

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2014/152622 A1

(43) International Publication Date

25 September 2014 (25.09.2014)

(51) International Patent Classification:

C12Q 1/68 (2006.01) A61K 48/00 (2006.01)
C12N 15/11 (2006.01)

(21) International Application Number:

PCT/US2014/027541

(22) International Filing Date:

14 March 2014 (14.03.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/791,301 15 March 2013 (15.03.2013) US

(71) Applicants: **BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM** [US/US]; 201 West 7th St., Austin, TX 78701 (US). **BETH ISRAEL DEACONESS MEDICAL CENTER, INC.** [US/US]; 330 Brookline Ave., Boston, MA 02215 (US).

(72) Inventors: **KALLURI, Raghu**; 3726 Maroneal St., Houston, TX 77025 (US). **MELO, Sonia**; 5253 Fannin St., Apt. 2606, Houston, TX 77004 (US).

(74) Agent: **BYRD, Marshall P.**; Parker Highlander PLLC, 1120 S. Capital of Texas Highway, Building One, Suite 200, Austin, TX 78746 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

WO 2014/152622 A1

(54) Title: MIRNA BIOGENESIS IN EXOSOMES FOR DIAGNOSIS AND THERAPY

(57) Abstract: Methods for diagnosis and treatment of cancers by use of exosomes comprsing miRNAs and precursors thereof. For example, in some aspects, a cancer may be diagnosed or evaluated by determining the miRNA content of exosomes in a sample from a subject or by detecting miRNA processing in exosomes.

DESCRIPTION

MIRNA BIOGENESIS IN EXOSOMES FOR DIAGNOSIS AND THERAPY

[0001] The present application claims the priority benefit of United States provisional application number 61/791,301, filed March 15, 2013, the entire contents of which are 5 incorporated herein by reference.

[0002] The invention was made with government support under Grant Nos. EB003472, EB006462, CA135444, CA125550, CA155370, CA151925, DK081576, and DK055001 awarded by the National Institutes of Health and Grant Nos. EFRI-1240410, CBET-0922876, and CBET-1144025 awarded by the National Science Foundation. The 10 government has certain rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0003] The present invention relates generally to the field of molecular biology, oncology and medicine. More particularly, it concerns methods for detecting cancer by their 15 unique exosome content and methods for enhanced inhibitory RNA-based therapies.

2. Description of Related Art

[0004] All cells communicate with their surrounding environment via many different pathways, including growth factors, cytokines, hormones, chemokines, membrane-bound 20 proteins and lipids. Exosomes are capable of mediating such communications and achieve this across long distances (Mathivanan *et al.*, 2010; Kahlert and Kalluri, 2013). Communication via exosomes can likely overcome the limitations associated with stability and diffusion of growth factors/cytokines/chemokines/hormones (Mathivanan *et al.*, 2010). Exosomes are nano-vesicles of 30-140 nm in size, which contain proteins, mRNA, and 25 microRNAs (miRNAs) protected by a lipid bilayer (Cocucci *et al.*, 2009; Simons and Raposo, 2009; Simpson *et al.*, 2008; Thery *et al.*, 2002). Several recent studies demonstrated that exosomes are secreted by multiple cell types, including cancer cells, stem cells, immune 30 cells and neurons (Simpson *et al.*, 2008; Thery, 2001). It is noted that cancer cells secrete more exosomes than normal cells (Taylor and Gercel-Taylor, 2011). Moreover, exosomes are increased in the circulation of cancer patients when compared to normal subjects (Logozzi *et al.*, 2009; Taylor and Gercel-Taylor, 2008); however, a functional role remains unknown.

Recent evidence suggests that exosomes may play an important role in cancer progression and metastasis (Luga *et al.*, 2012; Peinado *et al.*, 2012; Yang *et al.*, 2011).

[0005] The idea that exosomes mediate the transfer of RNAs and miRNAs between cells further increases the complexity of cell-to-cell communications in the body. RNAi is a natural biological process within living cells that participates in the control of gene expression and activity. Extracellular miRNAs were initially only thought to be contained inside exosomes (Valadi *et al.*, 2007). Since then, several reports confirmed the existence of miRNAs in apoptotic bodies (Zernecke *et al.*, 2009), high- and low-density lipoproteins (Vickers *et al.*, 2011) (HDL/LDL), large extracellular vesicles, termed microvesicles, and are associated with AGO2 (Arroyo *et al.*, 2011; Li *et al.*, 2012; Turchinovich *et al.*, 2011). However, a recent report suggests that most miRNAs detected in human serum and saliva are mostly concentrated inside exosomes (Gallo *et al.*, 2012). The presence of miRNAs in exosomes offers the possibility of regulating gene expression of cells at distant sites (Guescini *et al.*, 2010; Valadi *et al.*, 2007; Mittelbrunn *et al.*, 2011; van Balkom *et al.*, 2013).
15 Via their regulation of mRNA translation, miRNAs coordinate the expression of entire sets of genes and shape the organism's transcriptome (Bartel, 2009).

[0006] miRNAs are enriched in exosomes derived from many different cell types (Valadi *et al.*, 2007). They are small non-coding RNAs of 18-24 nucleotides (nt) in length that control gene expression post-transcriptionally. They are synthesized via sequential 20 actions of Drosha and Dicer endonucleases and loaded into the RISC (RNA induced silencing complex) to target mRNAs (Bartel, 2009; Maniataki and Mourelatos, 2005). In the Dicer knockout mice, failure of miRNA biosynthesis results in lethality due to defective embryonic stem cell proliferation and differentiation (Bernstein *et al.*, 2003; Fukagawa *et al.*, 2004).

[0007] MicroRNAs operate via sequence-specific interaction and pairing of the 25 miRNA-associated RISC (composed of Dicer, TRBP and AGO2 proteins) with the target mRNAs (Bartel, 2009). This action consequently inhibits translation and/or causes mRNA destabilization (Filipowicz, 2005). The degree of complementarity of the miRNA and its mRNA target dictates the process of mRNA silencing, either via mRNA destabilization/degradation or by inhibition of translation (Ambros, 2004; Bartel, 2009). If 30 complete complementation is encountered between the miRNA and target mRNA sequence, the RISC complex acts to cleave the bound mRNA for degradation (Ambros, 2004; Bartel,

2009). If absolute complementation is not encountered, as in most cases of miRNAs in animal cells, translation is prevented to achieve gene silencing (Ambros, 2004; Bartel, 2009).

[0008] For a miRNA to be functional and achieve efficient miRNA-mediated gene silencing, it must be complexed with the RLC (RISCloading complex) proteins Dicer, TRBP and AGO2. Within the RLC, Dicer and TRBP are required to process precursor miRNAs (pre-miRNAs), after they emerge from the nucleus via exportin-5, to generate miRNAs and associate with AGO2. AGO2 bound to the mature miRNA constitutes the minimal RISC and may subsequently dissociate from Dicer and TRBP (Chendrimada *et al.*, 2005; Gregory *et al.*, 2005; Haase *et al.*, 2005; MacRae *et al.*, 2008; Maniataki and Mourelatos, 2005; Melo *et al.*, 2009). Single-stranded miRNAs by themselves incorporate into RISC very poorly and therefore cannot be efficiently directed to its target mRNA for post-transcriptional regulation (Tang, 2005; Thomson *et al.*, 2013).

[0009] Synthetic siRNAs (double-stranded) cause mRNA decay through perfect base pairing with their target mRNAs (Ambros, 2004; Bartel, 2009). Such siRNAs are loaded directly into the RISC proteins Dicer, TRBP and AGO2 due to its double stranded nature (Tang, 2005). A single-stranded miRNA cannot incorporate into RISC and therefore, cannot be directed to its target mRNA for translation inhibition or degradation (Tang, 2005).

[0010] Some reports have suggested that miRNAs contained in exosomes can influence gene expression in target cells (Ismail *et al.*, 2013; Kogure *et al.*, 2011; Kosaka *et al.*, 2013; Narayanan *et al.*, 2013; Pegtel *et al.*, 2010; Valadi *et al.*, 2007; Zhang *et al.*, 2010), but a question remains as to how efficient are these miRNAs in silencing mRNA if they are not incorporated into the RISC as pre-miRNAs for appropriate mRNA recognition and efficient arrest of translation. While mature miRNAs (single-stranded) cannot associate with RISC of target cells, pre-miRNAs of exosomes can to some extent induce gene silencing by co-opting the RISC proteins of the target cells. Nonetheless, such process is highly inefficient and slow due to potential saturated state of proteins involved in the miRNA biogenesis pathway of the target cells. A recent report showed the presence of Drosha and Dicer in exosomes from cell culture supernatants from HIV-1 infected cells and HIV patient sera (Narayanan *et al.*, 2013). Additionally, another study showed co-fractionation of Dicer, TRBP and AGO2 in late endosome/MVB (multivesicular body) (Shen *et al.*, 2013).

SUMMARY OF THE INVENTION

[0011] Exosomes secreted by cancer cells are unique relative to non-cancer exosomes, the cancer exosomes comprising a unique repertoire of miRNAs as well as active RNA processing RISC complexes. Such encapsulated RNA-RISC complexes could also be 5 used for cell-independent miRNA biogenesis and highly efficient mRNA silencing in target cells.

[0012] In one embodiment, the present disclosure provides a method of detecting a cancer biomarker in a subject comprising (a) obtaining a biological sample from the subject; (b) measuring the level of either (i) one or more miRNA(s) selected from the miRNAs 10 provided in Table 5 in an exosome fraction of the sample; (ii) a precursor miRNA; (iii) a RISC protein in an exosome fraction of the sample; or (iv) a miRNA processing activity (*e.g.*, primary miRNA and/or precursor-miRNA processing activity) in an exosome fraction of the sample; and (c) identifying the subject having or not having a cancer biomarker based on the measured level of said miRNA(s), precursor miRNA, RISC protein or miRNA processing 15 activity. In some aspects, the method comprises measuring the level of at least 2, 3, 4, 5, 6, 7, 8, 9, 10 of said miRNAs. In further aspects, the method comprises measuring the level of AGO2, TRBP, or DICER protein.

