发明名称 连续模制巧克力的方法和设备以及由此制造的产品

摘要
本发明涉及用于连续模制精制的巧克力片、巧克力块等的方法。本发明还涉及用于该方法的设备，其中包括低温的转动模具，其中具有至少一个能够使液体巧克力沉积在其中的凹槽。当转动模具转动时利用保持/浇注带使液体巧克力定位。当液体巧克力与转动模型和保持/浇注带接触时冷却和部分凝固，并且将模制巧克力从凹槽中取出。本发明还披露了利用该方法和设备生产的新颖的精制巧克力模制产品，其中具有精细的表面图案和良好的表面光泽。
1. 一种用于连续模制精制的巧克力块的方法，该方法包括：
   (a) 将液体巧克力供给到在冷却的转动模型表面中的凹槽中，所述模型具有内腔；
   (b) 将温度低于10℃的冷却剂供给到所述内腔中以降低所述凹槽的温度；
   (c) 利用连续的保持/浇注带将液体巧克力容纳在凹槽中，保持/浇注带将液体巧克力保持在凹槽中直至液体巧克力凝固成至少部分凝固的模制巧克力；以及
   (d) 将模制巧克力从保持/浇注带上的凹槽中取出。

2. 如权利要求1所述的方法，其特征在于，巧克力与冷却的转动模型接触的表面面积和巧克力与保持/浇注带接触的表面面积之比小于4.5:1。

3. 如权利要求1所述的方法，其特征在于，所述凹槽的侧壁与垂直于转动模型的径向表面的线之间形成一个大于7度的角度。

4. 如权利要求1所述的方法，其特征在于，所述液体巧克力以在27℃至32℃之间的温度被供给到所述凹槽中。

5. 如权利要求1所述的方法，其特征在于，所述模制巧克力以小于25℃的平均温度从所述凹槽中取出。

6. 如权利要求5所述的方法，其特征在于，所述模制巧克力以在15℃至20℃之间的平均温度从所述凹槽中取出。

7. 如权利要求1所述的方法，其特征在于，被供给给所述转动模型的冷却剂具有在-5℃至0℃之间的温度。

8. 如权利要求1所述的方法，其特征在于，在液体巧克力的供给之前供给给所述转动模型的冷却剂所提供的凹槽的表面温度基本上等于所述冷却剂的温度。

9. 如权利要求1所述的方法，其特征在于，所述将冷却剂供给到转动模型的步骤包括使冷却剂流过在所述转动模型中的腔。
10. 如权利要求9所述的方法，其特征在于，所述冷液剂包括丙二醇。

11. 如权利要求1所述的方法，其特征在于，所述凹槽的深度在1/32英寸（0.08厘米）至1英寸（2.54厘米）之间。

12. 如权利要求5所述的方法，其特征在于，当在所述模制巧克力的一个表面部分中的巧克力凝固的同时在所述模制巧克力的内部中的巧克力部分凝固时将模制巧克力从转动模型中取出。

13. 如权利要求5所述的方法，其特征在于，所述液体巧克力在所述凹槽中的停留时间在30秒至45秒之间。

14. 如权利要求1所述的方法，其特征在于，所述凹槽是连续沟槽，并且以连续的模制带的形式将模制巧克力从所述连续沟槽中取出。

15. 如权利要求14所述的方法，其特征在于，所述方法还包括将连续的模制带切割成不连续的段的步骤。

16. 如权利要求1所述的方法，其特征在于，所述方法还包括在所述液体巧克力处于凹槽中的同时将第二食品材料沉积在所述凹槽中。

17. 如权利要求16所述的方法，其特征在于，所述第二食品材料是巧克力。

18. 如权利要求1所述的方法，其特征在于，在将所述液体巧克力供给到所述凹槽中的步骤之前对所述凹槽进行加热以使温度其暂时提高5℃至20℃之间。

19. 如权利要求1所述的方法，其特征在于，所述方法还包括在将所述模制巧克力从所述凹槽中取出的步骤之后对所述模制的巧克力进行热调节。

20. 如权利要求1所述的方法，其特征在于，所述使保持/浇注带与在凹槽中的模制巧克力接触的步骤包括，在所述模制巧克力经过转动模型的时钟6点的位置之后，使一个凸轮系统与所述保持/浇注带接触，从而增大将所述模制巧克力从所述凹槽中取出的作用力。

