{aligned}
& \text { 1. base, solvent } \\
& \begin{array}{l}
\text { 2. ethylchloroformate } \\
\text { base, solvent }
\end{array} \\
& \text { 4. amine }
\end{aligned}
$$

[0261] The NH Teoc-protected compounds with $\mathrm{R}_{3}=\mathrm{CN}$ and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{COOMe}$ were treated with hydroxylamine hydrochloride and a base at elevated temperatures, followed by diethylcarbonate in an appropriate solvent to afford the desired compounds with $\mathrm{R}_{3}=$ oxadiazolone after purification. In case trifluoroacetic acid anhydride and base are used in a suitable solvent for step 2 of the above scheme, the desired compounds with $\mathrm{R}_{3}=\mathrm{CF}_{3}$-oxadiazole are obtained after purification. The compounds with $\mathrm{R}_{3}=$ oxadiazolone and $\mathrm{R}_{3}=\mathrm{CF}_{3}$-oxadiazole are then treated with base to afford the dicarboxylic acid derivatives. These acids are treated with ethylchloroformate, followed by an amine to afford the desired NH -Teoc protected compounds with $\mathrm{R}_{3}=$ oxadiazolone, CF_{3}-oxadiazole and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CONR}_{4} \mathrm{R}_{5}$ after purification. Cleavage of the Teoc protecting group with acid affords the corresponding amine compounds. The reaction of these amines with a suitable aldehyde (D-CHO) in an appropriate solvent affords the desired final compounds with $\mathrm{R}_{3}=$ oxadiazolone, CF_{3}-oxadiazole and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CONR}_{4} \mathrm{R}_{5}$ after purification.
[0262] General synthetic scheme for the preparation of tricyclic compounds of this invention with $\mathrm{R}^{3}=$ tetrazole and $\mathrm{Y}=\mathrm{CONR}^{4}$
[0263] Anthraquinone derivatives are treated with sodium azide and sulphuric acid in a suitable solvent to yield the desired compounds. These compounds are then treated with alkyl halides and base in a suitable solvent to obtain the desired compounds after purification. Reaction of theses compounds with tosylmethyl isocyanide and base in a suitable solvent, followed by treatment with dibromoethane and potassium phthalimide affords the desired compounds with $\mathrm{R} 3=\mathrm{CN}$ and $\mathrm{R}^{\prime}=\mathrm{N}$-phthaloyl after purification. The reaction of these compounds with trimethylsilyl-azide and dibutyltin oxide in a suitable solvent affords the compounds with R3=tetrazoyl and $\mathrm{R}^{\prime}=\mathrm{N}$-phthaloyl. Cleavage of the protecting group with hydrazine hydrate affords the desired amines, which are reacted with a suitable aldehyde (D-CHO) in an appropriate solvent to afford the desired final compound with R3-tetrazoyl. The desired final compound with $\mathrm{R}_{3}=$ tetrazoyl and $\mathrm{R}_{4}=\mathrm{H}$ can be obtained by omitting the alkylation step with alkyl halides in the above scheme.
[0264] General synthetic scheme for the preparation of compounds with bridged piperazinones of this invention with $\mathrm{R}^{14 a, b}=(=\mathrm{O})$

SCHEME 11

SCHEME 12

[0265] A commercially available hydroxyl-proline derivative is treated with base and alkylated with allylbromide in an appropriate solvent to afford the allyl-protected amino acid after purification. This compound is then treated at $-30^{\circ} \mathrm{C}$. with an appropriate base, triflic anhydride and then an appropriately protected diamino acid in an appropriate solvent to afford the desired compound after purification. After cleavage of the ester moiety with palladium (0) in an appropriate solvent, the compound is treated with EDCI and base in an appropriate solvent to afford the desired compound after purification. Cleavage of Fmoc protecting group by treatment with an suitable base affords the desired product. The free
amine is then treated in the presence of an suitable polymer supported base with sulfonyl chlorides, acid chlorides or isocyanates to afford the desired compounds after purification. Removal of the Boc-protecting group with acid in a suitable solvent affords the final desired compounds after purification. [0266] Starting with the enantiomers of the amino acid derivatives above, and proceeding through the general procedures as described above, the enantiomeric piperazinone derivatives can be made.
[0267] General synthetic scheme for the preparation of compounds with bridged piperazinones of this invention with $\mathrm{R}^{13 a, b}=(=\mathrm{O})$

SCHEME 13

[0268] After removing the Fmoc group of the commercially available amino acid with $\mathrm{Et}_{2} \mathrm{NH}$, the primary amine is treated in an appropriate solvent with aldehydes or ketones in a reductive amination reaction to afford the desired products. Alternatively, the commercially available N -Boc-protected hydroxy amino acid ester can be treated with trifluoroacetic acid anhydride. The nucleopHilic displacement reaction of the triflate with commercially available amines affords the desired products, after saponification of the ester moiety with base and purification. These compounds are then treated with EDCl and a base in an suitable solvent to afford the cyclic amides after purification. These compounds are converted to the desired products by removing the Boc-protection group. These compounds are then reacted in a suitable solvent with a cyclic sulfamidate, derived from a serine derivative, in the presence of base. Saponification of the ester of the reaction product with a suitable base yields the desired acid compounds after purification. Further treatment of the free acids with EDCI in the presence of an appropriate base and a suitable amine derivative, followed by acidic removal of the Boc-protecting group yields the desired compounds after purification.
[0269] Starting with the enantiomers of the amino acid and amine derivatives above, and proceeding through the general procedures as described above, the enantiomeric piperazinone derivatives can be made.
[0270] General synthetic scheme for the preparation of compounds with bridged piperazines of this invention with $\mathrm{R}^{13 a, b}$ and $\mathrm{R}^{14 a, b}=\mathrm{H}$

SCHEME 14

$\xrightarrow[\begin{array}{c}\text { 2. } \mathrm{R}_{15} \mathrm{Cl} \\ \text { base, rt }\end{array}]{\substack{\text { 1. acid, } \mathrm{rt} \\ \text { solvent }}}$ base, rt
solvent

[0271] The commercially available bridged piperazine derivate is treated with a commercially available aziridine ester in an appropriate solvent to afford the desired compound after purification. After acidic removal of the Boc-protection group, the desired product reacts in presence of a base with an acid chloride or sulfonic acid chloride to yield the desired products after purification. After basic saponification, the free acids are treated with EDCI in the presence of an appropriate base and a suitable amine derivative to afford the desired compounds after purification. The Cbz-protecting group is then removed by treatment with TMSI and subsequent purification to afford the desired final compounds.
[0272] Starting with the enantiomers of the amine and aziridine derivatives above, and proceeding through the general procedures as described above, the enantiomeric piperazine derivatives can be made.
[0273] As can be seen by the generic schemes, each of the structures of " B " bonds to the " A " structures on its left side and to the " D " structures on its right side as each is depicted below. The compound A-B-D chooses an "A" which includes the following:

-continued

[0274] A is desirably

[0275 The "B" structures are chosen from:

-continued

Desirably, B is one of structure (a), (b), (c), and (d). More desirably, B is structure (b)
[0276] The " D " structures are chosen from:

[0277] The substituents are selected as follows:
[0278] E, G, and M represent a three ring system wherein M shares two carbon atoms with each of E and G ;
[0279] E and G are each independently selected from 6 -membered aryl, 5 -membered heteroaryl; 6-membered heteroaryl; a 5-7-membered saturated or partially saturated carbocyclic ring; and a 5-7 membered saturated or partially saturated heterocyclic ring; desirably E and G are substituted phenyl; M is a $5-7$-membered saturated or partially saturated carboxylic or heterocyclic ring, or a 5-6-membered aromatic or heteroaromatic ring.
[0280] E may be substituted with one or more R^{1} groups;
[0281] G may be substituted with one or more R^{2} groups;
[0282] X and Y are divalent and are each independently: a bond, $\mathrm{CR}^{4} \mathrm{R}^{5}, \mathrm{O}, \mathrm{NR}^{4}, \mathrm{~S}, \mathrm{~S}=\mathrm{O}, \mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}(=\mathrm{O}),(\mathrm{C}=\mathrm{O}) \mathrm{N}$ $\left(\mathrm{R}^{4}\right), \mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4},-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-$, $\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}\left(\mathrm{R}^{5}\right)-\quad \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{NR}^{4}-, \quad \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{O}-$, $-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})_{t}-\quad(\mathrm{C}=\mathrm{O}) \mathrm{O}-\quad\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)$,
$-\left(\mathrm{C}=\mathrm{NR}^{a}\right)-\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{NR}^{4} \mathrm{NR}^{5}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{~N}(\mathrm{C}=\mathrm{O})$ $\mathrm{OR}^{4}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{R}^{4}$; or aryl, heteroaryl, cycloalkyl or heterocyclic ring, all may be optionally substituted;
[0283] R^{1} and R^{2} are each independently: halogen, CF_{3}, $\mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}$, $\mathrm{CO}_{2} \mathrm{H}, \quad \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, ~ \mathrm{~S}(\mathrm{O})_{1} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O})$ $\mathrm{NR}^{2} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{C}$ $\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}, ~\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, O- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) NR^{4} - $\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-$
$\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all of which may be optionally substituted. Desirably, R^{1} and R^{2} may be defined independently as $-\mathrm{H},-\mathrm{F},-\mathrm{Cl},-\mathrm{CONR}^{4} \mathrm{R}^{5},-\mathrm{CO}_{2} \mathrm{H},-\mathrm{CN}$ or $-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5} \mathrm{R}^{2}$.
[0284] R^{3} is absent or is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, ~ \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}$, $\mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ C_{6})-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)-NH-CN, $\mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O})$ $\mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}$ (O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all of which may be optionally substituted. Desirably, R^{3} is absent or is $-\mathrm{H},-\mathrm{OH},-\mathrm{CO}_{2} \mathrm{H},-\mathrm{CN},-\mathrm{CONR}^{4} \mathrm{R}^{5}$, R^{5}, aryl, $\mathrm{NH}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{NH}\left(\mathrm{SO}_{2}\right) \mathrm{R}^{4}$, heteroaryl - $\mathrm{SO}_{3} \mathrm{H}$, $-\mathrm{PO}_{3} \mathrm{H}_{2},-\mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{R}^{5}$, aryl, $\mathrm{NH}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}$, or $\mathrm{NH}\left(\mathrm{SO}_{2}\right)$ R^{4}, and more desirably, R^{3} is - $\mathrm{CONR}^{4} \mathrm{R}^{5}$ or tetrazolyl.
[0285] R^{a} is hydrogen, $\mathrm{CN}, \mathrm{NO}_{2}$, alkyl, haloalkyl, $\mathrm{S}(\mathrm{O})$ ${ }_{1} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, or $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}$;
[0286] each occurrence of R^{4}, R^{5}, R^{20} and R^{21} are each independently: hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and aminoalkyl are all optionally substituted, or R^{4} and R^{5} when taken together with the nitrogen to which they are attached complete a 3- to 8 -membered ring containing carbon atoms and may optionally contain a heteroatom selected from O, S, or NR^{50} and the

3 - to 8 -membered ring may be optionally substituted. Desirably, R^{4} and R^{5} are each independently - H or alkyl.
[0287] R^{50} is, in each occurrence, $\mathrm{R}^{20}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{~S}(\mathrm{O})$ ${ }_{t} \mathrm{NR}^{20} \mathrm{R}^{21}, \quad \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{OR}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{R}^{20} \mathrm{C}\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NR}^{20} \mathrm{R}^{21}, \mathrm{C}\left(=\mathrm{NR}^{20}\right) \mathrm{NR}^{21} \mathrm{R}^{a}, \mathrm{C}\left(=\mathrm{NOR}^{20}\right) \mathrm{R}^{21}$ or $\mathrm{C}(\mathrm{O})$ $\mathrm{NR}^{20} \mathrm{R}^{21}$;
[0288] each occurrence of R^{7} and R^{8} are each independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right)$ NHR ${ }^{a},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $-\mathrm{NH}-\mathrm{CN}, \quad \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted. Desirably, R^{7} and R^{8} are independently H or alkyl.
[0289] R^{9} is H or C_{1-6} alkyl, desirably H.
[0290] R^{10} is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}{ }^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}$, $\mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{CO}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NHR}^{a}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{CO}-\mathrm{C}_{6}\right)-$ alkyl-C(O)OR ${ }^{4}$, ($\mathrm{C}_{0}-\mathrm{C}_{6}$)-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{C}(\mathrm{O})-\mathrm{NH}-\mathrm{CN}, \mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right.$)-alkyl-C(O)OR ${ }^{4}$,
$\mathrm{S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, $\mathrm{B}(\mathrm{OH})_{2}$, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, ary1, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl are all optionally substituted. Desirably R^{10} is CN .
[0291] R^{11} and R^{12} are each independently: halogen, CF_{3}, $\mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{3}$, $\mathrm{CO}_{2} \mathrm{H}, \quad \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{OC}(\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right)$ $\mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a},\left(\mathrm{CO}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)-$ alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{C}(\mathrm{O})-\mathrm{NH}-\mathrm{CN}$, $\mathrm{O}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{OR}^{4}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\right.$ $\left.\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-$ $\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, het-
eroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl and aminoalkyl all may be optionally substituted;
[0292] $\mathrm{R}^{13 a}$ and $\mathrm{R}^{13 b}$ are each independently R^{5} or together are $=\mathrm{O}$;
[0293] $\mathrm{R}^{14 a}$ and $\mathrm{R}^{14 b}$ are each independently R^{5} or together are $=0$;
[0294] $\mathrm{R}^{13 c}$ and $\mathrm{R}^{14 c}$ are each independently R^{5};
[0295] Q^{a} is CH or N ;
[0296] Q^{b} is CH or N ;
[0297] U is $-\mathrm{C}(\mathrm{O})-,-\mathrm{C}\left(=\mathrm{NR}^{4}\right)-,-\left(\mathrm{CR}^{4} \mathrm{R}^{5}-\right)_{p}$, $\mathrm{NR}^{50}, \quad \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{C}(=\mathrm{O}), \quad(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{4}\right), \quad \mathrm{N}\left(\mathrm{R}^{4}\right)(\mathrm{C}=\mathrm{O})$, $\mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \mathrm{N}\left(\mathrm{R}^{4}\right) \mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4},-\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}$ $\left(\mathrm{R}^{5}\right)-\quad \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p} \mathrm{NR}^{50}-, \mathrm{N}\left(\mathrm{R}^{50}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p}, \quad \mathrm{O}-\mathrm{C}$ $\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})_{t}-, \quad-(\mathrm{C}=\mathrm{O}) \mathrm{O}-$, $-\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-,-\left(\mathrm{C}=\mathrm{NR}^{a}\right)-, \mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{NR}^{4} \mathrm{NR}^{5}$, $\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{4}, \mathrm{NS}(=\mathrm{O})_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}, \mathrm{NS}(=\mathrm{O})$ ${ }_{2} \mathrm{R}^{4}$, or an optionally substituted aryl, heteroaryl, cycloalkyl or heterocyclic ring, all of which may be optionally substituted. Desirably, U is CH_{2}.

EXAMPLES

[0305] Compounds of the present invention having one or more optically active carbons can exist as racemates and racemic mixtures, diasteromeric mixtures and individual diastereomers, enantiomeric mixtures and single enantiomers, tautomers, atropisomers, and rotamers, with all isomeric forms being included in the present invention. Compounds described in this invention containing olefinic double bonds include both E and Z geometric isomers. Also included in this invention are all salt forms, polymorphs, hydrates and solvates. All of the above mentioned compounds are included within the scope of the invention.
[0306] The DPP-IV inhibition activity of the DPP-IV inhibitor compounds of the present invention may be measured using any suitable assay known in the art. A standard in vitro assay for measuring DPP-IV inhibitor activity is described.
[0307] The synthesis of DPP-IV inhibiting compounds of the invention and their biological activity assay are described in the following examples which are not intended to be limiting in any way.

Examples and Methods

[0308] All reagents and solvents were obtained from commercial sources and used without further purification. Proton $\left({ }^{1} \mathrm{H}\right)$ spectra were recorded on a 250 MHz NMR spectrometer in deuterated solvents. Chromatography was performed using Roth silica gel (Si $60,0.06-0.2 \mathrm{~mm}$) and suitable organic solvents as indicated in specific examples. For flash chromatography Roth silica gel (Si $60,0.04-0.063 \mathrm{~mm}$) was used. Thin layer chromatography (TLC) was carried out on silica gel plates with UV detection. Preparative thin layer chroma-
tography (Prep-TLC) was conducted with 0.5 mm or 1 mm silica gel plates (Merck $\operatorname{Si} 60, \mathrm{~F}_{254}$) and the solvents indicated in the specific examples.

Preparative Example 1

[0309]

[0310] Commercially available prolinamide (5 g) was first treated with bromacetylbromide (4.2 ml) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then with trifluoracetic acid anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as described in WO $98 / 19998$ to afford the title compound ($7.85 \mathrm{~g} ; 83 \%$). ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right) 2.05-2.40(\mathrm{~m}, 4 \mathrm{H}), 3.51-3.70(\mathrm{~m}, 2 \mathrm{H})$, $3.80-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.86(\mathrm{~m}, 1 \mathrm{H})$.

Preparative Example 2
[0311]

Step A
[0312] Commercially available L-prolinamide (25 g) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1200 \mathrm{ml})$ and triethylamine (30 ml) and 4-dimethylaminopyridine (1.9 g) added. The mixture was cooled to $0^{\circ} \mathrm{C}$. and treated with fumaryl chloride (11.7 ml). The dark mixture was stirred at it for 16 h and cooled to $0^{\circ} \mathrm{C}$. TFAA (77 ml) was added dropwise under stirring and the solution allowed to warm to rt over 6 hours. The reaction mixture was stirred at rt for 1 to 2 days. Ice (500 g) was added followed by cautious addition of sat. $\mathrm{NaHCO}_{3}(600 \mathrm{ml})$. After the evolution of gas had ceased, the organic phase was separated and washed with sat. $\mathrm{NaHCO}_{3}(350 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(350 \mathrm{ml})$, and brine $(200 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated to afford the title compound ($28.6 \mathrm{~g} ; 98 \%$). [0313] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right)$ 2.12-2.30 (m, 8H), 3.58-3.69 $(\mathrm{m}, 2 \mathrm{H}), 3.73-3.89(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.83(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H})$.

Step B
[0314] The title compound from Step A above (9.6 g) was dissolved in $\mathrm{CHCl}_{3}(90 \mathrm{ml})$ and $\mathrm{MeOH}(90 \mathrm{ml})$ and cooled to $-78^{\circ} \mathrm{C}$. At $-78^{\circ} \mathrm{C}$. a slow flow of ozone (originating from an O_{2} cylinder) was passed through the mixture for 3 h . The mixture was purged with N_{2} and dimethylsulfide (6 ml) added. The mixture was stirred for 1 h , allowed to reach rt and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0->92: 8\right)$ to afford the title compound as a mixture of the aldehyde and methoxy hemiacetal in a ratio of $\sim 1: 9(8.9 \mathrm{~g} ; 69 \%)$.
[0315] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 2.10-2.38(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $3.60-3.84(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.81(\mathrm{~m}, 1 \mathrm{H}), 5.5(\mathrm{~s}, 9 / 10 \mathrm{H}), 7.9(\mathrm{~s}$, $1 / 10 \mathrm{H}$).

Preparative Example 3

[0316]

The mixture was stirred for 2 hours at $-60^{\circ} \mathrm{C}$. and for further 2 h at $-110^{\circ} \mathrm{C}$. Subsequently, the reaction was quenched with water (100 ml) and concentrated. The aqueous phase was extracted with chloroform ($3 \times 100 \mathrm{ml}$). The combined organic phase was dried over MgSO_{4} and concentrated in vacuum affording the title compound ($22 \mathrm{~g} ; 82 \%$).
[0320] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right) 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.9-3.0(\mathrm{~m}, 2 \mathrm{H})$, 3.4-3.5 (m, 2H), 7.0-7.4 (m, 6H), $8.0(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.4(\mathrm{~m}, 1 \mathrm{H})$

Step C
[0321] The title compound of Step B (21.5 g) above was dissolved in phosphorus oxychloride (80 ml) and refluxed for 5 h . The reaction was concentrated and neutralized with 50% aqueous NaOH . The solid was separated and washed with hot isopropanol to afford the title compound ($10.4 \mathrm{~g} ; 63 \%$)
[0322] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right)$ 2.9-3.0 (m, 2H), 3.0-3.2 (m, $2 \mathrm{H}), 7.0-7.3(\mathrm{~m}, 4 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 1 \mathrm{H}), 7.4-7.5(\mathrm{~m}, 1 \mathrm{H}), 8.5-$ 8.6 (m, 1H)

Step A
[0317] Commercially available 2-cyano-3-methylpyridine $(25 \mathrm{~g})$ was dissolved in t-butanol $(50 \mathrm{ml})$ and stirred at $80^{\circ} \mathrm{C}$. Concentrated sulphuric acid (25 ml) was slowly added over a period of 45 minutes. After complete addition of the acid stirring was continued at $80^{\circ} \mathrm{C}$. for 1 h . The reaction was diluted with water $(50 \mathrm{ml})$ and toluene $(125 \mathrm{ml})$. The pH was adjusted to 10 with 25% aqueous ammonia (110 ml). The separated organic phase was concentrated in vacuum affording the desired product ($27 \mathrm{~g}, 90 \%$).
[0318] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right) 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.7(\mathrm{~s}, 3 \mathrm{H}), 7.2-7.3$ $(\mathrm{m}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 1 \mathrm{H}), 8.1(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.4(\mathrm{~m}, 1 \mathrm{H})$

Step B
[0319] The title compound of Step A (12 g) above was dissolved in THF (150 ml) and cooled to $-64^{\circ} \mathrm{C}$. n-Butyllithium $(1.6 \mathrm{M}$ in hexane, 77 ml) was added over a period of 30 min . After addition of sodium bromide (0.6 g) stirring was continued for 30 min at $-64^{\circ} \mathrm{C}$. m-Chlorobenzylchloride (11 g) was added while the temperature was kept below $-55^{\circ} \mathrm{C}$.

Step D
[0323] The title compound of Step C (10 g) above was dissolved in trifluorosulfonic acid $(80 \mathrm{ml})$ and stirred at $60^{\circ} \mathrm{C}$. for 1 h . At rt 6 N aqueous $\mathrm{HCl}(80 \mathrm{ml})$ was dropwise added. The reaction was refluxed for 1 h and subsequently, poured on ice. After neutralization with 50% aqueous NaOH the precipitate was separated, washed with water and recrystallized from isopropanol/water (3.1) affording the title compound. The mother liquor was concentrated and the residue washed with water and chloroform to afford additional title compound ($9.4 \mathrm{~g} ; 94 \%$).
[0324] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{MeOD}_{4}\right)$ 3.3-3.4 (m, 2H), 3.4-3.5 (m, $2 \mathrm{H}), 7.5(\mathrm{~m}, 2 \mathrm{H}), 8.1-8.2(\mathrm{~m}, 2 \mathrm{H}), 8.7(\mathrm{~d}, 1 \mathrm{H}), 8.9(\mathrm{~d}, 1 \mathrm{H})$

Step E
[0325] The title compound of Step D (700 mg) above was dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(95$ mg) was added in one portion. The mixture was allowed to warm to RT and stirred for 1 h . The reaction was acidified with 1 N HCl and subsequently, brought to pH 12 with 1 N NaOH .

The mixture was poured in water $(100 \mathrm{ml})$ and extracted with $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated affording the title compound (705 mg ; 100%).
[0326] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{MeOD}_{-1}\right)$ 3.0-3.4 (m, 4H), $6.1(\mathrm{~s}, 1 \mathrm{H})$, 7.1.7.3 (m, 3H), 7.5-7.6 (m, 2H), 8.3.8.4 (m, 1H)

Step F
[0327] The title compound of step $\mathrm{E}(370 \mathrm{mg})$ above was dissolved in toluene (5 ml) and cooled to $-15^{\circ} \mathrm{C}$. Thionyl chloride (286 mg) was slowly added and the reaction was allowed to come to RT and run overnight. The solution was neutralized with triethylamine and directly used in the next step.

Preparative Example 4

[0328]

Step A
[0329] The title compound from Preparative Example 3 Step E (285 mg) was dissolved in ethanol (10 ml) and 10% $\mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ and ammonium formiate (916 mg) were added. The mixture was refluxed for 2 h . Subsequently, the reaction was treated with water $(20 \mathrm{ml})$ and extracted twice
with chloroform (50 ml). The combined organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane 1:4) to afford the title compound ($200 \mathrm{mg} ; 82 \%$).
[0330] ${ }^{1}$ HNMR $\delta\left(\mathrm{MeOD}-\mathrm{d}_{4}\right)$ 2.9-3.1 (m, 2H), 3.3-3.6 (m, $2 \mathrm{H}), 6.3(\mathrm{~s}, 1 \mathrm{H}), 7.0-7.3(\mathrm{~m}, 4 \mathrm{H}), 7.4(\mathrm{~m}, 1 \mathrm{H}), 7.8(\mathrm{~m}, 1 \mathrm{H}), 8.3$ (m, 1H)

Step B
[0331] The title compound of Step A (200 mg) above was dissolved in toluene (5 ml) and cooled to $-15^{\circ} \mathrm{C}$. Thionyl chloride (235 mg) was slowly added and the reaction was allowed to come to RT and run overnight. The solution was neutralized with triethylamine directly used.

Preparative Example 5
[0332]

[0333] To a cooled solution ($12^{\circ} \mathrm{C}$.) of commercially available ethylenediamine (30 ml) was added within 5 min commercially available dibenzosuberylchloride (3.3 g). The mixture was stirred at rt for 1 h and then $\mathrm{K}_{2} \mathrm{CO}_{3}(5.8 \mathrm{~g})$ was added. After an additional 30 min at rt , the mixture as filtered, the salts washed with 5 ml ethylenediamine and the filtrates concentrated. The residue was dissolved in 80 ml EtOAc, 20 ml $\mathrm{H}_{2} \mathrm{O}$ and 5 ml NH 44 OH -solution (25%). The organic phase was separated, dried over MgSO_{4} and concentrated to afford the title compound ($3.4 \mathrm{~g} ; 93 \% ; \mathrm{MH}^{+}=253$)

Preparative Example 6-9

[0334] The title compounds from Preparative Example 6 to 9 were prepared according to the procedure described in Preparative Example 5 using the chlorides and amines as indicated in the Table below. In case the chlorides did not dissolve in the amines after $10 \mathrm{Min}, \mathrm{CH}_{3} \mathrm{CN}$ or THF was added until a clear solution was obtained.

| Preparative
 Example | Chloride | Amine | 1. Yield
 $2 . \mathrm{MH}^{+}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Product | | | |

Preparative
Example

Preparative Example 10
[0335]

$\xrightarrow{\text { Step } A}$

Step A
[0336] Commercially available dibenzosuberylchloride $(300 \mathrm{mg})$ and $4-\mathrm{N}$-Boc-amino-piperidine (290 mg) were suspended in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$. After $10 \mathrm{~min} \mathrm{~K}_{2} \mathrm{CO}_{3}(545 \mathrm{mg})$ was added and the mixture was stirred at rt for 3 h . The mixture was diluted with $\mathrm{EtOAc}(30 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, the organic phase separated, dried over MgSO_{4} and concentrated to afford the title compound ($460 \mathrm{mg} ; 89 \% ; \mathrm{MH}^{+}=393$).

Step B
[0337] The title compound from Step A above (460 mg) was dissolved in a solution of 4 M HCl in dioxane (20 ml). The mixture was stirred at rt for 2 h and concentrated to afford the title compound ($335 \mathrm{mg} ; 97 \% ; \mathrm{MH}^{+}=293$).

Preparative Example 11-12

[0338] The title compounds from Preparative Example 11 and 12 were prepared according to the procedure described in Preparative Example 10 using the chlorides and amines as indicated in the Table below.

Step A
[0340] To a suspension of $\mathrm{AgCN}(4.7 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{ml})$ under nitrogen was added at rt a solution of commercially available dibenzosuberylchloride (6 g) in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{ml})$ and benzene $(10 \mathrm{ml})$. The mixture was heated at reflux for 2 h , cooled to rt and filtered. The salts were washed with 20 ml $\mathrm{CH}_{3} \mathrm{CN}$ and the filtrates concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane, 1:9) to afford the title compound ($5 \mathrm{~g} ; 87 \% ; \mathrm{MNa}^{+}=242$).
Step B
[0341] A suspension of $\mathrm{LiAlH}_{4}(360 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was slowly treated with a solution of $\mathrm{AlCl}_{3}(950 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}$

Preparative
Example

Preparative Example 13
[0339]

Step A
$(20 \mathrm{ml})$. The mixture was stirred at rt for 10 min and then the title compound from Step A above (1.03 g) was added within 5 min . The mixture was stirred at rt for 10 min and then refluxed for 8 h . After the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and 25% $\mathrm{NH}_{4} \mathrm{OH}(6 \mathrm{ml})$, the mixture was filtered and the salts washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated to afford the title compound ($157 \mathrm{mg} ; 15 \% ; \mathrm{MH}^{+}=224$).

Preparative Example 14
[0342]

Step A
[0343] To a solution of commercially available iminodibenzyl (5 g) in toluene (25 ml) was added commercially available bromoacetylbromide (4.35 ml). The mixture was heated under reflux for 2 h 30 Min , cooled and concentrated. A portion of the crude product (800 mg) was dissolved in DMA (6 ml) and treated with $\mathrm{NaN}_{3}(815 \mathrm{mg})$. The mixture was heated at $60-70^{\circ} \mathrm{C}$. overnight and diluted with EtOAc (30 $\mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was treated with EtOAc/cyclohexane (1:9) (2 ml), sonicated for 2 min and the solvents removed by syringe. The residue was dried to afford the title compound ($483 \mathrm{mg} ; 69 \% ; \mathrm{MH}^{+}=279$).