[0013] In some aspects, the biological sample is essentially free of cells. For example, the sample may have less than 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 cell(s). In one aspect, 20 the biological sample does not contain cells. In certain aspects, the biological sample may be a lymph, saliva, urine or blood (*e.g.*, plasma) sample. In a further aspect, the method may further comprise purifying an exosome fraction of the sample and/or increasing the production of an exosome fraction of the sample.

[0014] In certain aspects, the cancer is a breast cancer, lung cancer, head & neck 25 cancer, prostate cancer, esophageal cancer, tracheal cancer, brain cancer, liver cancer, bladder cancer, stomach cancer, pancreatic cancer, ovarian cancer, uterine cancer, cervical cancer, testicular cancer, colon cancer, rectal cancer or skin cancer. In certain aspects, the cancer is a breast cancer. In one aspect, the subject has previously been treated for a cancer or has previously had a tumor surgically removed.

[0015] In some aspects, identifying the subject as having or not having a cancer 30 biomarker further comprises correlating the measured miRNA level(s), precursor miRNA

level, RISC level or miRNA processing activity with a risk for cancer. In a further aspect, identifying the subject as having or not having a cancer biomarker further comprises analysis of the measured miRNA level(s), precursor miRNA level, RISC level or miRNA processing activity using an algorithm. In some cases, an analysis may be performed by a computer.

5 [0016] In certain aspects, the method of the embodiments further comprises measuring the level of either (i) one or more miRNA(s) selected from the miRNAs provided in Table 5 in an exosome fraction of the sample and a reference sample; (ii) precursor miRNA; (iii) a RISC protein in an exosome fraction of the sample and a reference sample; or (iv) a miRNA processing activity in an exosome fraction of the sample and a reference sample; and (c) identifying the subject as having or not having a cancer biomarker by comparing the level of miRNA(s), a precursor miRNA, RISC or miRNA processing activity in the sample from the subject to the level of miRNA(s), a precursor miRNA, RISC miRNA processing activity in the reference sample.

15 [0017] In some aspects, measuring RISC protein levels comprises performing a Western blot, an ELISA or binding to an antibody array. In other aspects, measuring miRNA levels comprises measuring processed miRNA levels. In some cases, measuring miRNA levels comprises performing RT-PCR, Northern blot or an array hybridization.

20 [0018] In some aspects, the method further comprises reporting whether the subject has or does not have a cancer biomarker. Reporting may comprise preparing a written, oral or electronic report. For example, the report may be provided to the patient, a doctor, a hospital or an insurance company.

25 [0019] In a further embodiment, the present disclosure provides a method of treating a subject comprising selecting a subject identified as having a cancer biomarker in accordance with the embodiments and administering an anti-cancer therapy the subject. For example, the method can comprise (a) obtaining the level of (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA, (ii) a RISC protein; or (iii) a miRNA processing activity, in an exosome fraction of a sample from the subject; (b) selecting a subject having a cancer biomarker based on the level of said miRNA(s), precursor miRNA, RISC protein or miRNA processing activity; and (c) treating the selected subject with an anti-cancer therapy. In certain aspects, the anti-cancer therapy is a chemotherapy, a

radiation therapy, a hormonal therapy, a targeted therapy, an immunotherapy or a surgical therapy.

5 [0020] In a further embodiment, the present disclosure provides a method of selecting a subject for a diagnostic procedure comprising (a) obtaining the level of either (i) one or (ii) a RISC protein; or (iii) a miRNA processing activity, in an exosome fraction of a sample from the subject; (b) selecting a subject having a cancer biomarker based on the level of said mRNA(s), RISC protein or miRNA processing activity; and (c) performing a diagnostic procedure on the subject. In one aspect, the diagnostic procedure comprises diagnostic 10 imaging. The imaging may be a biopsy, X-ray, CT, MRI or PET imaging.

15 [0021] In still a further embodiment, the present disclosure provides a tangible computer-readable medium comprising computer-readable code that, when executed by a computer, causes the computer to perform operations comprising (a) receiving information corresponding to a level of either (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA, (iii) a RISC protein; or (iv) a miRNA processing activity, in an exosome fraction of a sample from the subject; and (b) determining a relative level of one or more of said miRNAs, precursor miRNA, RISC proteins or a miRNA processing activity compared to a reference level, wherein altered level compared to a reference level indicates that the subject has a cancer biomarker.

20 [0022] In certain aspects, the operation of the tangible computer-readable medium further comprises receiving information corresponding to a reference level of (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA; (iii) a RISC protein; or (iv) a miRNA processing activity, in an exosome fraction of a subject not having a cancer.

25 [0023] In certain aspects, the tangible computer-readable medium further comprises computer-readable code that, when executed by a computer, causes the computer to perform one or more additional operations comprising: sending information corresponding to the relative level of miRNA; a precursor miRNA, RISC protein or miRNA processing activity, to a tangible data storage device.

30 [0024] In a further aspect, the reference level is stored in said tangible computer-readable medium. In one aspect, receiving information comprises receiving from a tangible

data storage device information corresponding to a level of miRNA; a precursor miRNA level, RISC protein or miRNA processing activity, in a sample from a subject. In some aspects, receiving information further comprises receiving information corresponding to a level of at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 of said miRNAs in a sample from a subject.

5 [0025] In some aspects, the computer-readable code, when executed by a computer, causes the computer to perform operations further comprising (c) calculating a diagnostic score for the sample, wherein the diagnostic score is indicative of the probability that the sample is from a subject having a cancer.

10 [0026] In a further embodiment, the present disclosure provides a method of detecting cancer biomarker in a subject comprising (a) obtaining a biological sample from the subject; (b) measuring the level of one or more miRNA(s) in the sample selected from the miRNAs provided in Table 5 or a precursor miRNA thereof; and (c) identifying the subject having or not having a cancer biomarker based on the measured level of said miRNA(s). In one aspect, the biological sample is essentially free of cells. In certain aspects, the biological sample 15 may be a lymph, saliva, urine or plasma sample. In one aspect, the method may further comprise purifying an exosome fraction of a body fluid.

20 [0027] In still a further embodiment, the present disclosure provides a method for delivery of active inhibitory RNA comprising contacting a cell with an inhibitory RNA that is provided in association with a RISC protein complex. In one aspect, the RISC protein complex comprises TRBP, DICER and AGO2. In some aspects, the inhibitory RNA is a siRNA or shRNA. In one aspect, the inhibitory RNA is a human miRNA.

[0028] In certain aspects, the inhibitory RNA and RISC protein complex are comprises in a liposome, a nanoparticle or a microcapsule comprising a lipid bilayer. In one aspect, the microcapsule is an exosome.

25 [0029] In some aspects, a method further comprises transfecting a cell with the inhibitory RNA and RISC protein complex. In another aspect, the method further comprises administering the inhibitory RNA and RISC protein complex to a subject.

30 [0030] In yet a further embodiment, the present disclosure provides a composition comprising a recombinant or synthetic inhibitory RNA in association with a RISC protein complex, said complex comprised in a liposome, a nanoparticle or a microcapsule. In one

aspect, the RISC protein complex comprises TRBP, DICER and AGO2. In some aspects, the inhibitory RNA is a siRNA or shRNA. In some aspects, the inhibitory RNA is a human miRNA. In certain aspects, the complex is comprised in a synthetic liposome, a nanoparticle or a microcapsule. In one aspect, the microcapsule is an exosome.

5 [0031] Certain aspects of the embodiments as detailed *supra* concern measuring a level of one or more miRNA(s) (or miRNA precursor) in an exosome fraction of a sample selected from those provided in Table 5. For example, a method can comprsing measuring a level of one or more miRNA selected from the group consisting of mmu-miR-709, hsa-miR-1308, mmu-miR-615-3p, hsa-miR-1260b, mmu-miR-1937a, mmu-mir-321-A, hsa-miR-615-10 3p, hsa-miR-1979, mmu-miR-1937b, hsa-mir-373, mmu-miR-1937c, hsa-miR-1273d-P, mmu-miR-720, mmu-miR-1274a, hsa-mir-565-A, mmu-miR-1931, hsa-miR-1246, hsa-mir-594-P, hsa-mir-321-A, mmu-miR-2145-1-P, hsa-mir-639-P, hsa-miR-720, hsa-miR-1280, mmu-miR-3473, hsa-miR-1260, hsa-miR-1281, mmu-miR-1224-P, mmu-miR-690, hsa-miR-375-P, hsa-miR-4301, mmu-miR-700, mmu-miR-125b-5p, mmu-miR-1191-P, hsa-miR-15 1274a, hsa-miR-3197, mmu-miR-1935, hsa-miR-1975-P, hsa-miR-4324, hsa-miR-886-3p, hsa-miR-1274b, mmu-miR-1957, hsa-miR-933, hsa-mir-675, hsa-miR-595, mmu-miR-2137, hsa-mir-572-P, mmu-miR-1195, hsa-miR-4294-P, mmu-mir-1899-P, mmu-miR-689-P, hsa-miR-199b-3p, hsa-miR-3117-P, mmu-mir-321-P, mmu-miR-1961-P, hsa-mir-10a, mmu-miR-669d-P, mmu-miR-1937b-2-P, hsa-miR-3125-P, mmu-miR-1934-P, hsa-miR-574-3p, hsa-20 miR-718, mmu-miR-1198, mmu-miR-2182-P, hsa-miR-1273, mmu-miR-2133-P, hsa-miR-92b*, hsa-miR-1290, hsa-miR-448, mmu-miR-689, mmu-miR-449a, mmu-miR-1937b-4-P, hsa-miR-4286, mmu-miR-1947, mmu-miR-342-3p, hsa-miR-1303-P, mmu-miR-2132, hsa-miR-4321-P, hsa-miR-4256-P, hsa-miR-4311, mmu-miR-130a, mmu-miR-1939, hsa-miR-1268-P, mmu-miR-31, mmu-miR-99b, mmu-miR-2141, hsa-miR-1202-P, mmu-miR-466b-25 3p, mmu-miR-2133, hsa-miR-1268, hsa-miR-466, mmu-miR-494, hsa-miR-1289, hsa-miR-320b, hsa-miR-4254, hsa-mir-7-3-P, hsa-miR-923, hsa-miR-764, mmu-miR-291a-3p, mmu-miR-883b-3p, hsa-mir-594-A, mmu-miR-1948-P, hsa-miR-206, hsa-mir-565-P, mmu-miR-467e*, hsa-miR-1826, mmu-miR-467a*, mmu-miR-1983, hsa-miR-324-5p, mmu-let-7c, mmu-miR-1965, hsa-mir-632-P, hsa-miR-181a*MM2GT/AC, hsa-miR-1265, hsa-miR-323b-30 5p, hsa-mir-1914, hsa-mir-1910, hsa-miR-21, hsa-miR-431*, hsa-miR-3135-P, mmu-miR-187-P, mmu-miR-126-3p, mmu-miR-669a-P, hsa-miR-367, mmu-mir-320-P, hsa-miR-181a*MM1G/C, mmu-miR-484-P, mmu-miR-467c-P, hsa-miR-3154, mmu-miR-466d-3p, hsa-miR-3162-P, mmu-miR-201, mmu-miR-1946a, hsa-miR-937, hsa-miR-3147, hsa-mir-

