一种转化四氯化硅制取三氯氢硅和多晶硅的方法

摘要

针对目前工业生产多晶硅过程中产生污染环境的 SiCl₄，用热氯化法将其转化为生产多晶硅原料 SiHCl₃，存在转化率低，能耗高，设备投资大，及用 SiCl₃，生产白炭黑经济效益远低于多晶硅的问题，本发明为企业提供一种转化四氯化硅制取 SiHCl₃ 和多晶硅的方法，以氨气或氯气与氢气混合气为等离子体工作气体，通入等离子体发生器，在直流电场作用下通过电弧放电形成温度为 4000K 以上的等离子体射流，诱导反应器中的 SiCl₄ 发生还原反应，将 SiCl₄ 转化为 SiHCl₃ 和多晶硅，其突出优点是工艺成熟，能耗低，设备投资小，主产 SiHCl₃，联产多晶硅、副产 HCl，有效消除四氯化硅环境污染，提高经济效益。
1. 一种转化四氯化硅制取 SiHCl₃ 和多晶硅方法，是以氢气或氮气与氯气的混合气为等离子体工作气体，送入等离子体发生器，在强电场的作用下通过电弧放电，形成温度为 4000K 以上的等离子体射流，诱导反应器中的 SiCl₄ 发生还原反应，将 SiCl₄ 转化为 SiHCl₃、多晶硅和 HCl；包括如下步骤：
   第一步，将氢气或氮气与氯气的混合气作为工作气体，输入等离子体发生器，产生温度为 4000K-15000K 的等离子体射流，并将其引入反应器；
   第二步，将原料 SiCl₄ 喷入反应器，与热等离子体射流混合，使反应器中的混合气温度升至 1200K-3500K，热等离子体射流中的氢气与四氯化硅发生还原反应，生成 SiHCl₃、多晶硅和 HCl；
   第三步，将反应器中的反应尾气，包括未完成还原反应的 SiHCl₃、多晶硅和 HCl，尚未反应的 SiCl₄，工作气中的氯气或氮气与氢气的混合气，从反应器中引至气体缓冲容器，通过体积膨胀使反应尾气降温至 1000K-1500K，反应尾气中的多晶硅沉积于气体缓冲容器的底部，并将其收集；
   第四步，将反应尾气与原料四氯化硅输送管路换热，使反应尾气的温度降至 400K-600K；
   第五步，将降温后的尾气通过冷凝器，使所含 SiHCl₃ 和残余 SiCl₄ 气体在 280K-300K 温度下液化；
   第六步，将液化的 SiHCl₃ 和 SiCl₄ 的混合液送入分馏塔进行分馏，将分馏后的 SiHCl₃ 和 SiCl₄ 液体分别送入各自的贮罐中贮存；
   第七步，将未液化的氯气、HCl 或氮气、氢气和 HCl 的混合气，由冷凝器的出气口输送至多晶硅生产厂的尾气处理系统，进行分离处理并分别贮存。

2. 按照权利要求 1 所述的转化四氯化硅制取 SiHCl₃ 和多晶硅方法，其特征在于：在第四步与第五步之间，增设对反应尾气进行气固分离的步骤，将反应尾气中所含的残余多晶硅从反应尾气中分离出来。

3. 按照权利要求 1 所述的转化四氯化硅制取 SiHCl₃ 和多晶硅方法，其特征在于：所述在第一步由工作气体产生的等离子体射流的温度，最佳控制在 5000K-8000K，在第二步原料 SiCl₄ 与等离子体射流的混合气体在反应器中的温度，最佳控制在 1500K-2000K。
一种转化四氯化硅制取三氯氢硅和多晶硅的方法

技术领域
[0001] 本发明属于有色金属,化学工艺技术领域,具体涉及以四氯化硅为原料制取三氯氢硅、多晶硅的方法,尤其涉及一种等离子体诱导的氢气与SiCl₄发生还原反应,将SiCl₄转化为SiHCl₃、多晶硅和HCl的方法。