Step B
[0344] The title compound from Step A above (483 mg) was dissolved in $\mathrm{MeOH}(25 \mathrm{ml})$ and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ added. The mixture was hydrogenated for 1 h , filtered and the catalyst washed with $\mathrm{MeOH}(10 \mathrm{ml})$. The filtrates were concentrated and the residue purified by chromatography on silica ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$) to afford the title compound (415 $\mathrm{mg} ; 95 \% ; \mathrm{MH}^{+}=253$).

Step C
[0345] To a suspension of $\mathrm{LiAlH}_{4}(242 \mathrm{mg})$ in THF (6 ml) was added a solution of the title compound from Step B above (322 mg) in THF (6 ml). The mixture was heated under reflux for 2 h 30 min . The mixture was cooled to $0^{\circ} \mathrm{C}$., quenched with $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{ml})$ and diluted with $15 \% \mathrm{NH}_{4} \mathrm{OH}$-solution $(0.3 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{ml})$. The mixture was stirred at rt for 45 Min, filtered and the salts washed with THF (8 ml). The
filtrates were concentrated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to afford the title compound ($79 \mathrm{mg} ; 26 \% ; \mathrm{MH}^{+}=239$).

Preparative Example 15
[0346]

$\xrightarrow{\text { Step B }}$

Step A
[0347] A mixture of commercially available dibenzosuberenol $(1.5 \mathrm{~g})$ and malonic acid $(830 \mathrm{mg})$ was heated at 160 -
$170^{\circ} \mathrm{C}$. for 2 h . A mixture of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and $0.1 \mathrm{MHCl}(5 \mathrm{ml})$ was added and the mixture cooled to rt. The mixture was diluted with EtOAc $(100 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, the organic phase separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, 98:2-> $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, 9:1) to afford the title compound ($775 \mathrm{mg} ; 43 \%$; $\mathrm{MNa}^{+}=273$).

Step B

[0348] A mixture of title compound from Step A above (775 mg) and triethylamine $(0.59 \mathrm{ml})$ in THF (20 ml) was cooled to $-40^{\circ} \mathrm{C}$. and treated with isobutylchloroformate. After stirring at $-40^{\circ} \mathrm{C}$. for 1 h , the mixture was filtered and the salts washed with THF (5 ml). The filtrates were then treated at $0^{\circ} \mathrm{C}$. with $25 \% \mathrm{NH}_{4} \mathrm{OH}(15 \mathrm{ml})$ for 1 h 30 min . The mixture was diluted with EtOAc (60 ml), the organic phase separated, dried over MgSO_{4} and concentrated. The residue was treated with $\mathrm{CHCl}_{3}(1.5 \mathrm{ml})$, the solvent removed by syringe and the residue dried to afford the title compound ($677 \mathrm{mg} ; 88 \% ; \mathrm{MH}^{+}=250$).

Step C
[0349] To a suspension of $\mathrm{LiAlH}_{4}(513 \mathrm{mg})$ in THF (15 ml) was added a solution of the title compound from Step B above (677 mg) in THF (25 ml). The mixture was heated under reflux for 2 h . The mixture was cooled to $0^{\circ} \mathrm{C}$., quenched with $\mathrm{H}_{2} \mathrm{O}(0.65 \mathrm{ml})$ and diluted with 4 M NaOH -solution (2.5 ml). The mixture was stirred at it for 45 Min , filtered and the salts washed with THF (15 ml). The filtrates were concentrated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 9: 1$) to afford the title compound ($560 \mathrm{mg} ; 88 \%$; $\mathrm{MH}^{+}=236$).

Step D
[0350] The title compound from Step C above (350 mg) was dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$ and $10 \% \mathrm{Pd} / \mathrm{C}(300 \mathrm{mg})$ and $1 \mathrm{MHCl}(1.5 \mathrm{ml})$ were added. The mixture was hydrogenated overnight, filtered and the catalyst washed with MeOH (10 $\mathrm{ml})$. The filtrates were concentrated and the residue dissolved in EtOAc (30 ml) and sat. $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$. The organic phase was separated and the aqueous phase extracted with EtOAc (20 ml). The combined organic phase was dried over MgSO_{4} and concentrated to afford the title compound (232 $\mathrm{mg} ; 66 \% ; \mathrm{MH}^{+}=238$).

Preparative Example 16
[0351]

Step A

[0352] The intermediate from Preparative Example 14 Step A (1 g) was dissolved in DMA (6 ml) and treated with NaCN (368 mg). The mixture was heated at $60-70^{\circ} \mathrm{C}$. overnight and diluted with EtOAc $(50 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, $98: 2$) to afford the title compound (282 mg ; 34%; $\mathrm{MH}^{+}=263$).

Step B

[0353] To a suspension of $\mathrm{LiAlH}_{4}(123 \mathrm{mg})$ in THF (6 ml) was added a solution of the title compound from Step A above $(282 \mathrm{mg})$ in THF $(6 \mathrm{ml})$. The mixture was heated at $50^{\circ} \mathrm{C}$. for 2 h , cooled to $0^{\circ} \mathrm{C}$. and treated with $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{ml})$ and 4 M $\mathrm{NaOH}(0.8 \mathrm{ml})$. The mixture was stirred at rt for 45 Min , treated with MgSO_{4} and filtered. The filtrate was concentrated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5->\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to afford the title compound ($32 \mathrm{mg} ; 12 \% ; \mathrm{MH}^{+}=253$).

Step A
[0355] To a suspension of magnesium (701 mg) in $\mathrm{Et}_{2} \mathrm{O}$ (7 ml) was slowly added ethylbromide (2.15 ml). After the formation of the Grignard reagent, the mixture was cooled to 5° C. and a solution of diethylamine (3 ml) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ was slowly added. The mixture was refluxed for 30 Min , cooled to $5^{\circ} \mathrm{C}$. and treated with a mixture of commercially available dibenzosuberone (3 g) and tert-butylacetate (1.95 ml) in $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{ml})$. The mixture was heated under reflux for 2 h , cooled to rt and poured onto ice-water containing an excess of $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{ml})$, the organic phase dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica (EtOAc/ cyclohexane, $1: 9$) to afford the title compound ($3.5 \mathrm{~g} ; 75 \%$; $\mathrm{MNa}^{+}=347$).

Step B
[0356] To a suspension of $\mathrm{LiAlH}_{4}(346 \mathrm{mg})$ in THF (12 ml) was added a solution of the title compound from Step A above $(2 \mathrm{~g})$ in THF $(12 \mathrm{ml})$. The mixture was heated under reflux for 2 h , cooled to $0^{\circ} \mathrm{C}$. and treated $4 \mathrm{M} \mathrm{NaOH}(4.5 \mathrm{ml})$. The mixture was stirred at rt for 45 min and filtered. The filtrate was concentrated and the residue dissolved in EtOAc (100 $\mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane, $3: 7$) to afford the title compound ($937 \mathrm{mg} ; 60 \%$; $\mathrm{MNa}^{+}=277$).

Step C

[0357] The title compound from Step B above (937 mg) was dissolved in benzene $(1.5 \mathrm{ml})$ and pyridine $(1.5 \mathrm{ml})$. The
mixture was cooled to $5^{\circ} \mathrm{C}$. and treated with a solution of p-tosylchloride in benzene $(1.5 \mathrm{ml})$. The mixture was stirred at rt for 7 h , diluted with $\mathrm{EtOAc}(40 \mathrm{ml})$ and washed with 0.1 $\mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The crude intermediate was dissolved in DMA (9 ml) and treated with $\mathrm{NaN}_{3}(1.2 \mathrm{~g})$. The mixture was heated at 70° C. overnight and the DMA removed. The residue was dissolved in EtOAc $(50 \mathrm{ml})$, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and brine (10 ml). The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane, 1:4) to afford the title compound ($704 \mathrm{mg} ; 68 \% ; \mathrm{MNa}^{+}=302$).

Step D
[0358] The title compound from Step C above (200 mg) was dissolved in $\mathrm{MeOH}(8 \mathrm{ml})$ and $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$ added. The mixture was hydrogenated for 1 h 30 Min , filtered and the catalyst washed with $\mathrm{MeOH}(10 \mathrm{ml})$. The filtrates were concentrated to afford the title compound ($175 \mathrm{mg} ; 96 \%$; $\mathrm{MH}^{+}=254$).

Step E
[0359] The title compound from Step D above (75 mg) was dissolved in $\mathrm{EtOH}(1 \mathrm{ml})$ and a 4 M solution of HCl in dioxane $(1 \mathrm{ml})$ added. The mixture was stirred at rt for 12 h and concentrated. The residue was dissolved in EtOAc (20 ml) and sat. $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated to afford the title compound ($67 \mathrm{mg} ; 96 \% ; \mathrm{M}^{+}-\mathrm{NH}_{3}=219$).

Preparative Example 18
[0360]

$\xrightarrow{\text { Step } A}$

$\xrightarrow{\text { Step B }}$

\downarrow Step C

-continued

Step A
[0361] The title compound from Preparative Example 13 Step A (1.1 g) was dissolved in THF (5 ml) and added to a suspension of $\mathrm{NaH}(132 \mathrm{mg})$ in THF (5 ml). The mixture was heated under reflux for 1 h , cooled to rt and treated with 1,2-dibromoethane (0.9 ml) in THF (1 ml). The mixture was heated under reflux for 4 h , cooled to rt and filtered. The salts were washed with THF (5 ml) and the filtrates concentrated. The residue was dissolved in DMA $(12 \mathrm{ml})$ and treated with $\mathrm{NaN}_{3}(1.6 \mathrm{~g})$. The mixture was heated at $60-70^{\circ} \mathrm{C}$. overnight and the DMA removed. The residue was dissolved in EtOAc $(40 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, the organic phase separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane, 1:9) to afford the title compound ($1.14 \mathrm{~g} ; 78 \% ; \mathrm{MH}^{+}=289$).

Step B

[0362] The title compound from Step A above (510 mg) was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$ and $10 \% \mathrm{Pd} / \mathrm{C}(150 \mathrm{mg})$ and $2 \mathrm{M} \mathrm{HCl}(0.9 \mathrm{ml})$ added. The mixture was hydrogenated for 1 h 30 Min , filtered and the catalyst washed with MeOH (10 ml). The filtrates were concentrated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 4: 1$) to afford a mixture of the title compound and the cyclic amidine ($450 \mathrm{mg} ; 96 \% ; \mathrm{MH}+=263$).

Step C

[0363] The title compounds from Step B above (350 mg) were treated with $2 \mathrm{ml} 57 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The mixture was heated at $100^{\circ} \mathrm{C}$. for 3 h , cooled to rt and diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The mixture was made alkaline $(\mathrm{pH} \sim 11)$ by adding 10% NaOH and extracted with EtOAc $(3 \times 30 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 9:1 to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(7 \mathrm{M} \mathrm{NH}_{3}\right), 9: 1\right)$ to afford a mixture of the title compound and the cyclic amidine ($223 \mathrm{mg} ; 60 \%$; $\mathrm{MH}^{+}=281$).

Preparative Example 19

[0364]

-continued

Step A

[0365] Commercially available (S)-2-aminopropan-1-ol (2.0 g) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and $\mathrm{Boc}_{2} \mathrm{O}(6.4 \mathrm{~g})$ was added. After stirring for 4 h at room temperature the solvent was removed to afford the title compound (4.7 g, 99\%).
[0366] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.40$ $(\mathrm{s}, 1 \mathrm{H}), 3.45-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$.

Step B

[0367] Imidazole (4.1 g) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and cooled to $0^{\circ} \mathrm{C}$. Thionyl chloride (1.3 ml) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise and the resulting suspension was allowed to warm to rt. Stirring was continued for 1 h at rt and then the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of the title compound from Step A above (1.8 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ ml) was added over a period of 1 h and the resulting mixture was allowed to warm to rt and stirred overnight. The mixture was filtered through celite and the filter aid was washed well with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, dried over MgSO_{4}, filtered and concentrated to a volume of approx. 100 ml .
[0368] A solution of $\mathrm{NaIO}_{4}(4.3 \mathrm{~g})$ in water $(100 \mathrm{ml})$ was added and the mixture was cooled to $0^{\circ} \mathrm{C} \cdot \mathrm{Ru}(\mathrm{IV}) \mathrm{O}_{2}$ hydrate (150 mg) was added and the black suspension was stirred for 2 h at $0^{\circ} \mathrm{C}$. It was then warmed to rt and stirred overnight. The mixture was filtered through celite and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried and filtered. Treatment of the filtrate with activated charcoal (2 g) for 30 min removed traces of ruthenium. The mixture was filtered again and evaporated to yield the title compound ($1.5 \mathrm{~g}, 63 \%$).
[0369] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 4.14$ (dd, 1H), 4.29-4.42 (m, 1H), 4.61 (dd, 1H).

Preparative Example 20

[0370] The title compound from Preparative Example 20 was prepared according to the procedure described in Preparative Example 19 using the aminoalcohol as indicated in the Table below.
$\left.\begin{array}{ccl}\hline \begin{array}{c}\text { Prepar- } \\ \text { ative } \\ \text { Exam- } \\ \text { ple }\end{array} & \text { Aminoalcohol } & \text { Product }\end{array} \begin{array}{l}\text { 1. Yield } \\ 2 .{ }^{1} \mathrm{H}-\mathrm{NMR}\end{array}\right]$

Preparative Example 21

Step A
[0372] To a stirred solution of the commercially available 2-(S)-amino propanol (17.4 g) in water (200 ml) was added a solution of triethylamine (32 ml) in dioxane (200 ml). To the solution was added commercially available 1-[2-(Trimethyl-silyl)ethoxy-carbonyloxy]pyrrolidin-2,5-dione (60 g). The mixture was stirred at rt overnight, then diluted with water (200 ml), acidified with 1 N HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 500 \mathrm{ml})$. The combined organic phase was washed with brine, dried over MgSO_{4} and evaporated to afford the title compound ($44.2 \mathrm{~g} ; 87 \%$).
[0373] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 0.02(\mathrm{~s}, 9 \mathrm{H}), 0.90-1.05(\mathrm{~m}$, $2 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.40-3.80(\mathrm{~m}, 3 \mathrm{H}), 4.10-$ $4.20(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$.

Step B

[0374] Imidazole (96 g) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1200 \mathrm{ml})$ and cooled to $0^{\circ} \mathrm{C}$. Thionyl chloride (30.8 ml) was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{ml})$ and added dropwise. The resulting suspension was allowed to warm to rt . Stirring was continued for 1 h at rt and then the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of the title compound from Step A above (44.2 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1200 \mathrm{ml})$ was added over a period of 1 h and the resulting mixture was allowed to warm to rt and stirred overnight. The mixture was filtered through celite, the filter aid was washed well with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water ($2 \times 700 \mathrm{ml}$), dried over MgSO_{4}, filtered and concentrated to a volume of approx. 1000 ml .
[0375] A solution of $\mathrm{NaIO}_{4}(100 \mathrm{~g})$ in water $(1000 \mathrm{ml})$ was added and the mixture was cooled to $0^{\circ} \mathrm{C} \cdot \mathrm{RuO}_{2} \times \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g})$ was added and the black suspension was stirred for 2 h at 0° C. It was then warmed to rt and stirred overnight. The phases were separated and the organic phase was treated with granulated charcoal $(-20 \mathrm{~g})$. The mixture was stirred for approx. 1 h , filtered through celite and the filtrate was dried with MgSO_{4}, filtered and evaporated to yield the title compound ($50.7 \mathrm{~g}, 89 \%$).
[0376] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 0.02(\mathrm{~s}, 9 \mathrm{H}), 1.00-1.15(\mathrm{~m}$, $2 \mathrm{H}), 1.50(\mathrm{~d}, 3 \mathrm{H}), 4.15(\mathrm{dd}, 1 \mathrm{H}), 4.35-4.45(\mathrm{~m}, 3 \mathrm{H}), 4.65(\mathrm{dd}$, $1 \mathrm{H})$.

Preparative Example 22-23

[0377] Following a similar procedure as that described in Preparative Example 21 but using the aminoalcohols as indicated in the Table below, the title compounds were obtained.

Prepar-
ative
Exam-
ple

22

Preparative Example 24-46
[0378] If one were to follow a similar procedure as that described in Preparative Example 21 but using the aminoalcohols as indicated in the Table below, one would obtain the desired products.

Prepar-
ative
Example

Aminoalcohol
-continued

29

30

31

32

33

34

35

Aminoalcohol
Prepar- ative Example
Continued

37

38

39

40

-continued
Erepar-
ative
Example
[0379]

Step B

Step A
[0380] A suspension of $\mathrm{NaH}(132 \mathrm{mg})$ in THF (10 ml) was added to a solution of Preparative Example 13 Step A (1.1 g) in THF (20 ml) and heated at $60^{\circ} \mathrm{C}$. for 1 h . Then the mixture was cooled to $0^{\circ} \mathrm{C}$. and a solution of Preparative Example 19 $(1.2 \mathrm{~g})$ in THF $(10 \mathrm{ml})$ was added. The suspension was heated at $60^{\circ} \mathrm{C}$. for 4 h and then diluted with ethyl acetate. The organic phase was washed with water, brine and dried over MgSO_{4}. Removal of the solvents and column chromatography (EtOAc/hexane, 1:4) afford the title compound (1.7 g , $90 \%, \mathrm{MH}^{+}=377$).
Step B
[0381] The title compound from Step A above (1.5 g) was dissolved in $57 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and the solution was heated at 100° C. for 2 h . The mixture was diluted with water and extracted with ethyl acetate. The organic phase was discarded and 50%-aqueous KOH solution added to the aqueous phase until $\mathrm{pH}>8$. The aqueous phase was extracted with ethyl acetate $(2 \times 75 \mathrm{ml})$. The organic phase was washed with water, brine, dried over MgSO_{4} and evaporated to afford the title compound. ($600 \mathrm{mg}, 53 \%$).
[0382] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 0.95(\mathrm{~d}, 3 \mathrm{H}), 1.82$ ($\left.\mathrm{s}, 2 \mathrm{H}\right)$, 2.37-2.58 (m, 2H), 2.82-2.92 (m, 1H), $3.18(\mathrm{~s}, 4 \mathrm{H}), 5.60(\mathrm{~s}$, $2 \mathrm{H}), 7.08-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 2 \mathrm{H})$.

Preparative Example 48
[0383] The title compound was prepared according to the procedure described in Preparative Example 47 using the sulfamidate from Preparative Example 20 as indicated in the Table below.

Preparative Example	Nitrile	Sulfamidate	Product	1. Yield 2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
48				1. 80% 2. ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)$: 0.95 (d, 3 H), 1.82 (s , $2 \mathrm{H}), 2.37-2.58(\mathrm{~m}, 2 \mathrm{H})$, 2.82-2.92 (m, 1 H$), 3.18$ ($\mathrm{s}, 4 \mathrm{H}$), $5.60(\mathrm{~s}, 2 \mathrm{H})$, $7.08-7.24$ (m, 6 H), 7.40-7.48(m, 2 H).

Preparative Example 49
[0384]

Step A
[0385] Commercially available 2,5-dibromotoluene (8.28 ml) was dissolved in hexane (90 ml) and treated with a 1.6 M solution of butyllithium in hexane (160 ml). The mixture was heated at $60^{\circ} \mathrm{C}$. for 20 h , cooled to rt and poured onto a
mixture of dry ice in $\mathrm{Et}_{2} \mathrm{O}(750 \mathrm{ml})$. The mixture was allowed to warm to rt, filtered and the precipitate washed with 90 ml $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was titrated with 140 ml glacial acetic acid to afford the title compound ($10 \mathrm{~g} ; 92 \%$).
[0386] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{DMSO}_{6}\right) 2.58(\mathrm{~s}, 3 \mathrm{H}), 7.80-7.90(\mathrm{~m}$, $3 \mathrm{H})$

Step B
[0387] The title compound from Step A above (13 g) was suspended in $\mathrm{MeOH}(300 \mathrm{ml})$ and slowly treated with thionyl chloride (15.7 ml). The mixture was heated under reflux for 2 h to become a clear solution. The solvents were concentrated to afford the title compound ($13.3 \mathrm{~g} ; 88 \% ; \mathrm{MH}^{+}=209$).

Step C

[0388] The title compound from Step B above (13.3 g) was dissolved in $\mathrm{CCl}_{4}(500 \mathrm{ml})$ and commercially available N -bromosuccinimide (10.7 g) added. The mixture was heated to $80^{\circ} \mathrm{C}$. and commercially available AIBN (327 mg) added. The mixture was then irradiated with a 100 W light bulb and heated at $100-105^{\circ} \mathrm{C}$. for 2 h 30 min . The cooled mixture was filtered and the precipitate washed with $50 \mathrm{ml} \mathrm{CCl}_{4}$. The filtrates were concentrated and the residue dissolved in $\mathrm{CH}_{3} \mathrm{CN}(180 \mathrm{ml})$. The mixture was treated with triphenylphosphine (16 g) and heated under reflux for 3 h . The mixture was concentrated to -100 ml and $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{ml})$ added. The mixture was allowed to stand at rt for 30 Min , filtered and the precipitate washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ to afford the title compound ($20 \mathrm{~g} ; 57 \%$).

Step D

[0389] The title compound from Step C above (20 g) was suspended in $\mathrm{CH}_{3} \mathrm{CN}(160 \mathrm{ml})$ and commercially available 4-Fluorobenzaldehyde (5.4 ml) added. The mixture was then treated with commercially available DBN $(10 \mathrm{ml})$ and heated at $100^{\circ} \mathrm{C}$. for 1 h . The mixture was concentrated to half its volume and poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$. The mixture was extracted with EtOAc ($2 \times 150 \mathrm{ml}$), the organic phase washed with $5 \% \mathrm{HCl}(2 \times 75 \mathrm{ml})$, dried over MgSO_{4} and concentrated. The residue was suspended in $\mathrm{H}_{2} \mathrm{O}(240 \mathrm{ml})$ and $\mathrm{MeOH}(20$ $\mathrm{ml})$ and $\mathrm{KOH}(20 \mathrm{~g})$ added. The mixture was heated at $100^{\circ} \mathrm{C}$. for 16 h , cooled to rt and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{ml})$. The aqueous phase was acidified ($\mathrm{pH} \sim 1$) by adding conc. HCl , filtered, the precipitate washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and airdried. The residue was dissolved in $\mathrm{MeOH}(900 \mathrm{ml})$ and 10% $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{~g})$ added. The mixture was hydrogenated for 1 h , filtered, the catalyst washed with $\mathrm{MeOH}(50 \mathrm{ml})$ and concentrated to afford the title compound ($8.6 \mathrm{~g} ; 82 \% ; \mathrm{MH}^{+}=289$).

Step E

[0390] The title compound from Step D above (1.44 g) was suspended in sulfolane (9 ml) and treated with polyphosphoric acid (30 g). The mixture was heated under N_{2} at $170-175^{\circ}$ C. for 3 h and poured onto ice-water (150 ml). The mixture was stirred at rt for 1 h , extracted with EtOAc ($2 \times 150 \mathrm{ml}$), dried over MgSO_{4} and concentrated. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$ and treated with thionyl chloride (1 $\mathrm{ml})$. The mixture was heated under reflux for 1 h and concentrated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and washed with sat. $\mathrm{NaHCO}_{3}(30 \mathrm{ml})$ and brine $(30 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the title compound ($960 \mathrm{mg} ; 67 \%$; $\mathrm{MH}^{+}=285$).

Step F
[0391] The title compound from Step E (1420 mg) was dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ and $\mathrm{MeOH}(20 \mathrm{ml})$ and treated with $\mathrm{NaBH}_{4}(230 \mathrm{mg})$. The mixture was stirred at rt for 1 h
and poured onto ice-water (150 ml). The mixture was extracted with $\mathrm{EtOAc}(2 \times 150 \mathrm{ml}$), the organic phase dried over MgSO_{4} and concentrated to afford the title compound ($1420 \mathrm{mg} ; 99 \%, \mathrm{M}^{+}+\mathrm{Na}=309$).

Step G

[0392] The title compound from Step F above (1420 mg) was dissolved in THF (20 ml) and treated with thionyl chloride $(0.91 \mathrm{ml})$. The mixture was stirred at rt for 16 h and concentrated without heating. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(17 \mathrm{ml})$ and treated with $\mathrm{AgCN}(785 \mathrm{mg})$. The mixture was heated at $90^{\circ} \mathrm{C}$. for 2 h 30 Min , filtered and the salts washed with $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{ml})$. The filtrates were concentrated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the title compound ($1160 \mathrm{mg} ; 79 \%$; $\mathrm{MH}^{+}=296$).

Step H

[0393] The title compound from Step G above (1327 mg) was dissolved in degassed THF (15 ml) and added to a suspension of $\mathrm{NaH}(119 \mathrm{mg})$ in degassed THF (5 ml). The mixture was heated at $90^{\circ} \mathrm{C}$. for 1 h 15 min and cooled to rt . The mixture was then treated with 1,2-dibromoethane (0.81 $\mathrm{ml})$ in THF $(1 \mathrm{ml})$ and the mixture was heated at $90^{\circ} \mathrm{C}$. for 4 h 30 min . The mixture was cooled to rt , diluted with 100 ml $\mathrm{EtOAc}, 10 \mathrm{ml}$ brine and 10 ml sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was dissolved in DMA $(10 \mathrm{ml})$ and treated with NaN_{3} $\left(720 \mathrm{mg}\right.$). The mixture was heated at $60^{\circ} \mathrm{C}$. for 16 h and diluted with EtOAc (100 ml) and brine (15 ml). The organic phase was separated, washed with $0.1 \mathrm{~m} \mathrm{HCl}(15 \mathrm{ml})$ and brine (15 ml). The organic phase was dried over MgSO_{4}, concentrated and the residue purified by chromatography on silica (EtOAc/cyclohexane, 1:4) to afford the title compound ($931 \mathrm{mg} ; 57 \% ; \mathrm{MH}^{+}=365$).

Step I
[0394] The title compound from Step H above (1050 mg) was dissolved in $\mathrm{MeOH}(40 \mathrm{ml})$. The mixture was treated with concentrated $\mathrm{HCl}(0.25 \mathrm{ml})$ and $10 \% \mathrm{Pd} / \mathrm{C}(250 \mathrm{mg})$. The mixture was hydrogenated for 1 h , filtered and the catalyst washed with $\mathrm{MeOH}(20 \mathrm{ml})$. The filtrates were concentrated to afford a mixture of the title compound and the cyclic amidine in a 9:1 ratio ($950 \mathrm{mg} ; 97 \% ; \mathrm{MH}^{+}=339$).

Step J
[0395] The title compounds from Step I above (950 mg) were treated with $57 \% \mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{ml})$ and heated under N_{2} at $90^{\circ} \mathrm{C}$. for 3 h . The mixture was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}(80$ ml) and made alkaline ($\mathrm{pH} \sim 10$) by adding $50 \% \mathrm{NaOH}$. The mixture was washed with EtOAc (20 ml) and the aqueous phase diluted with dioxane $(40 \mathrm{ml})$. The mixture was treated with an excess of $\mathrm{Boc}_{2} \mathrm{O}$ and stirred at rt for 16 h while the pH was kept at $\mathrm{pH} \sim 10.0$. The mixture was acidified to $\mathrm{pH} \sim 4.0$ by adding 1 M HCl and extracted with $\mathrm{EtOAc}(2 \times 150 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 9: 1$) to elute the cyclic amidine side product, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (4:1) to afford the title compound (282 $\mathrm{mg}, 23 \% ; \mathrm{MNa}^{+}=465$).
Step K
[0396] The title compound from Step J above (135 mg) was dissolved in THF (6 ml) and triethylamine $(0.056 \mathrm{ml})$. The
mixture was cooled to $-40^{\circ} \mathrm{C}$. and treated with ethyl chloroformate (0.031 ml). The mixture was stirred at $-40^{\circ} \mathrm{C}$. for 1 h , diluted with 4 ml THF and treated at $0^{\circ} \mathrm{C}$. with 33% aqueous ammonia solution $(10 \mathrm{ml})$. The mixture was stirred at $0^{\circ} \mathrm{C}$. for 1 h and then 1 h at rt . The mixture was diluted with $\mathrm{EtOAc}(80 \mathrm{ml})$ and washed with brine (25 ml), sat. $\mathrm{NH}_{4} \mathrm{Cl}(25$ ml and brine (25 ml). The organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to afford the title compound ($97 \mathrm{mg}, 72 \%, \mathrm{MNa}^{+}=464$).

Step L
[0397] The title compound from Step K above (94 mg) was treated with 4 M solution of HCl in dioxane $(2.5 \mathrm{ml})$ and the flask was agitated for 30 min . The mixture was concentrated and the residue dissolved in $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The mixture was filtered through a Millex VV $(0.1 \mu \mathrm{M})$ filter unit and the filtrate concentrated to afford the title compound (65.8 mg , $82 \%, \mathrm{MH}^{+}=342$).