596-P, hsa-miR-3148, hsa-miR-1304, hsa-miR-222MM2GG/AC, mmu-miR-125a-5p, hsa-miR-1272-P, hsa-miR-638, hsa-mir-320, hsa-miR-545*, hsa-mir-1908-P, hsa-let-7d-v2-P, mmu-mir-30d-P, hsa-miR-4297, mmu-miR-182, hsa-miR-3166-P, hsa-miR-494, mmu-miR-669o-P, hsa-miR-566, mmu-miR-1188, mmu-miR-2134-AP, hsa-miR-4259-P, mmu-miR-152, mmu-miR-2134, hsa-miR-3193-AP, hsa-miR-125b, hsa-miR-3124-P, hsa-miR-10b, hsa-miR-455-5p, mmu-miR-144, hsa-miR-130a, hsa-miR-1285, hsa-miR-516b*, hsa-miR-27a, hsa-miR-138-1*, mmu-miR-471, hsa-miR-4298-P, hsa-miR-301b, hsa-mir-147-P, hsa-miR-362-5p, mmu-mir-471-P, mmu-miR-466a-3p, hsa-miR-561, hsa-miR-486-5p, mmu-miR-2861, hsa-miR-587, mmu-miR-375, hsa-mir-329-2-P, mmu-miR-2861-P, hsa-miR-144*, hsa-miR-1255a-P, hsa-mir-519a-2-P, hsa-miR-34c-5p, mmu-miR-466e-3p, mmu-miR-743b-5p, mmu-mir-350-P, mmu-miR-181d, hsa-miR-376a*, hsa-miR-1308-P, mmu-miR-467g, mmu-miR-1946a-P, hsa-miR-147-P, hsa-miR-923-P, mmu-miR-465c-5p, hsa-miR-891a, hsa-miR-28-5p, hsa-miR-4292, mmu-miR-677-P, hsa-miR-4257, hsa-miR-4326, hsa-miR-17*MM2GG/AA, hsa-miR-939-P, mmu-miR-2182, hsa-miR-220c-P, hsa-miR-3132-P, hsa-miR-532-5p, mmu-miR-1947-P, mmu-miR-29a, hsa-miR-3162, hsa-miR-375MM1C/G, hsa-miR-768-3p, mmu-miR-182-P, mmu-miR-205-P, hsa-miR-505, hsa-miR-3146-P, mmu-miR-721, mmu-miR-376c, hsa-miR-1179-P, mmu-miR-1970, hsa-miR-3133-P, hsa-miR-200c, hsa-miR-220a, mmu-miR-100, hsa-miR-1255b, hsa-miR-222MM1G/A, hsa-miR-885-3p, hsa-miR-517b, hsa-miR-200a, hsa-miR-3141, mmu-miR-669h-3p, hsa-miR-1301, hsa-miR-877, hsa-mir-941-2, hsa-mir-487b-P, hsa-miR-4302, hsa-miR-99b, hsa-miR-1253, hsa-let-7a*, hsa-miR-34aMM2CT/TC, hsa-miR-3181-P, hsa-miR-3200, hsa-miR-3129-P, hsa-miR-93*, hsa-miR-548q-P, mmu-miR-466g, mmu-miR-155, hsa-miR-2278-P, hsa-miR-3065-5p, hsa-miR-633, hsa-miR-4265, mmu-miR-2135-P, hsa-miR-190, mmu-miR-669f, hsa-miR-1323, hsa-miR-588, mmu-miR-183*, hsa-mir-941-4, hsa-mir-1913, hsa-miR-2116*, hsa-miR-1178, mmu-miR-196a, mmu-miR-574-3p, hsa-miR-346, mmu-miR-1199, mmu-miR-681, hsa-miR-4292-P, hsa-miR-522, hsa-mir-611-P, hsa-miR-3171, hsa-miR-635, hsa-miR-1197-P, hsa-miR-604, mmu-let-7a*, hsa-miR-335, mmu-miR-466c-3p, mmu-miR-466i, hsa-miR-1297, mmu-miR-338-5p, hsa-mir-526a-2-P, hsa-miR-181aMM2GC/AG, hsa-miR-18, hsa-miR-924-P, mmu-miR-190-P, hsa-miR-345, mmu-miR-711, hsa-miR-3116-2-P, hsa-miR-99a, mmu-miR-26a, hsa-miR-1248-P, mmu-miR-721-P, mmu-miR-801-P, hsa-miR-1826-P, hsa-miR-1236, hsa-miR-339-5p, mmu-miR-804, mmu-miR-467d*, mmu-miR-1191, hsa-miR-148a, hsa-miR-141, mmu-miR-1937a-P, mmu-miR-696 and hsa-miR-302a (*i.e.*, those listed in Table 5).

[0032] As used herein the specification, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising”, the words “a” or “an” may mean one or more than one.

5 [0033] The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” As used herein “another” may mean at least a second or more.

10 [0034] Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.

15 [0035] Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

20 [0036] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

25 [0037] FIGs. 1A-F. Characterization of Exosomes – Oncosomes are enriched in oncogenic miRNAs compared to normosomes. (A) Transmission electron micrograph of oncosomes (upper left photo and lower left photo and inset zoom; dotted lines depict the zoom area). Lower right images produced by immunogold labeling using anti-CD9 antibody and transmission electron microscopy. Gold particles are depicted as black dots. Graph represents the average size of exosomes preparations analyzed from 112 TEM pictures. (B) Atomic

Force Microscopy image of exosomes from breast cancer cells. Middle graph represents dispersion of particles in the coverslip with size range of exosomes. Right graph represents average size of exosomes preparations analyzed from 26 AFM pictures. (C) Immunoblot using anti-Dicer antibody in exosomes harvested from: non-tumorigenic mouse (NMuMG) and human (MCF10A) cell lines (left blot, first panel); mouse cancer cell lines, 67NR and 4T1 (middle blot, first panel); human cancer cell lines MCF7 and MDA-MB231 (right blot, first panel). Controls used were: exosomes treated with TritonX followed by proteinase K (Triton + PK), to induce lysis of exosomes and subsequent degradation of exosomal proteins; exosomes treated with proteinase K to degrade extra-exosomal proteins (PK); supernatant after ultracentrifugation to harvest exosomes (Supernatant). TSG101 (second row) and CD9 (third row) immunoblots were used to confirm presence of exosomes. (D) Flow cytometry analysis using exosomes markers TSG101, CD9, flotillin-1 and CD63 antibodies of MDA-MB231-derived exosomes coupled to 0.4 μ m beads. (E) Sizing exosomes with Light Scattering Spectroscopy (LSS). Calibration of the system was done using signals from phosphate buffered saline (PBS) suspensions of glass microspheres with nominal diameters of 24 nm and 100 nm and polystyrene microspheres with nominal diameters of 119 nm, 175 nm, 356 nm and 457 nm. The experimental spectra and resulting fits are shown in the left graph for glass microspheres with nominal diameter of 100 nm and polystyrene microspheres with nominal diameter of 356 nm. Right graph represents the size measurement of a PBS suspension of cancer exosomes. Inset shows same graph with a scale up to 10 μ m to exclude potential contamination of our exosomes preparations with cells and cellular debris. (F) Exosomes size distribution using NanoSight. Left graph represents the size distribution of particles in solution showing a mean size of 105 nm and also showing no peaks at larger sizes. Right graph represents distribution by size and concentration of particles in solution by NanoSight. Data represented in this figure are the result of three independent experiments each with three replicates and are represented as \pm s.d.

[0038] FIGs. 2A-F. Oncosomes become enriched in miRNAs. (A) Correlation graph of expressed miRNAs in MDA-MB231 exosomes and MCF10A exosomes. (B) Correlation graphs between miRNAs in cells and respective exosomes using 6 of the differentially expressed miRNAs between normosomes and oncosomes (miR-10a, miR-10b, miR-21, miR-27a, miR-155, and miR-373) after 72h of cell-free culture. (C) Normosomes and oncosomes were resuspended in DMEM media and maintained in cell-free culture for 24 and 72h. After 24 and 72h, exosomes were recovered and 15 miRNAs (see Table 4) were quantified by

qPCR. The fold-change of each miRNA in exosomes after 72h cell-free culture was quantified relative to the same miRNA in exosomes after 24h cell-free culture. The graphical plots represent an average of fold-change for the tumor suppressor (TS) and oncogenic (ONC) miRNAs in exosomes harvested after 72h compared to those harvested after 24h. (D)

5 Northern blots of miR-10b and miR-21 from normosomes after 24 and 72h of cell-free culture and oncosomes without culture and with 24h, 72h and 96h of cell-free culture. The tRNAMet was used as a loading control. Quantification was done using Image J software. (E) Correlation plots between the 15 quantified miRNAs in MCF10A, MDA-MB231 and 4T1 cells and their respective exosomes after 72h of cell free culture. Oncosomes present low 10 correlation values with their cell of origin (middle and right graphs) when compared to normosomes (left graph). (F) Bioanalyzer graph representation depicted in fluorescence units (FU) per seconds (s) and gel images of exosomes RNA content of normosomes and oncosomes.