技术背景
[0002] 目前,改良西门子法是国内外生产多晶硅的主流工艺。随着光伏产业的快速发展,作为太阳能电池原料的高纯多晶硅,已成为十分重要的半导体材料,各地许多多晶硅项目相继投入生产。四氯化硅是该工艺生产多晶硅产生的主要副产品。每生产1吨多晶硅会产生10吨以上的四氯化硅。由于现有还大规模、高效率和安全地消化处理生产多晶硅过程中所产生的SiCl₄的方法,造成了大量的高含量氯化合物的累积,给环境安全带来极大的隐患。

[0003] 现有转化SiCl₄的方法主要是热氢化方法和气相法生产白炭黑。热氢化方法,依靠电加热方式将SiCl₄转化为SiHCl₃,其反应方程为:

\[ SiCl₄ + H₂ →^{1250°C} SiHCl₃ + HCl \]  (1)

[0005] 热氢化工艺转化SiCl₄的一次转化率仅为20%,能耗高,且设备投资巨大。
[0006] 气相法生产白炭黑,是利用SiCl₄在1800℃的氢氧火焰中高温水解制得。其反应方程式如下所示:

\[ SiCl₄+H₂+O₂ → SiO₂•nH₂O+HCl \]  (2)

[0007] 气相法生产白炭黑,可以消耗部分SiCl₄,但白炭黑价格与多晶硅相差甚远。如能将SiCl₄转化为SiHCl₃和多晶硅,循环利用于多晶硅生产过程,将会有更好的社会效益和经济效益。

发明内容
[0009] 本发明的目的在于:针对目前工业生产多晶硅过程中产生污染环境的SiCl₄,用热氢化法将其转化为生产多晶硅原料SiHCl₃,存在一次转化率低、能耗高、设备投资大等问题,以及用SiCl₄生产白炭黑其经济效益远低于多晶硅的问题,为企业提供一种工艺成熟、能耗低、设备投资小,消除四氯化硅环境污染,以四氯化硅为原料主产SiHCl₃、联产多晶硅、副产HCl的工艺方法,简称转化四氯化硅制取SiHCl₃和多晶硅方法。

[0010] 本发明转化四氯化硅制取SiHCl₃和多晶硅方法,是以氮气或氮气与氮气的混合气为等离子体工作气体,送入等离子体发生器,在强电场的作用下通过电弧放电,形成温度为4000K以上的等离子体射流,诱导反应器中的SiCl₄发生还原反应,将SiCl₄转化为SiHCl₃、多晶硅和HCl;包括如下步骤:

[0011] 第一步,将氮气或氮气与氮气的混合气作为工作气体,输入等离子体发生器,产生温度为4000K~15000K的等离子体射流,并将其引入反应器;
第二步，将原料 SiCl₄ 喷入反应器，与热等离子体射流混合，使反应器中的混合气温度升至 1200-3500K，热等离子体射流中的氯与四氯化硅发生还原反应，生成 SiHCl₃、多晶硅和 HCl。

第三步，将反应器中的反应尾气，包括：完成还原反应的 SiHCl₃、多晶硅和 HCl，尚未反应的 SiCl₄，工作气中的氢气或氯气与氩气的混合气，从反应器中引至气体缓冲容器，通过体积膨胀使反应尾气降温至 1000-1500K，反应尾气中的多晶硅沉积于气体缓冲容器的底部，并将其收集。