Preparative Example 50
[0398]

\downarrow Step C

Step A
[0399] The title compound from Preparative Example 13 Step A (3.3 g) was dissolved in THF (5 ml) and slowly added to a suspension of $\mathrm{NaH}(540 \mathrm{mg})$ in THF $(10 \mathrm{ml})$. The mixture was heated at reflux for 30 min , cooled to rt and treated with 1,2 -dibromoethane (4 ml). The reaction was stirred at $60^{\circ} \mathrm{C}$. overnight, cooled to rt and filtered. The solvent was removed affording the title compound (4.8 g ; 98\%)
[0400] ${ }^{1} \mathrm{HNMR} \delta \mathrm{CDCl}_{3} 2.9-3.2(\mathrm{~m}, 6 \mathrm{H}), 3.2-3.4(\mathrm{~m}, 2 \mathrm{H})$, 7.1-7.3 (m, 6H), 7.9-8.0 (m, 2H)

Step B
[0401] The title compound from Step A above (1.5 g) and potassium phthalimide (13.8 g) were suspended in DMF (20 $\mathrm{ml})$ and stirred at $100^{\circ} \mathrm{C}$. overnight. The precipitate was removed and the reaction was concentrated in vacuum. Chromatography of the residue on silica (EtOAc/cyclohexane) afforded the title compound ($1.4 \mathrm{~g} ; 78 \%$).
[0402] ${ }^{1} \mathrm{HNMR} \delta \mathrm{CDCl}_{3} 2.8-2.9(\mathrm{~m}, 2 \mathrm{H}), 3.0-3.2(\mathrm{~m}, 2 \mathrm{H})$, 3.4-3.6 (m, 2H), 3.6-3.8 (m, 2H), 7.1-7.3 (m, 6H), 7.6-7.7 (m, $2 \mathrm{H}), 7.7-7.8(\mathrm{~m}, 2 \mathrm{H}), 7.9-8.0(\mathrm{~m}, 2 \mathrm{H})$

Step C
[0403] The title compound from Step B above (1.40 g) was dissolved in toluene (30 ml) and treated with dibutyltin oxide $(446 \mathrm{mg})$ and trimethylsilylazide (2.3 ml). The mixture was heated under a N_{2} atmosphere at $90^{\circ} \mathrm{C}$. overnight. Additional dibutyltin oxide (200 mg) and trimethylsilylazide (2.3 ml) were added and the reaction was continued for 24 h at $90^{\circ} \mathrm{C}$. The solvent was removed and the residue was treated with $\operatorname{EtOAc}(30 \mathrm{ml})$ and $1 \mathrm{NHCl}(30 \mathrm{ml})$ at $50^{\circ} \mathrm{C}$. for 1 h . The phases were separated and the organic phase was concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane) to afford the title compound (600 mg , $39 \%, \mathrm{MH}^{+}=436$).

Step D
[0404] The title compound from Step C above (200 mg) was dissolved in ethanol $(5 \mathrm{ml})$ and treated with hydrazine hydrate (100 mg) at rt . The solution was heated at $80^{\circ} \mathrm{C}$. for 2 h and then stirred for 1 h at rt . The reaction was filtered and the filtrate was concentrated. The residue was treated with CHCl_{3} and filtered again. The filtrate was concentrated to afford the title compound ($60 \mathrm{mg}, 43 \%, \mathrm{MH}^{+}=306$).

Preparative Example 51

Step A
[0406] Commercially available 2-bromo-4-fluorotoluene (5 g) was diluted with diethyl ether (10 ml). About $1 / 3$ of the resulting solution was added to magnesium turnings (761 mg) which were overlayed with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$. The remaining 2-bromo-4-fluorotoluene solution was added dropwise after the reaction started. The reaction was kept at reflux for 2 h . The Grignard reagent was poured onto a mixture of crushed dry ice in $\mathrm{Et}_{2} \mathrm{O}(750 \mathrm{ml})$. The resulting mixture was allowed to warm to rt . The solvent was removed, the resulting residue was treated with EtOAc (100 ml) and extracted with aqueous $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{ml})$. The organic phase was dried over MgSO_{4}, filtered and concentrated to afford the title compound (2.3 g ; 56\%).
[0407] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta \mathrm{CDCl}_{3} 2.5(\mathrm{~s}, 3 \mathrm{H}), 7.0-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.7$ (m, 1H)

Step B
[0408] The title compound from Step A above (2.3 g) was dissolved in THF (50 ml). Methyl iodide (0.95 ml) and N.Ndiisopropylethylamine $(3.2 \mathrm{ml})$ were added. The reaction was
stirred at rt for 2 h . The reaction mixture was filtered and concentrated to afford the title compound ($2.3 \mathrm{~g} ; 90 \%$).
[0409] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta \mathrm{CDCl}_{3} 2.6$ (s, 3H), 3.9 ($\mathrm{s}, 3 \mathrm{H}$), 7.0-7.2 (m, 2H), 7.6-7.7 (m, 1H)

Step C
[0410] The title compound from Step B above (8.9 g) and commercially available N -bromosuccinimide (14 g) were suspended in $\mathrm{CCl}_{4}(500 \mathrm{ml})$. The mixture was heated to $80^{\circ} \mathrm{C}$. and AIBN (270 mg) added. The mixture was irradiated with a 100 W light bulb and heated at $100-105^{\circ} \mathrm{C}$. for 3.5 h . The cooled mixture was filtered. The filtrate was concentrated and the residue dissolved in $\mathrm{CH}_{3} \mathrm{CN}(150 \mathrm{ml})$. The mixture was treated with triphenylphosphine (14 g), heated under reflux for 3 h and then concentrated. The residue was suspended in $\mathrm{CH}_{3} \mathrm{CN}(160 \mathrm{ml})$ and treated with commercially available 3 -fluorobenzaldehyde (6.5 g) and DBN (13 ml). The mixture was heated under reflux for 3 h . The reaction was concentrated to half its volume and poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$. The mixture was extracted with EtOAc ($3 \times 150 \mathrm{ml}$), the organic phase separated and concentrated. The residue was suspended in $1: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$-mixture (100 ml) and treated with $\mathrm{KOH}(30 \mathrm{~g})$. The mixture was stirred at $60^{\circ} \mathrm{C}$. overnight,
cooled to rt and washed with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The aqueous phase was acidified ($\mathrm{pH} \sim 1$) by adding conc. HCl and extracted with EtOAc. The organic phase was separated and concentrated. The crude residue was suspended in sulfolane $(20 \mathrm{ml})$ and treated with polyphosphoric acid (25 g). The mixture was heated under N_{2} at $200^{\circ} \mathrm{C}$. for 2 h , poured onto ice-water (150 ml) and stirred at rt overnight. The mixture was extracted with EtOAc and concentrated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and extracted with $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica ($\mathrm{EtOAc} / \mathrm{Cyclo-}$ hexane) to afford the title compound ($4.0 \mathrm{~g} ; 31 \% ; \mathrm{MH}^{+}=245$).

Step D
[0411] The title compound from Step C above (5.4 g) was dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ and $\mathrm{MeOH}(30 \mathrm{ml})$ and treated with $\mathrm{NaBH}_{4}(1.4 \mathrm{~g})$. The mixture was stirred at rt for 1 h and concentrated. The residue was suspended in $\mathrm{CHCl}_{3}(50 \mathrm{ml})$ and extracted with aqueous $\mathrm{HCl}(50 \mathrm{ml} ; \mathrm{pH}=1)$. The organic phase was separated, concentrated, then resuspended in toluene and concentrated again. The residue was dissolved in toluene $(50 \mathrm{ml}) . \mathrm{SOCl}_{2}(3.94 \mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$. The reaction was stirred overnight at RT . The solvent was removed and the remaining material was suspended in toluene and concentrated. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(50 \mathrm{ml})$ and treated with $\mathrm{AgCN}(2.96 \mathrm{~g})$. The mixture was heated at reflux for 2 h and then stirred at $60^{\circ} \mathrm{C}$. overnight. The mixture was filtered and the filtrate concentrated. The residue was purified by chromatography on silica (EtOAc/ Cyclohexane) to afford the title compound ($4.4 \mathrm{~g} ; 78 \%$).
[0412] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta \mathrm{CDCl}_{3} 3.1-3.2(\mathrm{~m}, 4 \mathrm{H}), 5.3(\mathrm{~s}, 1 \mathrm{H})$, 6.7-6.9 (m, 3H), 7.0-7.2 (m, 2H), 7.4 (m, 1H)

Step E
[0413] The title compound from Step D above (1.5 g) was dissolved in THF (5 ml) and slowly added at rt to a suspension of $\mathrm{NaH}(212 \mathrm{mg})$ in THF (10 ml). The mixture was heated at $60^{\circ} \mathrm{C}$. for 30 min , then cooled to $0^{\circ} \mathrm{C}$. and treated with 1,2 -dibromoethane (2.3 ml). The reaction was stirred at 60° C. for 3 h , cooled to rt and filtered. The filtrate was concentrated to afford the title compound (2.1 g ; 99\%).
[0414] ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta \mathrm{CDCl}_{3}$ 2.8-3.0 (m, 4H), 3.0-3.2 (m, 2H), 3.2-3.4 (m, 2H), 6.8-7.2 (m, 4H), 7.6 (m, 1H), 7.8-7.9 (m, 1H)

Step F
[0415] The title compound from Step E above (2.1 g) and potassium phthalimide (5.4 g) were suspended in DMF (30 ml) and stirred at $60^{\circ} \mathrm{C}$. overnight. The solvent was removed and the residue dissolved in CHCl_{3}, filtrated and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane) to afford the title compound (1.91 g ; 76\%)
[0416] ${ }^{1} \mathrm{HNMR} \delta \mathrm{CDCl}_{3} 2.8-3.2(\mathrm{~m}, 4 \mathrm{H}), 3.4-3.6(\mathrm{~m}, 2 \mathrm{H})$, 3.7-3.9 (m, 2H), 6.8-7.0 (m, 3H), 7.1-7.2 (m, 1H), 7.7-8.0 (m, 6H)

Step G
[0417] The title compound from Step F (1.90 g) was dissolved in toluene (20 ml) and treated with dibutyltin oxide $(553 \mathrm{mg})$ and trimethylsilylazide (3.7 ml). The mixture was heated under a N_{2} atmosphere at $90^{\circ} \mathrm{C}$. for 4 d . The reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{ml})$ and stirred for 1 h at $50^{\circ} \mathrm{C}$. The phases were separated, the aqueous phase was extracted with toluene and the combined organic phase concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane) to afford the title compound (600 $\mathrm{mg}, 33 \%, \mathrm{MH}^{+}=472$).

Step H

[0418] The title compound from Step G above (300 mg) was dissolved in ethanol (5 ml) and treated with hydrazine hydrate (127 mg). The solution was stirred at $80^{\circ} \mathrm{C}$. for 2 h and subsequently stirred for 1 h at rt . The solvent was removed and the residue treated with $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(10 \mathrm{ml})$. The aqueous phase was separated, filtered and concentrated affording the title compound ($240 \mathrm{mg}, 100 \%$ $\mathrm{MH}^{+}=342$).

Preparative Example 52

[0419]

Step B

Step G

Step A
[0420] Commercially available 2,4-dichlorotoluene (24.6 g) and dry copper(I) cyanide (50 g) in N -methylpyrrolidone $(130 \mathrm{ml})$ were heated under reflux ($200-216^{\circ} \mathrm{C}$.) for 4 d . While hot ($110^{\circ} \mathrm{C}$.), the mixture was poured into a flask containing 33% aq. $\mathrm{NH}_{4} \mathrm{OH}$ solution (390 ml) and toluene (100 ml) and stirred to break up the lumps. After the mixture was cooled to $\mathrm{rt}, \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ was added and filtered through cloth. The precipitate was washed $\left(2 \times 100 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O} /\right.$ CHCl_{3} 1:1). The dark filtrate was poured into a separatory funnel and the phases were separated with the aid of additional $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3} 1: 1(2 \times 100 \mathrm{ml})$. The combined organic phases were washed with $10 \% \mathrm{NH}_{4} \mathrm{OH}$ solution ($4 \times 110 \mathrm{ml}$, until the basic phase was no longer blue), with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, and brine
$(100 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was mixed with NaOH $(24.8 \mathrm{~g})$ and diethylene glycol (275 ml) was added together with a few drops of $\mathrm{H}_{2} \mathrm{O}$. The mixture was heated at $215-220^{\circ}$ C. overnight. The cooled mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(220$ ml) and acidified to pH 1 with 10% aq. HCl . The suspension was filtered and the precipitate washed with $0.1 \mathrm{~N} \mathrm{HCl}(50$ ml). The solid was crystallised from glacial acetic acid to afford the title compound ($18.4 \mathrm{~g}, 78 \%$; $\mathrm{MH}^{+}=181$).

Step B
[0421] Following a similar procedure as that described in Preparative Example 49 Step B, the title compound from Step A above (22.1 g) was reacted to afford the title compound ($30.0 \mathrm{~g}, 100 \%$).
[0422] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.65(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.92$ (s, 3H), $7.32(\mathrm{~d}, 1 \mathrm{H}), 8.04(\mathrm{dd}, 1 \mathrm{H}), 8.56(\mathrm{~d}, 1 \mathrm{H})$.

Step C
[0423] Following a similar procedure as that described in Preparative Example 49 Step C, the title compound from Step B above (30.0 g) was reacted. Differing from the cited example, the final mixture was allowed to stand over the weekend to form the precipitate. After filtration, the crude title compound was obtained ($38.0 \mathrm{~g}, 100 \%$; $[\mathrm{M}-\mathrm{Br}]^{+}=469$).

Step D
[0424] Following a similar procedure as that described in Preparative Example 49 Step D, the title compound from Step C above (38.0 g) was reacted. Differing from the cited example, the hydrogenation was run for 2 days. ($29.2 \mathrm{~g}, 77 \%$; $\mathrm{MH}^{+}=289$).

Step E
[0425] Following a similar procedure as that described in Preparative Example 49 Step E, the title compound from Step D above (4.32 g) was reacted and the title compound obtained ($1.77 \mathrm{~g}, 41 \% ; \mathrm{MH}^{+}=285$).

Step F
[0426] Following a similar procedure as that described in Preparative Example 49 Step F, the title compound from Step E above (2.39 g) was reacted and the title compound obtained ($2.45 \mathrm{~g}, 100 \% ; \mathrm{MNa}^{+}=309$).

Step G

[0427] Following a similar procedure as that described in Preparative Example 49 Step G, the title compound from Step F above (3.07 g) was reacted and the title compound was obtained ($2.17 \mathrm{~g}, 69 \% ; \mathrm{MH}^{+}=296$).

Step H
[0428] The title compound from Step G above (2.17 g) was dissolved in THF (30 ml) and added to a suspension of NaH $(250 \mathrm{mg})$ in THF (9 ml). The mixture was heated at $90^{\circ} \mathrm{C}$. for 1 h 15 min and cooled to rt . The mixture was then treated with 1,2-dibromoethane (1.6 ml) in THF (3.7 ml) and the mixture was heated at $90^{\circ} \mathrm{C}$. for 4 h 30 min . The mixture was cooled to rt, diluted with 200 ml EtOAc, 20 ml brine and 20 ml sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated, dried over MgSO_{4} and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the bromoethyl intermediate $(1.42 \mathrm{~g}, 50 \%$; $\left[\mathrm{MNH}_{4}\right]^{+}=419$) and starting material ($636 \mathrm{mg}, 24 \%$). The bromoethyl compound (1.42 g) was dissolved in anhydrous DMF (18 ml) and treated with potassium phthalimide (1.96 g). The suspension was stirred at $80^{\circ} \mathrm{C}$. overnight. The solvent was removed and the residue partitioned between EtOAc $(50 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$. The aqueous phase was extracted with EtOAc ($2 \times 50 \mathrm{ml}$) and the combined organic phase dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ MeOH) to afford the title compound ($1525 \mathrm{mg} ; 92 \%$; $\mathrm{MH}^{+}=469$).

Step I

[0429] The title compound from Step H above (1475 mg) was dissolved in anhydrous toluene (25 ml) and treated with
dibutyltin oxide (784 mg) and trimethylsilylazide (8.3 ml). The mixture was heated under a N_{2} atmosphere at $90^{\circ} \mathrm{C}$. for 3 days. The solvent was removed, the residue dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$ and concentrated. The residue was partitioned between $\mathrm{EtOAc}(100 \mathrm{ml})$ and $10 \% . \mathrm{NaHCO}_{3}(100 \mathrm{ml})$. The aqueous phase was extracted with $\mathrm{EtOAc}(2 \times 70 \mathrm{ml})$ and the combined organic phase dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford the title compound $(1216 \mathrm{mg}$, $75 \%, \mathrm{MH}^{+}=512$).

Step J

[0430] The title compound from Step I above (1216 mg) was dissolved in anhydrous $\mathrm{MeOH}(14 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.66$ ml). The mixture was cooled to $5^{\circ} \mathrm{C}$. and $\mathrm{N}, \mathrm{N}^{\prime}$-dimethy-lamino-propylamine (0.71 ml) added. The mixture was stirred at rt for 25 h and subsequently evaporated, toluene (10 ml) added, evaporated again and dried in HV . The residue was dissolved in dioxane (8 ml) and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$. To the slightly turbid solution was added $\mathrm{Boc}_{2} \mathrm{O}(2.6 \mathrm{~g})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{ml})$ and the mixture was stirred at rt overnight. After evaporation of the solvent, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and the solution acidified to $\mathrm{pH} \sim 4.0$ by adding 1 M HCl and the aqueous solution extracted with EtOAc ($3 \times 50 \mathrm{ml}$). The combined organic phase was washed with brine (15 ml), separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford the title compound ($567 \mathrm{mg}, 50 \%, \mathrm{MNa}^{+}=504$).

Preparative Example 53
[0431]

Step A

[0432] The title compound from Preparative Example 52 $(215 \mathrm{mg})$ was dissolved in THF (4 ml) and $33 \% \mathrm{NH}_{4} \mathrm{OH}$
solution (40 ml) was added. The solution was stirred in a closed vessel at $80^{\circ} \mathrm{C}$. overnight. The reaction mixture was allowed to cool to rt and subsequently evaporated to dryness. The crude product, which consisted of a mixture of the amide $\left(\mathrm{MNa}^{+}=489\right)$ and the free acid $\left(\mathrm{MNa}^{+}=490\right)$, was dissolved in anhydrous THF (8.5 ml) and triethylamine $(0.28 \mathrm{ml})$ added. The ensuing precipitate was dissolved by adding anhydrous $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{ml})$. The mixture was cooled to $-40^{\circ} \mathrm{C}$. and ethylchloroformate (0.17 ml) was slowly added. The mixture was stirred at $-25^{\circ} \mathrm{C}$. for 1 h and allowed to warm to $0^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C} .7 \mathrm{M} \mathrm{NH}_{3} / \mathrm{MeOH}$-solution (10 ml) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$. for 30 min and for 1 h at rt . The mixture was concentrated and the residue dissolved in $\mathrm{H}_{2} \mathrm{O}$ $(14 \mathrm{ml})$ and THF (3 ml). The pH was adjusted to $\mathrm{pH} \sim 4.0$ by adding 0.1 N HCl and the aqueous phase-after addition of brine (10 ml) extracted with EtOAc containing 10\% THF $(4 \times 33 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $10 \% \mathrm{THF}(1 \times 25 \mathrm{ml})$). The
combined organic phase was washed with brine (15 ml), dried over MgSO_{4} and concentrated to afford the title compound ($241 \mathrm{mg} ; 100 \%, \mathrm{MNa}^{+}=489$).

Step B

[0433] The title compound from Step A above (240 mg) was suspended/dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1(5 \mathrm{ml})$ and a 4 M solution of HCl in dioxane (7 ml) added after which a clear solution was obtained. The mixture was stirred at rt for 3 h and concentrated. The residue was partitioned between EtOAc containing 10% THF (25 ml) and $0.01 \mathrm{~N} \mathrm{HCl}(25 \mathrm{ml})$. The organic phase was extracted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ and 0.01 $\mathrm{N} \mathrm{HCl}(25 \mathrm{ml})$. The combined aqueous phase was concentrated to afford the title compound ($162 \mathrm{mg}, 90 \%, \mathrm{MH}^{+}=367$).

Preparative Example 54
[0434]

Step C

Step F

-continued

Step A
[0435] The title compound from Preparative Example 49 Step C (47.6 g) was suspended in $\mathrm{CH}_{3} \mathrm{CN}(350 \mathrm{ml})$ and commercially available 3-bromobenzaldehyde (13.9 ml) added. After the addition of DBN (24 ml), the mixture was heated at $100^{\circ} \mathrm{C}$. for 1 h . The mixture was cooled and the precipitate collected by filtration to afford the trans-olefin $(7.5 \mathrm{~g})$. The mother liquor was concentrated to half its volume and poured into $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{ml})$. The mixture was extracted with EtOAc $(2 \times 300 \mathrm{ml})$, the organic phase washed with 5% $\mathrm{HCl}(2 \times 80 \mathrm{ml})$, dried over MgSO_{4} and concentrated. To this residue was added the trans olefin from above and the mixture was suspended in $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$, $\mathrm{MeOH}(60 \mathrm{ml})$ and dioxane $(60 \mathrm{ml})$. After the addition of $\mathrm{KOH}(47 \mathrm{~g})$, the mixture was heated at $60^{\circ} \mathrm{C}$. for 16 h , cooled to rt and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{ml})$. The aqueous phase was made acidic $(\mathrm{pH}-1)$ by adding conc. HCl , filtered, the precipitate washed with $\mathrm{H}_{2} \mathrm{O}$ $(150 \mathrm{ml})$ and air-dried to afford the title compound as a mixture of cis/trans-olefins ($26.5 \mathrm{~g} ; 88 \% ; \mathrm{MH}^{+}=347$).

Step B

[0436] The title compound from Step A above (6 g) was dissolved in $\mathrm{MeOH}(450 \mathrm{ml})$ and $\operatorname{EtOAc}(150 \mathrm{ml})$. After the addition of a suspension of $5 \% \mathrm{Pt} / \mathrm{C}(2.5 \mathrm{~g})$ in $10 \% \mathrm{HCl}(5 \mathrm{ml})$ and $\mathrm{MeOH}(10 \mathrm{ml})$, the mixture was hydrogenated for 6 h . The mixture was filtered, the catalyst washed with MeOH (60 ml) and the filtrates evaporated to afford the title compound ($5.5 \mathrm{~g}, 91 \%$).
[0437] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{DMSO}_{6}\right) \delta 2.81-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.13-$ $3.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~s}$, $1 \mathrm{H}), 7.85-7.95(\mathrm{~m}, 3 \mathrm{H})$

Step C
[0438] The title compound from Step B above (4g) was suspended in sulfolane (9 ml) and treated with polyphosphoric acid $(30 \mathrm{~g})$. The mixture was heated under N_{2} at $175-180^{\circ}$
C. for 2 h 30 min and poured into ice-water (250 ml). The mixture was stirred at rt overnight and the precipitate collected by filtration to afford the crude title compound $(3.56 \mathrm{~g}$; $94 \% ; \mathrm{MH}^{+}=331$).

Step D
[0439] The title compound from Step C above (3.5 g) was dissolved in N-methyl pyrrolidone (25 ml) and $\mathrm{CuCN}(900$ mg) added. The mixture was heated at $200^{\circ} \mathrm{C}$. for 8 h , cooled to rt and diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{ml})$. The mixture was extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{ml})$ and the combined organic phase washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and evaporated. The residue was dissolved in dioxane $(50 \mathrm{ml})$ and conc. $\mathrm{HCl}(50 \mathrm{ml})$ added. The mixture was heated at $90^{\circ} \mathrm{C}$. for 18 h and the solvents evaporated. The residue was suspended in $\mathrm{MeOH}(75 \mathrm{ml})$, treated with $\mathrm{SOCl}_{2}(1.5 \mathrm{ml})$ and heated under reflux for 1 h 30 min . The mixture was concentrated to half its volume, diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{ml})$ and washed with sat. $\mathrm{NaHCO}_{3}(80 \mathrm{ml})$ and brine $(80 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and evaporated. The residue was purified by chromatography on silica ($\mathrm{EtOAc} / \mathrm{hex}-$ ane, $1: 4$) to afford the title compound ($1040 \mathrm{mg} ; 27 \%$; $\mathrm{MH}^{+}=325$).

Step E

[0440] The title compound from Step D above (1040 mg) was dissolved in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$ and $\mathrm{MeOH}(15 \mathrm{ml})$ and the $\mathrm{NaBH}_{4}(150 \mathrm{mg})$ added. The mixture was stirred at rt for 1 h , diluted with ice water (80 ml) and extracted with EtOAc $(2 \times 100 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $98: 2->\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $\left.95: 5\right)$ to afford the title compound ($817 \mathrm{mg}, 78 \%, \mathrm{MNa}^{+}=349$).
Step F
[0441] The title compound from Step E above (817 mg) was dissolved in THF $(10 \mathrm{ml})$ and treated with $\mathrm{SOCl}_{2}(0.46$
$\mathrm{ml})$. The mixture was stirred at rt overnight and the solvents evaporated. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$ and benzene (5 ml) and added to a suspension of $\mathrm{AgCN}(406 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$. The mixture was heated at $90^{\circ} \mathrm{C}$. for 5 h , filtered and the salts washed with $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$. The filtrates were evaporated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.98: 2\right)$ to afford the title compound ($572 \mathrm{mg}, 68 \%, \mathrm{MH}^{+}=336$).

Step G

[0442] The title compound from Step F above (676 mg) was suspended in THF (20 ml) and DMF (5 ml) and treated under a_{2} atmosphere with $\mathrm{NaH}(106 \mathrm{mg})$. The mixture was heated at $-95^{\circ} \mathrm{C}$. for 75 Min , cooled to rt and treated with a solution of 1,2 -dibromoethane $(0.7 \mathrm{ml})$ in THF $(3 \mathrm{ml})$. The mixture was then heated at $95^{\circ} \mathrm{C}$. for 10 h , cooled to rt and treated with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{ml})$ and EtOAc $(100 \mathrm{ml})$. The organic phase was separated, washed with brine (15 ml), dried over MgSO_{4} and concentrated. The residue was dissolved in DMA (8 ml) and treated with potassium phthalimide (554 mg). The mixture was heated at $60^{\circ} \mathrm{C}$. overnight, the solvent removed and the residue dissolved in EtOAc $(50 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$. The organic phase was separated, washed with brine $(15 \mathrm{ml})$ and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.98: 2\right)$ to afford the title compound ($740 \mathrm{mg}, 72 \%, \mathrm{MNH}_{4}{ }^{+}=526$).

Step H
[0443] The title compound from Step G above (600 mg) was suspended in toluene (5 ml) and treated with dibutyltin oxide (138 mg) and trimethylsilylazide (1.45 ml). The mixture was heated under a N_{2} atmosphere at $90-95^{\circ} \mathrm{C}$. for 3 d and the solvent evaporated. The residue was suspended in $\mathrm{MeOH}(10 \mathrm{ml})$ and the solvent evaporated. The residue was dissolved in EtOAc $(30 \mathrm{ml})$ water $(10 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 95: 5$) to afford the title compound ($415 \mathrm{mg}, 68 \%$, $\mathrm{MH}^{+}=552$).

Step I

[0444] The title compound from Step H above (415 mg) was dissolved in $\mathrm{MeOH}(6 \mathrm{ml})$ and triethylamine (0.23 ml). The mixture was cooled to $0^{\circ} \mathrm{C}$. and 3-dimethylaminopropylamine $(0.23 \mathrm{ml})$ added. The mixture was stirred at $0^{\circ} \mathrm{C}$. for 10 min and at rt overnight. The mixture was concentrated, dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$, again concentrated and dried in HV. The residue was dissolved in dioxane (5 ml) and $\mathrm{H}_{2} \mathrm{O}(5$ ml) and the pH adjusted to $\mathrm{pH}=8-9$ by adding 1 M KOH . The mixture was then treated with Boc2O (870 mg) and stirred overnight. The mixture was adjusted to $\mathrm{pH}=4$ by adding 1 M HCl and diluted with EtOAc (150 ml). The organic phase was separated and the aqueous phase extracted with EtOAc (2×75 $\mathrm{ml})$. The combined organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5->4: 1\right)$ to afford the title compound ($227 \mathrm{mg}, 58 \%, \mathrm{MH}^{+}=522$).

Step J

[0445] The title compound from Step I above (227 mg) was dissolved in dioxane (10 ml) and $1 \mathrm{M} \mathrm{KOH}(3.75 \mathrm{ml})$ added. The mixture was stirred at rt overnight and the pH adjusted to $\mathrm{pH}=4$ by adding 1 M HCl . The mixture was extracted with

EtOAc, containing 10% THF $(2 \times 150 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4} and concentrated to afford the title compound ($177 \mathrm{mg}, 82 \% ; \mathrm{MH}^{+}=494$).

Preparative Example 55

[0446]

[0447] If one were to follow a similar procedure as described in Preparative Example 54, but using 3-fluorobenzaldehyde in Step A and omitting Step D, one would obtain the desired compound.

Preparative Example 56

[0448]

Step A

[0449] The title compound from Preparative Example 54 $(177 \mathrm{mg})$ was dissolved in THF (6 ml) and triethylamine (0.2 ml) added. The precipitate was dissolved/suspended by adding $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{ml})$. The mixture was cooled to $-40^{\circ} \mathrm{C}$. and ethylchloroformate (0.1 ml) was slowly added. The mixture was stirred at $-25^{\circ} \mathrm{C}$. for 1 h and allowed to warm to $0^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C} .7 \mathrm{M} \mathrm{NH}_{3} / \mathrm{MeOH}$-solution (7 ml) was added and the
mixture was stirred at $0^{\circ} \mathrm{C}$. for 30 min and 1 h at rt . The mixture was concentrated and the residue dissolved in $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{ml})$ and THF $(2 \mathrm{ml})$. The pH was adjusted to $\mathrm{pH} \sim 4.0$ by adding 100 mM HCl and the aqueous phase extracted with EtOAc ($4 \times 30 \mathrm{ml}$) containing 10% THF. The organic phase was dried over MgSO_{4} and concentrated to afford the title compound ($110 \mathrm{mg} ; 62 \%, \mathrm{MNa}^{+}=514$).

Step B
[0450] The title compound from Step A above (103 mg) was dissolved in THF (2 ml) and a 4 M solution of HCl in dioxane $(5 \mathrm{ml})$ added. The mixture was stirred at rt for 2 h and concentrated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and washed with $\operatorname{EtOAc}(2 \times 8 \mathrm{ml})$. The aqueous phase was concentrated, the residue dissolved in $50 \mathrm{mM} \mathrm{HCl}(6 \mathrm{ml})$ and filtered through a Millex VV $(0.1 \mu \mathrm{M})$ filter unit. The filtrate was concentrated to afford the title compound ($90 \mathrm{mg}, 94 \%$, $\mathrm{MH}^{+}=392$).

Preparative Example 57
[0451]

[0452] If one were to follow a similar procedure as described in Preparative Example 56, but using the title compound from Preparative Example 55, one would obtain the desired compound.