[0039] FIGs. 3A-E. Exosomes contain pre-miRNAs. (A) Fifteen pre-miRNAs 15 corresponding to the mature miRNAs studied were quantified using qPCR of MCF10A and MDA-MB231 exosomes. The inverse of the ΔCt value for each pre-miRNA was plotted to reflect their abundance and values are represented as \pm s.d. (B) Oncosomes and normosomes were resuspended in DMEM media and maintained for 24 and 72h in cell-free culture conditions. After 24 and 72h exosomes were extracted once again and 15 pre-miRNAs were 20 quantified by qPCR. Graphs show fold-change of each pre-miRNA in MCF10A and MDA-MB231 exosomes after 72h of cell-free culture relative to 24h cell-free culture and are represented as \pm s.d. (C) Northern blots of premiR-10b and pre-miR-21 using MCF10A normosomes after 24h and 72h of cell-free culture, and MDA-MB231 oncosomes with 0h, 24h, 72h and 96h of cell-free culture. The tRNAMet was used as a loading control. 25 Quantification was done using Image J software. (D) Top graphs: Oncogenic pre-miRNAs (left graph) and oncogenic miRNAs (right graph) of oncosomes (MDA-MB231) were quantified after 24h and 72h cell-free culture conditions. The inverse of the ΔCt value for each pre-miRNA (left graph) and miRNA (right graph) at different time points was plotted to reflect their abundance and an exponential trend was noted. The presented data are the result 30 of three biological replicates and are represented as SD. Bottom graphs: Pre-miRNAs (left graph) and mature miRNAs (right graph) of oncosomes (MDA-MB231) were quantified after 6h, 12h, 24h, 36h, 48h, 72h and 96h of cell-free culture conditions. The inverse of the ΔCt value for each pre-miRNA (left graph) and miRNA (right graph) at different time points was

plotted and an exponential trend was noted. The data presented in this figure are the result of three independent experiments each with three replicates and are represented as \pm s.d. (E) Oncosomes and normosomes were resuspended in DMEM media and maintained for 0h, 24h, 72h and 96h in cell-free culture conditions. Exosomes were extracted from the different time 5 points and pre-miRNAs were quantified by qPCR. The inverse of the ΔCt value for each pre-miRNA in the different time points was plotted to reflect their abundance.

[0040] FIGs. 4A-N. Oncosomes contain RLC proteins. (A) Immunoblot using anti-Dicer antibody in exosomes harvested from: nontumorigenic mouse (NMuMG) and human (MCF10A) cell lines; mouse cancer cell lines, 67NR and 4T1; and human cancer cell lines 10 MCF7 and MDAMB231. Controls used were: exosomes treated with TritonX followed by proteinase K treatment (Triton + PK) to induce lysis of exosomes and subsequent degradation of exosomal proteins; and exosomes treated with proteinase K to degrade extra-exosomal proteins (PK). TSG101 (second row) and CD9 (third row) immunoblots were used to confirm presence of exosomes. (B) Transmission electron micrographs of immunogold labeling using 15 anti-Dicer antibody in oncosomes (MDA-MB231). Right upper image is digitally zoomed from a new independent image of the extraction. Negative control refers to IgG. Gold particles are depicted as black dots and are indicated by black arrows in the bottom image. Graph represents quantification of the two upper images on the left. (C) Immunoblot using anti-flag antibody (upper panel) in MCF10A and MDA-MB231 exosomes harvested from 20 cells transfected with empty vector (pCMV-Tag4B; first and third lanes respectively) and Flag-Dicer vector (second and fourth lanes). CD9 immunoblot was used to confirm the presence of exosomes and as a loading control (lower panel). (D) Immunoblot for Dicer in exosomes harvested from MCF10A and MDA-MB231 cells treated with the calcium ionophore A23187 (upper panel). Exosomes extracted from untreated cells were used as 25 control. CD9 immunoblot (lower panel) was used as control to show increased exosomes secretion. (E) Immunoblot for Dicer in exosomes extracted from MCF10A and MDA-MB231 parental cells and cells transfected with shScramble and shDicer plasmids (upper blot). CD9 immunoblot was used to show exosomes presence and as a loading control (lower blot). Immunoblot quantification was done using Image J software. (F) Transmission electron 30 micrographs of immunogold labeling using anti-Dicer antibody in oncosomes derived from MDAMB231shDicer cells. Gold particles are depicted as black dots. Right graph depicts quantification of gold particles in EM pictures. (G) Immunoblot using anti-AGO2 antibody in exosomes harvested from oncosomes (MCF7 and MDA-MB231) and normosomes

(MCF10A). Controls used were: exosomes treated with Triton X followed by proteinase K (Triton X + PK) to induce lysis of exosomes and subsequent degradation of exosomal proteins; exosomes treated with proteinase K to degrade extra-exosomal proteins (PK); and supernatant after ultracentrifugation to harvest exosomes (Supernatant). TSG101 (second row) and CD9 (third row) immunoblots were used to confirm the presence of exosomes. (H) Immunoblot using anti-TRBP antibody in exosomes harvested from oncosomes (MCF7 and MDA-MB231) and normosomes (MCF10A). The controls used were: exosomes treated with Triton X followed by proteinase K (Triton X + PK) to induce lysis of exosomes and subsequent degradation of exosomal proteins; exosomes treated with proteinase K to degrade extra-exosomal proteins (PK); and supernatant after ultracentrifugation to harvest exosomes (Supernatant). TSG101 (second row) and CD9 (third row) immunoblots were used as exosomes markers. (I) Immunoblot using anti-GFP antibody in MCF10A and MDA-MB231 cells transfected with GFP-AGO2 plasmid (upper panel). Beta actin was used as loading control (lower panel). (J) Immunoblot using anti-GFP antibody in exosomes extracted from MCF10A and MDA-MB231 cells transfected with GFP-AGO2 plasmid (upper panel). TSG101 (middle panel) and CD9 (lower panel) were used as exosomes markers and loading controls. (K) AGO2 mRNA expression in MCF10A and MDA-MB231 cells transfected with siAGO2. MCF10A and MDA-MB231 parental cells were used as relative controls for fold change comparison. Data are the result of three biological replicates and are represented as SD. (L) Immunoblot using AGO2 antibody in exosomes extracted from MCF10A and MDA-MB231 parental cells or cells transfected with sicontrol or siAGO2 (upper panel). TSG101 (middle blot) and CD9 (lower blot) were used as exosomes markers and loading controls. Quantification was done using Image J software. (M) Immunoblot using AGO2 antibody in exosomal proteins extracted from MCF10A and MDA-MB231 cells immunoprecipitated with Dicer antibody or IgG (upper panel). 5% of the lysate input of exosomes extracted from MDA-MB231 cells was used as control. Immunoblot of Dicer was used as control for immunoprecipitation (lower panel). (N) Immunoblot using anti-TRBP antibody in exosomal proteins extracted from MCF10A and MDA-MB231 cells immunoprecipitated with Dicer antibody or IgG (upper panel). Lysate input of exosomes (5%) extracted from MDA-MB231 cells was used as control. Immunoblot of Dicer was used as control (lower panel).

[0041] FIGs. 5A-E. Oncosomes process pre-miRNAs to generate mature miRNAs.

(A) Exosomes were harvested from MCF10A, MCF10A shScramble, MCF10A shDicer cells (upper graph), MDA-MB231, MDA-MB231 shScramble and MDA-MB231 shDicer cells

(lower graph) and maintained under cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were recovered and 15 pre-miRNAs were quantified by qPCR. Graphs show the fold-change of each pre-miRNA in the different exosomes after 72h of cell-free culture relative to 24h cell-free culture and are represented as \pm s.d. (B) Exosomes were harvested 5 from MCF10A, MCF10A shScramble, MCF10A shDicer cells (upper graph), MDA-MB231, MDA-MB231 shScramble and MDA-MB231 shDicer cells (lower graph) and maintained under cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and 15 miRNAs were quantified by qPCR. Graphs show the fold-change of each 10 miRNA in the different exosomes after 72h of cell-free culture relative to 24h cell-free culture and are represented as \pm s.d. (C) Immunoblot using antirabbit and anti-mouse secondary antibody to detect heavy chain (HC) and light chain (LC) primary Dicer antibody and primary Actin antibody electroporated in exosomes of MDA-MB231 cells. Electroporated exosomes without antibody derived from MDA-MB231 cells were used as negative control. Proteinase K treatments were performed after electroporation to ensure 15 depletion of antibodies not included in exosomes. (D) Oncosomes (MDA-MB231) were harvested in duplicate (bottom graph) or quadruplicate (top graph). Samples were electroporated with anti-Dicer antibody, anti-actin antibody, or anti-TRBP antibody. The samples plus control were left in cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and the 6 oncogenic pre-miRNAs (top graph) or 15 pre- 20 miRNAs (bottom graph) were quantified by qPCR. The fold-change of each pre-miRNA in exosomes after 72h cell-free culture was quantified relative to the same pre-miRNA in exosomes after 24h cell-free culture in each sample. The graphical plots represent an average fold-change for pre-miRNAs (in bottom graph – TS = tumor suppressor; ONC = oncogenic) in 72h exosomes relative to 24h exosomes and are represented as \pm s.d. (E) Oncosomes 25 (MDAMB231) were harvested in quadruplicate (top graph) or duplicate (bottom graph). Samples were electroporated with anti-Dicer antibody, anti-actin antibody, or anti-TRBP antibody. The samples plus control were left in cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and the 6 oncogenic miRNAs (top graph) or 15 miRNAs (bottom graph) were quantified by qPCR. The fold-change of each 30 miRNA in exosomes after 72h cell-free culture was quantified relative to the same miRNA in exosomes after 24h cell-free culture in each sample. The graphical plots represent an average fold-change for the miRNAs (in bottom graph – TS = tumor suppressor; ONC = oncogenic) in 72h exosomes relative to 24h exosomes and are represented as \pm s.d.