21. 一种利用如权利要求1所述的方法生产的连续模制巧克力产品。
22. 一种利用如权利要求1所述的方法生产的连续模制巧克力产品，具有连续和精确的连结板的形状，厚度在1/32英寸（0.08厘米）至1/4英寸（0.635厘米）之间。

23. 一种利用如权利要求1所述的方法生产的连续模制巧克力产品，其具有光滑表面。

24. 一种利用如权利要求1所述的方法生产的连续模制巧克力产品，具有由在转动模型中的凹槽表面上的图案提供的表面图案。

25. 一种用于连续模制巧克力产品的设备包括：

   基本上为空心圆柱形的转动模型，所述转动模型具有内腔，在所述转动模型的外径向表面部分上具有至少一个凹槽，所述凹槽具有一个开口和一个表面区域；

   用于将转动传递给所述基本上为圆柱形的转动模型的马达；

   通向所述内腔的导管以使一个冷却剂源与所述内腔相连；

   用于将液体巧克力沉积在所述凹槽上的供给装置；

   定位保持/浇注带以保持所述液体巧克力在所述凹槽中，保持/浇注带适于随着转动模型的转动而连续移动；

   其中，所述开口具一个区域并且凹槽的表面区域与开口的区域的比小于3:1；以及

   所述凹槽的侧壁与垂直于转动模型的径向表面的线之间形成一个大于7度的角度。

26. 如权利要求25所述的设备，其特征在于，所述设备还包括在所述保持/浇注带附近的第二腔，以及与所述第二腔相通的导管以使冷却剂在所述腔中连续循环，从而能够降低所述保持/浇注带的温度。

27. 如权利要求25所述的设备，其特征在于，所述转动模型具有金属表面。

28. 如权利要求25所述的设备，其特征在于，所述至少一个凹槽是一个单一的连续沟槽。

29. 如权利要求25所述的设备，其特征在于，所述设备还包括：一个凸轮系统，在所述巧克力与所述保持/浇注带接触经过所述转动模
型的6点的位置之后，凸轮系统适于保持所述保持/浇注带与所述凹槽内的巧克力接触。
连续模制巧克力的方法和设备
以及由此制造的产品

本发明的背景技术
本发明的技术领域
本发明涉及巧克力的模制。特别是，所披露的方法和设备涉及在旋转模型上的巧克力片、巧克力块等的连续模制。
相关技术的描述
具有所需三维形状或者在表面上刻有图像或者图案的精制巧克力成品通常是利用模制的方法生产的。在这里称之为“模制的巧克力”。精制巧克力成品可是一种实心块、空心壳或者充填有诸如软糖料、软糖或者软饴糖的壳（Chocolate, Cepoa and Confectionery: Science and Technology by Bernard W. Minifie, Third Edition, page 183,其全部内容在这里作为参考）。无论精制巧克力成品采用何种具体形式，所有的精制巧克力成品都具有诸如良好的表面光洁度和表面光泽的特性。另外，无需对这些精制巧克力成品进行进一步的加工，诸如利用巧克力包覆，这对于产品仅能够提供一种自制外表并且缺乏良好的表面光泽和精细的表面细节。