Preparative Example 58

[0453]

Step B
-continued

Step A
[0454] A suspension of $\mathrm{NaH}(66 \mathrm{mg})$ in THF (10 ml) was added to a solution of the title compound from Preparative Example 13 Step A $(0.57 \mathrm{~g})$ in THF $(20 \mathrm{ml})$ and heated at 65° C. for 1 h . Then the mixture was cooled to $0^{\circ} \mathrm{C}$. and a solution of Preparative Example $21(0.74 \mathrm{~g})$ in THF (10 ml) was added. The suspension was heated at $65^{\circ} \mathrm{C}$. for 5 h and then diluted with ethyl acetate. The organic phase was washed with water, brine and dried over MgSO_{4}. Removal of the solvents and column chromatography (EtOAc/hexane, 1:4) afford the title compound ($630 \mathrm{mg}, 58 \%, \mathrm{MH}^{+}=421$).

Step B

[0455] The title compound from Step A above (632 mg) was dissolved in DMF $(10 \mathrm{ml})$ and treated with $\mathrm{NaN}_{3}(1.2 \mathrm{~g})$ and $\mathrm{NH}_{4} \mathrm{Cl}(963 \mathrm{mg})$. The mixture was heated under a N_{2} atmosphere at $110^{\circ} \mathrm{C}$. for 3 d and the solvent evaporated. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ afford the title compound ($350 \mathrm{mg}, 51 \%, \mathrm{MH}^{+}=464$).

Step C
[0456] The title compound from Step B above (350 mg) was dissolved in THF (10 ml) and treated with TBAF. $3 \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred at rt for 4 h and the solvent evaporated. Preparative TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (4:1) afford the title compound ($121 \mathrm{mg}, 50 \%, \mathrm{MH}^{+}=320$).

Step A
[0458] Commercially available 2-Brom-5-chlor-toluene (123 g) was diluted with $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{ml})$ and 10% of this solution was added to a mixture of $\mathrm{Mg}(15.2 \mathrm{~g})$ and iodine (3 crystals) in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$. After the Grignard reaction had started, the remaining starting material was added at such a rate to maintain gentle reflux. After the complete addition of the starting material, the mixture was heated at $60^{\circ} \mathrm{C}$. oil-bath temperature for 45 Min . The mixture was then cooled to rt and poured onto a mixture of dry-ice in $\mathrm{Et}_{2} \mathrm{O}(1800 \mathrm{ml})$. The mixture was allowed to warm to rt over a period of 2 h and the solvent removed. The residue was dissolved with EtOAc $(1200 \mathrm{ml})$ and washed with $3 \mathrm{~N} \mathrm{HCl}(3 \times 1000 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4}, filtered and concentrated to afford the title compound ($94.3 \mathrm{~g}, 92 \%$)
[0459] ${ }^{1}$ HNMR $\delta\left(\right.$ DMSO-d $\left.{ }_{6}\right) 2.51(\mathrm{~s}, 3 \mathrm{H}), 7.33(\mathrm{dd}, 1 \mathrm{H})$, 7.39 (d, 1H), 7.81 (d, 1H), 12.9 (br-s, 1H)

Step B
[0460] The title compound from Step A above (47 g) was dissolved in THF (500 ml) and the mixture cooled to $-60^{\circ} \mathrm{C}$. At $-60^{\circ} \mathrm{C}$. a 1.3 M solution of sec- $\mathrm{BuLi}(455 \mathrm{ml})$ in hexane
was slowly added as to keep the internal temperature below $-30^{\circ} \mathrm{C}$. The precipitate began to dissolve after the addition of more than half of the sec-BuLi solution. After the complete addition of sec-BuLi, the deep red solution was stirred at -50° C. for 1 h . The anion solution was then transferred via canula to a cooled ($-40^{\circ} \mathrm{C}$.) solution of commercially available 3 -chlor-benzylbromide (62.3 g) in THF (150 ml). The addition of the anion was at such a rate as to maintain $-40^{\circ} \mathrm{C}$. during the addition. After the addition of the anion was completed, the mixture was stirred at $-40^{\circ} \mathrm{C}$. for 1 h and was then allowed to warm to rt over a period of 3 h . The reaction was quenched by adding $2 \mathrm{M} \mathrm{NaOH}(1000 \mathrm{ml}$) and the THF removed in vacuo. The remaining solution was extracted with cyclohexane ($2 \times 500 \mathrm{ml}$) and the aqueuous phase acidified to $\mathrm{PH}=1$ by adding conc. HCl . The mixture was extracted with EtOAc ($3 \times 400 \mathrm{ml}$), the organic phase dried over MgSO_{4}, filtered and concentrated to afford the title compound (71 g , 87\%).
[0461] ${ }^{1} \mathrm{HNMR} \delta\left(\right.$ acetone- d_{6}) 2.83-2.91 (m, 2H), 3.22-3 $31(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.98(\mathrm{~d}, 1 \mathrm{H})$.

Step C
[0462] The title compound from Step B above (71 g) was suspended in sulfolane (250 ml) and PPA (700 g) added. The
mixture was stirred with a mechanical stirrer and heated at $170^{\circ} \mathrm{C}$. oil-bath temperature for 9 h . The hot mixture ($\sim 120^{\circ}$ C.) was then poured onto crushed-ice (4000 g) and stirred overnight. The precipitate was allowed to settle for 30 Min and the aqueous phase decanted. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(1500 \mathrm{ml})$ and washed with $1 \mathrm{M} \mathrm{NaOH}(2 \times 500 \mathrm{ml})$. The organic phase was dried over MgSO_{4}, filtered and concentrated to afford the title compound ($50 \mathrm{~g}, 75 \%$).
[0463] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right) 3.16(\mathrm{~s}, 4 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}), 7.32$ (dd, 2H), $8.0(\mathrm{~d}, 2 \mathrm{H})$

Step D
[0464] The title compound from Step C above (25 g) was dissolved in toluene (160 ml) and added to a mixture of KCN $(11.7 \mathrm{~g})$, dipiperidinomethane (7.26 ml), sulfolane (2 ml) and 1,4-Bis-(diphenylphosphino)-butane (6 g). The mixture was degassed by sonication under a stream of nitrogen and then palladium(II)-acetate (1.6 g) was added. The mixture was then heated in a sealed glass reaction vessel at $160^{\circ} \mathrm{C}$. oil-bath temperature for 18 h . The mixture was cooled to rt , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{ml})$ and brine (300 ml). The organic phase was separated, dried over MgSO_{4}, filtered and concentrated. The residue was diluted with EtOAc $(90 \mathrm{ml})$ and sonicated. The suspension was then treated with cyclohexane $(400 \mathrm{ml})$ and allowed to stand for 30 Min. The precipitate was collected by filtration and air-dried to afford the title compound ($18 \mathrm{~g}, 77 \%, \mathrm{MH}^{+}=259$).

Step E
[0465] The title compound from Step D above (18 g) was suspended in $\mathrm{EtOH}(75 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the KOH $(19.3 \mathrm{~g})$ added. The mixture was heated at $100^{\circ} \mathrm{C}$. oil-bath temperature for 12 h , concentrated and the residue dissolved in $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$. The aqueous phase was acidified to $\mathrm{pH}=1$ by adding conc. HCl and the precipitate collected by filtration and air-dried to afford the title compound ($19.5 \mathrm{~g}, 95 \%$, $\mathrm{MH}^{+}=297$).

Step F

[0466] The title compound from Step E above (19.5 g) was suspended in $\mathrm{MeOH}(600 \mathrm{ml})$ and treated with thionyl chloride $(29 \mathrm{ml})$. The mixture was then heated at $90^{\circ} \mathrm{C}$. oil-bath temperature for 3 h , the hot mixture filtered and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8001)$ and washed with sat. $\mathrm{NaHCO}_{3}(200 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4}, filtered and concentrated to afford the title compound ($18.8 \mathrm{~g}, 88 \%, \mathrm{MH}^{+}=325$).

Step G

[0467] The title compound from Step F above (18.8 g) was dissolved in $\mathrm{CHCl}_{3}(250 \mathrm{ml})$ and $\mathrm{MeOH}(250 \mathrm{ml})$. The mixture was then treated with $\mathrm{NaBH}_{4}(2.47 \mathrm{~g})$ in small portions. After the complete addition of the reducing agent, the mixture was stirred at rt for 1 h . The mixture was poured into ice-water $(800 \mathrm{ml})$, the organic phase separated and the aqueous phase extracted with EtOAc (300 ml). The combined organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, $98: 2$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $95: 5$) to afford the title compound ($11.9 \mathrm{~g}, 63 \%, \mathrm{MNa}^{+}=349$).

Step H
[0468] The title compound from Step G above (11.9 g) was dissolved in THF $(150 \mathrm{ml})$ and the mixture cooled to $0^{\circ} \mathrm{C}$. At
$0^{\circ} \mathrm{C}$. thionyl chloride (6.5 ml) was added and the mixture was allowed to warm to rt overnight. The solvent was then removed in vacuo to afford the crude title compound.
[0469] ${ }^{1} \mathrm{HNMR} \delta\left(\mathrm{CDCl}_{3}\right)$ 2.93-3.05 (m, 2H), 3.70-3.80 $(\mathrm{m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 2 \mathrm{H}), 7.78-7.86(\mathrm{~m}$, 4H).
Step I
[0470] The title compound from Step H above was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(300 \mathrm{ml})$ and benzene $(95 \mathrm{ml})$. After the addition of $\mathrm{AgCN}(5.9 \mathrm{~g})$ the mixture was heated at $95^{\circ} \mathrm{C}$. oil-bath temperature for 2 h 45 Min . The mixture was filtered while hot and the salts washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The filtrate was concentrated and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.98: 2\right)$ to afford the title compound ($11.3 \mathrm{~g}, 92 \%, \mathrm{MH}^{+}=336$).

Preparative Example 60
[0471]

Step A
[0472] The title compound from Preparative Example 59 Step C (9.5 g) was dissolved in $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ and MeOH $(60 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was then treated with NaBH_{4} $(1.64 \mathrm{~g})$ in small portions. After the complete addition of the reducing agent, the mixture was stirred at rt for 3 h . Water (50 ml) was added and the mixture was concentrated to half of its volume and extracted with EtOAc $(2 \times 150 \mathrm{ml})$. The combined organic layers were washed with water $(50 \mathrm{ml})$, brine (50 ml), dried over MgSO_{4} and concentrated. The crude product was used without further purification $\left(9 \mathrm{~g}, 90 \%, \mathrm{MNa}^{+}=301\right)$.

Step B
[0473] The crude title compound from Step A above (9 g) was dissolved in THF $(100 \mathrm{ml})$ and the mixture was cooled to 0° C. At 0° C. thionyl chloride (7.1 ml) was added and the mixture was allowed to warm to rt overnight. The solvent was then removed in vacuo to afford the title compound (9.2 g).

Step C
[0474] The title compound from Step B above (9.2 g) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(180 \mathrm{ml})$ and benzene (60 ml). After the addition of solid $\mathrm{AgCN}(5.2 \mathrm{~g})$ the mixture was heated at 90° C. oil-bath temperature for 2.5 h . The mixture was filtered while hot through celite and the salts washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{ml})$. The filtrate was concentrated to give the crude title compound ($8.66 \mathrm{~g}, 93 \%, \mathrm{MH}^{+}=288$).

Preparative Example 61
[0475]

Step A
[0476] The title compound from Preparative Example 59 (3.8 g) was suspended in THF (50 ml) and DMF (35 ml). The mixture was treated under a N_{2} atmosphere with NaH (408 mg) and the mixture was heated at $95^{\circ} \mathrm{C}$. oil-bath temperature for 90 Min , cooled to rt and treated with the title compound from Preparative Example $21(4.78 \mathrm{~g})$. The mixture was then heated at $90-95^{\circ} \mathrm{C}$. for 4 h , cooled to rt and quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{ml})$ and brine (90 ml). The organic phase was separated and the aqueous layer extracted with EtOAc (2×50 ml). The combined organic phase was dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to afford the title compound ($5 \mathrm{~g}, 82 \%, \mathrm{MH}^{+}=537$).

Step B
[0477] The title compound from Step A above (5 g) was dissolved in DMA (90 ml) and treated with $\mathrm{NaN}_{3}(5.9 \mathrm{~g})$ and $\mathrm{NH}_{4} \mathrm{Cl}(4.8 \mathrm{~g})$. The mixture was heated under a N_{2} atmosphere at $100-105^{\circ} \mathrm{C}$. for 50 h . The cooled mixture concentrated and the residue dissolved in EtOAc $(600 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ (200 ml). The aqueous layer was acidified to $\mathrm{pH}=4$ by adding 1 MHCl and the organic phase separated. The aqueous phase was extracted with EtOAc ($2 \times 80 \mathrm{ml}$) and the combined organic extracts washed with $100 \mathrm{mMHCl}(200 \mathrm{ml})$ and brine $(200 \mathrm{ml})$. The organic phase was separated, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1->4: 1\right)$ to afford the title compound ($4 \mathrm{~g}, 74 \%, \mathrm{MH}^{+}=580$).

Step C

[0478] The title compound from Step B above (4 g) was dissolved in dioxane (153 ml). After the addition of 1 M KOH $(42.5 \mathrm{ml})$, the mixture was stirred at rt overnight. The mixture was concentrated and then 43 ml 1 M HCl added. The precipitate was dissolved in EtOAc $(100 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and the organic phase separated. The aqueous phase was extracted with EtOAc (100 ml) and the organic phase combined. The solvent was then removed to afford the title compound (3.9 g , quanta, $\mathrm{MH}^{+}=552$).

Preparative Example 62-64

[0479] Following a similar procedure as that described in Preparative Example 61 but using the sulfamidates and compounds from the Preparative Examples as indicated in the Table below, the title compounds were obtained.

Preparative Example	Preparative Example	Sulfamidate	Title compound	MH^{+}
62	59	O		538

continued

Preparative
Example

Preparative
Example

Sulfamidate

Preparative Example 65
[0480] If one were to treat the title compound from Preparative Example 59 according to the procedures described in Preparative Example 61, but using the sulfamidate as indicated in the table below, one would obtain the title compound.

Preparative Example 66
-continued
[0481]

Step A
[0482] The title compound from Preparative Example 61 Step A (1000 mg) was suspended in $\mathrm{MeOH}(10 \mathrm{ml})$ and hydroxylamine hydrochloride (517 mg) and a 5.5 M solution of sodium methoxide in $\mathrm{MeOH}(1.4 \mathrm{ml})$ added. The mixture was heated in a pressure bottle at $110^{\circ} \mathrm{C}$. for 12 h and then the solvent removed. The residue was purified by chromatography on silica (cyclohexane/EtOAc 1:3->1:1) to afford the title compound ($210 \mathrm{mg}, 20 \%, \mathrm{MH}^{+}=570$).

Step B
[0483] The title compound from Step A above (180 mg) was dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$ and sodium methoxide (233 mg) and diethyl carbonate (1130 mg) added. The mixture was heated at $110^{\circ} \mathrm{C}$. in a pressure bottle overnight. The solvent was removed and the residue purified by chromatography on silica $\left(\mathrm{CHCl}_{3}\right)$ to afford the title compound ($110 \mathrm{mg}, 58 \%$, $\mathrm{M}^{+}-27=568$).

Step C
[0484] The title compound from Step B above (110 mg) was dissolved in THF (25 ml) and treated with 1 M KOH (6 $\mathrm{ml})$. After stirring at rt overnight, $1 \mathrm{MHCl}(2.8 \mathrm{ml})$ was added and the solvents removed to afford the crude title compound (105 mg , quant., $\mathrm{M}^{+}-27=540$).

Preparative Example 67

[0485]

Step A
[0486] Hydroxylamine hydrochloride (401 mg) was suspended in anhydrous $\mathrm{MeOH}(14 \mathrm{ml})$ and a 5.5 M solution of sodium methoxide in $\mathrm{MeOH}(0.946 \mathrm{ml})$ added. This mixture was stirred at rt for 45 min and the title compound from Preparative Example 61 Step A (1400 mg) was added. The resulting mixture was heated in a closed vessel at $100^{\circ} \mathrm{C}$. overnight and subsequently allowed to cool down to rt. Due to incomplete conversion, hydroxylamine hydrochloride (401 mg) and a 5.5 M solution of sodium methoxide in MeOH $(0.946 \mathrm{ml})$ were added and the mixture was heated again at $100^{\circ} \mathrm{C}$. for 20 h . After cooling down to rt, the salts were filtered off and washed with EtOAc (15 ml) and $\mathrm{CHCl}_{3}(15$ ml). The united organic phases were evaporated and the residue purified by chromatography on silica (cyclohexane/ EtOAc 8:2->6:4) to afford the title compound from Preparative Example 66 Step A ($300 \mathrm{mg}, 20 \%, \mathrm{MH}^{+}=570$) and the title compound ($1130 \mathrm{~g}, 74 \%, \mathrm{MNa}^{+}=577$).

Step B

[0487] The title compound from Step A above (1380 g) was dissolved in THF (30 ml) and treated with $1 \mathrm{M} \mathrm{KOH}(9 \mathrm{ml}$). After stirring at rt overnight, $1 \mathrm{M} \mathrm{KOH}(9 \mathrm{ml})$ was added and stirring continued for 22 h . The reaction mixture was acidified with 4 M HCl to $\mathrm{pH} 2-3$, extracted with EtOAc/THF $10 / 1$ ($4 \times 40 \mathrm{ml}$) and the combined organic extracts washed with brine (20 ml). The organic phase was separated, dried over MgSO_{4}, filtered and concentrated to afford the title compound (1220 mg , quant., $\mathrm{M}^{+}-27=499, \mathrm{MNa}^{+}=549$).

Preparative Example 68
[0488]

Step A
[0489] The N-hydroxyamidine product from Preparative Example 66 Step A (300 mg) was dissolved in anhydrous dichloromethane (5 ml), the solution cooled down to $0^{\circ} \mathrm{C}$. and triethylamine ($147 \mu \mathrm{l})$ and trifluoroacetic anhydride (103 $\mu \mathrm{l})$ added. The reaction mixture was stirred at rt overnight. Due to incomplete conversion, triethylamine ($221 \mu \mathrm{l}$) and trifluoroacetic anhydride ($155 \mu \mathrm{l}$) were added at $0^{\circ} \mathrm{C}$. and stirring was continued at rt for 3 d . Dichloromethane (9 ml) and water $(10 \mathrm{ml})$ were added to the stirred mixture. After 5 min , the separated organic phase was washed with brine (5 ml), dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica (cyclohexane/ EtOAc 8:2->7:3) to afford the title compounds A (267 mg , $68 \%, \mathrm{MNa}^{+}=766$) and $\mathrm{B}\left(36 \mathrm{mg}, 10 \%, \mathrm{MNa}^{+}=670\right)$.

Step B
[0490] The title compounds A ($267 \mathrm{mg} ; \mathrm{MNa}^{+}=766$) and B ($36 \mathrm{mg}, \mathrm{MNa}^{+}=670$) from Step A above were dissolved in dioxane (11 ml) and water added (11 ml). The resulting suspension was treated with $1 \mathrm{M} \mathrm{NaOH}(3.6 \mathrm{ml})$. After stirring at rt overnight, the reaction mixture was acidified with 1 M HCl to pH 2-3, extracted with $\mathrm{EtOAc}(4 \times 40 \mathrm{ml})$ and the combined organic phases dried over MgSO_{4}, filtered and concentrated to afford the title compound (282 mg , quant., $\mathrm{MNa}^{+}=642$).

Preparative Example 69

[0491]

Step A
[0492] To the title compound of Preparative Example 61 Step A (500 mg) in anhydrous DMF (10 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(123 \mathrm{mg})$. After cooling down to $0^{\circ} \mathrm{C}$., methyl iodide ($75 \mu 1$) was added dropwise to the stirred mixture. After 10 min , the mixture was allowed to rt and stirred overnight. The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$., diluted with acidified saturated aq. NaCl solution ($\mathrm{pH} 2-3$) and added to stirred EtOAc (150 ml). The separated organic phase was washed with brine ($2 \times 25 \mathrm{ml}$), dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica (cyclohexane/EtOAc 8:2->7:3) to afford the title compounds: the 1 -Me-tetrazole ($170 \mathrm{mg}, 33 \%, \mathrm{MH}^{+}=580$) and the 2 -Me-tetrazole ($163 \mathrm{mg}, 32 \%, \mathrm{MH}^{+}=580$).

Step B

[0493] The title compounds from Step A above (170 mg of the 1 -Me-tetrazole and 163 mg of the 2 -Me-tetrazole) were separately dissolved in dioxane (5.5 ml) and treated with 1 M $\mathrm{KOH}(1.5 \mathrm{ml})$ each. After stirring at rt for 3 h , the reaction mixtures were concentrated to $1 / 3$ of their volumes and the pH adjusted to 3 with 1 M HCl . The resulting aq. suspension was extracted with EtOAc ($3 \times 25 \mathrm{ml}$) and the combined organic phases dried over MgSO_{4}, filtered and concentrated to afford the title compounds: the $1-\mathrm{Me}$-tetrazole (171 mg , quant., $\mathrm{M}^{+}-27=524$) and the 2 -Me-tetrazole (172 mg , quant., $\left.\mathrm{M}^{+}-27=524\right)$.

Preparative Example 70
[0494]

Step A
[0495] The title compound from Preparative Example 61 (2 g) was dissolved in THF (75 ml) and $\mathrm{CH}_{3} \mathrm{CN}(75 \mathrm{ml})$ and triethylamine (4 ml) added. The mixture was cooled to -40° C. and ethylchloroformate (2.3 ml) was slowly added. The mixture was stirred at $-25^{\circ} \mathrm{C}$. for 1 h , filtered and the salts washed with 35 ml THF. The filtrate was placed in a cooling bath ($-20^{\circ} \mathrm{C}$.) and a 33%-solution of $\mathrm{NH}_{4} \mathrm{OH}(30 \mathrm{ml})$ was added. The mixture was stirred at $-20^{\circ} \mathrm{C}$. for 30 min and 15 min at rt . Since LC-MS indicated that the conversion was not complete, the mixture was concentrated. The reaction was repeated using the same reaction conditions. After the second run LC-MS indicated that the reaction was completed. The mixture was concentrated to afford the crude title compound together with salts from the reaction $\left(\mathrm{MNa}^{+}=572\right)$.

Step B

[0496] The crude title compound from Step A above was suspended in $\mathrm{CHCl}_{3}\left(25 \mathrm{ml}\right.$) and the mixture cooled to $0^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C}$. TFA (25 ml) was added and stirring at $0^{\circ} \mathrm{C}$. was continued for 2 h . The mixture was concentrated and the residue dissolved in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$. The pH was adjusted to $\mathrm{pH}=7.0$ by adding $10 \% \mathrm{NaOH}$ and the neutral solution loaded onto a RP-column (Merck; silica gel 60 RP-18, 40-63 $\mu \mathrm{M}$). The column was washed with $\mathrm{H}_{2} \mathrm{O}$ to remove the salts, followed by $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) to elute the title compound (1.3 g, $88 \%, \mathrm{MH}^{+}=406$).

Preparative Example 71-87

[0497] Treating the compounds from the Preparative Examples with the amines as indicated in the Table below, according to a modified procedure as described in Preparative Example 70, the title compounds were obtained as HCl -salts. [0498] Modifications:
[0499] Step A The crude mixture from Step A was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and the pH adjusted to $\mathrm{pH}=4.0$ by adding 1 M HCl. The mixture was then extracted with EtOAc, the organic phase separated, dried over MgSO_{4}, filtered and the solvents removed.
[0500] Step B The residue after removal of the Teoc protecting group was diluted with 1 M HCl and the aqueous
phase washed with EtOAc. Concentration of the aqueous phase afforded the title compound as HCl -salt.

Preparative
Example
Example

-continued

Preparative Example	Preparative Example	Amines	Title compound	MH^{+}
86	61	none		408
87	64	none		374

Preparative Example 88
[0501]

$\stackrel{\text { Step D }}{\longleftrightarrow}$

Step A
[0502] Commercially available anthraquinone (8.0 g) was suspended in $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{ml})$ was added. The resulting biphasic system was rapidly stirred and $\mathrm{NaN}_{3}(3.1 \mathrm{~g})$ was added in portions at rt . The mixture was stirred for 1 h at rt and at $30-40^{\circ} \mathrm{C}$. (water bath) for another 3 h . After the addition of ice water (80 ml), the precipitate was collected by filtration and dried to afford the title compound ($8.40 \mathrm{~g} ; 97 \% ; \mathrm{MH}^{+}=224$).

Step B
[0503] The title compound from Step A above (8.0 g) was dissolved in DMSO (140 ml) under N_{2} at $10^{\circ} \mathrm{C}$. After the addition of $\mathrm{KOtBu}(5.7 \mathrm{~g})$, the mixture was stirred for 15 min at that temperature. After the addition of $\mathrm{CH}_{3} \mathrm{I}(4.2 \mathrm{ml})$, the mixture was allowed to warm to rt and stirred for 2 h . After the addition of $1 \mathrm{M} \mathrm{HCl}(130 \mathrm{ml})$ and EtOAc (100 ml), the organic phase was separated and the aqueous phase extracted with EtOAc $(2 \times 50 \mathrm{ml})$. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, brine (50 ml), dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane) to afford the title compound ($4.88 \mathrm{~g} ; 61 \% ; \mathrm{MH}^{+}=238$).

Step C

[0504] Tosylmethyl isocyanide was dissolved in DMSO $(10 \mathrm{ml})$ under N_{2} at $10^{\circ} \mathrm{C}$. and $\mathrm{KOtBu}(1.36 \mathrm{~g})$ was added. The mixture was stirred for 5 min and $\mathrm{MeOH}(0.173 \mathrm{ml})$ was added. The title compound from Step B above (0.8 g) was immediately added to the mixture. After 10 min dibromoethane (1.51 ml) was added and stirring was continued for 1 h at rt. The mixture was diluted with EtOAc $(10 \mathrm{ml})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{ml})$ was added. The organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 50 \mathrm{ml}$). The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, brine (50 ml), dried over MgSO_{4} and concentrated. The resi-
due was dissolved in DMF (40 ml) and potassium phthalimide (3.13 g) added. The resulting mixture was heated to $60^{\circ} \mathrm{C}$. for 3 h and concentrated. The residue was suspended in CHCl_{3} and filtered. The filtrate was concentrated and the residue purified by chromatography on silica (EtOAc/cyclohexane) to afford the title compound ($612 \mathrm{mg} ; 43 \%$; $\mathrm{MH}^{+}=422$).

Step D

[0505] The title compound from Step C above (0.6 g) was dissolved in toluene (30 ml) under N_{2} and dibutyltin oxide $(1.68 \mathrm{~g})$ and trimethylsilylazide (8.9 ml) were added. The mixture was then heated at $75^{\circ} \mathrm{C}$. for 24 h . The mixture was concentrated, the residue suspended in EtOAc (40 ml) and 1 $\mathrm{M} \mathrm{HCl}(40 \mathrm{ml})$ and stirred for 2 h at rt . $\mathrm{MeOH}(10 \mathrm{ml})$ was added and the organic phase was separated. The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{ml})$ and the combined organic phase was washed with brine (20 ml), dried over MgSO_{4} and evaporated. The residue was purified by chromatography on silica ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the title compound ($565 \mathrm{mg} ; 84 \% ; \mathrm{MH}^{+}=465$).

Step E

[0506] The title compound from Step D above (0.22 g) was dissolved in $\mathrm{EtOH}(7 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ and the mixture was heated to $80^{\circ} \mathrm{C}$. Hydrazine monohydrate (0.108 g) was added and the mixture was stirred at $80^{\circ} \mathrm{C}$. for 1 h . The mixture was allowed to cool to rt within 1 h . The precipitate was removed by filtration and washed with EtOH . The filtrate was concentrated and dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ and 1 M $\mathrm{HCl}(10 \mathrm{ml})$. The aqueous phase was separated, filtered and evaporated to afford the title compound ($85 \mathrm{mg} ; 48 \%$; $\mathrm{MH}^{+}=335$).

Preparative Example 89
[0507]

Step A

[0508] To a solution of the commercially available L-pyroglutamic acid ethylester (15.7 g) in methylene chloride (90 ml) was sequentially added at rt di-tert-butyldicarbonate (24 g) and a catalytic amount of DMAP (120 mg). After stirring for 6 h at rt the reaction mixture was quenched with saturated brine and extracted with methylene chloride. $(3 \times 30 \mathrm{ml})$. The organic phase was dried over MgSO_{4}, concentrated and the residue purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford the title compound $\left(16.3 \mathrm{~g}, 63 \%, \mathrm{MNa}^{+}=280\right)$.

Step B
[0509] A solution of the title compound from Step A above (16.3 g) in toluene (100 ml) was cooled to $-78^{\circ} \mathrm{C}$. and triethylborohydride (67 ml of a 1.0 M solution in THF) was added dropwise over 90 minutes. After 3 h, 2,6 lutidine (43 $\mathrm{ml})$ was added dropwise followed by $\operatorname{DMAP}(20 \mathrm{mg})$. To this mixture was added TFAA (11 ml) and the reaction was allowed to come to ambient temperature over 2 h . The mixture was diluted with ethyl acetate and water and the organics were washed with 3 N HCl , water, aqueous bicarbonate and brine. The organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica (cyclohexane/EtOAc 5:1) to afford the title compound ($10.9 \mathrm{~g}, 72 \%, \mathrm{MNa}^{+}=264$).