[0042] FIGs. 6A-F. Oncosomes process pre-miRNAs to generate mature miRNAs.

(A) Exosomes from MDA-MB231 cells were harvested and electroporated with Geldanamycin. The samples were left in cell-free culture conditions for 24 and 72h, after which exosomes were extracted and the 6 miRNAs were quantified by qPCR. The fold-change of each miRNA in exosomes after 72h cell-free culture was quantified relative to the same miRNA in exosomes after 24h cell-free culture in each sample. The graphical plots represent the average fold-change for the miRNAs in 72h exosomes relative to 24h exosomes and are represented as \pm s.d. (B) Synthetic pre-miRNAs -10b, -21 and -cel-1 were electroporated into exosomes harvested from MCF10A (MCF10A electrop.), MCF10AshDicer (MCF10AshDicer electrop.), MDAMB231 (MDA-MB231 electrop.) and MDA-MB231shDicer (MDAMB231shDicer electrop.) cells. Exosomes were recovered after cell-free culture conditions for 72h. Pre-miR-10b, -21 and -cel-1 were quantified by qPCR before and after 72h of electroporation and culture. Each bar on the plots show the fold-change of pre-miR-10b, -21 and -cel-1 72h after electroporation relative to 0h after electroporation and are represented as \pm s.d. MCF10A and MDA-MB231 exosomes electroporated in the absence of pre-miRNAs were used as controls to highlight basal levels. (C) Synthetic pre-miRNAs -10b, -21 and -cel-1 were electroporated into exosomes harvested from MCF10A (MCF10A electrop.), MCF10AshDicer (MCF10AshDicer electrop.), MDA-MB231 (MDA-MB231 electrop.) and MDAMB231shDicer (MDA-MB231shDicer electrop.) cells. Exosomes were recovered after cell-free culture conditions for 72h. MiR-10b, -21 and -cel-1 were quantified by qPCR before and after 72h of electroporation and culture. Each bar on the plots show the fold-change of miR-10b, -21 and -cel-1 72h after electroporation relative to 0h (top graphs) or 24h (bottom graph) after electroporation and are represented as \pm s.d. MCF10A and MDA-MB231 exosomes electroporated in the absence of pre-miRNAs were used as controls to determine basal levels. (D) Northern blot without detection probe, using samples from dicing assay. Different exosomal protein extracts and synthetic pre-miR-10b internally labeled with biotin were used for the dicing assay. Samples used were MCF10A, MCF10AshDicer, MDA-MB231 exosomes (MDA231 Exos), exosomes from MDA-MB231shDicer clone1 and clone2 (MDA231shDicer 1 exos and MDA231shDicer 2 exos, respectively), MDA-MB231shDicer cells and MDA-MB231 exosomes electroporated with Dicer antibody (MDA231 exos + Dicer AB). (E) Northern blot without detection probe, using samples from dicing assay. Different exosomal protein extracts and synthetic pre-miR-21 internally labeled with biotin was used for the dicing assay. Samples used were MCF10A, MCF10AshDicer, MDA-MB231 exosomes (MDA231 Exos), exosomes from MDA-

MB231shDicer clone1 and clone2 (MDA231shDicer 1 exos and MDA231shDicer 2 exos, respectively), MDA-MB231shDicer cells and MDA-MB231 exosomes electroporated with Dicer antibody (MDA231 exos + Dicer AB). (F) Northern blot without detection probe using samples from dicing assay. Different exosomal protein extracts and synthetic pre-cel-miR-1 internally labeled with biotin was used for the dicing assay. Samples used were MCF10A, MCF10AshDicer, MDA-MB231 exosomes (MDA231 Exos), MDA-MB231shDicer exosomes (MDA231shDicer exos) and MDAMB231 exosomes electroporated with Dicer antibody (MDA231 exos + Dicer AB). Data are the result of three biological replicates and are represented as SD.

[0043] FIGs. 7A-H. Oncosomes induce transcriptome alterations in recipient cells and tumor formation in a Dicer-dependent manner. (A) Immunoblot using anti-PTEN antibody and protein extracts of MCF10A cells treated for 0, 30min, 1h, 12h and 24h with MDA-MB231 oncosomes after cell-free culture. Beta actin was used as a loading control. (B) Immunoblot using anti-HOXD10 antibody and protein extracts of MCF10A cells treated for 0, 30min, 1h, 12h and 24h with MDA-MB231 oncosomes after cell-free culture conditions. Beta actin was used as a loading control. (C) Graph showing luciferase reporter activity in MCF10A cells transiently transfected with 3'UTR-PTEN-WT, 3'UTRPTEN-Mut, 3'UTR-HOXD10-WT and 3'UTR-HOXD10-Mut and treated with oncosomes derived from MDA-MB231 cells. (D) Immunoblot using anti-PTEN antibody (upper panel) and anti-HOXD10 antibody (middle panel) and protein extracts from MCF10A cells treated for 0, 30min, 1h, 12h and 24h with MDAMB231 oncosomes electroporated with Dicer antibody after cell-free culture conditions. Beta actin was used as a loading control. (E) Immunoblot using anti-Smad4 antibody (upper panel) and protein extracts of MCF10A cells and MCF10A cells treated with MDA-MB231 exosomes with anti-miR-182-5p and MDA-MB231 exosomes with no cell-free culture time. Beta actin was used as a loading control. (F) Cell viability measured by MTT assay during 5 days of culture of MCF10A cells, MCF10A cells treated with MDA-MB231 exosomes with no cell-free culture time (MCF10A + MDA231 exos), MCF10A cells treated with MDA-MB231 exosomes with cell-free culture time (MCF10A cells + MDA231 exos culture) and MCF10A cells treated with MDA-MB231 exosomes electroporated with Dicer antibody with cell-free culture time (MCF10A cells + MDA231 exos Dicer AB) and are represented as \pm s.d. * p=0.0027. (G) The colony formation assay shows formation of colonies in culture plate and labeled with MTT reagent after 8 days MCF10A cells culture, MCF10A cells treated with MDA-MB231 exosomes with no cell-free

culture time (MCF10A + MDA231 exos), MCF10A cells treated with MDA-MB231 exosomes with cell-free culture time (MCF10A cells + MDA231 exos culture) and MCF10A cells treated with MDA-MB231 exosomes electroporated with Dicer antibody with cell-free culture time (MCF10A cells + MDA231 exos Dicer AB). (H) Top graph: MCF10A cells, 5 MCF10A cells exposed to MDA-MB-231 oncosomes (MCF10A cells + MDA231 exos culture), MCF10A cells exposed to MDA-MB231 oncosomes electroporated with Dicer antibody (MCF10A cells + MDA231 exos Dicer AB) and MCF10A cells exposed to MDAMB231 oncosomes electroporated with Actin antibody (MCF10A cells + MDA231 exos Actin AB) were orthotopically injected into the mammary pads of athymic nude mice. Graph 10 depicts tumor volume with respect to time and are represented as \pm s.d. *p=0.005. Bottom graph: MCF10A cells, MDA-MB231 cells and MCF10A cells exposed to oncosomes (MDA-MB231) were orthotopically injected in the mammary pads of athymic nude mice. Graph depicts tumor volume with respect to time.

[0044] FIGs. 8A-I. Serum from breast cancer patients contain Dicer and process pre-15 miRNAs. (A) Immunoblot using anti-Dicer antibody, that recognizes human and mouse Dicer, and protein extracts from serum exosomes harvested from mice xenografted with human tumors (as shown in FIG. 18A). OVA1-5 represents human ovary xenografts; END1-3 represents human endometrial xenografts; and BRST1 and 2 represent human breast 20 xenografts. 4T1 exosomes and cells were used as controls for murine Dicer. hsa-Dicer represents human Dicer molecular weight and mmu-Dicer represents murine Dicer molecular weight. See FIG. 18D for Comassie staining of membranes as loading control. (B) NanoSight particle tracking analysis showing size distribution of exosomes extracted from the serum of 8 healthy donors (left graph) and 11 breast cancer patients (right graph). Concentration of 25 samples was standardized to better show size. (C) Transmission electron micrograph of exosomes harvested from the serum of breast cancer patients. (D) Concentration of exosomes from the serum of 8 healthy donors and 11 breast cancer patients assessed by NanoSight particle tracking analysis. *p=0.012 (E) Exosomes were harvested from fresh serum from 8 healthy donors and 11 breast cancer patients. The extracted samples were left in cell-free 30 culture conditions for 24 and 72h. After 24 and 72h, exosomes were recovered and 6 pre-miRNAs were quantified by qPCR. The fold-change of each pre-miRNA in exosomes after 72h cell-free culture was quantified relative to the same pre-miRNA in exosomes after 24h cell-free culture in each sample. The graphical dot plots represent an average foldchange for the pre-miRNAs in 72h exosomes relative to 24h exosomes and are represented as \pm s.d. (F)

Exosomes were harvested from fresh serum from 8 healthy donors and 11 breast cancer patients. The extracted samples were left in cell-free culture conditions for 24 and 72h. After 24 and 72h, exosomes were recovered and 6 miRNAs were quantified by qPCR. The foldchange of each miRNA in exosomes after 72h cell-free culture was quantified relative to the same miRNA in exosomes after 24h cell-free culture in each sample. The graphical dot plots represent an average fold-change for the miRNAs in 72h exosomes relative to 24h exosomes. Both panels E and F are the result of three independent experiments each with three replicates and are represented as \pm s.d. (G) MCF10A cells, MCF10A cells mixed with exosomes from healthy donors (H1-8) and MCF10A cells mixed with exosomes from breast cancer patients (BC1-11) were orthotopically injected into the mammary pads of athymic nude mice. The number of exosomes used was calculated per body weight reflecting the initial concentration collected from the serum. Samples that have not formed a tumor appear overlapped in the xaxis of the graph. This graph depicts tumor volume with respect to time and is represented as \pm s.d. (H) Immunoblots using anti-Dicer antibody and protein extracts from serum exosomes harvested from 5 healthy individuals (C46, C45, C44, C43 and C41) and 4 metastatic breast carcinomas (Met219, Met354, Met299 and Met356) using CD9 blot as loading control. (I) Doubling time of HDF and HDF treated with oncosomes (MDA-MB231). * $p=0.0114$. Immunoblot quantification was done using Image J software.