常规模制通常使用数量很大的模型，这些模型通常是用聚碳酸酯制成的。这些聚碳酸酯模型通常是平的，高度约为1英寸，长度在1至2英尺之间并且宽度在1至5英尺之间。

用于操控和处理这些模型的设备很大并且在所有的糖果生产设备中是最复杂和昂贵的。模型改变和模型加工也是比较昂贵的，生产多种形状的巧克力产品的成本通常是较高的。

在常规的模制方法中，巧克力混合物在大约45℃的温度下开始融化并且利用搅拌冷却的方式使其在大约29至30℃的温度下调和以生产调和的巧克力。巧克力的调和使百分比很小的脂肪形成晶种，并且使
这些品种散布在整个液体巧克力的脂肪液相中。液体调和巧克力接着
沉积在聚碳酸酯模型中。对模型进行振动以去除气泡并且将巧克力分
配到模腔中。这些步骤对于模制表面细节的再现和获得有光泽的精制
成品表面是重要的。实际上，如果巧克力的粘性太高或者已经部分凝
固，所获得的精制巧克力成品的外观将是较差的。会遇到诸如在表面
上存在气泡、低光泽以及较差或者不完整的表面细节的缺陷。这样，
为了适当地模制巧克力精制成品，仅在充填模型后形成最终的巧克力
结构（即，当巧克力沉积在模型中时巧克力必须仍然保持液态）是重
要的。

接着，使模型和巧克力被冷却，并且巧克力硬化，最后将定形的
巧克力从模型中取出。将巧克力从模型中取出通常包括使模型倒转并
且使它们略微变形，或者击打模型以使模制的巧克力利用其自身的重
量下落。

这些方法使最终产品的尺寸、形状和光洁度以及生产效率受到限
制。常规的巧克力模制方法需要大量的设备并且占据很大的空间，是
最慢的糖果生产方法。较好的生产速度是每分钟15至20个模型，每分
钟20至25个模型更好，最好是每分钟25至30个模型。为了达到这些高
生产速度，需要密切关注该方法。

另一个重要限制是，精制巧克力成品的模制涉及产品的尺寸。在
本领域中早已知道，约为0.5克或者更小的模制巧克力块不易于脱模并
且所产生的实际影响是，使糖果制造商生产较大的巧克力块。这个问题
是由于这些小巧克力块与模型接触的表面积与其质量之间的比率太高
而造成的。脱模方法实质上是利用重力使巧克力块与模型分离。在
模型被敲打或者锤击的情况下以及在使用挠性模型的情况下都是如
此。小巧克力块的较小的质量意味着克服将巧克力块保持在模型中的
吸引力的重力较小。这样，非常需要在本领域中开发用于连续模制很
小的精制巧克力块成品等的方法。

现有技术中已经披露了用于连续模制食品的方法，但是这些方法
不适用于模制巧克力精制成品的生产。
例如，美国专利US 4,059,378中披露了一种连续模制巧克力夹心、热糖膏、牛奶巧克力软糖、弹性或者非弹性的咀嚼或者牛轧糖块、奶糖等的方法，这种方法无需挤出设备。这些“夹心”材料不受到与模制巧克力一样的功能要求。没有披露将液体巧克力供给到模型上的凹槽，并且该发明实际上限于夹心制造。

美国专利US 4,059,378中披露的方法和设备没有提供一种用于连续凝固和模制巧克力片、巧克力块等的装置，这是由于该方法不能提供模制巧克力块精制成品的适合的光洁度或者纹理。

很多的功能要求需要不夹心的模制巧克力。模制巧克力的表面通常必须具有精细的表面设计和良好的表面光洁度。在诸如美国专利US 4,059,378中披露的成形设备中不能形成具有良好的表面光洁度的适当凝固图案。美国专利US 4,059,378中的设备和方法特别涉及糖块（诸如在该专利中特别提及的夹心或者奶糖块等）的模制。该设备和方法使用基本凝固的糖块，接着利用一种“用于将糖块压入模制缸体的模制腔中的输入缸体”形成糖块。显然，糖块基本上是凝固或者硬的，并且该专利强调需要“不影响糖块原始结构的轻柔模制方法”。