Step C
[0510] A solution of the title compound from Step B above (3.5 g) in 1,2 dichloroethane (75 ml) was cooled to $-15^{\circ} \mathrm{C}$. and $\mathrm{Et}_{2} \mathrm{Zn}(25 \mathrm{~mL}$ of a 1.0 M solution in THF) was added dropwise. To this mixture was added drop wise $\mathrm{ClCH}_{2} \mathrm{I}$ (4.5 ml) over 30 minutes. After stirring for 18 h at $-15^{\circ} \mathrm{C}$. the mixture was quenched with saturated aqueous bicarbonate and the solvent was evaporated and the reaction was taken up in ethyl acetate and washed with brine. The organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica (cyclohexane/EtOAc 4:1) to afford the diastereomerically pure title compound (1.5 $\mathrm{g}, 41 \%, \mathrm{MNa}^{+}=278$).
Step D
[0511] A solution of the title compound from Step C above $(1.4 \mathrm{~g})$ in $\mathrm{MeOH}(40 \mathrm{ml})$ and THF $(20 \mathrm{ml})$ was treated with 1 $\mathrm{N} \mathrm{LiOH}(10 \mathrm{ml})$ and stirred overnight at rt . The reaction mixture was acidified to pH 4.5 with 2 N HCl and stirred for 15 min at rt. The mixture was then extracted with EtOAc, the organic phase washed with brine, dried over MgSO_{4} and evaporated to afford the title compound $\left(1.2 \mathrm{~g}, 96 \%, \mathrm{MNa}^{+}\right.$ $=250$).

Step E
[0512] To a solution of the title compound from Step D above (1.2 g) in THF (20 ml) was added at $-15^{\circ} \mathrm{C} .4$-meth-
ylmorpholine ($710 \mu \mathrm{l}$) and then isobutyl chloroformate (780 $\mu \mathrm{l})$ over 5 minutes and stirred then for 30 minutes. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$. and treated with a solution of NH_{3} in dioxane ($25 \mathrm{ml}, 0.5 \mathrm{M}$ in dioxane). The reaction mixture was stirred for 30 minutes, warmed to rt and stirred overnight. The reaction mixture was acidified to pH 4.5 with 10% aqueous citric acid and extracted with ether ($3 \times 50 \mathrm{ml}$). The organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica (cyclohexane/EtOAc 1:10) to afford the title compound ($1.0 \mathrm{~g}, 84 \%, \mathrm{MNa}^{+}=248$).

Step F
[0513] To a stirred solution o of the title compound from Step E above (0.9 g) in methylene chloride (5 ml) was sequentially added at $0^{\circ} \mathrm{C}$. TFA $(5 \mathrm{ml})$. After stirring for 12 h at $0^{\circ} \mathrm{C}$. the reaction mixture was concentrated under reduced pressure to afford the title compound $\left(0.9 \mathrm{~g}, 100 \%, \mathrm{MH}^{+}=127\right)$.

Step G

[0514] The title compound from Step F above (450 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ and triethylamine (0.4 ml). The mixture was cooled to $0^{\circ} \mathrm{C}$. and DMAP (25 mg) was added followed by fumarylchloride (0.099 ml). The mixture was stirred at $0^{\circ} \mathrm{C}$. and allowed to warm to rt overnight. The mixture was concentrated to afford the crude title compound $\left(\mathrm{MH}^{+}=333\right)$.

Step H

[0515] To a cooled (0° C.) solution of DMF (4 ml) was carefully added oxalylchloride (0.32 ml). After the addition was completed, the mixture was stirred at $0^{\circ} \mathrm{C}$. for 5 min . Then pyridine $(0.6 \mathrm{ml})$ was added followed by a solution of the crude title compound from Step G above in DMF (2 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$. The mixture was then stirred at $0^{\circ} \mathrm{C}$. for 2 h . The mixture was concentrated and the residue partitioned between EtOAc (50 ml) and brine (25 ml). The organic phase was separated and the aqueous phase extracted with EtOAc $(2 \times 25 \mathrm{ml})$. The combined organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to afford the title compound ($250 \mathrm{mg}, 92 \%, \mathrm{MH}^{+}=297$).

Step I

[0516] The title compound from Step H above (328 mg) was dissolved in $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ and $\mathrm{MeOH}(3 \mathrm{ml})$. The mixture was then treated with ozone according to Preparative Example 2 Step C to afford the title compound ($350 \mathrm{mg}, 80 \%$, $\mathrm{MH}^{+}=165$ (aldehyde); $\mathrm{MH}^{+}=219$ (hemiacetal)).

Preparative Example 90
[0517]

Step A

[0518] To a stirred solution of potassium hydroxide (1.2 g) in ethanol $(10 \mathrm{~mL})$ was sequentially added at rt the commercial available bis(tert.-butyldicarbonyl)amine (4.5 g). After stirring for 1 h at rt the reaction mixture was quenched with ether and the precipitate was filtered and washed with ether $(3 \times 10 \mathrm{~mL})$ to afford the title compound $(3.4 \mathrm{~g})$

Step B
[0519] The title compound from Step A above (95 mg) was dissolved in $\mathrm{CHCl}_{3}(2.25 \mathrm{ml})$ and 1,3-dimethoxybenzene $(0.18 \mathrm{ml})$ added. To the mixture was then added TFA (0.75 $\mathrm{ml})$ and the mixture was stirred at rt for 1 h 30 min . The mixture was concentrated, dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{ml})$ and concentrated again. The residue was dissolved in 100 mM $\mathrm{HCl}(3 \mathrm{ml})$ and EtOAc (3 ml). The aqueous phase was separated, washed with EtOAc (2 ml) and concentrated. The residue was suspended in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{ml})$, sonicated for 1 min and the $\mathrm{CH}_{3} \mathrm{CN}$ removed by syringe. The residue was then dried in HV to afford the title compound ($42 \mathrm{mg}, 84 \%$, $\mathrm{MH}^{+}=154$).

Preparative Example 91

[0520]

Step A
[0521] To a solution of the commercial available Boc-Fmoc-protected amino acid (1.05 g) in methanol (25 ml) was added diethyl amine (1.5 ml). After stirring for 2.5 h at room temperature the reaction mixture was concentrated, and the residue was dissolved in water $(50 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$. The organic phase was extracted with water $(3 \times 50 \mathrm{ml})$ and the combined aqueous extracts were concentrated. The residue was used for the next step without any further purification.

Step B
[0522] To a solution of the title compound from Step A above (530 mg) and 3-fluorobenzaldehyde ($245 \mu \mathrm{l}$) in 15 ml of methanol was added $\mathrm{NaBH}_{3} \mathrm{CN}(150 \mathrm{mg})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$. overnight. The mixture was concentrated, and the residue was dissolved in EtOAc $(50 \mathrm{ml})$. The organic layer was extracted with water ($3 \times 50 \mathrm{ml}$) and the combined aqueous extracts were concentrated. The residue was used for the next step without any further purification.

Step C

[0523] To a stirring solution of the title compound from Step B above (760 mg) in DMF (20 ml) was added $\mathrm{HOBt}(470$ mg) followed by EDCI (670 mg) and DMAP (30 mg). N-methyl morpholine ($440 \mu \mathrm{l})$ was added and stirring was continued at rt overnight. The solvent was removed in vacuo, the residue diluted with EtOAc and then washed with saturated aqueous NaHCO_{3}. The organic phase was dried over MgSO_{4}, concentrated and the residue purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, 9:1) to afford the title compound ($430 \mathrm{mg}, 60 \%$ over 3 steps, $\mathrm{MH}^{+}=321$).

Step D
[0524] The title compound from Step C above (760 mg) was dissolved in EtOAc (6 ml) and a solution of 4 M HCl in dioxane (6 ml) was added. After 2 h the mixture was triturated with aqueous NaHCO_{3} to pH 7.5 and stirred for 15 min at rt . After evaporation of the solvent, the crude product was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to afford the title compound ($420 \mathrm{mg}, 80 \%, \mathrm{MH}^{+}=221$).

Step E

[0525] To a solution of the title compound from Step D above (85 mg) in THF (5 ml) was added triethylamine ($80 \mu \mathrm{l}$)

and the mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$. Then the sulfamidate (240 mg .), prepared according to WO 03/037327, was added in one portion at $-15^{\circ} \mathrm{C}$. and the mixture was stirred at ambient temperature over 2 d . After the addition of 1 M $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ solution (5 ml), the mixture was stirred for 30 min . Then an excess saturated NaHCO_{3} solution was added and stirring was continued for another 15 min . The mixture was then partitioned between EtOAc and water and the aqueous phase extracted with EtOAc. The combined organic phase was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $9: 1$) to afford the title compound (135 mg , $79 \%, \mathrm{MH}^{+}=422$).

Step F
[0526] A solution of the title compound from Step E above $(135 \mathrm{mg})$ in $\mathrm{MeOH}(2.5 \mathrm{ml})$ and THF (5 ml) was treated with $1 \mathrm{~N} \mathrm{LiOH}(1.5 \mathrm{ml})$ and stirred overnight at rt. The reaction mixture was acidified to pH 4.5 with 2 N HCl and stirred for 15 min at rt . The mixture was then extracted with EtOAc , the organic phase washed with brine, dried over MgSO_{4} and evaporated to afford the title compound ($125 \mathrm{mg}, 96 \%$, $\mathrm{MH}^{+}=408$).

Preparative Example 92

[0527]
commercially available amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The mixture was allowed to warm to rt overnight. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, washed with $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(2 \times 50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, 4:1) to afford the title compound ($2.22 \mathrm{~g}, 75 \%, \mathrm{MH}^{+}=367$).

Step B

[0529] A solution of the title compound from Step A above $(700 \mathrm{mg})$ in $\mathrm{MeOH}(24 \mathrm{ml})$ and THF (12 ml) was treated with $1 \mathrm{NLiOH}(6 \mathrm{ml})$ and stirred overnight at rt . The reaction mixture was acidified to pH 4.5 with 1 N HCl and stirred for 15 min at rt . The mixture was then extracted with EtOAc, the organic phase washed with brine, dried over MgSO_{4} and evaporated to afford the title compound ($665 \mathrm{mg}, 95 \%$, $\mathrm{MH}^{+}=353$).

Step C
[0530] To a stirring solution of the title compound from Step B above (665 mg) in DMF (15 ml) was added HOBt (390 mg) followed by EDCI (560 mg) and DMAP (30 mg). N-methyl morpholine ($420 \mu \mathrm{l}$) was added and stirring was continued at rt overnight. The solvent was removed in vacuo, the residue diluted with EtOAc and then washed with saturated aqueous NaHCO_{3}. The organic phase was dried over MgSO_{4},

Step A
[0528] A solution of commercially available N -Boc-trans-4-hydroxyl-L-proline ester (2.93 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was cooled to $-30^{\circ} \mathrm{C}$. and treated with DIEA (4.8 ml). After the addition of triflic anhydride (2.2 ml), the mixture was stirred at $-30^{\circ} \mathrm{C}$. for 60 min and then treated with a solution of the
concentrated and the residue purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, 9:1) to afford the title compound ($556 \mathrm{mg}, 87 \%, \mathrm{MH}^{+}=335$).
Step D
[0531] The title compound from Step C above (760 mg) was dissolved in EtOAc $(4 \mathrm{ml})$ and a solution of 4 M HCl in
dioxane (4 ml) was added. After 2 h the mixture was triturated with aqueous NaHCO_{3} to pH 7.5 and stirred for 15 min at rt . After evaporation of the solvent, the crude residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to afford the title compound ($300 \mathrm{mg}, 77 \%, \mathrm{MH}^{+}=235$).

Step E
[0532] To a solution of the title compound from Step D above (290 mg) in THF (5 ml) was added triethyl amine (280 $\mu \mathrm{l}$) and the mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$. Then the sulfamidate (590 mg .), prepared according to WO $03 / 037327$, was added in one portion at $-15^{\circ} \mathrm{C}$. and the mixture was stirred at ambient temperature over 2 d . After the addition of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ solution (5 ml), the mixture was stirred for 30 min . Then an excess saturated NaHCO_{3} solution was added and stirring was continued for another 15 min . The mixture was then partitioned between EtOAc and water and the aqueous phase extracted with EtOAc. The combined organic phase was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.4: 1\right)$ to afford the title compound ($163 \mathrm{mg}, 30 \%, \mathrm{MH}^{+}=436$).

Step F

[0533] A solution of the title compound from Step E above $(163 \mathrm{mg})$ in $\mathrm{MeOH}(2.5 \mathrm{ml})$ and THF (5 ml) was treated with $1 \mathrm{~N} \mathrm{LiOH}(1.5 \mathrm{ml})$ and stirred overnight at rt . The reaction mixture was acidified to pH 4.5 with 2 N HCl and stirred for 15 min at rt . The mixture was then extracted with EtOAc , the organic phase washed with brine, dried over MgSO_{4} and evaporated to afford the title compound ($140 \mathrm{mg}, 96 \%$, $\mathrm{MH}^{+}=422$).

Preparative Example 93

[0534]
hydrochloride (15 mg) was added after 1 h , followed by N-methyl morpholine ($20 \mu 1$). The mixture was stirred at rt overnight, the solvent removed in vacuo, and the residue was diluted with EtOAc. The mixture was washed with saturated aqueous NaHCO_{3}, separated, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 9:1) to afford the title compound (17 $\mathrm{mg}, 59 \%, \mathrm{MH}^{+}=486$).

Step B
[0536] To a stirring solution of the title compound Preparative Example $91(125 \mathrm{mg})$ in $\operatorname{DMF}(5 \mathrm{ml})$ was $\mathrm{HOBt}(46 \mathrm{mg})$, followed by EDCI (65 mg) and DMAP (5 mg). After 1 h commercially available L-proline amide (68 mg) and N -methyl morpholine $(100 \mu \mathrm{l})$ were added and stirring was continued at $\mathbf{r t}$ overnight. The solvent was removed in vacuo, the residue diluted with EtOAc and washed with saturated aqueous NaHCO_{3}. The organic phase was separated, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.4: 1\right)$ to afford the title compound ($137 \mathrm{mg} ; 88 \% ; \mathrm{MH}^{+}=504$).

Step C
[0537] To a solution of the title compound from Step B above (137 mg) in pyridine (7 ml) was added imidazole (41 mg). At $-30^{\circ} \mathrm{C} . \mathrm{POCl}_{3}(102 \mu \mathrm{l})$ was slowly added to the mixture and the mixture was allowed to reach rt over a period of 1 h . Then the solvent was removed and the residue diluted with 1 N HCl and $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.4: 1\right)$ to afford the title compound ($72 \mathrm{mg}, 55 \%, \mathrm{MH}^{+}=486$).

Preparative Example 94-108
[0538] Following a similar procedure as that described in Preparative Examples 92 and 93 , except using the amines and

Step A

[0535] To a stirring solution of the title compound from Preparative Example $91(25 \mathrm{mg})$ in DMF (3 ml) was added HOBt (15 mg), followed by EDCI (20 mg) and DMAP (3 mg). Commercially available (S)-Pyrrolidine-2-carbonitrile
amides as indicated in the Table below, the following compound were prepared. For Preparative Examples 105 and 106 the conversion of the nitrile to the carboxamide with subsequent saponification of the ester moiety was done according to Preparative Example 91 Step F with $3 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$.
Example
-continued
Craratis

Preparative
Example

Amide

Preparative Example 109
[0539]

Step A
[0540] A solution of commercially available N-Boc-trans-4-hydroxyl-L-proline methyl ester (370 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 ml) was cooled to $-30^{\circ} \mathrm{C}$. and treated with DIEA $(600 \mu \mathrm{l})$. After the addition of triflic anhydride ($280 \mu \mathrm{l}$), the mixture was stirred at $-30^{\circ} \mathrm{C}$. for 60 min and then treated with a solution of the title compound from Preparative Example 91 Step D in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The mixture was allowed to warm to rt overnight. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, washed with $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The organic phase was dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica ($\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, $\left.4: 1\right), 4: 1$) to afford the title compound ($225 \mathrm{mg}, 33 \%, \mathrm{MH}^{+}=448$).

Step B
[0541] A solution of the title compound from Step A above $(225 \mathrm{mg})$ in $\mathrm{MeOH}(4 \mathrm{ml})$ and THF (8 ml) was treated with 1 $\mathrm{NLiOH}(2 \mathrm{ml})$ and stirred overnight at rt . The reaction mixture was acidified to pH 4.5 with 1 N HCl and stirred for 15 min at rt . The mixture was then extracted with EtOAc, the organic phase washed with brine, dried over MgSO_{4} and evaporated to afford the title compound ($91 \mathrm{mg}, 40 \%$, $\mathrm{MH}^{+}=434$).

Step C

[0542] To a stirring solution of the title compound from Step B above (91 mg) in DMF (3 ml) was added HOBt (40 mg), followed by EDCI (60 mg) and DMAP (10 mg). Commercially available (S)-Pyrrolidine-2-carbonitrile hydrochloride (35 mg) was added after 1 h , followed by N -methyl morpholine ($66 \mu 1$). The mixture was stirred at rt overnight, the solvent removed in vacuo, and the residue was diluted with EtOAc. The mixture was washed with saturated aqueous NaHCO_{3}, separated, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone, 1:1) to afford the title compound (50 mg , $47 \%, \mathrm{MH}^{+}=512$).

$$
\text { Preparative Example } 110
$$

[0543]

Step A
[0544] The title compound from Preparative Example 91 Step D (305 mg) was dissolved in THF (2 ml) was added triethyl amine $(63 \mu 1)$ and the mixture was stirred for 1 h at 50° C. Then the title compound from Preparative Example 19 $(100 \mathrm{mg})$ was added in one portion $\mathrm{at}-15^{\circ} \mathrm{C}$. and the mixture was stirred at ambient temperature overnight. After the addition of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ solution (5 ml), the mixture was stirred for 30 min . Then an excess saturated NaHCO_{3} solution was added and stirring was continued for another 15 min . The mixture was then partitioned between EtOAc and water and the aqueous phase extracted with EtOAc. The combined organic phase was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone, $\left.4: 1\right)$ to afford the title compound ($58 \mathrm{mg}, 57 \%, \mathrm{MH}^{+}=378$).

Step B
[0545] The title compound from Step A above (58 mg) was dissolved in EtOAc (2 ml) and a solution of 4 M HCl in
dioxane (2 ml) was added. After 2 h the mixture was evaporated to afford the title compound (48 mg , quant., $\mathrm{MH}^{+}=278$).

Preparative Example 111

Step A
[0547] Commercially availableN-cyclohexylcarbodiimde-N^{\prime}-methyl polystyrene resin (1.9 g) was suspended in 5 ml dichloromethane and agitated for 5 Min . The commercially available amino acid (468 mg) and amine (86 mg), prepared from the commercially available hydrochloride by adding 1 eq. pyridine, were dissolved in 1.5 ml dimethylformamide and added to the above resin. The mixture was agitated for 16 h , filtered and the resin washed with $2 \times 5 \mathrm{ml}$ dichloromethane and 5 ml methanol. The combined filtrates were concentrated
and the residue purified by flash chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$) to afford the title compound (500 mg ; 91\%).
[0548] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.45(9 \mathrm{H}, \mathrm{s}), 2.05-2.30(4 \mathrm{H}$, $\mathrm{m}), 3.25-3.40(1 \mathrm{H}, \mathrm{m}), 3.50-3.70(2 \mathrm{H}, \mathrm{m}), 3.80-3.90(1 \mathrm{H}, \mathrm{m})$, 4.15-4.25 ($1 \mathrm{H}, \mathrm{m}$), 4.30-4.40 $(2 \mathrm{H}, \mathrm{m})$, 4.55-4.65 ($1 \mathrm{H}, \mathrm{m}$), 4.70-4.80 (1H, m), 5.50-5.60 ($2 \mathrm{H}, \mathrm{m}$), 7.25-7.40 ($4 \mathrm{H}, \mathrm{m}$), $7.55-7.65(2 \mathrm{H}, \mathrm{m}), 7.70-7.80(2 \mathrm{H}, \mathrm{m})$.

Step B

[0549] The title compound from Step A above (500 mg) was dissolved in dichloromethane $(10 \mathrm{ml})$ and treated with diethylamine (10 ml). After 2 h the mixture was concentrated and the residue was purified by flash chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 4: 1$) to afford the title compound (224 mg ; 80\%).
[0550] ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.45(9 \mathrm{H}, \mathrm{s}), 1.70(2 \mathrm{H}, \mathrm{s})$, 2.05-2.30 ($4 \mathrm{H}, \mathrm{m}$), 2.95-3.05 ($2 \mathrm{H}, \mathrm{m}$), 3.70-3.85 ($2 \mathrm{H}, \mathrm{m}$), 4.35-4.50 ($1 \mathrm{H}, \mathrm{m}$), 4.75-4.85 ($1 \mathrm{H}, \mathrm{m}$), 5.50-5.60 ($1 \mathrm{H}, \mathrm{m}$).

Preparative Example 112

[0551]
(2.5 ml). After the addition of triflic anhydride (1.2 ml), the mixture was stirred at $-30^{\circ} \mathrm{C}$. for 60 min and then treated with a solution of Preparative Example $84(1.17 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ ml). The mixture was allowed to warm to $0^{\circ} \mathrm{C}$., stirred at 0° C. for 12 h and refluxed for additional 4 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, washed with $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($2 \times 25 \mathrm{ml}$) and brine (25 ml). The organic phase was dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica (EtOAc/cyclohexane, $7: 3$) to afford the title compound ($1.41 \mathrm{~g}, 50 \%, \mathrm{MH}^{+}=658$).

Step C
[0554] To the title compound from Step B above (1.8 g) in THF (120 ml) was added dimedone $(1.27 \mathrm{~g})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(422 \mathrm{mg})$. The reaction mixture was stirred at room temperature for 19 h . Following removal of the solvent under reduced pressure, chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ afforded the title compound ($1.42 \mathrm{~g}, 84 \%, \mathrm{MH}^{+}=618$).

Step D
[0555] To a solution of the title compound from Step C above (1.42 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ was added $\mathrm{HOBT}(405 \mathrm{mg}$)

Step A
[0552] A solution of commercially available N-Fmoc-trans-4-hydroxyl-L-proline (4.5 g) in aqueous ethanol (80%, 45 ml) was titrated with a solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.3 \mathrm{~g})$ in water $(18 \mathrm{ml})$ to pH 7 . The solvents were evaporated and the residue dried in vacuo. The caesium salt was suspended in dry DMF $\left(45 \mathrm{ml}\right.$), cooled to $0^{\circ} \mathrm{C}$. and treated with allyl bromide (11.5 $\mathrm{ml})$ by dropwise addition over 10 min . After 30 min the solution was allowed to reach rt and stirring was continued for another 3 h . The reaction mixture was filtered and concentrated. The residue was purified by chromatography on silica (EtOAc/cyclohexane) to afford the title compound (4.5 g , $90 \%, \mathrm{MH}^{+}=394$).

Step B

[0553] The title compound from Step A above (2.5 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was cooled to $-30^{\circ} \mathrm{C}$. and treated with DIEA
followed by EDCI (575 mg) and N -methyl-morpholine (0.33 ml). After being stirred at ambient temperature for 24 h , the solvent was evaporated to give a viscous residue, which was partitioned between EtOAc and ammonium acetate buffer (pH 6). The aqueous phase was extracted with ethyl acetate $(3 \times 100 \mathrm{ml})$ and the combined organic phase dried over MgSO_{4} and concentrated to afford the title compound $(1.35 \mathrm{~g}$, $\mathrm{MNH}_{4}{ }^{+}=617$).

Step E
[0556] To a solution of the title compound from Step D above $(1.35 \mathrm{~g})$ in acetonitrile $(100 \mathrm{ml})$ was added diethyl amine (10 ml). After stirring for 2.5 h at rt , the reaction mixture was concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to afford the title compound ($712 \mathrm{mg} ; 85 \%, \mathrm{MH}^{+}=378$).

Preparative Example 113
[0557]

[0558] To a solution of the title compound from Preparative Example $112(13 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{ml})$ was added piperidino methyl polystyrene resin (65 mg) and 3-fluorobenzene1 -sulfonyl chloride ($5.5 \mu \mathrm{l}$). After shaking at rt for 3 h , tris(2 -aminoethyl)amine polystyrene resin (30 mg) was added and agitated for additional 1 h at rt . The mixture was filtered, the resin washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and methanol $(1 \mathrm{ml})$ and the combined filtrates evaporated. Purification by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ afforded the title compound ($13 \mathrm{mg}, 71 \%, \mathrm{MNH}_{4}^{+}=553$).

Preparative Example 114-116
[0559] Following a similar procedure as that described in Preparative Example 113, except using the sulfonic acid chlorides as indicated in the Table below, the following compounds were prepared.
Preparative
Example
acid chloride

Preparative Example 117-119
[0560] Following a similar procedure as that described in Preparative Example 113, except using the acid chlorides as indicated in the Table below, the following compounds were prepared.
Preparative
Example

Preparative Example 120

[0562] To a solution of the title compound from Preparative Example $112(20 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{ml})$ was added tert.butyl isocyanate (5.8 mg). After stirring at room temperature for 3 h the solvent was evaporated. Purification by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 1:1) afford the title compound (16 $\mathrm{mg}, 63 \%, \mathrm{MH}^{+}=477$).

Preparative Example 121
[0563] Following a similar procedure as that described in Preparative Example 120, except using the isocyanate as indicated in the Table below, the following compound was prepared.

Preparative Example 122

[0565] The title compound from Preparative Example 15 Step $\mathrm{A}(13 \mathrm{mg})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ and added to N -cyclohexylcarbodiimide, N '-methyl polystyrene resin $(120 \mathrm{mg})$. The mixture was agitated for 15 min and then treated with a solution of the title compound from Preparative Example $112\left(0.54 \mathrm{ml}, 7.5 \mathrm{mM} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After shaking at rt for 12 h , the mixture was filtered and the resin washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The filtrates were concentrated in vacuo to afford the title compound ($30 \mathrm{mg}, 95 \%, \mathrm{MNa}^{+}=632$).

Preparative Example 123
[0566]

Step A

[0567] Commercially available 2,5-diaza-bicyclo[2.2.1] heptane-2-carboxylic acid tert-butyl ester (400 mg) and aziri-dine-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester (431 mg) were dissolved in toluene (5 ml). The mixture was stirred at rt overnight and then for 5 h at $80^{\circ} \mathrm{C}$. The solvent was removed and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.9: 1\right)$ to afford the title compound $(468 \mathrm{mg}$, $58 \%, \mathrm{MH}^{+}=434$).

Step B

[0568] The title compound from Step A above (245 mg) was dissolved in dioxane (5 ml) and a solution of 4 M HCl in dioxane (5 ml) was added. The mixture was stirred for 2 h at rt and the solvents removed to afford the title compound (208 $\mathrm{mg}, 100 \%, \mathrm{MH}^{+}=334$).

Step C

[0569] To the title compound from Step B above (130 mg) were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and pyridine $(1 \mathrm{ml})$. After the addition of commercially available thiophen-2-yl-acetyl chloride (61 mg) the reaction mixture was stirred at rt overnight. The solvent was removed and the residue purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone 9:1) to afford the title compound ($90 \mathrm{mg}, 57 \%, \mathrm{MH}^{+}=458$).

Step D
[0570] The title compound from Step C above (130 mg) was dissolved in THF (4 ml) and methanol (2 ml). After the addition of 1 M aqueous LiOH -solution (1 ml), the mixture was stirred for 4 h at rt . The solvents were removed and the residue dissolved in water and acidified with 1 M HCl to $\mathrm{pH} \sim 4$. The mixture was extracted with EtOAc, the organic phase washed with brine, dried over MgSO_{4} and concentrated to yield the title compound ($75 \mathrm{mg}, 86 \%, \mathrm{MH}^{+}=444$).

Step E

[0571] The title compound from Step D above (75 mg) was dissolved in DMF (5 ml). After the addition of $\mathrm{EDCI}(38 \mathrm{mg}$), HOBt (27 mg), N-methylmorpholine (0.15 ml) and DMAP ($10 \mathrm{~mol} \%$), the mixture was stirred for 1 h at rt . Then commercially available 2-(S)-cyanopyrrolidine hydrochloride was added and the mixture was stirred overnight at rt. The solvent was removed and the residue dissolved in EtOAc, washed with brine, dried over MgSO_{4}. and concentrated. The residue was purified by chromatography on silica (cyclohexane/EtOAc, $7: 3$) to afford the title compound ($27 \mathrm{mg}, 30 \%$, $\mathrm{MH}^{+}=522$).

Preparative Example 124-125
[0572] Following a similar procedure as that described in Preparative Example 123, except using the piperazine derivatives and sulfonic acid chlorides as indicated in the Table below, the following compounds were prepared.

[0573] Preparative Examples 126-129 have been intentionally excluded.

Preparative Example 130
[0574]

Step A
[0575] Commercially available 2-formyl-pyrrolidine-1carboxylic acid tert-butyl ester (330 mg) in anhydrous THF (5 ml) was cooled to $0^{\circ} \mathrm{C}$. and trimethyl-trifluoromethylsilane ($300 \mu 1$) added, followed by addition of tetrabutylammoniumfluoride ($60 \mu \mathrm{l} ; 1 \mathrm{M}$ in THF). The reaction mixture was allowed to warm to rt and then stirred for 1 h . After dilution
with diethyl ether, the organic phase was washed with brine and the aqueous phase extracted with diethyl ether. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford the title compounds as a $1: 1$ mixture of alcohol and TMS ether ($490 \mathrm{mg}, 97 \%$, $[\mathrm{MH}-\mathrm{Boc}]^{+}=242$ (TMS ether); $[\mathrm{MH}-\mathrm{Boc}]^{+}=170$ (alcohol)).

Step B
[0576] The title compounds from Step A above (721 mg) in dichloromethane (5 ml) were added to Dess Martin periodinane $(2.32 \mathrm{~g})$ in dichloromethane $(15 \mathrm{ml})$ with stirring. Trifluoroacetic acid ($410 \mu \mathrm{l}$) was added dropwise and the turbid reaction mixture stirred for 17 h at rt , after which it was directly coated on silica and purified by column chromatography (silica, cyclohexane/EtOAc 90:10->80:20) to afford the title compound ($301 \mathrm{mg}, 45 \%,[\mathrm{MH}-\mathrm{Boc}]^{+}=168$).