[0045] FIGs. 9A-B. Dicer is present in multivesicular bodies and cytoplasmic CD43 mobilizes Dicer into exosomes. (A) Immunoblot of CD43 in protein extracts of MDA-MB231 cells immunoprecipitated with Dicer antibody (IP Dicer) or with IgG (upper panel, right and middle lanes, respectively). Dicer alone immunoblot was used as control (lower panel). (B) Immunoblot of Dicer in protein extracts of MDA-MB231 derived exosomes and MDA-MB231 siCD43 derived exosomes. CD9 immunoblot was used as a loading control.

Quantification was done using Image J software.

[0046] FIGs. 10A-E. Exosomes characterization. (A) Photograph of PKH26 stained exosomes, at the bottom of the ultracentrifugation tube. Inset represents digital zoom image of the exosomes. (B) Schematic representation of experimental system used to collect LSS spectra. (C) Cell viability measured by MTT assay during 5 days of culture of MCF10A, NMuMG, MDA-MB231 and 4T1 cells. (D) Flow cytometry analysis for propidium iodide (PI) and Anexin V of MDA-MB231 and 4T1 cells. MDA-MB231 cells treated with etoposide were used as a positive control for apoptosis. (E) Immunoblot analysis of cytochrome C in

exosomes using MDA-MB231 cells as a positive control and TSG101 as a loading control for exosomes. The data presented in this figure are the result of three independent experiments each with three replicates, and are represented as \pm s.d.

[0047] FIGs. 11A-E. Oncosomes are enriched in miRNAs compared to normosomes.

5 (A) Bioanalyzer graphical representation depicted in fluorescence units (FU) per nucleotides (nt) (graphs) and gel images (right image) of the RNA content of human mammary MCF10A (non-tumorigenic) and MDA-MB231 (breast cancer) cell lines. (B) Exosomes harvested from 4T1, MCF10A and MDA-MB231 cells were resuspended in DMEM media and maintained in cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were recovered and 10 15 miRNAs (see Table 4) were quantified by qPCR. Graphs show fold change of each miRNA in oncosomes after cell-free culture for 24h (upper graphs) and 72h (lower graphs) relative to normosomes after 24 and 72h of cell-free culture, respectively. Data represented are the result of three biological replicates and are represented as SD. (C) Fifteen mature 15 miRNAs (see Table 4) were quantified by qPCR in MCF10A (left graph), MDA-MB231 (middle graph) and 4T1 (right graph) cells and their respective exosomes. The fold change of each miRNA in exosomes was quantified relative to the same miRNA in cells. TS: tumor suppressor miRNAs; ONC: oncogenic miRNAs. Data are the result of three biological replicates and are represented as SD. (D) Exosomes harvested from MCF10A, MDA-MB231 and 4T1 cells, were resuspended in DMEM media and maintained for 24 and 72h in cell-free 20 culture conditions. After 24 and 72h exosomes were extracted once again and 15 miRNAs (see Table 4) were quantified by qPCR. The fold change of each miRNA in exosomes after 72h cell-free culture was quantified relative to the same miRNA in exosomes after 24h cell-free culture. Data corresponds to detailed graphs of the fold change average graphs in FIG. 2C. The data presented in this figure are the result of three independent experiments each 25 with three replicates, and are represented as \pm s.d. (E) Correlation plots between the 15 quantified miRNAs in MCF7 and 67NR cells and their respective exosomes after 72h of cell free culture.

[0048] FIGs. 12A-E. Exosomes contain pre-miRNAs. (A) Fifteen pre-miRNAs corresponding to the mature miRNAs previously quantified (see Table 4) were quantified by 30 qPCR in NMuMG and 4T1 exosomes. The inverse of the ΔCt value for each pre-miRNA was plotted to reflect their abundance. Data are the result of three biological replicates and are represented as \pm s.d. (B) Exosomes harvested from NMuMG and 4T1 cells were resuspended

in DMEM media and maintained for 24 and 72h in cell-free culture conditions. After 24 and 72h exosomes were extracted once again and 15 pre-miRNAs were quantified by qPCR. Graphs show fold change of each pre-miRNA in NMuMG and 4T1 exosomes after 72h of cell-free culture relative to 24h cell-free culture. Data are the result of three biological replicates and are represented as SD. (C) XPO5 mRNA expression in MDAMB231 cells with two transiently transfected siRNAs targeting XPO5 compared as a fold change to control cells. (D) MDA-MB231 cells were transfected with XPO5 siRNA constructs and miR-21 expression was assessed at several time points 12h post-transfection (0h, 6h, 12h, 24h, 36h, 48h, 72h and 96h). As a comparison to show the effect of long centrifugation time periods 10 MDA-MB231 cells transfected with XPO5 siRNA constructs were centrifuged at 4°C for 3h and put back in culture. MiR-21 expression was assessed at several time points postcentrifugation (0h, 6h, 12h, 24h, 36h, 48h, 72h and 96h). Processing of pre-miR21 to miR-21 is delayed in centrifuged cells (green bar). The presented data in this figure are the result of three independent experiments, each with three replicates and are represented as ± 15 s.d. (E) Exosomes harvested from NMuMG and 4T1 cells were resuspended in DMEM media and maintained for 0, 24, 72 and 96h in cell-free culture conditions. Exosomes were extracted from the different time points and pre-miRNAs were quantified by qPCR. The inverse of the ΔCt value for each pre-miRNA in the different time points was plotted to reflect their abundance. Data are the result of three biological replicates and are represented 20 as SD.

[0049] FIGs. 13A-H. Oncosomes contain Dicer. (A) Transmission electron micrograph image produced by immunogold labeling using anti-Dicer antibody (right photos) and negative control (left photos) in MCF10A cells-derived exosomes. Compare with FIG. 4B for positive immunogold labeling of MDA-MB231 exosomes. (B) Transmission electron micrograph image produced by immunogold labeling using anti-GFP antibody MDA-MB231-derived exosomes. (C) Immunoblot using anti-flag antibody (upper panel) in MCF10A and MDAMB231 cells transfected with empty vector (pCMV-Tag4B; first and third lanes respectively) and Flag-Dicer vector (second and fourth lanes). Beta actin immunoblot was used as a loading control (lower panel). (D) Immunoblot using anti-Dicer antibody (upper panel) in MCF10A, MCF10AshScramble and MCF10AshDicer clones 1 and 2, respectively (MCF10AshDicer clone1 and MCF10AshDicer clone2) cells. Beta actin immunoblot was used as a loading control (lower panel). (E) Immunoblot using anti-Dicer antibody (upper panel) in MDA-MB231, MDA-MB231shScramble and MDA- 30

MB231shDicer clones 1 and 2, respectively (MDA-MB231shDicer clone1 and MDA-MB231shDicer clone2) cells. Beta actin immunoblot was used as a loading control (lower panel). Immunoblots quantification was done using Image J software. (F) Immunoblot using AGO2 antibody in exosomal proteins extracted from MCF10A and MDA-MB231 cells immunoprecipitated with Dicer antibody or IgG (upper panel). 5% of the lysate input of exosomes extracted from MDA-MB231 cells was used as control. Immunoblot of Dicer was used as control for immunoprecipitation (lower panel). (G) Immunoblot using anti-TRBP antibody in exosomal proteins extracted from MCF10A and MDA-MB231 cells immunoprecipitated with Dicer antibody or IgG (upper panel). Lysate input of exosomes (5%) extracted from MDA-MB231 cells was used as control. Immunoblot of Dicer was used as control for immunoprecipitation (lower panel). (H) Immunoblot of Dicer in oncosomes from A549 (human lung cancer), SW480 (human colon cancer), HeLa (human cervical cancer) and 4T07 (murine breast cancer) cell lines (upper blot). TSG101 immunoblot was used to confirm presence of exosomes and loading (lower blot).