明显相反的是，用于模制巧克力块精制成品的模制方法需要利用易于流入到模腔中并且没有结构的液体巧克力。液体巧克力流入到模腔中的能力能够确保良好的表面细节、良好的光泽和适合的最终产品纹理（即，良好的“外观”）。

已公开的英国专利申请GB 2,337,387 A中披露了一种用于模制食品的方法和设备。在该方法中，同时形成在两个分离的棍中的巧克力半部在两个棍子之间的“棍隙”中被压在一起和成为一体。该发明是已为人们所知的棍成形中心技术的进一步改进，通常利用挂糖衣对其进行进一步处理以提供巧克力涂层或者硬糖壳层。这些模制成形技术的产品不能提供高质量特性或者模制巧克力块精制成品。实际上，GB 2,337,387 A的产品是由巧克力连续连结板连接的巧克力片，必须利用被称为修边的研磨方法去除巧克力连续连结板。修边方法会使巧克力产品的表面光洁度受到磨损，从而留下粗糙的非精制外观。结果
是使用不稳定的复杂的供给和去除机构。

其他方法描述了不使用旋转技术的精制巧克力的模制。例如，已公开的国际申请WO98/30111描述了巧克力成品的成形方法，其中包括使巧克力组分与一种激冷成形装置接触，并且该申请的全部内容在这里作为参考。该申请没有描述在旋转模型上的连续模制。

本发明的概述

本发明在这里提出了一种用于连续模制精制的巧克力块的方法，该方法包括：

（a）将液体巧克力供给到在冷却的转动模型表面中的凹槽中，所述模型具有内腔；

（b）将温度低于10℃的冷却剂供给到所述内腔中以降低所述凹槽的温度；

（c）利用连续的保持/浇注带将液体巧克力容纳在凹槽中，保持/浇注带将液体巧克力保持在凹槽中直至液体巧克力凝固成至少部分凝固的模制巧克力；以及

（d）将模制巧克力从保持/浇注带上的凹槽中取出。

巧克力与冷却的转动模型接触的表面积和巧克力与保持/浇注带接触的表面积之比小于4.5:1。该比值小于3.5:1较好，小于3:1更好，最好小于2:1最好。

在一个方面，本发明所涉及的方法包括使液体巧克力与在转动模型中的冷却凹槽接触一段时间以使巧克力的表面充分凝固，并且可有效地将巧克力块从转动模型中取出，同时巧克力块的内部保留较多的流体直至将巧克力块从转动模型中取出后。在另一个方面，本发明所涉及的方法提供能够以一种可靠和有效的方式生产小的精制模制巧克力块的装置。巧克力在与保持/浇注带接触的同时凝固在巧克力块和带之间产生一个强大的吸引力。当保持/浇注带与转动模型分离时，该作用力能够使小巧克力块有效地脱模。

本发明所涉及的一种用于连续模制巧克力产品的设备包括：基本上为圆柱形的转动模型，所述转动模型具有内腔，在所述转动模型的
外径向表面部分上具有至少一个凹槽。在转动模型转动时，将冷却剂供给到其内腔中以使所述凹槽表面温度保持在接近冷却剂温度的温度，小于10℃。当模型转动时，供给装置将液体巧克力供给到所述凹槽中；以及用于限制被沉积在所述凹槽中的液体巧克力的保持/浇注带随着转动模型的转动而移动。凹槽的开口具有一个区域，并且巧克力与冷却剂的转动模型接触的表面积和巧克力与保持/浇注带接触的表面积之比小于4.5:1。该比值小于3.5:1较好，小于3:1更好，最好小于2:1最好。一般认为，较高的比值需要增大在转动模型上的冷却时间，或者利用较低的冷却温度。为了将预制的巧克力从凹槽中取出，所述凹槽的侧壁与垂直于转动模型的径向表面的线之间形成一个大于7度的角度。另外，当液体巧克力与保持/浇注带接触而凝固时，它实质上被浇注成带的表面轮廓，提供了巧克力与带的瞬时接合，便于脱模。