Step C
[0577] To the title compound from Step B above (106 mg) in dioxane ($500 \mu \mathrm{l}$) was added 4 M HCl in dioxane ($500 \mu \mathrm{l}$) and the resulting mixture stirred for 16 h at rt . Diethyl ether was added $(2 \mathrm{ml})$ and the suspension filtered. The precipitate was dried and the title compound obtained as its HCl salt (81 $\mathrm{mg}, 91 \%, \mathrm{MH}^{+}=186$).
[0578] Preparative Examples 131-199 have been intentionally excluded.

Preparative Example 200-294
[0579] If one were to follow a similar procedure as that described in Preparative Example 61 and in Preparative Example 44, except using the sulfamidates as indicated in the Table below in Step A of Preparative Example 61, one would obtain the title compounds, listed in the following Table in the "product" column.

Preparative
Example
Sulfamidate
Example
Preparative
Example
Eulfamidate
Example
Preparative
Example
Exalfamidate
Example
Preparative
Preparative Example
Example Sulfamidate
Product
30

231
31

232
32

233
33

Preparative
Example
Exalfamidate
Preparative
Example
Sulfamidate

Preparative
Example
Eulfamidate
Example

258

259

260

Preparative
Ereparative

Example | Example |
| :---: |
| Sulfamidate |

263
39

Preparative
Preparative Example
Example Sulfamidate
Product
$264 \quad 40$

265
41

266
42

Preparative
Preparative

Example | Example |
| :---: |
| Sulfamidate |

268
44

269
45

270
46

281
33

282
34

Preparative
Preparative

Example | Example |
| :---: |
| Sulfamidate |

Preparative
Example
Sulfamidate
Example

[0580] Examples 295-299 have been intentionally excluded.

Preparative Example 300
[0581]

Step A
[0582] If one were to treat the compound from Preparative Example 59 with the sulfimidate from Preparative Example 22 according to the procedure described in Preparative Example 61 Step A, one would obtain the title compound.

Step B

[0583] If one were to treat the title compound from Step A above with NaN_{3} as described in Preparative Example 61 Step B, one would obtain the title compound.

Step C
[0584] If one were to treat the title compound from Step B above with acetic acid anhydride in pyridine at $100^{\circ} \mathrm{C}$. for 2
h one would obtain, after the removal of the pyridine under reduced pressure and after column chromatography, the title compound.

Step D

[0585] If one were to treat the title compound from Step A above according to the procedures described in Preparative Example 70 one would obtain the title compound.

Preparative Example 301-335
[0586] If one were to follow a similar procedure as that described in Preparative Example 300, except using the appropriate intermediate from the Preparative Examples and anhydrides or acid chlorides and amines as indicated in the Table below, one would obtain the desired amine product.

Preparative Example	Preparative Example	Acid Chloride/ Anhydride	Amine	Product
301	300		NH_{3}	
302	300		NH_{3}	

-continued
Preparative
Example
Example
Preparative
Example
Example
-continued
Preparative
Example
Example

[0587] Example numbers 336-399 were intentionally excluded.

Preparative Example 400-434
[0588] If one were to follow a similar procedure as that described in Preparative Example 66, except using the appropriate intermediate from the Preparative Examples and hydroxylamine hydrochlorides and amines as indicated in the Table below and treat the products according to Preparative Example 70, one would obtain the desired amine product.

-continued
Preparative
Example

Example (| Hydroxylamine |
| :---: |
| hydrochloride | Amine

-continued

-continued

-continued

-continued

-continued

-continued

-continued

432
65

433
65

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH} \quad\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{NOC}$

-continued

[0589] Example numbers 435-499 were intentionally excluded.

Preparative Example 500
[0590]

\downarrow Step F

Step A
[0591] If one were to treat the compound from Preparative Example 300 Step A with conc. HCl in acetic acid according to the procedure described in Preparative Example 49 Step J, one would obtain the title compound.
Step B
[0592] If one were to treat the title compound from Step A above according to the procedure described in Preparative Example 70 Step A, one would obtain the title compound.

Step C
[0593] If one were to treat the title compound from Step B above according to the procedure described in Preparative Example 70 Step A but using hydrazine instead of an amine, one would obtain the title compound.

Step D
[0594] If one were to stir the title compound from Step C above with 1 eq. ethyl isocyanate in DMA one would obtain after removing of DMA and the title compound.

Step E

[0595] If one were to treat the title compound from Step D above with a 2% aqueous NaOH at $100^{\circ} \mathrm{C}$. for several hours one would obtain after neutralisation, precipitation and recrystallisation from ethanol the title compound.

Step F

[0596] If one were to treat the title compound from Step E above according to the procedure described in Preparative Example 70 Step B, one would obtain the title compound.

Preparative Example 501-535
[0597] If one were to follow a similar procedure as that described in Preparative Example 500, except using the appropriate intermediate from the Preparative Examples and hydrazines and amines as indicated in the Table below, one would obtain the desired amine product.

-continued

| Preparative
 Example | Preparative
 Example | Hydrazine |
| :---: | :---: | :---: | Amine \quad Product | |
| :--- |

508
65
$\mathrm{N}_{2} \mathrm{H}_{4} \quad \mathrm{NH}_{3}$

65

512
300

-continued

-continued

-continued

-continued

535
65

Step A

[0600] If one were to treat the intermediate from Preparative Example 300 Step A with dry HCl gas in $\mathrm{EtOH} / \mathrm{CHCl}_{3}$ at $0^{\circ} \mathrm{C}$. and set aside for 10 days, one would obtain after removal of the solvents the imidate hydrochloride. If one were to treat the imidate hydrochloride with NH_{3} in dry EtOH and heat it to reflux for 7 h , one would obtain, after filtration and evaporation of the filtrate followed by recrystallization, the title compound.

Step B
[0601] If one were to treat the title compound from Step A above with $\mathrm{Boc}_{2} \mathrm{O}$ according to the procedure described in Preparative Example 49 Step J but without the acid treatment, one would obtain the title compound.

Step C
[0602] If one were to treat the title compound from Step B above according to Preparative Example 61 Step C, one would obtain the title compound.

Step D
[0603] If one were to treat the title compound from Step C above according to the procedures described in Preparative Example 70, one would obtain the title compound.

Preparative Example 601-635

[0604] If one were to follow a similar procedure as that described in Preparative Example 600 except using the amines and appropriate intermediate from the Preparative Examples as indicated in the Table below, one would obtain the desired amine product.
Preparative
Example

Example \begin{tabular}{c}
Amine

Step A

Amine

Step B
\end{tabular}

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	Product
605	61	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	NH_{3}	
606	61		NH_{3}	
607	61		NH_{3}	
608	65	NH_{3}	NH_{3}	

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	Product
609	65	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	NH_{3}	
610	65		NH_{3}	
611	65		NH_{3}	
612	300	NH_{3}	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	

-continued
Preparative
Example

Example Step A | Amine |
| :---: |
| Step B |

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	Product
617	61	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
618	61		$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
619	61		$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
620	65	NH_{3}	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	Product
621	65	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
622	65		$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
623	65		$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
624	300	NH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	Product
625	300	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
626	300		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
627	300		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
628	61	NH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	Product
629	61	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
630	61		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
631	61		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
632	65	NH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	

-continued

Preparative Example	Preparative Example	Amine Step A	Amine Step B	
633	65	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	$\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{NOC}$
Product				

634
65

635
65

[0605] Example numbers 636-679 were intentionally excluded.
[0606] If one were to follow a similar procedure as that described in Preparative Example 67 and 70, except using the appropriate intermediate from the Preparative Examples and amines as indicated in the Table below, one would obtain the desired amine product.

-continued

684
61
$\mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{H}_{3} \mathrm{CHNOC}$

685
65
$\mathrm{CH}_{3} \mathrm{NH}_{2} \quad \mathrm{H}_{3} \mathrm{CHNOC}$

-continued

-continued

Prepa-
rative
Example

Preparative
Example

Amine

Step A

[0609] If one were to treat the compound from Preparative Example 300 Step A with hydroxylamine hydrochloride and base according to Preparative Example 67 Step A, one would obtain the title compound.

Step B
[0610] If one were to treat the title compound from Step A above according to Preparative Example 67 Step B, one would obtain the title compound.

Step C

[0611] If one were to treat the title compound from step B above with Lawesson's Reagent in toluene and heat the mixture to reflux for 4 h , one would obtain after column chromatography the title compound.

Step D

[0612] If one were to treat the title compound from Step C above with formic acid hydrazide (Pellizzari-Synthesis), one would obtain the title compound.

Step E

[0613] If one were to treat the title compound from Step D above according to the procedures described in Preparative Example 70, one would obtain the title compound.

Preparative Example 701-735
[0614] If one were to follow a similar procedure as that described in Preparative Example 700, except using the appropriate intermediate from the Preparative Examples, acid hydrazides and amines as indicated in the Table below, one would obtain the desired amine product.

Preparative	Preparative	Acid		
Example	Example	hydrazide	Amine	Product

NH_{3}

-continued

Preparative
Example
Example
-continued

-continued

-continued
Preparative
Example
Example
-continued
Preparative
Example
Example
-continued
Preparative
Example
Example
-continued
Preparative
Example
Example
-continued

-continued

Preparative Example	Preparative Example	Acid hydrazide Amine	Product
734	65		
735	65		

[0615] Example numbers 736-779 were intentionally excluded.

Preparative Example 780

[0617] If one were to treat the starting material, which was obtained by treating the title compound from Preparative Example 300 Step A according to the procedures described in Preparative Example 500 Step A-C, according to the procedure described in Preparative Example 70 Step B, one would obtain the title compound.

Preparative Example 781-788
[0618] If one were to follow a similar procedure as that described in Preparative Example 780, except using the appropriate intermediate from the Preparative Examples and amines as indicated in the Table below, one would obtain the desired amine product.

Preparative | Preparative |
| :---: |
| Example | Amine

781

78
-continued

787

788

$65\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{NOC}$

[0619] Example numbers 789-799 were intentionally excluded.

Step A
[0621] If one were to treat commercial available N methyl anthranilic acid with 2 eq. of 2-bromo-5-chloronitrobenzene, 10 eq. of potassium carbonate and a catalytic amount of copper powder in 3-methylbutan-1-ol under reflux for several hours one would obtain, after removing of the volatile compound by steam distillation, acidification of the residue with 2 M HCl , precipitation and recrystallisation of the precipitate from ethanol, the title compound.

Step B
[0622] If one were to treat the title compound from Step A above with 7 eq. of sodium dithionite in 2 M aqueous ammonia at $80^{\circ} \mathrm{C}$. one would obtain, after filtration, acidification of the filtrate with glacial acetic acid to pH 4 , precipitation and recrystallisation from methanol, the title compound.

Step C

[0623] If one were to reflux the title compound from Step B above in xylene under Dean Stark conditions one would
obtain, after evaporation of the solvent, washing of the residue with 2 M aqueous ammonia and recrystallisation from acetone, the title compound.

Step D
[0624] If one were to treat the title compound from Step C above with the sulfamidate from Preparative Example 22 according to Preparative Example 61 Step A one would obtain the title compound.

Step E
[0625] If one were to treat the title compound from Step A above with TFA as described in Preparative Example 70 Step B , one would obtain the title compound.

Preparative Example 801-805
[0626] If one were to follow a similar procedure as that described in Preparative Example 800, except using the diazepines and sulfamidates as indicated in the Table below, one would obtain the desired amine product.

Preparative Example
Diazepine

-continued
Preparative
Example Diazepine \quad Sulfamidate
804

21

805

24

[0627] Examples 806-809 have been intentionally excluded.

Preparative Example 810
[0628]

Step A
[0629] If one were to treat commercially available $10,10-$ dimethyl-10H-anthracen-9-one and concentrated sulphuric acid in chloroform in a flask equipped with reflux condenser with sodium azide at room temperature, followed by heating this mixture at $50^{\circ} \mathrm{C}$. and subsequently pouring it on crushed ice followed by neutralization with conc. aqueous ammonia, separation and evaporation of the organic phase, one would obtain the title compound.

Step B
[0630] If one were to treat the title compound from Step A above with the sulfamidate from Preparative Example 22 as described in Preparative Example 800, one would obtain the title compound.

Preparative Example 811-812

[0631] If one were to follow a similar procedure as described in Preparative Example 810, except using the azepines and sulfamidates as indicated in the able below, one would obtain the desired amine product.
Preparative
Example
[0632] Examples 813-829 have been intentionally excluded.

Step AA

[0634] If one were to add a solution of commercially available 2-amino-2-methyl-1-propanol in methylene chloride to a solution of commercially available 2-thiophenecarbonyl chloride in methylene chloride dropwise while maintaining the temperature below $20^{\circ} \mathrm{C}$., subsequently stir the mixture at room temperature for 2 h and wash with water, dry the organic layer $\left(\mathrm{MgSO}_{4}\right)$ and evaporate, suspend the residue in toluene and add thionyl chloride dropwise with stirring while maintaining the temperature below $30^{\circ} \mathrm{C}$., subsequently continue the stirring overnight, evaporate the toluene, dissolve the residue in water, basify with 1 N aqueous NaOH and extract with ether, then, after drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, followed by distillation, one would obtain the title compound.

Step BB
[0635] If one were to add commercial -nBuLi in hexane to the title compound from Step AA above in ether at $-78^{\circ} \mathrm{C}$., stir the mixture under argon for 0.25 h , add DMF, allow the mixture to slowly warm to room temperature and leave the mixture at this temperature for 18 h , subsequently add water and ether, separate the organic solution, wash with water, brine and dry the solution $\left(\mathrm{MgSO}_{4}\right)$, then, after evaporation of the solvent, followed by chromatographic purification, one would obtain the title compound.

Step CC

[0636] If one were to boil the title compound from Step BB above under reflux with 4 M aqueous hydrochloric acid under argon atmosphere for 14 h , saturate the cooled solution with NaCl , extract repeatedly with ethyl acetate, dry the combined organic extracts $\left(\mathrm{MgSO}_{4}\right)$, then, after evaporation of the solvent, followed by recrystallization from ethyl acetate/hexane, one would obtain the title compound.

Step DD

[0637] If one were to treat the title compound from Step CC above in methanol dropwise with an ethereal solution of diazomethane at $-15^{\circ} \mathrm{C}$., followed by careful removal of all volatiles, then one would obtain the title compound.

Step A

[0638] If one were to add commercially available methyl 4-methylthiophene-2-carboxylate to N -bromosuccinimide, benzoyl peroxide and tetrachloromethane and would heat the mixture under reflux for 4 h followed by filtration and evaporation of the solvent, one would obtain the title compound.

Step B
[0639] If one were to treat the title compound from Step A above with triphenylphosphine according to Preparative Example 51 Step C, one would obtain the title compound.

Step C
[0640] If one were to treat the title compound from Step B above with the thiophene aldehyde from Step DD as described in Preparative Example 54 Step A, one would obtain the title compound.

Step D
[0641] If one were to treat a suspension of the title compound from Step C above, hydroiodic acid and red phospho-
rus at $140^{\circ} \mathrm{C}$. for 18 h , followed by cooling and pouring the reaction mixture into an ice/water mixture, subsequent filtration, washing of the precipitate with water, dissolving the precipitate in refluxing conc. ammonia and subsequent filtration, acidification of the filtrate with conc. aqueous hydrochloric acid and extraction of the aqueous phase with dichloromethane, washing of the organic phase with water and drying $\left(\mathrm{MgSO}_{4}\right)$ followed by evaporation of the solvent, one would obtain the title compound.

Step E

[0642] If one were to treat a suspension of the title compound from Step D above with polyphosphoric acid at 170° C., followed by cooling to $30^{\circ} \mathrm{C}$., pouring into water, extraction with diethyl ether, washing with 1 N aqueous sodium hydroxide solution and drying $\left(\mathrm{MgSO}_{4}\right)$ followed by evaporation of the solvent, one would obtain the title compound.

Step F

[0643] If one were to treat the title compound from Step E above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step G

[0644] If one were to treat the title compound from Step F above as described in Preparative Example 59 Step H and Step I, one would obtain the title compound.

Step H
[0645] If one were to treat the title compound from Step G above with the compound from Preparative Example 22 as described in Preparative Example 61 Step A, one would obtain the title compound.

Step I
[0646] If one were to treat the title compound from Step H above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step J
[0647] If one were to treat the title compound from Step I above as described in Preparative Example 61 Step C, one would obtain the title compound.

Preparative Example 831
[0648]

Step A
[0649] If one were to treat the title compound from Preparative Example 830 as described in Preparative Example 71 Step A, one would obtain the title compound.

Step B
[0650] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 832-839
[0651] If one were to follow a similar procedure as that described in Preparative Example 830, except using the sulfamidates in Step H, and treat the product obtained according to Preparative Example 831 with the amine as indicated in the table below, one would obtain the desired title compound as HCl salts.

-continued
Preparative
Example Sulfamidate \quad Amine

21
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

835
24
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

836
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

[0652] Examples 839 to 849 have been intentionally excluded.

Preparative Example 850
[0653]

部

Step AA
[0654] If one were to treat commercially available thiophene-3-carbaldehyde with bromine and aluminium trichloride in dichloromethane and heat the reaction mixture for 2 h , subsequently pouring it into water, followed by extraction with ether, washing of the organic phase successively with aqueous 1 N NaOH solution and water until neutral, then, after drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, followed by distillation, one would obtain the title compound.

Step BB

[0655] If one were to treat a solution of the title compound from Step AA above in tetrahydrofuran with NaBH_{4} for 1 h and quench the reaction by the addition of saturated aqueous ammonium chloride solution followed by dilution with ethyl acetate, separation of the organic layer, washing with $\mathrm{H}_{2} \mathrm{O}$ and brine, then, after drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, one would obtain the title compound.

Step CC

[0656] If one were to treat a solution of the title compound from Step BB above in chloroform with thionyl chloride at room temperature for 4 h , subsequently pouring it into water, followed by extraction with chloroform, washing of the organic phase with water, then, after drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, one would obtain the title compound.

Step A
[0657] If one were to treat commercially available 2-bromo-3-methylthiophene in acetic acid with N -chlorosuccinimide and stir the reaction mixture for about 2 h , then refluxing it for 1 h , subsequently pouring it into water, followed by extraction with ether, washing of the organic phase successively with aqueous 1 N NaOH solution and water until neutral, then, after drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, followed by distillation, one would obtain the title compound.

Step B

[0658] If one were to treat the title compound from Step A above as described in Preparative Example 59 Step A, one would obtain the title compound.

Step C
[0659] If one were to treat the title compound from Step B above with the title compound from Step CC above, as described in Preparative Example 59 Step B, one would obtain the title compound.

Step D
[0660] If one were to treat the title compound from Step C above as described in Preparative Example 59 Step C, one would obtain the title compound.

Step E
[0661] If one were to treat the title compound from Step D above as described in Preparative Example 59 Step D, one would obtain the title compound.

Step F
[0662] If one were to treat the title compound from Step E above as described in Preparative Example 59 Step E and Step F , one would obtain the title compound.

Step G

[0663] If one were to treat the title compound from Step F above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step H

[0664] If one were to treat the title compound from Step G above as described in Preparative Example 59 Step H and Step I, one would obtain the title compound.

Step I

[0665] If one were to treat the title compound from Step H above as described in Preparative Example 61 Step A, one would obtain the title compound.

Step J
[0666] If one were to treat the title compound from Step I above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step K

[0667] If one were to treat the title compound from Step J above as described in Preparative Example 61 Step C, one would obtain the title compound.

Preparative Example 851

[0668]

Step A
[0669] If one were to treat the title compound from Preparative Example 851 as described in Preparative Example 71 Step A one would obtain the title compound.
Step B
[0670] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 852-859
[0671] If one were to follow a similar procedure as that described in Preparative Example 850, except using the sulfamidates in Step I, and treat the product obtained according to Preparative Example 851 with the amine as indicated in the table below, one would obtain the desired title compound as HCl salt.

Preparative Example	Sulfamidate	Amine	Title compound
857	22	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
858	24	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
859	22	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	

[0672] Examples $860-899$ have been intentionally excluded.

Preparative Example 900
[0673]

Step AA
[0674] If one were to add a solution of commercially available 2-(3bromo-2-thienyl)-1,3-dioxolane in dry diethylether with stirring to 1.05 N butyl lithium in diethylether at $-70^{\circ} \mathrm{C}$., followed by addition of the mixture to solid CO_{2} covered with diethylether. Hydrolysis, followed by extraction with diluted aqueous sodium hydroxide, acidification, then extraction with diethylether afford the title compound.
Step BB
[0675] If one were to add $\mathrm{H}_{2} \mathrm{SO}_{4}$ and methanol to a solution of the title compound from step AA above in dichloroethane, one would obtain the title compound.
Step A
[0676] If one were to treat a solution of commercially available 5 -methylthiophene-2-carboxylic acid in benzene and methanol at $0^{\circ} \mathrm{C}$. dropwise with 2.0 M trimethylsilyldiazomethane in hexanes, one would obtain the methyl ester. If one were to treat a solution of that ester intermediate in CCl_{4} with NBS and $2,2^{\prime}$-azobisisobutyronitrile (AIBN) and heat the solution to reflux for 2 h , followed by cooling down to room temperature, filtration and concentration in vacuo one would obtain the title compound.
Step B
[0677] If one were to treat the title compound from Step A above with triphenylphosphine according to Preparative Example 49 Step C, one would obtain the title compound.
Step C
[0678] If one were to treat the title compound from Step B above with the title compound from Step BB above as described in Preparative Example 54 Step A, one would obtain the title compound.

Step D

[0679] If one were to heat a mixture of the title compound from Step C, red phosphorous and hydroiodic acid in acetic
acid at $110^{\circ} \mathrm{C}$. for 1 h , one would obtain a solution after filtration of the hot mixture. After cooling to room temperature and pouring in ice water one would obtain the title compound by suction.

Step E
[0680] If one were to heat a mixture of the title compound from Step D above and polyphosphoric acid at $115^{\circ} \mathrm{C}$. for 1.5 h one would obtain a mixture, which was poured on ice. After extraction with Ether washing the organic phases with water, drying $\left(\mathrm{MgSO}_{4}\right)$ and removing of the solvent one would obtain the title compound.

Step F
[0681] If one were to treat the title compound from Step E above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step G
[0682] If one were to treat the title compound from Step F above as described in Preparative Example 59 Step H and Step I, one would obtain the title compound.

Step H

[0683] If one were to treat the title compound from Step G above with the compound from Preparative Example 22 as described in Preparative Example 61 Step A, one would obtain the title compound.

Step I

[0684] If one were to treat the title compound from Step H above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step J
[0685] If one were to treat the title compound from Step I above as described in Preparative Example 61 Step C, one would obtain the title compound.

Preparative Example 901
[0686]

Step A
[0687] If one were to treat the title compound from Preparative Example 900 as described in Preparative Example 71 Step A, one would obtain the title compound.

Step B
[0688] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 902-909

[0689] If one were to follow a similar procedure as that described in Preparative Example 900, except using the sulfamidates in Step H, and treat the product obtained according to Preparative Example 901 with the amines as indicated in the table below, one would obtain the desired title compound as HCl salt.

Step A
[0692] If one were to add a solution of bromine in CHCl_{3} slowly to an ice-cooled solution of commercially available 2-chloro-5-methylthiophene in CHCl_{3} one would obtain a reaction mixture which was stirred for 2 h at room temperature, and subsequently poured into $\mathrm{H}_{2} \mathrm{O}$. If one were to extract than the mixture with dichloromethane combine the organic extracts dry filter and evaporate the solvent, one would obtain a yellow/brown oil.

Step B
[0693] If one were to treat the title compound from Step A above as described in Preparative Example 59 Step A, one would obtain the title compound.

Step C

[0694] If one were to treat the title compound from Step B above with commercially available 2 -chloro- 5 -chlorom-ethyl-thiophene as described in Preparative Example 59 Step B , one would obtain the title compound.

Step D

[0695] If one were to treat the title compound from Step C above as described in Preparative Example 59 Step C, one would obtain the title compound.

Step E
[0696] If one were to treat the title compound from Step D above as described in Preparative Example 59 Step D, one would obtain the title compound.

Step F
[0697] If one were to treat the title compound from Step E above as described in Preparative Example 59 Step E and Step F, one would obtain the title compound.

Step G
[0698] If one were to treat the title compound from Step F above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step G
[0699] If one were to treat the title compound from Step G above as described in Preparative Example 59 Step H and Step I, one would obtain the title compound.

Step I

[0700] If one were to treat the title compound from Step H above as described in Preparative Example 61 Step A, one would obtain the title compound.

Step J
[0701] If one were to treat the title compound from Step I above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step K

[0702] If one were to treat the title compound from Step J above as described in Preparative Example 61 Step C, one would obtain the title compound.
[0703]

Step A

[0704] If one were to treat the title compound from Preparative Example 920 as described in Preparative Example 71 Step A one would obtain the title compound.

Step B
[0705] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 922-929
[0706] If one were to follow a similar procedure as that described in Preparative Example 920, except using the sulfamidates in Step I, and treat the product obtained according to Preparative Example 921 with the amine as indicated in the table below, one would obtain the desired title compound as HCl salt.

-continued

Preparative Example	Sulfamidate	Amine	Title compound
928	24	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
929	22	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	

[0707] Examples 930-999 have been intentionally excluded.

Preparative Example 1000-1209
[0708] If one were to follow similar procedure as described in Preparative Examples 92 and 93, except using the amides and amines as indicated in the Table below, the following title compound would be obtained.

-continued

-continued

-continued

Prep			
Example	Amide	Amines	Title compound
1017			
1018			
1019			
1020			
1021			

1023

1024

1025

1026

-continued

-continued

Example

1039

1040

-continued

-continued

Prep		Amines	
1051			
1052			
1053			
1054			
1055			

1057

1058

1059

1060

-continued
Prep
Example Amide

1063

1064

Prep Example	Amide	Amines	Title compound
1065			
1066			
1067			
1068			
1069			
1070			

1075

Example	Amide	Amines	Title compound
1082			
1083			
1084			
1085			
1086			

Prep
Example Amide

1088

1089

1090

1091

1092

Prep Example	Amide	Amines	Title compound
1093			
1094			
1095			
1096			
1097			
1098			

Prep			
1099			
1100			
1101			
1102			
1103			

Examples
-continued
Prep
Example \quad Amide

1111

1112

1113

1114

-continued

Prep Example	Amide	Amines	Title compound
1120			
1121			
1122			
1123			
1124			
1125			

Prep Example	Amide	Amines	Title compound
1126			
1127			
1128			
1129			
1130			
1131			

Prep		
Example	Amide	Amines

1133

1134

1135

1136

-continued
Example
-continued

-continued

-continued
Prep
Example
Amide

1152

1153

1154

1155

Example
Prep
Example

1173

1174

1175

-continued
Prep
Example Amide

1177

1178

1179

Example
-continued

-continued

-continued

1198

1199

-continued

1203

Crample
[0709] Examples 1210-1299 have been intentionally excluded.

Preparative Example 1300
[0710]

$\left.\begin{gathered}\infty \\ 0 \\ 2 \\ \frac{5}{2}\end{gathered} \right\rvert\,$

10
0.0
0.0
0
0

$\xrightarrow[\mathrm{H}^{\text {dəIS }}]{ }$

| $-\frac{2}{2}$ |
| :---: | :---: | :---: |
| $\frac{2}{n}$ |$|$

Step A

[0711] If one were to treat commercially available anthraquinone with 1.5-2 equivalents of bromine and some iodine at $160^{\circ} \mathrm{C}$., and then treat the mixture with aqueous sodium hydroxide at reflux, one would obtain the title compound, after crystallisation from glacial acetic acid.

Step B

[0712] If one were to treat the title compound from Step A above with hot concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, treat the obtained solution with Al powder at rt and stir the mixture at rt for 3 h , one would obtain the title compound, after aqueous workup and chromatography on silica gel.

Step C
[0713] If one were to treat the title compound from Step B above as described in Preparative Example 59 Step D, Step E and Step F, one would obtain the title compound.

Step D
[0714] If one were to treat the title compound from Step C above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step E
[0715] If one were to treat the title compound from Step D above as described in Preparative Example 59 Step H, one would obtain the title compound.

Step F
[0716] If one were to treat the title compound from Step E above as described in Preparative Example 59 Step I, one would obtain the title compound.

Step G
[0717] If one were to treat the title compound from Step F above as described in Preparative Example 61 Step A, one would obtain the title compound.

Step H
[0718] If one were to treat the title compound from Step G above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step I
[0719] If one were to treat the title compound from Step H above as described in Preparative Example 61 Step C, one would obtain the title compound.
[0720]

Step A
[0721] If one were to treat the title compound from Preparative Example 1300 as described in Preparative Example 71 Step A one would obtain the title compound.

Step B
[0722] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 1302-1309
[0723] If one were to follow a similar procedure as that described in Preparative Example 1300, except using the sulfamidates in Step G, and treat the product obtained according to Preparative Example 1301 with the amine as indicated in the table below, one would obtain the desired title compound as HCl salt.

-continued

[0724] Examples 1310-1349 have been intentionally excluded.

Preparative Example 1350

0
0
$\stackrel{0}{2}$
$\stackrel{\rightharpoonup}{2}$

S-COOH

4
$\stackrel{y}{2}$
$\stackrel{\rightharpoonup}{n}$

$\stackrel{-2}{\substack{2 \\ n}} \mid$

$\xrightarrow{\text { Step } \mathrm{H}}$

Step A
[0726] If one were to treat a solution of commercially available 4 -chloroanthranilic acid in water and concentrated hydrochloric acid at $0^{\circ} \mathrm{C}$. with a solution of sodium nitrate in water over 45 min and stir the resulting mixture at $0^{\circ} \mathrm{C}$. for 1 h , one would obtain the diazonium salt solution after filtration. If one were to treat a solution of commercially available hydroxylamine hydrochloride in water at $10^{\circ} \mathrm{C}$. with an aqueous solution of sodium hydroxide and carefully pour the mixture into an aqueous solution of hydrated copper(II) sulfate and concentrated ammonia solution, one would obtain a blue solution after filtration. If one were to carefully add the diazonium salt solution from above to the blue solution over a period of 1 h and then heat the mixture at reflux, followed by the addition of concentrated hydrochloric acid, one would obtain a precipitate after 3 h . If one were to collect the precipitate by filtration, wash it with water and dissolved it in a solution of sodium bicarbonate, one would obtain a clear solution after treatment with charcoal and filtration. If one were to add an excess of 6 M aqueous hydrochloric acid and collect the precipitate, one would obtain the title compound after crystallisation from EtOH.