第四步，将反应尾气与原料四氯化硅输送至管路换热，使反应尾气的温度降至 400-600K。

第五步，将降温后的尾气通过冷凝器，使所含 SiHCl₃ 和残余 SiCl₄ 气体在 280K-300K 温度下液化。

第六步，将液化的 SiHCl₃ 和 SiHCl₄ 的混合液送入分馏塔进行分馏，将分馏后的 SiHCl₃ 和 SiHCl₄ 液体分别送入各自的贮罐中贮存。

第七步，将未液化的氢气、HCl 或氯气、氯气和 HCl 混合气体，由冷凝器的出气口输送至多晶硅生产厂的尾气处理系统，进行分离处理并分别贮存。

为了进一步提高对生成多晶硅的提纯率，在第四步与第五步之间，还可增设对反应尾气进行气固分离的步骤，将反应尾气中所含的残余多晶硅从反应尾气中分离出来。

本发明方法的多晶硅与 SiHCl₃ 的产率，在下述条件下有满意的好结果：

所述等离子体射流的温度控制在 5000-8000K，反应器中的混合气温度控制在 1500K-2000K。

本发明的突出优点在于：可以有效地将四氯化硅转化为 SiHCl₃、多晶硅和 HCl。而 SiHCl₃ 和 HCl 是生产多晶硅的主要原料，经后续处理后，可使改良西门子工艺实现真正意义上的循环操作，带来很好的经济效益和社会效益。本发明方法与气相法制取白碳黑相比毫无共同之处；与热氯化法相比使用的热源有本质的不同，热氯化是通过导体产生的焦耳热获取热能，实现的速度有限，因此，一次转化率低不足 30%；本发明提出的方法是利用气体电弧放电直接将电能转化为热能，不需要热氯化中作为发热体的导体，能实现比热氯化高得多的温度，因此，极大地提高了 SiCl₄ 转化为 SiHCl₃ 和多晶硅的一次转化率，验证证明 SiCl₄ 的转化率达到 50-80%，SiHCl₃ 的收率可达到 40-60%。

附图说明

图 1 是实施本方法的装置系统与生产工艺流程图

图 2 是进料环结构及原料、工作气体流程示意图

图 3 是反应器结构示意图

图 4 是缓冲容器结构示意图

图中标注：1 为等离子体发生器电源，2 为等离子体发生器，3 为工作气体入口，4 为四氯化硅原料输气管路，5 为反应器，6 为气体缓冲容器，7 为余热热交换器，8 为冷凝器，9 为分馏塔，10 为 SiHCl₃ 贮罐，11 为 SiCl₄ 贮罐，12 为含未液化的氯气、氯气和 HCl 混合气体的尾气分离系统，13 为等离子体射流，14 为喷入的 SiCl₄ 原料，15 为反应气体，16 为反应器内部“Y”型结构，17 为反应器外壁冷却水层，18 为气体缓冲容器中的内置换热器。
具体实施方式

[0027]  实例：以四氯化硅为原料，主产 SiHCl₃，联产多晶硅，副产 HCl 的装置系统与生产方法。

[0028]  图 1 给出了实施本发明方法的装置系统。该装置系统主要由等离子体发生器 2，为等离子体发生器提供电能的等离子体电源 1，竖直设置在等离子体发生器 2 下面的反应器 5，竖直设置在反应器 5 下面的气体缓冲容器 6，与该气体缓冲容器 6 连接的余热换热器 7，余热换热器 7 与余热换热器 7 之间的出口管连接的冷凝器 8，与冷凝器 8 冷凝液体出口连接的分馏塔 9，与冷凝器 8 气体出口连通的尾气分离系统 12，用以分离贮存氢气、氯气和氯化氢气体，分别与分馏塔 9 的尾气缓冲容器和四氯化硅液体管路连接的三氯氢硅贮罐 10 和四氯化硅贮罐 11，其中四氯化硅贮罐 11 的 SiCl₄ 传送管路通过余热换热器 7 与进入该换热器中的反应气换热后，受热后的 SiCl₄ 通过原料输入管路 4 进入图 2 所示的环形多道对称结构的原料进料装置。

[0029]  本方法有如下步骤：

[0030]  第一步，将工作气体制备系统（氢气或氢气与氯气的混合气）由入口 3 送入等离子体发生器 2，其中氢气的输入流量为 1360～1800 摩尔/小时，氯气的输入流量为 420 摩尔/小时；