附图的简要说明

图1示出了本发明的一个实施例所涉及的设备。

图2示出了本发明的一个实施例所涉及的与转动模型和保持/浇注带相互配合的凸轮系统。

图3示出了本发明的一个实施例所涉及的与转动模型和保持/浇注带相互配合的凸轮系统，其中示出了预制的巧克力块已经从该轮中取出的状态。

图4示出了本发明的一个实施例所涉及的用于将液体巧克力供给到凹槽中的装置。

优选实施例的详细描述

术语“巧克力”指的是所有巧克力或者具有脂肪相或者类似脂肪的组分的类似巧克力的组分。当本发明在某些方面涉及巧克力的脂肪或者类似脂肪的组分的特性控制，而涉及的不是巧克力内的非脂肪材料，那么该术语包括所有巧克力和类似巧克力的组分。该术语例如包括标准的巧克力和非标准的巧克力，即，包括具有符合美国工业标准（SOI）的组分和不符合美国工业标准（SOI）的组分的巧克力，分别包括黑巧克力、烘焙巧克力、牛奶巧克力、甜巧克力、半甜巧克力、
酪乳巧克力、脱脂乳巧克力、混合乳制品巧克力、低脂肪巧克力、白巧克力、充气巧克力、复合涂层、非标准巧克力和类似巧克力的组分，除非是特定的。

在美国，巧克力受由U.S. Food and Drug Administration（FDA）根据the Federal Food, Drug and Cosmetic Act建立的统一标准的制约。在美国已很好地建立用于各种类型的巧克力的定义和标准。非标准巧克力是指具有落在标准巧克力特定范围以外的组分的巧克力。

巧克力还包括含有碎屑固体或者利用一种碎屑方法完全或者部分制成的固体的巧克力。

例如当营养碳水化合物加甜剂被部分或者完全替代；或者当可可油或者乳脂肪被部分或者完全替代；或者当具有模仿牛奶、黄油或者巧克力的香料的组分被添加或者在巧克力或者其组合物的FDA统一标准以外对配方进行的其他附加或者删减时，能够产生非标准巧克力。

为了与此处所披露的设备结合使用，对巧克力的要求仅是，在巧克力被供给到转动模型时，该巧克力是液态的以及（如果该巧克力是一种调和系统）被调和的。

如图1中所示，液体调和巧克力在转动空心模型5的上部从巧克力供给装置1被泵送到在转动空心模型5上的凹槽3中。所述模型通常是圆柱形的。转动模型5的“上部”指的是转动模型5的上半部。优选的是，所述供给装置相对于转动模型位于时钟的10点钟和2点钟位置之间。如图1中所示，巧克力最好在所述模型的正上方被直接供给到凹槽中，即，位于时钟12点钟的位置。可设置第二供给装置以与液体巧克力一起将其他材料同时沉积在凹槽中。

如图1中所示，该凹槽可是连续的沟槽，在这种情况下，所形成的模制巧克力将以一种连续带的形式从转动模型中被取出，也可提供不连续的凹槽，从而能够产生不连续的模制巧克力块。

例如利用被供给到转动模型5的内部中的冷却剂对凹槽3的表面进行冷却。在优选实施例中，冷却剂是丙二醇，但是也可使用一种商业上的冷却剂，诸如由Dow Chemical提供的Syltherm®，甚至可使用盐
水溶液。最好，冷却剂被连续地在系统中循环。另外，冷却剂可被供给到在接近保持/浇注带的区域中，例如被供给到如下面描述的在保持／浇注带下方的腔中。如果需要通过保持/浇注带的冷却，那么可从具有较高热导性的材料中选择制造该带的材料。