Step B

[0727] If one were to treat the title compound of Step A above at $400^{\circ} \mathrm{C}$. for twenty-five minutes and then sublime the mixture at $250^{\circ} \mathrm{C}$. under a pressure of 2 mm , one would obtain the title compound after crystallization from benzene.

Step C

[0728] If one were to treat the title compound from Step B above as described in Preparative Example 59 Step D, Step E and Step F, one would obtain the title compound.

Step D
[0729] If one were to treat the title compound from Step C above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step E

[0730] If one were to treat the title compound from Step D above as described in Preparative Example 59 Step H, one would obtain the title compound.

Step F
[0731] If one were to treat the title compound from Step E above as described in Preparative Example 59 Step I, one would obtain the title compound.

Step G

[0732] If one were to treat the title compound from Step F above as described in Preparative Example 61 Step A, one would obtain the title compound.

Step H
[0733] If one were to treat the title compound from Step G above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step I

[0734] If one were to treat the title compound from Step H above as described in Preparative Example 61 Step C, one would obtain the title compound.

Preparative Example 1351
[0735]

Step A
[0736] If one were to treat the title compound from Preparative Example 1350 as described in Preparative Example 71 Step A one would obtain the title compound.

Step B

[0737] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 1352-1359
[0738] If one were to follow a similar procedure as that described in Preparative Example 1350, except using the sulfamidates in Step G, and treat the product obtained according to Preparative Example 1351 with the amine as indicated in the table below, one would obtain the desired title compound as HCl salt.

-continued

[0739] Examples 1360-1399 have been intentionally excluded.

Preparative Example 1400
[0740]

Step A

0741] If one were to treat commercially available 4-bromo benzaldehyde dissolved in ether at $0^{\circ} \mathrm{C}$. over a period of two hours portion-wise with KCN and concentrated HCl and maintain the temperature of the reaction below $10^{\circ} \mathrm{C}$., followed by stirring for 1 h after complete addition, while permitting the temperature to rise to $15^{\circ} \mathrm{C}$., subsequently the resultant two-phase system is filtered off and washed with ether, separating the combined organic solutions one would obtain the intermediate after washing with saturated aqueous sodium bisulfide, drying over MgSO_{4}, and concentrating in vacuo. If one were to dilute the residue with benzene and slowly add this mixture over a period of one hour to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, which would maintained under stirring in an ice bath at a temperature below $15^{\circ} \mathrm{C}$. until completion of the addition, followed by stirring for an additional hour, allowing the mixture to warm to room temperature one would obtain after pouring the reaction mixture onto ice and the mixture is being extracted with benzene, the title compound.

Step B

[0742] If one were to treat the title compound from Step A above as described in Preparative Example 61 Step A, one would obtain the title compound.

Step C
[0743] If one were to treat the title compound from Step B above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step D

[0744] If one were to treat the title compound from Step C above as described in Preparative Example 59 Step D, Step E and Step F, one would obtain the title compound.

Step E

[0745] If one were to treat the title compound from Step D above as described in Preparative Example 61 Step C, one would obtain the title compound.

Step A
[0747] If one were to treat the title compound from Preparative Example 1400 as described in Preparative Example 71 Step A one would obtain the title compound

Step B
[0748] If one were to treat the title compound from Step A above as described in Preparative Example 71 Step B, one would obtain the title compound.

Preparative Example 1402-1409
[0749] If one were to follow a similar procedure as that described in Preparative Example 1400, except using the sulfamidates in Step B, and treat the product obtained according to Preparative Example 1401 with the amine as indicated in the table below, one would obtain the desired title compound as HCl salt.

Preparative Example	Sulfamidate	Amine	Title compound
1402	21	NH_{3}	

-continued

[0750] Examples 1410-1449 have been intentionally excluded.

Preparative Example 1450
[0751]

|

Step A
[0752] If one were to add commercially available diethylmethylmalonate to a solution of sodium ethoxide in EtOH , and then add a solution of α, α^{\prime}-dibromo-m-xylene in benzene to the above solution and boil the mixture at reflux for 1 h , one would obtain the title compound after distillation and crystallisation.

Step B
[0753] If one were to treat the title compound from Step A above with aqueous-ethanolic potassium hydroxide, one would obtain the crude tetracarboxylic acid. If one were to decarboxylate the crude tetracarboxylic acid at $210^{\circ} \mathrm{C}$., one would obtain the title compound.

Step C

[0754] If one were to convert the title compound from Step B above to its bis-acid chloride with thionyl chloride in benzene and treat the bis-acid chloride with a solution of diazomethane in ether, one would obtain the diazoketone intermediate after 12 h and evaporation of the solvents. If one were to treat the diazoketone with benzyl alcohol- γ-collidine ($1: 1$) in an oil-bath maintained at $180^{\circ} \mathrm{C}$. for 10 Min , one would obtain the crude title compound. If one were to treat the crude title compound with MeOH and HCl , one would obtain the dimethylester. If one were to treat the diemthylester with KOH in EtOH , one would obtain the title compound.

Step D
[0755] If one were to treat the title compound from Step C above with phosphorus pentachloride in benzene for 1 h and warm the mixture on a steam-bath for 5 min , one would obtain the crude bis-acid chloride. If one were to dissolve the bisacid chloride in nitrobenzene, add a solution of aluminium chloride in nitrobenzene at $0^{\circ} \mathrm{C}$. and then allow the mixture to stand at rt for 6 h , one would obtain the title compound, after removal of the nitrobenzene by steam distillation and crystallisation of the residue with EtOH .

Step E

[0756] If one were to treat the title compound from Step D above with hydrazine hydrate and potassium hydroxide in diethylene glycol for 4 h at $180^{\circ} \mathrm{C}$., followed by purification by chromatography on alumina one would obtain the title compound.

Step F
[0757] If one were to treat the title compound from Step E with 10 eq. of aluminium chloride by adding the compound to the reagent in tetrachloroethane at low temperature, add dropwise 2.0 eq. of acetic anhydride to the mixture, pour onto ice and hydrochloric acid and extract with an appropriate solvent, wash with water, evaporate, recrystallize from methanol, one would obtain the title compound.

Step G

[0758] If one were to treat the title compound from Step F above with selenium dioxide in water and dioxane and
refluxed for 4 h , followed by removal of precipitated selenium one would obtain after recrystallizaiton the title compound.

Step H

[0759] If one were to treat the title compound from Step G above with hydrogen peroxide and drop wise with 10% NaOH in ethanol at $80^{\circ} \mathrm{C}$., followed by dilution with water, treatment with norite, filtration and acidifying with HCl , one would obtain after recrystallization the title compound.

Step I

[0760] If one were to treat the title compound from Step H above as described in Preparative Example 70 Step A, one would obtain the title compound

Step J

[0761] If one were to treat the title compound from Step I above as described in Preparative Example 93 Step C, one would obtain the title compound.

Step K

[0762] If one were to treat the title compound from Step J above as described in Preparative Example 13 Step B, one would obtain the title compound.

Step L

[0763] If one were to treat the title compound from Step K above with diisobutylaluminum hydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78° C., add 10% aq AcOH, extract with ether:hexane, wash with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step M

[0764] If one were to treat the title compound from Step L above with 1.2 eq. commercially available methylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature, heat the mixture to reflux, add ice and half concentrated hydrochlorid acid, extract with $\mathrm{Et}_{2} \mathrm{O}$, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step N

[0765] If one were to treat the title compound from Step M above with methylsulfonyl chloride and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$., evaporate, add water and ethyl acetate to the residue, extract with ethyl acetate, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate and then the obtained intermediate with NaN_{3} in DMA as described in Preparative Example 17 Step C, one would obtain the title compound.

Step O

[0766] If one were to treat the title compound from Step N above as described in Preparative Example 17 Step D, one would obtain the title compound.

$\left.\begin{array}{ll}\infty \\ \stackrel{n}{2} \\ \stackrel{\rightharpoonup}{n}\end{array} \right\rvert\, \begin{aligned} & 0 \\ & \dot{\omega}\end{aligned}$

$\left.\begin{gathered}-1 \\ \frac{8}{2} \\ \frac{0}{2}\end{gathered} \right\rvert\,$

Step A
[0768] If one were to treat the title compound from Preparative Example 1450 Step E with 10 eq. of aluminium chloride by adding the compound to the reagent in tetrachloroethane at low temperature, add dropwise 2.0 eq. of acetic anhydride to the mixture, pour onto ice and hydrochloric acid and extract with an appropriate solvent, wash with water, evaporate, recrystallize from methanol, one would obtain the title compound.
Step B
[0769] If one were to treat the title compound from Step F above with selenium dioxide in water and dioxane and refluxed for 4 h , followed by removal of precipitated selenium one would obtain after recrystallizaiton the title compound.
Step C
[0770] If one were to treat the title compound from Step G above with hydrogen peroxide and drop wise with 10% NaOH in ethanol at $80^{\circ} \mathrm{C}$., followed by dilution with water, treatment with norite, filtration and acidifying with HCl , one would obtain after recrystallization the title compound.
Step D
[0771] If one were to treat the title compound from Step H above as described in Preparative Example 70 Step A, one would obtain the title compound
Step E
[0772] If one were to treat the title compound from Step Iabove as described in Preparative Example 93 Step C, one would obtain the title compound.

Step F

[0773] If one were to treat the title compound from Step J above as described in Preparative Example 13 Step B, one would obtain the title compound.

Step G
[0774] If one were to treat the title compound from Step K above with diisobutylaluminium hydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78°
C., add 10% aq AcOH, extract with ether:hexane, wash with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step H

[0775] If one were to treat the title compound from Step L above with 1.2 eq . commercially available methylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature, heat the mixture to reflux, add ice and half concentrated hydrochlorid acid, extract with $\mathrm{Et}_{2} \mathrm{O}$, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step I

[0776] If one were to treat the title compound from Step M above with methylsulfonyl chloride and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$., evaporate, add water and ethyl acetate to the residue, extract with ethyl acetate, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate and then the obtained intermediate with NaN_{3} in DMA as described in Preparative Example 17 Step C, one would obtain the title compound.

Step J

[0777] If one were to treat the title compound from Step N above as described in Preparative Example 17 Step D, one would obtain the title compound.

Preparative Example 1452
[0778]

Step A
[0779] If one were to treat commercially available 1,2,3,4, $5,6,7,8$-octahydro-anthracene with 10 eq . of aluminium chloride by adding the compound to the reagent in tetrachloroethane at low temperature, add dropwise 2.0 eq. of acetic anhydride to the mixture, pour onto ice and hydrochloric acid and extract with an appropriate solvent, wash with water, evaporate, recrystallize from methanol, one would obtain the title compound.

Step B
[0780] If one were to treat the title compound from Step A above with selenium dioxide in water and dioxane and refluxed for 4 h , followed by removal of precipitated selenium one would obtain after recrystallization the title compound.
Step C
[0781] If one were to treat the title compound from Step B above with hydrogen peroxide and drop wise with 10% NaOH in ethanol at $80^{\circ} \mathrm{C}$., followed by dilution with water, treatment with norite, filtration and acidifying with HCl , one would obtain after recrystallization the title compound.
Step D
[0782] If one were to treat the title compound from Step C above as described in Preparative Example 70 Step A, one would obtain the title compound

Step E

[0783] If one were to treat the title compound from Step D above as described in Preparative Example 93 Step C, one would obtain the title compound.

Step F

[0784] If one were to treat the title compound from Step E above as described in Preparative Example 13 Step B, one would obtain the title compound.

Step G

[0785] If one were to treat the title compound from Step F above with diisobutylaluminium hydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78°
C., add 10% aq AcOH , extract with ether:hexane, wash with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step H

[0786] If one were to treat the title compound from Step G above with 1.2 eq. commercially available methylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature, heat the mixture to reflux, add ice and half concentrated hydrochlorid acid, extract with $\mathrm{Et}_{2} \mathrm{O}$, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step I

[0787] If one were to treat the title compound from Step H above with methylsulfonyl chloride and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$., evaporate, add water and ethyl acetate to the residue, extract with ethyl acetate, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate and then the obtained intermediate with NaN_{3} in DMA as described in Preparative Example 17 Step C, one would obtain the title compound.

Step J

[0788] If one were to treat the title compound from Step I above as described in Preparative Example 17 Step D, one would obtain the title compound.

Preparative Example 1453
[0789]

-continued

Step A

[0790] If one were to treat commercially available 2-me-thyl-1H-indene and with 0.01 eq of platinum oxide in tetrahydrofuran and hydrogenate at $20-30 \mathrm{psi}$ for $10-15 \mathrm{~h}$ at room temperature, filter the mixture through a pad of Celite, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step B

[0791] If one were to treat the title compound from Step A above with 1.0 eq. of 3-chloro-2-methyl-propionyl chloride and 3.0 eq. of aluminum chloride in nitromethane at room temperature, decompose the mixture with ice and hydrochloric acid, dilute with water, filter, dissolve the solid in benzene and wash with dilute hydrochloric acid, evaporate, purify with a Soxhlet extractor, one would obtain the title compound.

Step C

[0792] If one were to treat the title compound from Step B above with concentrated sulphuric acid by adding the compound in small portions to the acid at low temperature, heat on the steam-bath, pour onto ice and extract with benzene and water, evaporate, distillate at reduced pressure, recrystallize from petroleum ether, sublimate, one would obtain the title compound.

Step D
[0793] If one were to treat the title compound from Step C above with amalgamated zinc, water, acetic acid, toluene, hydrochloric acid, separate the organic layer, evaporate, distillate at reduced pressure, recrystallize, one would obtain the title compound.

Step E
[0794] If one were to treat the title compound from Step D with 10 eq . of aluminium chloride by adding the compound to the reagent in tetrachloroethane at low temperature, add dropwise 2.0 eq. of acetic anhydride to the mixture, pour onto ice and hydrochloric acid and extract with an appropriate solvent, wash with water, evaporate, recrystallize from methanol, one would obtain the title compound.

Step F

[0795] If one were to treat the title compound from Step E with an aqueous solution of potassium hypochlorite prepared from bleaching powder in methanol, separate the precipitate formed by filtration, acidify the filtrate, separate the precipi-
tate formed by filtration, recrystallize from methanol, one would obtain the title compound.

Step G

[0796] If one were to treat the title compound from Step F above as described in Preparative Example 70 Step A, one would obtain the title compound

Step H

[0797] If one were to treat the title compound from Step G above as described in Preparative Example 93 Step C, one would obtain the title compound.

Step I
[0798] If one were to treat the title compound from Step H above with diisobutylaluminium hydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78° C., add 10% aq AcOH, extract with ether:hexane, wash with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step J
[0799] If one were to treat the title compound from Step H above as described in Preparative Example 13 Step B, one would obtain the title compound.

Step K

[0800] If one were to treat the title compound from Step I above with 1.2 eq. commercially available methylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature, heat the mixture to reflux, add ice and half concentrated hydrochlorid acid, extract with $\mathrm{Et}_{2} \mathrm{O}$, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step L
[0801] If one were to treat the title compound from Step K above with methylsulfonyl chloride and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$., evaporate, add water and ethyl acetate to the residue, extract with ethyl acetate, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate and then the obtained intermediate with NaN_{3} in DMA as described in Preparative Example 17 Step C, one would obtain the title compound.

Step M

[0802] If one were to treat the title compound from Step L above as described in Preparative Example 17 Step D, one would obtain the title compound.

Step A
[0804] If one were to treat commercially available indane with 1.0 eq. of 3 -chloro-propionyl chloride and 3.0 eq. of aluminum chloride in nitromethane at room temperature, decompose the mixture with ice and hydrochloric acid, dilute with water, filter, dissolve the solid in benzene and wash with dilute hydrochloric acid, evaporate, purify with a Soxhlet extractor, one would obtain the title compound.

Step B
[0805] If one were to treat the title compound from Step A above with concentrated sulphuric acid by adding the compound in small portions to the acid at low temperature, heat on the steam-bath, pour onto ice and extract with benzene and water, evaporate, distillate at reduced pressure, recrystallize from petroleum ether, sublimate, one would obtain the title compound.

Step C
[0806] If one were to treat the title compound from Step B above with amalgamated zinc, water, acetic acid, toluene,
hydrochloric acid, separate the organic layer, evaporate, distillate at reduced pressure, recrystallize, one would obtain the title compound.

Step D

[0807] If one were to treat the title compound from Step D with 10 eq. of aluminium chloride by adding the compound to the reagent in tetrachloroethane at low temperature, add dropwise 2.0 eq. of acetic anhydride to the mixture, pour onto ice and hydrochloric acid and extract with an appropriate solvent, wash with water, evaporate, recrystallize from methanol, one would obtain the title compound.

Step E

[0808] If one were to treat the title compound from Step D with an aqueous solution of potassium hypochlorite prepared from bleaching powder in methanol, separate the precipitate formed by filtration, acidify the filtrate, separate the precipitate formed by filtration, recrystallize from methanol, one would obtain the title compound.

Step F
[0809] If one were to treat the title compound from Step E above as described in Preparative Example 70 Step A, one would obtain the title compound

Step G

[0810] If one were to treat the title compound from Step F above as described in Preparative Example 93 Step C, one would obtain the title compound.

Step H
[0811] If one were to treat the title compound from Step G above with diisobutylaluminium hydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78° C., add 10% aq AcOH, extract with ether:hexane, wash with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step I

[0812] If one were to treat the title compound from Step G above as described in Preparative Example 13 Step B, one would obtain the title compound.

Step J
[0813] If one were to treat the title compound from Step H above with 1.2 eq. commercially available methylmagnesium
bromide in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature, heat the mixture to reflux, add ice and half concentrated hydrochloride acid, extract with $\mathrm{Et}_{2} \mathrm{O}$, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate, purify the crude product through chromatography on silica gel, one would obtain the title compound.

Step K

[0814] If one were to treat the title compound from Step J above with methylsulfonyl chloride and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$., evaporate, add water and ethyl acetate to the residue, extract with ethyl acetate, wash the organic layer with $\mathrm{H}_{2} \mathrm{O}$, sat. aq NaHCO_{3}, and brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporate and then the obtained intermediate with NaN_{3} in DMA as described in Preparative Example 17 Step C, one would obtain the title compound.

Step L

[0815] If one were to treat the title compound from Step K above as described in Preparative Example 17 Step D, one would obtain the title compound.
[0816] Examples 1455-1499 have been intentionally excluded.

Step A
[0818] If one were to treat commercially available 1,4benzoquinone with buta-1,3-diene in benzene at $100^{\circ} \mathrm{C}$. in an autoclave, separate the precipitate, wash it with methanol, one would obtain the title compound.

Step B

[0819] If one were to treat the title compound from Step A above with LiAlH_{4} in THF at rt for 15 min and then heat to reflux for 50 min , one would obtain after removal of the solvent, followed by aqueous workup and column chromatography the title compound.

Step C

[0820] If one were to treat the title compound from Step B above with methanesulfonyl chloride in pyridine at $0^{\circ} \mathrm{C}$. for 24 h , one would obtain after pouring into an ice/water mixture followed by extraction with benzene and subsequently washing the organic phase with water, cold 5% sulphuric acid, water, 2% sodium bicarbonate solution, brine and finally evaporation to dryness, the methansulfonate intermediate. If one were to treat the methansulfonate intermediate with LiAlH_{4} in THF and heat to reflux for 24 h , one would obtain after removal of the solvent, followed by aqueous workup the alcohol intermediate.
[0821] If one were to treat the alcohol intermediate with CrO_{3} in pyridine at $40^{\circ} \mathrm{C}$. for 9 h , one would obtain after pouring into water, followed by extraction with CCl_{4} and subsequently drying the organic phase and evaporating to dryness, followed by column chromatography and crystallization the alkene intermediate. If one were to treat the alkene intermediate with Pd / C in ethanol at 10 bar H_{2} and room temperature, separate the crude product from the reaction mixture and then the obtained intermediate with CrO_{3} in aqueous acetic acid and water, neutralize the mixture, extract with $\mathrm{Et}_{2} \mathrm{O}$, recrystallize from $\mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, one would obtain the title compound.

Step D
[0822] If one were to treat the title compound from Step C above as described in Preparative Example 59 Step G, one would obtain the title compound.

Step E

[0823] If one were to treat the title compound from Step D above as described in Preparative Example 59 Step H, one would obtain the title compound.

Step F

[0824] If one were to treat the title compound from Step E with NaCN in 90% ethanol under reflux, add water, extract with CHCl_{3}, wash the organic layer with 5% sulphuric acid, sat. aq NaHCO_{3}, water, brine, dry over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, distillate, one would obtain the title compound.

Step G

[0825] If one were to treat the title compound from Step F above as described in Preparative Example 61 Step A, one would obtain the title compound.

Step H
[0826] If one were to treat the title compound from Step G above as described in Preparative Example 61 Step B, one would obtain the title compound.

Step I
[0827] If one were to treat the title compound from Step H above as described in Preparative Example 70 Step B, one would obtain the title compound.

Preparative Example 1501-1502

[0828] If one were to follow a similar procedure as that described in Preparative Example 1500, except using the sulfamidates in Step G, one would obtain the desired title compound as HCl salt.

Preparative Example	Sulfamidate	22
1501	Title compound	
1502		

Example 1
[0829]

[0830] The title compound from Preparative Example 5 $(378 \mathrm{mg})$ and $419 \mathrm{mg} \mathrm{K}_{2} \mathrm{CO}_{3}$ were suspended in 3 ml THF and cooled to $0^{\circ} \mathrm{C}$. A solution of Preparative Example 1 (109 mg) in 1 ml THF was slowly added and the reaction mixture
stirred at $0^{\circ} \mathrm{C}$. for 2 h and then at rt overnight. The mixture was diluted with 30 ml EtOAc and $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, the organic phase separated, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 4: 1$) to afford the title compound ($66 \mathrm{mg} ; 39 \%$; $\mathrm{MH}^{+}=389$).

Example 2-14
[0831] Following a similar procedure as that described in Example 1, except using the compounds from the Preparative Examples indicated in the Table below, the following compounds were prepared.

Compound
Preparative
Example
:---:
Preparative
Example

Compound
Preparative
Example Compound
Preparative
Example

| Compound
 Ereparative
 Example | Compound
 Preparative
 Example |
| :---: | :---: | :---: |
| Product | |

Example 15

$+$

[0833] An aliquot of the title compound of Preparative Example 3 was taken and the solvent removed. The residue $(67 \mathrm{mg})$ was dissolved in DMF $(2 \mathrm{ml})$ and triethylamine $(0.1$ ml). The title compound from Preparative Example 90 (71 mg) was added and the mixture was stirred at $60^{\circ} \mathrm{C}$. for 2 h . The solvent was removed and the residue was purified by preparative TLC ($\mathrm{CHCl}_{3} / \mathrm{MeOH}(+0.1 \%$ Triethylamine), $4: 1$) to afford the title compound ($12 \mathrm{mg} ; 13 \% ; \mathrm{MH}^{+}=381$).

Example 16

[0834]

[0835] The title compound from Preparative Example 18 Step B (100 mg) and Preparative Example $2(68 \mathrm{mg})$ were dissolved in 2 ml EtOH and 1 ml H H O. The pH of the solution was adjusted to $\mathrm{pH} \sim 6$ by adding 0.1 M HCl -solution and the mixture was stirred at rt for 10 min . After the addition of $\mathrm{NaCNBH}_{3}(24 \mathrm{mg}$) the pH was maintained at $\mathrm{pH} \sim 6$ by the addition of 0.1 M HCl and the mixture was stirred at rt
overnight. The mixture was diluted with 30 ml EtOAc and 15 ml sat. $\mathrm{NaHCO}_{3} /$ brine (1:1), the organic phase separated, dried over MgSO_{4} and concentrated. The residue was purified by Prep TLC($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to afford the title compound ($25.9 \mathrm{mg} ; 17 \% ; \mathrm{MH}^{+}=399$).

Example 17-47

[0836] Following a similar procedure as described in Example 16 by dissolving the amine in a $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ - or $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$-mixture and adjusting the pH to $\mathrm{pH} \sim 6-8$ by either $0.1 \mathrm{M} \mathrm{HCl}, 3 \mathrm{M} \mathrm{NaOAc}$ or 1 M NaOH , except using the compounds from the Preparative Examples indicated in the Table below, the following compounds were prepared. In case the reaction was not completed after 24 h as judged by HPLC, additional aldehyde from Preparative Example 2 or 89 and NaCNBH_{3} were added, and the reaction was continued for another 1-3 days.
[0837] For the products obtained, the following purification methods were employed:
[0838] Method A: chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH}-$ mixtures; or
[0839] Method B: product was precipitated from the reaction mixture by adding 1 M HCl to pH 1-3 and the precipitate washed with MeOH ; or
[0840] Method C: reaction mixture was concentrated to half its volume and the crude product purified by reverse phase HPLC ($21.5 \times 250 \mathrm{~mm}$, Phenomenex, Luna C-18 (2), $5 \mu \mathrm{M}$; flow $=15 \mathrm{ml} / \mathrm{min}$ or $10 \times 250 \mathrm{~mm}$, Phenomenex, Luna C-18 (2), $5 \mu \mathrm{M}$; flow $=3 \mathrm{ml} / \mathrm{min}$) using acetonitrile (solvent B; 0.1% formic acid) and $\mathrm{H}_{2} \mathrm{O}$ (solvent A; 0.1% formic acid) as eluents and a suitable gradient, ramping solvent B from 0% to 100% over a period of 18 min .

Example	Compound Preparative Example	Compound Preparative Example	Purification Method	Product	$\begin{aligned} & \text { 1. Yield } \\ & \text { 2. } \mathrm{MH}^{+} \end{aligned}$
17	2	18	A		$\begin{aligned} & 1.17 \% \\ & 2.417 \end{aligned}$
18	2	47	A		$\begin{aligned} & 1.41 \% \\ & 2.431 \end{aligned}$

Compound
Preparative
Example
:---:
Ereparative
Example

Purification
Method

Compound | Compound |
| :---: |
| Ereparative |
| Example |
| Exarative |
| Exarification |
| Method |

20

Compound \begin{tabular}{c}
Compound

Preparative

Example

Exarative

Example

 Purification

Method
\end{tabular} Product

-continued
Compound
Preparative

Example \begin{tabular}{c}
Compound

Preparative

Example

\quad

Purification

Method
\end{tabular} Product

75
C

1. 58%
2. 622

33
76
C

1. 9%
2. 682

Compound | Compound |
| :---: |
| Ereparative |
| Example |
| Exarative |
| Example | Purification

Method
Compound
Preparative

Example | Compound |
| :---: |
| Preparative |
| Example |

Purification
Method

Example	Compound Preparative Example	Compound Preparative Example	Purification Method	Product	1. Yield 2. MH^{+}
40	2	82	c		$\begin{aligned} & 1.26 \% \\ & 2.666 \end{aligned}$
41	2	83	C		$\begin{aligned} & 1.12 \% \\ & 2.542 \end{aligned}$
42	2	84	c		$\begin{aligned} & 1.10 \% \\ & 2.542 \end{aligned}$

-continued
Compound
Preparative

Example \begin{tabular}{c}
Compound

Ereparative

Example

Purification

Method
\end{tabular}

Example	Compound Preparative Example	Compound Preparative Example	Purification Method	Product	$\begin{aligned} & \text { 1. Yield } \\ & \text { 2. } \mathrm{MH}^{+} \end{aligned}$
47	89	56	C		$\begin{aligned} & 1.9 \% \\ & 2.540 \end{aligned}$

Example 48
[0841]

[0842] The title compound from Preparative Example 93 $(16 \mathrm{mg})$ was dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and a solution of 4 M HCl in dioxane (3 ml). After 20 h the reaction mixture was diluted with toluene. The organic layer was evaporated to afford the title compound ($14 \mathrm{mg} ; 99 \%$; $\mathrm{MH}^{+}=386$).

Example 49-64
[0843] Following a similar procedure as that described in Example 48, except using the compounds from the Preparative Examples indicated in the Table below, the following compound was prepared.

Compound
Ereparative
Example

Example 65

[0845] The title compound from Preparative Example 113 $(13 \mathrm{mg})$ was treated with 4 M HCl in dioxane as described in Example 47 to afford the title compound ($11.2 \mathrm{mg}, 98 \%$, $\mathrm{MH}^{+}=436$).

Example 66-75
[0846] Following a similar procedure as that described in Example 65, except using the compounds from the Preparative Examples indicated in the Table below, the following compounds were prepared.
Compound
Preparative
Example

Compound
Preparative
Example

Example

[0848] The title compound from Preparative Example 123 $(27 \mathrm{mg})$ was dissolved in dichloromethane (2 ml) and trimethylsilyl iodine (21 mg) was added. The mixture was stirred for 1 h at room temperature. After removal of the solvent the residue was purified by preparative TLC to afford the desired compound ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 4 \mathrm{mg}, 20 \%, \mathrm{MH}^{+}=388$).

Examples 77-78
[0849] Following a similar procedure as that described in Example 76, except using the compounds from the Preparative Examples as indicated in the Table below, the following compounds were prepared.