[0031]  第二步，开启等离子体发生器电源，向 500～800KW 的等离子体发生器 2 供电，工作气体在强电场作用下产生电弧放电形成热等离子体射流 13，此射流 13 在反应器 5 内形成 5000K～8000K 的高温环境；

[0032]  第三步，将原料四氯化硅通过原料输入管路 4，由图 2 所示的环形多道对称结构的原料进料装置喷入反应器 5 腔体内，与热等离子体射流 13 混合传热，均热后的混合气体温度 15000K～20000K，四氯化硅在此温度下被还原成三氯氢硅和多晶硅，另有 HCl 生成；

[0033]  第四步，将反应器 5 中的反应尾气，包括：完成还原反应的 SiHCl₃、多晶硅和 HCl，尚未反应的 SiCl₄，工作气中的氢气与氯气的混合气，从反应器 5 中引至气体缓冲容器 6，通过体积膨胀使反应尾气降温至 1000～1100K，反应尾气中的多晶硅沉积于气体缓冲容器 6 的底部，并将其收集；

[0034]  第五步，反应尾气进入余热换热器 7，与设置在该余热换热器 7 内、外连四氯化硅贮罐 11 的四氯化硅输送管路换热，换热后反应尾气的温度降至 400～500K；

[0035]  第六步，换热降温至 400K～500K 的反应尾气，由余热换热器 7 的出气口引入气固分离装置，将尾气中的残余多晶硅分离出来；

[0036]  第七步，将分离出多晶硅后的尾气输入冷凝器 8，温度降至 280K～300K，将反应尾气中的 SiHCl₃ 和残余 SiCl₄ 液化；

[0037]  第八步，将液化的 SiHCl₃ 和 SiCl₄ 的混合液送入分馏塔 9，进行分馏，将分馏后的 SiHCl₃ 和 SiCl₄ 液体分别送入各自的贮罐中贮存；

[0038]  第九步，将未液化的氢气、氯气和 HCl 混合气体，由冷凝器 8 的出气口输出至多晶硅生产厂的尾气处理系统 12，经二级冷凝器温度降为 175K，分离出 HCl 液体，将剩余的氢气和氯气分离后循环回等离子体发生器 2，作为工作气体使用。

[0039]  图 2 标示出原料进料装置是环形多道对称结构，四氯化硅原料输入管路 4，将SiCl₄ 原料 14 输入环形原料进料装置，经该装置上的辐射对称喷口将原料喷入反应器 5 形成相向对撞汇聚，有利于原料与等离子体射流间的质量传递和热传递，使两者迅速均热，从
而提高了反应速率和转化率。

【0040】图3标示出的反应器5是收缩式“Y”型结构，它的上段是漏斗形状，下段是管状结构。上段漏斗形有利于原料与等离子体射流13间进一步的质量传递和热传递，使两者迅速均热，下段收缩成管状有利于约束均热后的反应气15减少热量损失，并保证反应器5中的温度在5000K~8000K范围内，反应过程得以有效稳定进行。

【0041】图4标示出气体缓冲容器6是容积很大的夹套水冷结构，内置有换热器18，与“Y”型反应器5有机结合，实现对气体的冷却。其原理是，“Y”型反应器5狭长的管状段构成节流区，反应气体在节流区形成高速射流13，喷入气体缓冲容器6内体积骤然膨胀，温度降低至1000K~1100K，同时反应气在缓冲容器6中流速迅速降低，反应气中的产品多晶硅在缓冲容器6底部沉积，接着反应气进入余热换热器7。

【0042】上述过程，原料四氯化硅被转化成三氯氢硅和多晶硅，并副产氯化氢。各种物质实现封闭循环使用，整个化工过程满足零排放。

【0043】本方法为成熟的工业工艺方法，可以直接在实际工程中应用。目前的设计规模是单套设备-等离子体发生器功率为1000KW，生产能力为700吨三氯氢硅/年，生产三氯氢硅时四氯化硅转化率为60%~80%，三氯氢硅收率为50%~80%；生产多晶硅时多晶硅收率为25%~45%。
图4