凹槽3的表面和转动模型5是由金属制成的，以能够更好地进行液体巧克力与冷却剂之间的热交换。例如，模型5可由抛光的铝、镍钢、不锈钢、镀铬钢或者其他材料制成。具体的材料没有特别限制，只要能够在所需的温度下（即，在接近冷却剂的温度下）可使凹槽的表面保持稳定性即可。该实施例使用被抛光至8微米的光洁度的直径为8英寸的铝轮，但是，该尺寸可根据所需的产品的尺寸和生产率而被改变。

凹槽的表面基本上是光滑的，尽管该表面的部分可被蚀刻或者机械加工以形成将被压印在精制的巧克力产品中或者从精制的巧克力产品中凸出的图案。在一个优选实施例中，该凹槽是连续的沟槽，它可以具有图案，并且从所述带中取下的巧克力产品是连续的带状产品，接着可利用切断机9将其切割成不连续的块。

在大约27°C至32°C之间（最好为30°C）的温度下将液体巧克力供给到凹槽3中。在该温度下，调和巧克力将具有巧克力模制所需的流动性。

在优选实施例中，如图3中所示，“靶座”设置在供给装置和转动模型之间以有助于将液体巧克力供给到凹槽中。该靶座包括通常由金属（诸如铝）制成的靶座体15，靶座体15与接触表面13相连，接触表面13可由低摩擦材料（例如，Teflon®（聚四氟乙烯））制成。该接触表面以密封的形式与转动模型接触。在图4中，为了能够更清楚地示出，其中的接触表面与转动模型分离。液体巧克力通过卫生设备配件17被供给到该凹槽中。以这样的方式使用靶座能够避免在转动模型转动时必须测量进入到凹槽中的液体巧克力的精确量的需要。

巧克力与转动模型接触能够冷却并且部分凝固。通过将一种温度在-40°C和+10°C之间的冷却剂供给到所述转动模型的内腔中能够保持
转动模型的表面温度，冷却剂温度在-20℃和+5℃之间较好，冷却剂温度在-5℃和0℃之间最好。最好，模制巧克力的表面凝固时巧克力达到足以从转动模型取下的完整性，而模制巧克力的内部可保持更多的流体。

为了得到精制模制巧克力块通常所需的光泽表面，当将巧克力注入到模型中时巧克力必须是液态的以达到所需的光滑表面。

在一些实施例中，需要在液体巧克力即将沉积在凹槽中之前对凹槽3进行短暂的加热。根据需要，利用诸如热空气流、红外加热器或者本领域普通技术人员已知的其他装置进行的加热足以使凹槽的表面温度临升到大约5℃、10℃、15℃或者20℃。以这样的方式使凹槽变暖能够提高模制巧克力的表面光泽。在本发明的另一个实施例中，在未调和的巧克力需要被模制的情况下，可以较高的温度将未调和的巧克力引入以提高精制的模制巧克力的光洁度。这还有助于在模制过程中保持巧克力的流动性。

使巧克力冷却和凝固到可从转动模型上取下的温度所需的时间是由模型的尺寸、模型的转速、凹槽中的巧克力的容积、凹槽的表面温度和当巧克力冷却和凝固时巧克力的热交换率决定的。通常，使巧克力部分凝固所需的时间在20至60秒之间，在25至50秒之间较好，最好在30至45秒之间。

这样，模型的尺寸本身不是特别重要的，只要巧克力具有足以充分凝固的时间即可。轮的尺寸及其转速可被调节以提供可从转动模型上取下部分凝固巧克力。

当模型转动时，随着转动模型5一致地移动的保持/浇注带7部分地覆盖所述凹槽。尽管模型最好与保持/浇注带一致地连续转动，但是模型和带也可以均匀中断的方式转动，并且仅在转动过程中将液体巧克力提供给模型。在巧克力凝固和浇注到带时，保持/浇注带用作能够将液体巧克力保持在模拟的凹槽中的保持装置。该带例如可由塑料、纤维-塑料复合材料或者金属制成。可通过将连续循环的冷却剂提供到在带中处于转动模型下游的一部分下方的腔11中对保持/浇注带进行冷
却。保持/浇注带可被机加工或者蚀刻以在精制巧克力条或者块中面对保持/浇注带的表面上提供图案。