[0850] Examples 79-99 have been intentionally excluded.
Example 100-184
[0851] If one were to follow the procedures outlined in Preparative Example 71 and Examples 28 or 29 but using the amines, carboxylic acids and aldehydes from the Preparative Examples as indicated in the Table below, one would obtain the indicated Product.
Example
-continued

-continued

Example \#	Amine	Carboxylic Acid	Aldehyde	Product
108		Prep Ex 62	Prep Ex 2	
109		Prep Ex 62	Prep Ex 2	
110	NH_{3}	Prep Ex 55	Prep Ex 2	
111	MeNH_{2}	Prep Ex 55	Prep Ex 2	

-continued
Example
-continued

-continued
Example
-continued
Example
-continued
Example
-continued
Example
-continued
Amine Cxarple
-continued
Example
-continued

Example		Carboxylic		
\#	Amine	Acid	Aldehyde	Product
144		Prep Ex 62	Prep Ex 89	
145		Prep Ex 62	Prep Ex 89	
146		Prep Ex 62	Prep Ex 89	
147		Prep Ex 62	Prep Ex 89	

$\underset{\#}{\text { Example }}$	Amine	Carboxylic Acid	Aldehyde	Product
148		Prep Ex 62	Prep Ex 89	
149		Prep Ex 62	Prep Ex 89	
150	NH_{3}	Prep Ex 55	Prep Ex 89	
151	MeNH_{2}	Prep Ex 55	Prep Ex 89	

-continued
Example
Example
-continued

-continued
Example
-continued
Example
-continued
Amine
-continued
Example
-continued
Example

Example \#	Amine	Carboxylic Acid	Aldehyde	Product
184		Prep Ex 61	Prep Ex 89	

[0852] Examples 185-199 have been intentionally excluded.

Example 200-389
[0853] If one were to follow the procedures outlined in Examples 28 or 29 except using the compounds from the Preparative Examples as indicated in the Table below, one would obtain the indicated Product.

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

203
$203 \quad 2$

204
$204 \quad 2$

205
$205 \quad 2$

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example | 206

200
\end{tabular}

Example \begin{tabular}{c}

Preparative | Ereparative |
| :---: |
| Example |

214
\end{tabular}

$218 \quad 218 \quad 2$

219
219

$220 \quad 220$

Example \begin{tabular}{c}

Preparative | Prample |
| :---: |
| Example |
| Exative |

221
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

226226

$227-227-2$

228 $228 \quad 2$

Example \begin{tabular}{c}

Preparative | Exanple |
| :---: |
| Example |
| Exame |

220
\end{tabular}

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Erarative |
| Example |

243
\end{tabular}

Example \begin{tabular}{c}

Preparative | Ereparative |
| :---: |
| Example |

247
\end{tabular}

Example	Preparative Example	Preparative Example	Product
251	251	2	
252	252	2	
253	253	2	
254	254	2	

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

255
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

260
$260 \quad 2$

2642642

Example | Preparative |
| :---: |
| Example |
| Preparative |
| Example |

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Example |
| Exative |

269
\end{tabular}

$274 \quad 274 \quad 2$

275
$275 \quad 2$

$276 \quad 276-2$

$286 \quad 286 \quad 2$

$287 \quad 287 \quad 2$

$290 \quad 290 \quad 2$

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

294
$294 \quad 2$

Example \begin{tabular}{c}

Preparative | Prample |
| :---: |
| Example |

200
\end{tabular}

Example $\left.\begin{array}{c}\text { Preparative } \\ \text { Example }\end{array} \begin{array}{c}\text { Preparative } \\ \text { Example }\end{array}\right]$
300
205
89

301
206
89

302
207
89

-continued

306
211

$308 \quad 213 \quad 89$

$309 \quad 214 \quad 89$

-continued

311
216
89

Preparative | Preparative |
| :---: |
| Example |
| Example | 226

320

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Exarative |
| Example |

232
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Ereparative |
| Example |

245
\end{tabular}

Example	Preparative Example	Preparative Example
344	249	89

$250 \quad 89$

346
251

347
252
89

$351 \quad 256 \quad 89$

357
$262 \quad 89$

358
263
89

$360 \quad 265$
89

361
266
89

Preparative | Preparative |
| :---: |
| Example |
| Example |

262

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

$272 \quad 89$

368
273
89

369
274
89

Preparative | Exeparative |
| :---: |
| Example |
| Example | 275

Example \begin{tabular}{c}

Preparative | Erample |
| :---: |
| Example |

279
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

$380 \quad 285 \quad 89$

382
$287 \quad 89$

$\begin{array}{lll}383 & 288 & 89\end{array}$

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

[0854] Examples 390-399 have been intentionally excluded.

Example 400-595
[0855] If one were to follow the procedures outlined in Examples 28 or 29 except using the compounds from the Preparative Examples as indicated in the Table below, one would obtain the indicated Product.

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

301
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

305
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

309
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

313
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

317
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

321
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

325
\end{tabular}

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

320
\end{tabular}

$438 \quad 402 \quad 2$

439
403

$440 \quad 404 \quad 2$

$448 \quad 412 \quad 2$

$452 \quad 416 \quad 2$

$464 \quad 428 \quad 2$

$467 \quad 431 \quad 2$

$468 \quad 432 \quad 2$

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Example |
| Exative |

402
\end{tabular}

Example \begin{tabular}{c}

Preparative | Prample |
| :---: |
| Example |
| Exative |

502
\end{tabular}

$480 \quad 509 \quad 2$

$481 \quad 510 \quad 2$

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

$483 \quad 512 \quad 2$

$484 \quad 513 \quad 2$

 $490 \quad 519 \quad 2$

$492 \quad 521 \quad 2$

$493 \quad 522 \quad 2$

$496 \quad 525 \quad 2$

$499 \quad 528 \quad 2$

501
$530 \quad 2$

502
531

$507 \quad 600 \quad 2$

$508 \quad 601 \quad 2$

$509 \quad 602$

Example \begin{tabular}{c}

Preparative | Prample |
| :---: |
| Exarative |
| Example |

503
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

523616

524
$617-2$

$525 \quad 618 \quad 2$

Example	Preparative Example	Preparative Example
534	627	2

$537 \quad 630 \quad 2$

53 $632 \quad 2$

540
$633 \quad 2$

$541 \quad 634$

543
$680 \quad 2$

544
$681 \quad 2$

545
682

Example \begin{tabular}{c}

Preparative | Prample |
| :---: |
| Example |
| Exane |

583
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

2

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

-continued

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

588
781

589
$782 \quad 2$

591
$784 \quad 2$

592
785

593
786
2

$\begin{array}{lll}595 & 788 & 2\end{array}$

[0856] Examples 596-599 have been intentionally excluded

Example 600-795
[0857] If one were to follow the procedures outlined in Examples 28 or 29 except using the compounds from the Preparative Examples as indicated in the Table below, one would obtain the indicated Product.

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

Example	Preparative Example	Preparative Example	
641	440	89	

89

89

644
443
89

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

420
\end{tabular}

Example	Preparative Example	Preparative Example	Product
653	452	89	
654	453	89	
655	454	89	
656	455	89	

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

661
\end{tabular}

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Example |
| Exative |

669
\end{tabular}

674
539
89

675
540
89

677
542
89

678
543
89

683
$548 \quad 89$

684
549
89

Examparative

Example | Preparative |
| :---: |
| Example |

89

Example \begin{tabular}{c}

Preparative | Preparative |
| :---: |
| Example |

\hline 102
\end{tabular}

701
566
89

89

704
$569 \quad 89$

705
570
89

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

707
$636 \quad 89$

708
637
89

709
638
89

-continued

-continued

649
89

721
650
89

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular} 659

745
690
89

748
693
89

749
694
89

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

751
736
89

752
737
89

754
739
89

755
740
89

761 746 89

Preparative

Example | Preparative |
| :---: |
| Example |

769
754
89

770
755
89

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

772
757
89

773
758
89

Example \begin{tabular}{c}
Preparative

Example

Preparative

Example
\end{tabular}

775
760
89

776
761
89

778
763
89

$779 \quad 764$

89

784
769
89

785
770
89

Example \begin{tabular}{c}

Preparative | Example |
| :---: |
| Example |
| 78 |

771
\end{tabular}

Example	Preparative Example	Preparative Example	Product
790	792	89	

791
793
89

792
794
89

793
795
89

[0858] Examples 796-799 have been intentionally excluded.

Example 800-833
[0859] If one were to follow a similar procedure as that described in Examples 27 or 28 , and treat the title compounds from the Preparative Examples in the table below as described in Preparative Example 69 and 71, except using the amines as indicated in the Table below, one would obtain the desired product.

-continued

	Preparative Example	Preparative Example	Amine

802
$65 \quad 2$
NH_{3}

803
61 Step B 2
NH_{3}

62
2
NH_{3}

-continued

	Preparative Example	Preparative Example	Amine

61 Step B 2
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

807
62
2
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

65
2
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

-continued

	Preparative Example	Preparative Example	Amine

810
62
2
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

811
65
2
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

61 Step B 2
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

-continued

	Preparative Example	Preparative Example	Amine

814
61 Step B 2
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

65
2
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

NH_{3}

-continued

	Preparative Example	Preparative Example	Amine

818
65
89
NH_{3}

819
61 Step B
89
NH_{3}

820
62
89
NH_{3}

-continued

	Preparative Example	Preparative Example
Example		
821	89	AH_{3}

62
89
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

$\mathrm{CH}_{3} \mathrm{NH}_{2}$

	Preparative Example	Preparative Example	Amine

62
89
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

65
89
$\mathrm{CH}_{3} \mathrm{NH}_{2}$

-continued

	Preparative Example	Preparative Example	Amine

65
89
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

831
61 Step
89
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

62
89
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

Preparative Example	Preparative Example	Amine	89
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$			

[0860] Examples 834-999 have been intentionally excluded.

Example 1000-1168

[0861] If one were to follow the procedures outlined in Examples 28 or 29 except using the compounds from the Preparative Examples as indicated in the Table below, one would obtain the indicated Product.

	Preparative Example	Preparative Example
1000	801	2

$1001 \quad 804 \quad 2$

Preparative | Preparative |
| :---: |
| Example | Example

1002

PreparativePreparative Example
1002

PreparativePreparative Example Example
102

Preparative | Preparative |
| :---: |
| Example | Example

Examer
102

PreparativePreparative Example Example
1020

PreparativePreparative Example Example
1020

PreparativePreparative Example Example
1030

PreparativePreparative Example Example
102

PreparativePreparative Example
1020

PreparativePreparative Example Example
1023

PreparativePreparative Example Example
1020

PreparativePreparative Example Example
1050

PreparativePreparative Example Example
1062

PreparativePreparative Example Example
1050

PreparativePreparative Example Example
1072

PreparativePreparative Example Example
1020
1020

	Preparative Example	Preparative Example	
1082	922	89	

$1084 \quad 924 \quad 89$

1085925
89

$1086 \quad 926 \quad 89$

Preparative ExamplePreparative Example
1027

Example \begin{tabular}{c}

Example | Example |
| :---: |
| Exarative | 1303

\end{tabular}

Preparative | Preparative |
| :---: |
| Example | Example

1020

$1101 \quad 1353 \quad 2$

$1102 \quad 1354 \quad 2$

$1109 \quad 1402$

$1110 \quad 14032$

| | Preparative
 Example | Preparative
 Example |
| :--- | :--- | :--- | :--- |
| Example | | |

$1116 \quad 1409 \quad 2$

1117
1301
89

1118
1302
89

	Preparative Example	Preparative Example	
1119	1303	89	

1120
1304
89

1121
1305
89

1122
1306
89

Preparative | Preparative |
| :---: |
| Example | Example

120

| | Preparative
 Example | Preparative
 Example |
| :--- | :--- | :--- | :--- |
| 1127 | 1352 | 89 |

Preparative | Preparative |
| :---: |
| Example | Example

Examer

Preparative
Example
:---:
Example

1451 Step J

Example	Preparative Example	Preparative Example	Product
1164	1453 Step M	89	
1165	1454 Step I	89	
1166	1454 Step L	89	
1167	1500	89	
1168	1501	89	

Example 1500-1709
[0863] If one were to follow a similar procedure as that described in Preparative Example 48, except using the compounds from the Preparative Examples as indicated in the Table below, one would obtain the desired amine product.

1507
1007

15081008

1509
1009

$1510 \quad 1010$

Compound
Preparative
Example

Compound
Preparative
Example

$1527 \quad 1027$

1528
1028

1532
1032

1533
1033

15341034

1535
1035

Compound
Preparative
Example

1545
1045

$1546 \quad 1046$

Compound

Preparative
Example

$1548 \quad 1048$

15491049

1550
1050

15511051

Compound
Preparative
Example

Example

$1570 \quad 1070$

$1571 \quad 1071$

$1573 \quad 1073$

15741074

1575
1075

15761076

$1577 \quad 1077$

$1581 \quad 1081$

15821082

15831083

$1590 \quad 1090$

$1591 \quad 1091$

15921092

15931093

$1594 \quad 1094$

$1601 \quad 1101$

1602
1102

16031103

1604
1104

16051105

Compound
Preparative
Example

Example

1612
1112

1613
1113

$1614 \quad 1114$

1615
1115

Example | Compound |
| :---: |
| Ereparative |
| Example |

Compound

Preparative
Example

16321132

1633
1133

1634
1134

1635
1135

1636
1136

Compound
Preparative
Example

Example

16551155

16561156

$1660 \quad 1160$

$1661 \quad 1161$

1662 1162

Compound
Preparative
Example

Compound
Preparative
Example

Example

1688
1188

$1689 \quad 1189$

$1690 \quad 1190$

$1693 \quad 1193$

1694
1194

[0864] Examples 1710-1799 have been intentionally excluded.

Example 1800
[0865]

Step A
[0866] If one were to treat allyl bromide with 1.0 eq. catechol borane, heat the mixture at $100^{\circ} \mathrm{C}$., distillate at reduced pressure, treat the intermediate with 2.0 eq. pinacol in THF at $0^{\circ} \mathrm{C}$. and room temperature, evaporate, dissolve in hexane and remove pinacol by filtration, distillate at reduced pressure, one would obtain the title compound.

Step B

[0867] If one were to dissolve methylene chloride (1.0 eq.) in THF and then slowly add $1.54 \mathrm{~N}^{n} \mathrm{BuLi}$ in hexane (1.1 eq.) at $-100^{\circ} \mathrm{C}$., and would then add the title compound from Step A above (1.0 equ.), dissolved in THF, cooled to the freezing point of the solution, to the reaction mixture, followed by adding a suspension of zinc chloride (0.55 eq.) in THF, cooled to $0^{\circ} \mathrm{C}$., in several portions to the reaction mixture, subsequently allowing the mixture to slowly warm to room temperature and to stir overnight, then, after evaporation of the solvent and redissolving the residue in hexane and washing with water, discarding insoluble material, drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, followed by distillation, one would obtain the title compound.

Step C
[0868] If one were to treat a fresh prepared LiHMDS solution in THF with 1 eq. of the title compound from Step B at $-78^{\circ} \mathrm{C}$., one would obtain after stirring overnight at rt , filtering of the precipitant and distillation of the filtrate the title compound as an oil.

Step D
[0869] If one were to treat the title compound from Step C above with 3 eq. of a 4 M HCl solution in dioxane at $-78^{\circ} \mathrm{C}$., one would obtain after stirring for 1 hour at $r t$ and evaporation of the solvent the title compound as a HCl salt.

Step E
[0870] If one were to treat the title compound from Step D above with bromo acetyl bromide as described in Example 1, one would obtain the title compound.

Step F
[0871] If one were to treat the title compound from Step E above with the title compound from Preparative Example 15 as described in Example 1, one would obtain the title compound.

Step G
[0872] If one were to treat the title compound from Step F above with 6.0 eq. diethanolamine in THF at room temperature, add $\mathrm{Et}_{2} \mathrm{O}$ to the mixture, separate the precipitate by filtration, dissolve the solid in an appropriate solvent and add Dowex AG 50-X8, filtrate and evaporate the filtrate, one would obtain the title compound.
[0873] Examples 1801-1849 have been intentionally excluded.

Example 1850
[0874]

Step B

Step A
[0875] If one were to treat the title compound from Preparative Example 92 with the title compound from Example 1800, Step D, as described in Preparative Example 93, one would obtain the title compound.

Step B

[0876] If one were to treat the title compound from Step A above as described in Example 48, one would obtain the title compound. If one were to use a reverse phase HPLC separation (5-pm Nucleosil C18 HPLC column, acetonitrile: $\mathrm{H}_{2} \mathrm{O}$: $0.1 \% \mathrm{TFA}$), one could obtain the individual diastereomers.

Step C

[0877] If one were to treat the title compound from Step B above with 6.0 eq. diethanolamine in THF at room temperature, add $\mathrm{Et}_{2} \mathrm{O}$ to the mixture, separate the precipitate by filtration, dissolve the solid in an appropriate solvent and add Dowex AG $50-\mathrm{X} 8$, filtrate and evaporate the filtrate, one would obtain the title compound.
[0878] Examples 1851-1899 have been intentionally excluded.

Example 1900

[0879]

Step A
[0880] If one were to treat the title compound from Preparative Example 130 with bromoacetyl bromide as described in Preparative Example 1, one would obtain the title compound.

Step B
[0881] If one were to treat the title compound from Step A above with the title compound from Preparative Example 15 as described in Example 1, one would obtain the title compound. Examples 1901-1949 have been intentionally excluded.

Example 1950
[0882]

Step A
[0883] If one were to treat title compound from Preparative Example 130 with the title compound from Preparative Example 92 as described in Preparative Example 93, one would obtain the title compound.

Step B
[0884] If one were to treat the title compound from Step A above as described in Example 48, one would obtain the title compound.

Assay for Determining DP-IV Inhibition
[0885] The inhibitory activity of compounds against DPPIV can be determined by in vitro assay systems, which are themselves well established in the art. The assay results given in Table 5 were obtained according to the following method, employing a modified version of the assay described by Leiting et al., in an article entitled "Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII" in Biochem. J. Vol. 371, pages 525-532 (2003):
[0886] DPP-IV activity was determined fluorometrically with Gly-Pro-AMC (where AMC stands for 7-amido-4-methylcoumarin, Bachem AG, Switzerland) as substrate. The reaction mixture contained $10 \mu \mathrm{l}$ of $1 \mathrm{ng} / \mu \mathrm{I}$ DPP-IV (R\&D Systems GmbH, Germany) and $80 \mu 1$ of 25 mM Tris $/ \mathrm{HCl}$ buffer, pH 8.0. Compounds were supplied as DMSO stock solutions and diluted in assay buffer to a maximal DMSO concentration of 1% in the assay. Prior to start of the reaction, the mixture was incubated for 30 min at room temperature. The reaction was started by addition of $10 \mu 1$ of $100 \mu \mathrm{M}$ substrate solution
[0887] The fluorescence intensity was measured at excitation and emission wavelengths of 355 and 460 nm , respectively, in a FluoStar Galaxy Multiwell Plate (BMG Labtech, Germany). Fluorescence was determined 3 and 4 minutes after start of reaction and increase in fluorescence was used for determination of enzymatic activity. IC(50) values of tested compounds were determined via plotting enzymatic activity versus concentration of test compound and determining the concentration of test compound which yields a 50% inhibition of enzymatic activity.
[0888] K(i) values were calculated using the MichaelisMenten equation for competitive inhibition:
$\operatorname{IC}(50)=K(i)(1+[S] / K m)$
[0889] As set forth in Table A, K(i) for each compound corresponds to A is $\mathrm{K}(\mathrm{i})<6 \mathrm{nM}$, B is $\mathrm{K}(\mathrm{i}) 6-50 \mathrm{nM}$, C is K (i) from $51-500 \mathrm{nM}$ and D is $\mathrm{K}(\mathrm{i})$ from $0.5-30 \mu \mathrm{M}$.

TABLE A

Activity Data for Inhibition of DPP-IV	
Example	Activity (K(i) $)$
1	C
2	D
3	D
4	D
5	D
6	C
7	C
8	C
9	C
10	C
11	C
12	C
13	C
14	D
15	D
16	C
17	B
18	A
19	B
20	C
21	C
22	A

TABLE A-continued

Activity Data for Inhibition of DPP-IV	
Example	Activity $(\mathrm{K}(\mathrm{i}))$
23	B
24	A
25	B
26	C
27	A
28	A
29	A
30	A
31	B
32	A
33	A
34	A
35	A
36	B
37	B
38	B
39	B
40	D
41	B
42	C
43	A
44	A
45	B
46	D
47	A
48	A
49	A
50	B
51	A
52	A
53	A
54	A
55	A
56	A
57	A
58	A
59	A
60	A
61	A
62	A
63	A
64	A
65	B
66	B
67	A
68	B
69	B
70	B
71	B
72	A
73	B
74	C
75	C
76	B
77	A
78	B

[0890] All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

What claimed is:

1. A compound of formula (I):

A-B-D
or a pharmaceutically acceptable salt thereof, wherein A is:

B is:

D is:

Y is divalent and is: a bond, $\mathrm{CR}^{4} \mathrm{R}^{5}, \mathrm{O}, \mathrm{NR}^{4}, \mathrm{~S}, \mathrm{~S}=\mathrm{O}$, $\mathrm{S}(=\mathrm{O})_{2}, \quad \mathrm{C}(=\mathrm{O}), \quad(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{4}\right), \quad \mathrm{S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right)$, $\mathrm{C}=\mathrm{N}-\mathrm{OR}^{4}, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-, \quad \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)$ $C\left(R^{4} R^{5}\right) C\left(R^{4} R^{5}\right)-\quad-C\left(R^{4} R^{5}\right) C\left(R^{4} R^{5}\right) C\left(R^{4} R^{5}\right) C$ $\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-\quad-\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}\left(\mathrm{R}^{5}\right)-, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{NR}^{4}-$, $-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{O}-,-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})-,-(\mathrm{C}=\mathrm{O}) \mathrm{O}-$, $-\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-, \quad-\left(\mathrm{C}=\mathrm{NR}^{a}\right)-, \quad \mathrm{N}(\mathrm{C}=\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{NR}^{5}, \quad \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{4}, \quad \mathrm{NS}(=\mathrm{O})$ ${ }_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}$, or $\mathrm{NS}(=\mathrm{O})_{2} \mathrm{R}^{4}$;
R^{1} and R^{2} are independently: hydrogen, $-\mathrm{F},-\mathrm{Cl}$, $\mathrm{CONR}^{4} \mathrm{R}^{5}$, or $-\mathrm{CO}_{2} \mathrm{R}^{4}$;
R^{3} is $\mathrm{CONR}^{4} \mathrm{R}^{5}$, tetrazolyl or oxadiazolonyl;
R^{a} is hydrogen, $\mathrm{CN}, \mathrm{NO}_{2}$, alkyl, haloalkyl, $\mathrm{S}(\mathrm{O})_{t} \mathrm{NR}^{4} \mathrm{R}^{5}$, $\mathrm{S}(\mathrm{O}) \mathrm{R}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, or $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}$;
each occurrence of R^{4} and R^{5} are each independently hydrogen or alkyl, or R^{4} and R^{5} when taken together with a nitrogen to which they are attached form a 3- to 8 -membered ring containing carbon atoms and may optionally contain a heteroatom selected from O, S, or NR^{50};
R^{50} is, in each occurrence, $\mathrm{R}^{20}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{NR}^{20} \mathrm{R}^{21}$, $\mathrm{S}(\mathrm{O})_{t} \mathrm{R}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{OR}^{20}, \quad \mathrm{C}(\mathrm{O}) \mathrm{R}^{20} \mathrm{C}\left(=\mathrm{NR}^{a}\right) \mathrm{NR}^{20} \mathrm{R}^{21}$, $\mathrm{C}\left(=\mathrm{NR}^{20}\right) \mathrm{NR}^{21} \mathrm{R}^{a}, \mathrm{C}\left(=\mathrm{NOR}^{20}\right) \mathrm{R}^{21}$ or $\mathrm{C}(\mathrm{O}) \mathrm{NR}^{20} \mathrm{R}^{21}$;
each occurrence of R^{20} and R^{21} are each independently: hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocy-
cloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl or aminoalkyl;
each occurrence of R^{7} and R^{8} are each independently: halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{OR}^{4}$, $\mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t} \mathrm{R}^{4}, \mathrm{SO}_{3} \mathrm{H}$, $\mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR N^{5}, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN, O- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$-alkyl-C $(\mathrm{O}) \mathrm{OR}^{4}, \mathrm{~S}(\mathrm{O})_{t}$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{\frac{1}{4}} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4}-$ $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl, wherein alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl;
R^{9} is H or C_{1-6} alkyl;
R^{10} is halogen, $\mathrm{CF}_{3}, \mathrm{COR}^{4}, \mathrm{OR}^{4}, \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{NO}_{2}, \mathrm{CN}$, $\mathrm{SO}_{2} \mathrm{OR}^{4}, \mathrm{CO}_{2} \mathrm{R}^{4}, \mathrm{CONR}^{4} \mathrm{R}^{5}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5}, \mathrm{~S}(\mathrm{O})$ ${ }_{t} \mathrm{R}^{4}, \quad \mathrm{SO}_{3} \mathrm{H}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{OC}(\mathrm{O}) \mathrm{NR}^{4} \mathrm{R}^{5}, \quad \mathrm{NR}^{4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{5}$ $\mathrm{NR}^{4} \mathrm{CO}_{2} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C $\left(=\mathrm{NR}^{a}\right) \mathrm{NHR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C $\left(=\mathrm{NR}^{4}\right) \mathrm{NHR}^{a}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{C}\left(=\mathrm{NR}^{4}\right)$ $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O) $\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)-NH-CN,O- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ -alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad \mathrm{~S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)OR ${ }^{4}$, $\mathrm{S}(\mathrm{O})_{t}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C(O)NR ${ }^{4} \mathrm{R}^{5}, \quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-C (O) $\mathrm{NR}^{4}-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4} \mathrm{R}^{5}$, $\quad\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl$\mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-NR ${ }^{4}-\mathrm{C}(\mathrm{O}) \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl-$\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{4},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl $-\mathrm{NR}^{4}-\mathrm{C}(\mathrm{O})-\mathrm{NR}^{4} \mathrm{R}^{5}$, $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- $\mathrm{NR}^{4}-\mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{5},\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$-alkyl- NR^{4} $\mathrm{SO}_{2} \mathrm{R}^{4}$, hydrogen, $\mathrm{B}(\mathrm{OH})_{2}$, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, fluoroalkyl, heterocycloalkylalkyl, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxyalkyl or aminoalkyl;
Q^{b} is CH or N ;
U is $-\mathrm{C}(\mathrm{O})-\mathrm{C}\left(=\mathrm{NR}^{4}\right)-\left(\mathrm{CR}^{4} \mathrm{R}^{5}-\right)_{p}, \mathrm{NR}^{50}$, $\mathrm{S}(=\mathrm{O})_{2}, \mathrm{C}(=\mathrm{O}),(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{4}\right), \mathrm{N}\left(\mathrm{R}^{4}\right)(\mathrm{C}=\mathrm{O}), \mathrm{S}(=\mathrm{O})$ ${ }_{2} \mathrm{~N}\left(\mathrm{R}^{4}\right), \quad \mathrm{N}\left(\mathrm{R}^{4}\right) \mathrm{S}(=\mathrm{O})_{2}, \quad \mathrm{C}=\mathrm{N}-\mathrm{OR}^{4}, \quad-\mathrm{C}\left(\mathrm{R}^{4}\right)=\mathrm{C}$ $\left(\mathrm{R}^{5}\right)-\quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p} \mathrm{NR}^{50}-\quad \mathrm{N}\left(\mathrm{R}^{50}\right) \mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)_{p}-$, $-\mathrm{O}-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right)-, \quad-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})_{t}-\quad-(\mathrm{C}=\mathrm{O})$ $\mathrm{O}-,-\left(\mathrm{C}=\mathrm{NR}^{a}\right) \mathrm{N}\left(\mathrm{R}^{4}\right)-,-\left(\mathrm{C}=\mathrm{NR}^{a}\right)-\mathrm{N}(\mathrm{C}=\mathrm{O})$ $\mathrm{NR}^{4} \mathrm{NR}^{5}, \quad \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{R}^{4}, \quad \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{OR}^{4}, \quad \mathrm{NS}(=\mathrm{O})$ ${ }_{2} \mathrm{NR}^{4} \mathrm{NR}^{5}$, or $\mathrm{NS}(=\mathrm{O})_{2} \mathrm{R}^{4}$;
W is $-\mathrm{CH}_{2},-\mathrm{S},-\mathrm{CHF}-$ or $-\mathrm{CF}_{2}-$
Z is C ;
p is 0 to 6 ; and
t is 0,1 , or 2 .
2. A compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein:
Q^{b} is CH ;
U is $\left(-\mathrm{CH}_{2}-\right)_{p}$;
p is 1 ;
R^{7} and R^{8} are each independently H or alkyl; and
R^{9} is H .
3. A compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein:
D is:

4. A compound of claim 1 , or a pharmaceutically acceptable salt, thereof, wherein:
Y is $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$.
5. A compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein:
Y is $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$;
D is

Q^{b} is CH ;
U is $\left(-\mathrm{CH}_{2}-\right)_{p}$;
p is 1 ; and
R^{9} is H .
6. A compound of claim 1 , or a pharmaceutically acceptable salt, thereof, wherein:

A is:

7. A compound of claim 1, or a pharmaceutically acceptable salt, thereof, wherein:

A is:

Y is $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$;
D is

Q^{b} is CH .
8. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
9. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
10. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
11. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
12. A compound according to the following formula:

13. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
14. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
15. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
16. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
17. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
18. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
19. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
20. A compound according to the following formula:

or a pharmaceutically acceptable salt thereof.
21. A pharmaceutical composition comprising a compound in accordance with claim 1, or a pharmaceutically acceptable salt thereof.
22. A method of treating type-2 diabetes comprising administering to a patient in need thereof an effective amount of a compound in accordance with claim 1 , or a pharmaceutically acceptable salt thereof.
23. A pharmaceutical composition comprising a compound in accordance with claim 7 , or a pharmaceutically acceptable salt thereof.
24. A method of treating type-2 diabetes comprising administering to a patient in need thereof an effective amount of a compound in accordance with claim 7 , or a pharmaceutically acceptable salt thereof.