[0050] FIGs. 14A-F. Dicer detection in exosomes. (A) Immunoblot using anti-Dicer antibody in 4T1, 4T1shScramble and 4T1shDicer cells and exosomes harvested from 4T1 (4T1 exos) and 4T1shDicer (4T1shDicer exos) cells (upper blot). GADPH immunoblot was used as loading control (lower blot). Quantification was done using Image J software. (B) Exosomes were harvested from 4T1, 4T1shScramble and 4T1shDicer cells and maintained under cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and 15 pre-miRNAs were quantified by qPCR. Graphs show fold change of each pre-miRNA in the different exosomes after 72h of cell-free culture relative to 24h cell-free culture. Data are the result of three biological replicates and are represented as SD. (C) Exosomes were harvested from 4T1, 4T1shScramble and 4T1shDicer cells and maintained under cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and 15 miRNAs were quantified by qPCR. Graphs show fold change of each miRNA in the different exosomes after 72h of cell-free culture relative to 24h cell-free culture. Data are the result of three biological replicates and are represented as SD. (D) Exosomes were harvested from MDA-MB231 cells in duplicate. One of the samples was electroporated with anti-Dicer antibody. Both samples were left in cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and 15 pre-miRNAs (see Table 4) were quantified by qPCR. The fold change of each pre-miRNA in exosomes after 72h cell-free culture was quantified relative to the same pre-miRNA in exosomes after

24h cell-free culture in each sample. The graphical plots represent fold change of pre-miRNAs in 72h exosomes relative to 24h exosomes and are a detailed analysis of graph represented in FIG. 5D. Data are the result of three biological replicates and are represented as SD. (E) Exosomes were harvested from MDA-MB231 cells in duplicate. One of the 5 samples was electroporated with anti-Dicer antibody. Both samples were left in cell-free culture conditions for 24 and 72h. After 24 and 72h exosomes were extracted once again and 15 miRNAs (see Table 4) were quantified by qPCR. The fold change of each miRNA in exosomes after 72h cell-free culture was quantified relative to the same miRNA in exosomes after 24h cell-free culture in each sample. The graphical plots represent fold change of 10 miRNAs in 72h exosomes relative to 24h exosomes and are a detailed analysis of graph represented in FIG. 5E. Data are the result of three biological replicates and are represented as SD. (F) Graphical representation of the categories (Oncogenic, Tumor Suppressor and Non-determined related to Cancer) of the down regulated miRNAs in MDA-MB231 exosomes electroporated with Dicer (MDA-MB231 exos Dicer AB) compared to MDA- 15 MB231 exosomes (MDA-MB231 exos). MicroRNAs were attributed to each category based on literature. The presented data in this figure are the result of three independent experiments each with three replicates and are represented as \pm s.d.

[0051] FIGs. 15A-C. Dicer detection in exosomes. (A) Exosomes were harvested from MCF10, MCF10AshDicer, MDA-MB231 and MDA-MB231shDicer cells and 20 electroporated with synthetic pre-miRNA-10b, -21 and -cel-1. Each pre-miRNA was quantified by qPCR in the electroporated exosomes and represented as a fold change relative to exosomes that were electroporated with electroporation buffer only. (B) Dot blot of biotin internally labeled pre-miR-21, -10b and -cel-1. (C) miR-10b, -21 and -cel-1 expression 25 analysis of MCF10A cells transfected with pre-miR-10b, -21 and -cel-1. Each bar represents the fold change of the transfected cells compared to nontransfected. The presented data in this figure are the result of three independent experiments each with three replicates and are represented as \pm s.d.

[0052] FIGs. 16A-I. Dicer is present in multivesicular bodies and cytoplasmic CD43 mobilizes Dicer into exosomes. (A) Graph represents the percentage of colocalization in the 30 confocal images as quantified using image J software. (B) Hrs, TSG101 and BiG2 mRNA expression after down regulation using two different siRNAs for Hrs and TSG101 and two different sh clones for BiG2. Non-transfected and shScramble transfected cells were used as

control. (C) Protein quantification by Bradford assay of exosomes extracted from MCF10A, MCF10AsiHrs, MDA-MB231 and MDA-MB231siHrs (left graph), MCF10shScramble, MCF10AshBiG2, MDA-MB231shScramble, MDA-MB231shBiG2 (middle graph) and MCF10AsiTSG101 and MDA-MB231siTSG101 (right graph). Parental non-transfected cells 5 were used as relative controls for fold change analysis. Data was normalized by cell number and is the result of three biological replicates represented as SD. (D) Immunoblot of CD9 in exosomal protein extracts of MCF10A, MCF10AsiTSG101 (siTSG101), MCF10AsiHrs (siHrs) and MCF10AshBiG2 (shBiG2) cells (upper blot); immunoblot of CD9 in exosomal protein extracts of MDA-MB231, MDA-MB231siTSG101 (siTSG101), MDA-MB231siHrs 10 (siHrs) and MDA-MB231shBiG2 (shBiG2) cells (lower blot). (E) NanoSight particle tracking analysis of MDA-MB231, MDA-MB231siTSG101, -siHrs and shBiG2-derived exosomes showing down regulation of exosomes number in Hrs, TSG101 and BiG2 down regulated cells and the exosomes expected size distribution. (F) mRNA expression of Dicer in MCF10A, MCF10AshScramble, MCF10AsiHrs, MCF10AshBiG2, MCF10AsiTSG101, 15 MDA-MB231, MDA-MB231shScramble, MDA-MB231siHrs, MDA-MB231shBiG2, MDA-MB231siTSG101, 4T1, 4T1siHrs, 4T1shBiG2 and 4T1siTSG101 cells. Parental cells were used as relative control for fold change comparison. Data are the result of three biological replicates and are represented as SD. (G) Immunoblot of Dicer in protein extracts of MDA-MB231 and 4T1 cancer cells immunoprecipitated with anti-Dicer antibody (upper blot, two 20 left lanes) together with 5% of the input that corresponds to the protein lysate used for immunoprecipitation (upper blot, two right lanes). Immunoblot of poli-ubiquitin in protein extracts of MDA-MB231 and 4T1 cells immunoprecipitated with anti-Dicer antibody (lower blot, two left lanes) together with 5% of the input that corresponds to the protein lysate used for immunoprecipitation (lower blot, two right lanes). (H) mRNA expression of CD43 in 25 MCF10A, MCF10AsiCD43, MDA-MB231 and MDA-MB231siCD43 cells. MCF10A and MDA-MB231 parental cells were used as relative control for fold change comparison. Data are the result of three biological replicates and are represented as SD. (I) mRNA expression of Dicer in MCF10A, MCF10AsiCD43, MDA-MB231 and MDA-MB231siCD43 cells. MCF10A and MDA-MB231 parental cells were used as relative control for fold change 30 comparison. Data are the result of three biological replicates and are represented as SD

[0053] FIGs. 17A-G. Oncosomes induce transcriptome alterations in receiving cells and tumor formation in a Dicer-dependent manner. (A) NanoSight particle tracking analysis of exosomes derived from MDA-MB231 CD63-GFP cells. Black line represents a measure of

total exosomes population and green line depicts the population of exosomes that is labeled with CD63-GFP using the NanoSight equipped with a 488nm laser beam. Light gray and light green represent the error bars of each measure. (B) Immunoblot using anti-PTEN antibody and protein extracts of MCF10A cells treated for 0, 30min, 1h, 12h and 24h with 5 MDA-MB231 oncosomes freshly extracted. Beta actin was used as a loading control. (C) Immunoblot using anti-HOXD10 antibody and protein extracts of MCF10A cells treated for 0, 30min, 1h, 12h and 24h with MDA-MB231 oncosomes freshly extracted. Beta actin was used as a loading control. (D) MCF10A cells were transfected with siRNA for XPO5 to down 10 regulate the flow of pre-miRNAs into the cytoplasm from the nucleus. The processing of pre-miR15 was assessed measuring the levels of miR-15 over time (6h, 12h, 24h, 36h and 48h) in MCF10AsiXPO5 cells and MCF10AsiXPO5 cells treated with MDA-MB231 exosomes with and without Dicer antibody. No significant changes were denoted. (E) miR182-5p expression was monitored in MDA-MB231 derived exosomes over time (0h, 6h, 12h, 24h, 36h, 48h, 72h 15 and 96h). Each bar represents the fold change of each time point compared to 0h. No significant differences were noted. (F) Graph provides colony number quantification of FIG. 7G. * p=0.0006. (G) Immunoblot using anti-Dicer antibody and protein extracts of MCF10A cells treated for 0, 30min, 1, 12 and 24h with MDA-MB231 oncosomes electroporated with Dicer antibody after cell-free culture conditions. Alpha tubulin was used as loading control.

20 [0054] FIGs. 18A-D. Breast cancer patient-exosomes contain Dicer, process pre-miRNAs and enter cells in different organs. (A) Representative photos from orthotopic xenografts derived from fragments of fresh primary human ovary, endometrial and breast tumors in nude mice. (B) Hematoxylin-eosin (HE) staining of ovary, endometrial and breast cancer orthotopic xenografts. (C) Transmission electron micrograph of serum exosomes harvested from mice with orthotopic tumor xenografts. (D) Comassie staining of membranes 25 of immunoblots depicted in FIG. 8A.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

30 [0055] Cancer progression is dependent on effective communication between cells in the tumor. Exosomes are nano-vesicles secreted by all cell types and contain proteins and nucleic acids. Exosomes secreted by cancer cells specifically contain microRNAs (miRNAs) associated with the RNA Induced Silencing Complex (RISC; Dicer/TRBP/AGO2) and possess cell autonomous capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. The existence of RISC-associated miRNAs, instead of naked miRNAs,

allows for a highly efficient and rapid silencing of mRNAs in target cells, effectively altering their transcriptome. The RISC proteins in cancer cells are specifically directed into multivesicular bodies (MVBs) and subsequently into exosomes in a CD43-dependent manner. RISC-incorporated miRNAs of exosomes stimulate non-tumorigenic epithelial cells 5 to form tumors via specific induction of oncogenic pathways and activate stromal fibroblasts. This study unravels the possible role of cancer exosomes in inducing oncogenic “field effect” that further subjugates normal cells to participate in cancer development and progression. Moreover, miRNA biogenesis can occur in a cell-independent manner in exosomes, which 10 offers new opportunities to engineer efficient miRNA-mediated targeted therapy for a myriad of diseases.

I. Cancer derived exosomes

[0056] Tumors contain cancer cells and stromal elements (Tse and Kalluri, 2011). Emerging evidence suggests that communication between cells of the tumors and their surroundings also determine the rate and intensity of systemic spread in cancer (Luga *et al.*, 15 2012). Some studies suggest that primary tumors can educate and prepare secondary tumor sites for future metastasis via cancer cell secreted factors (Hood *et al.*, 2011; Peinado *et al.*, 2012). Several such mediators have been identified, which include soluble growth factors, 20 glucose metabolites, chemokines, enzymes, microparticles, microvesicles, exosomes and free nucleic acids (Guermonprez *et al.*, 2002; Luga *et al.*, 2012; Peinado *et al.*, 2012; Simons and Raposo, 2009; Thery and Casas, 2002).