在带7上从凹槽3中取下精制模制巧克力。巧克力被取下时的状态是重要的。如果巧克力没有充分凝固，那么巧克力条或者块将不能保持其完整性。优选的是，从凹槽3中取下的巧克力的平均温度低于25°C，低于22°C较好，最好在15°C和20°C之间。巧克力的调和及其脂肪含量将决定巧克力达到足以使巧克力从转动模型中取下的完整状态的温度。在一些实施例中，在凹槽通过时钟6点的位置之后，保持/浇注带与在凹槽中的部分凝固巧克力保持压紧关系。当带拉离转动模型时，带与在凹槽中的巧克力之间的附着在部分凝固的巧克力上产生垂直作用力以有助于将其从凹槽中取下。可提供任何适合的装置以使保持/浇注带以这种方式与转动模型保持接触。例如，如图2和图3中所示，在转动模型附近设置在保持/浇注带下方的凸轮19可周期性地将带压在轮上接着松开，同时另一个凸轮21收紧由于该移动而在保持/浇注带中产生的松弛部分。以这样的方式与该带一起工作的凸轮系统能够使带与经过时钟6点的位置后的巧克力接触，有利于巧克力的取出，这是由于在该位置处用于使巧克力分离的作用力较大。

与在从转动模型中取出的模制巧克力的温度相关的，术语“平均温度”指的是在将温度探头插入到巧克力中并且使巧克力与环境平衡隔离而由探头所测量的温度。

凹槽的尺寸设定必须使巧克力能够从凹槽中取出。与常规的巧克力模制技术相同，通常提供与垂直方向成大于7度的分离角以使巧克力能够从凹槽中滑出。与转动模型结合使用的凹槽的分离角大于8度较好。分离角最好大于10度。

在一些情况下，产品可作为巧克力的连续连结板从所述轮上取下，所述巧克力的连续连结板具有纹理。在一些优选实施例中，以这种方式生产的薄连结板的厚度在1/32英寸(0.08厘米)至1/4英寸(0.635厘米)之间，并且具有由巧克力和空间制成的花边状的图案。根据本发明可生产特别设计的、非随机的和容易复制的巧克力结构。本领域
技术人员应该理解的是，利用常规技术不能模制具有这些特征的模制
巧克力连结板。

在这些常规的参数内，凹槽的深度没有受到特别的限制，通常在
1/32英寸（0.08厘米）至1英寸（2.54厘米）之间。类似地，凹槽的宽
度可大大地改变，直至2英寸（5.08厘米）或者更高。实施例中使用的
凹槽的深度为3/8英寸（0.95厘米），宽度为1英寸（2.54厘米）。本
发明所涉及的连续模制方法的一个优点是，与现有技术相比，巧克力
片具有更大的宽度与厚度的比率，并且可容易地获得更精细的完整结
构细节。

凹槽的温度和转动模型的转速可被设定以获得从模型的底部排出
的部分凝固（塑性）巧克力带。接着可利用切断机9将连续带切割成所
需的段，在常规的冷却通道中被进一步冷却，并且被包装。但是，如
上所述，凹槽的尺寸没有受到特别的限制并且代替连续带，精制的巧
克力可采用不连续的块。

通常，本发明所涉及的设备具有在轮和保持/浇注带附近的去除湿
气装置以调节模制巧克力周围的空气。如上所述，在将巧克力从转动
模型取出后，在保持/浇注带下方的冷却装置可以使巧克力得到进一步
冷却。

通常，在一些情况下，必须对模制巧克力块进行进一步的热调节
以确保脂肪相的适合的稳定性。例如，基于可可油的巧克力需要在脱
模后在“冷却”通道中进行调节以形成适合的结晶，从而保证坯料的
稳定性。这样的调节也使在模制的巧克力块的中心存在更多的液相区
以完全和适当地凝固。最佳的温度调节包括在大约15℃和18℃之间的
温度下冷却10分钟。

利用本发明所涉及的方法生产的产品以及利用本发明所涉及的设
备模制的产品包括整个具有均匀的组分并且利用单一沉积在转动模型
中制成的巧克力块。本发明所涉及的其他产品是利用相同或者不同的
原料源同时沉积在转动模型中制成的不同类型的巧克力（诸如白和黑
巧克力）或者与其他食品材料结合的巧克力。本领域普通技术人员显
然能够在后面的权利要求的范围内进行其他的改进和变型。

实例

下列实例说明了在本发明的保护范围内的一些产品和制造产品的方法。当然，这些实例不能认为是对本发明的任何限制。在后面的权力要求的范围内可对本发明进行各种改进和变型。

实例1

DOVE® Milk Chocolate，一种市售的牛奶巧克力在Savage Bros. Co. Batch Tempering System中被熔化和调和。该巧克力从45℃冷却到28℃以产生稳定的可可油结晶和不稳定的多晶型物。调和的巧克力接着被略微加热到31℃以使不稳定的晶体熔化。如利用Tricor Tempermeter Model 501所确定的，调和的巧克力处于31℃并且具有6CTU（°F）的调和度和-0.5的斜度。接着该巧克力被泵送到转动模制装置。

转动模制装置是由直径为8英寸的金属轮构成的，利用温度为5℃的冷却剂对其进行冷却并且以0.435 rpm转动。沟槽被切割在该轮中，该沟槽的总体尺寸为宽1英寸，深3/8英寸并且壁的锥度为7度。巧克力通过平齐地安装在转动轮上的管被供给到该沟槽内。利用固体的镀覆有聚亚安酯的带将巧克力封闭在沟槽中，所述带被卷绕在转动轮上并且在从时钟12点的位置到时钟6点的位置与转动轮同向转动。在时钟6点的位置处，固体的巧克力带与轮分离并且脱离该轮被装载在输送带上。接着将连续的巧克力带被切割成段以形成巧克力条。载有巧克力条的带经过位于输送带下方的平台时被循环的冷却介质冷却到-10℃。该平台使巧克力条的底部凝固以使它们与带分离。巧克力条接着被输送至Sollich冷却通道。

该冷却通道包括空气温度为15℃的段。在冷却通道中停留时间为10分钟。所产生的精制巧克力从冷却通道中排出并且具有良好的光泽、哑光稳定的表面。

实例2

如实例1所述的巧克力被泵送到如实例1中所述的模制装置中，但
该模制装置没有采用在轮中的沟槽。在该实例中，栅格图案被切割在轮中并且排列间隔为1/4英寸×1/2英寸。轮的转速为0.9 rpm并且生产一种精制的具有精确模制的规则松网的产品。所产生的精制巧克力从冷却通道中排出并且具有良好的光泽、坯料稳定的表面。

实例3

如实例1所述的巧克力被泵送到如实例1中所述的模制装置中，但该模制装置没有采用在轮中的沟槽。在该实例中，沟槽被切割总体尺寸为宽2英寸，深1/4英寸并且壁的锥度为7度。轮的转速为0.9 rpm并且被提供有温度为1℃的冷却剂。所产生的精制巧克力从冷却通道中排出并且具有良好的光泽、坯料稳定的表面。

实例4

如实例1所述的巧克力被泵送到如实例1中所述的模制装置中，但该模制装置没有采用在轮中的沟槽。在该实例中，独立的腔被切割在轮中以类似于“M&MS”® Brand Character。轮的转速为1.6 rpm并且被提供有温度为-10℃的冷却剂。所产生的精制巧克力从冷却通道中排出并且具有良好的光泽、坯料稳定的表面。
图 4