[0057] Recent years have seen a plethora of publications related to exosomes and their association with cancer (Yang and Robbins, 2011). Most studies show that cancer cells secrete higher number of exosomes when compared to normal cells (Yang and Robbins, 25 2011). Hypoxic cancer cells shed more exosomes than normoxic cancer cells (King *et al.*, 2012). Cancer derived exosomes are speculated to carry specific payloads of proteins and nucleic acids, including miRNAs (Valadi *et al.*, 2007). While provocative, such studies fall short of explaining how proteins and miRNAs can induce significant functional changes in target cells, near or far. Most studies have identified mature miRNAs in exosomes but their 30 function is largely unknown. Moreover, single-stranded miRNAs are highly inefficient in silencing target mRNAs without RISC incorporation to facilitate mRNA recognition. Proteins of the RLC recognize the pre-miRNA and process it into a 22-nucleotide RNA duplex. AGO2 selects one strand for subsequent gene silencing while the other strand is often

degraded. The overall reaction is spontaneous and does not require any factors beyond the three proteins and the incorporated pre-miRNA (Maniataki and Mourelatos, 2005). Therefore, for a miRNA to be fully functional it needs RLC-incorporated processing of its pre-miRNA and AGO- mediated mRNA recognition and silencing.

5 [0058] Herein, the miRNA profiles of exosomes from cancer cells (oncosomes) and control cells (normosomes) were probed and the functional capabilities of exosomal miRNAs were evaluated in achieving gene silencing and alteration of target cell transcriptome. Oncosomes specifically contain Dicer, TRBP and AGO2 as a functional complex with an ability to process pre-miRNAs to miRNAs. The pre-miRNAs were present in all exosomes
10 but only processed in the oncosomes due to the presence of RLC. Interestingly there was preference for accumulation of oncogenic pre-miRNAs/miRNAs in the oncosomes and this could be mere reflection of the pre-miRNA content of cancer cells, which were generally enriched in oncogenic miRNAs/pre-miRNAs (Bartels and Tsongalis, 2009; Nicoloso *et al.*, 2009).

15 [0059] Previous reports suggested the presence of miRNA in exosomes and speculated on their function (Valadi *et al.*, 2007; Zhang *et al.*, 2010). Given that miRNAs need to be present in a stoichiometric concentration for appropriate silencing of mRNA targets, it seems unlikely that exosomes in circulation would provide sufficient concentrations of mature miRNAs to repress target transcriptome. The processing of the pre-miRNAs
20 originated from exosomes in the recipient cells is an unlikely event because miRNA biogenesis in recipient cells is rate-limiting not only due to the total amount of pre-miRNAs available for processing that exist inside the cell already, but also due to rate-limiting amounts of required enzymes. Therefore, it is more efficient to have mature miRNAs entering recipient cells for direct alteration of gene expression post-transcriptionally without
25 having to go through a processing pathway, as it would happen in the case that pre-miRNAs are transferred to recipient cells and not the respective mature miRNAs. Specific miRNA biogenesis in exosomes solves this conundrum for cancer cells. Oncosomes get highly enriched in a subset of mature miRNAs that are RISC-associated and can play an important biological role in shaping the phenotype of target cells.

30 [0060] Moreover, cancer cells overexpress miRNAs with oncogenic potential, such as miR-21 and miR-155, which provide them with a proliferative and survival advantage and are associated with advanced clinical stage, metastasis and poor prognosis (Yan *et al.*, 2008). It

has also been previously reported that these miRNAs are overexpressed in the circulation of cancer patients (Mao *et al.*, 2013). The synthesis of miRNAs in cells is an enzymatic reaction and therefore depends on the amount of key enzymes, such as Dicer, present in their cytoplasm. Dicer has been described as down regulated in breast cancer cells and tumors (Grelier *et al.*, 2009; Martello *et al.*, 2010). Therefore, the quantity of miRNAs these cancer cells can synthesize is limited. Because exosomes production is a continuous process, it is hypothesized that cancer cells pack specific pre-miRNAs with RLC proteins to allow enrichment of the mature miRNA in exosomes and at the same time, keep these miRNAs up-regulated in the cells of origin. Onosomes are highly enriched in mature miRNAs that are RISC-associated and can play an important biological role in shaping the phenotype of target cells. At the same time, the cells of origin maintain their overexpression of advantageous oncogenic miRNAs while the recipient cells do not see their biogenesis pathway oversaturated with the entrance of pre-miRNAs through exosomes.

[0061] The present studies unveil the RISC-dependent mechanism by which cancer exosomes get enriched in a subset of miRNAs. Using siRNA/shRNA against Dicer in cancer cells was not a viable option to probe the content of miRNA in exosomes, as any decrease in exosomal miRNA could be a mere reflection of low level of miRNAs due to Dicer suppression. Therefore, an electroporation method was developed to deliver neutralizing antibodies directly to exosomes. This method worked efficiently to inhibit Dicer activity in exosomes and prevent processing of pre-miRNAs.

[0062] While certain miRNAs are up regulated in specific tumors (Volinia *et al.*, 2006), a global reduction of miRNA is also reported to occur in human cancers (Kumar *et al.*, 2007; Lu *et al.*, 2005; Melo *et al.*, 2011; Melo *et al.*, 2010; Melo *et al.*, 2009; Ozen *et al.*, 2008). Dicer is described as suppressed in cancer cells but low levels are sufficient to sustain tumor growth (Kumar *et al.*, 2009). Partial Dicer down regulation via miR-103/107 enhances cancer cell invasiveness without affecting cell proliferation (Martello *et al.*, 2010). Complete loss of Dicer is detrimental for cell survival (Fukagawa *et al.*, 2004). While low levels of Dicer are associated with poor survival in lung and ovarian cancer patients (Karube *et al.*, 2005; Merritt *et al.*, 2008). Likewise, heterozygous loss of Dicer correlates with metastasis in breast cancer patients (Martello *et al.*, 2010). Down regulation of Dicer in breast cancer also occurs post-transcriptionally because mRNA levels remain unchanged (Grelier *et al.*, 2009; Wiesen and Tomasi, 2009). In cancer cells, a fraction of Dicer is targeted to

endosomes/MVBs in a CD43-dependent manner. Eventually Dicer is secreted via exosomes. Down regulation of Hrs, BiG2 and TSG101, components of the exosomal biogenesis pathway, led to dramatic changes in the cellular localization of Dicer protein. One possible explanation for suppressed Dicer levels in cancer cells may be due to active export via 5 exosomes. If exosomes secretion pathway is shut down, cancer cells sense the increase in Dicer protein and down regulate their mRNA expression. In addition, they shuttle the protein into the nuclear compartment, where it can no longer aid in the production of mature miRNAs. In this regard, Dicer up-regulation in aggressive cancer cells makes them more indolent (Park *et al.*, 2011).

10 [0063] CD43 is transmembrane protein that is predominantly present in leukocytes. In some cancer cells, a truncated CD43 is observed in the cytoplasm and nucleus (Shelley *et al.* 2012). It has been previously shown that CD43 could target certain membrane proteins to exosomes (Shen *et al.*, 2011a). Suppression of CD43 in a mouse model of orthotopic breast cancer reduces tumor burden by 76% (Shelley *et al.*, 2012). Clinical studies suggest that 15 CD43 expression correlates with poor survival of breast cancer patients (de Laurentiis *et al.*, 2011). This report identifies that CD43 is functionally involved in directing Dicer into oncosomes.

20 [0064] Recent studies show that melanoma-derived exosomes play a role in metastasis and exosomes derived from fibroblasts play a role in migration of breast cancer cells (Luga *et al.*, 2012; Peinado *et al.*, 2012). Exosomes derived from cancer cells have a pro-tumorigenic role associated with the transfer of mRNA and pro-angiogenic proteins (Luga *et al.*, 2012; Peinado *et al.*, 2012; Skog *et al.*, 2008). Exosomes derived from cancer cells can also contribute to a horizontal transfer of oncogenes, such as EGFRvIII (Skog *et al.*, 2008). Oncosomes mediate significant transcriptome alterations in target cells via RISC-associated miRNAs. A myriad of biological process are affected in the target cells, inducing 25 proliferation and converting non-tumorigenic cell into tumor-forming cells. Nonetheless, the potential *in vivo* effect of oncosomes on recipient cells likely depends on several other environmental parameters and accessibility barriers.

30 [0065] Oncosomes also activate stromal fibroblasts to acquire a myofibroblasts phenotype. As an example, the capacity of oncosomes to silence tumor suppressors PTEN and HOXD10 via oncosomes derived miR-21 and miR-10b, respectively, were illustrated (Ma *et al.*, 2007; Maehama, 2007). These results highlight the complex nature of

communication adopted by cancer cells to achieve malignancy. These data illustrate that cancer cells can use exosomes to manipulate surrounding normal cells to accelerate cancer progression and recruit reactive stroma.

[0066] Many studies have show that fibroblasts and normal epithelial cells, also 5 exhibit down regulation of tumor suppressors and activation of oncogenes without obvious mutations. Collectively, this study unravels the possible role cancer exosomes play in inducing an oncogenic “field effect” that further subjugates adjacent normal cells to participate in cancer development and progression. Oncosomes can convert non-tumorigenic cells into tumor forming cells via activation of oncogenic pathways. Additionally, oncosomes 10 can also participate in generating reactive stroma. This is likely achieved without the need for defined genetic mutations and explains the complex nature of how mutated cancer cells extend their agenda to recruit support from their micro- and macro-environment.

II. Biomarker detection

[0067] The expression of biomarkers or genes may be measured by a variety of 15 techniques that are well known in the art. Quantifying the levels of the messenger RNA (mRNA) of a biomarker may be used to measure the expression of the biomarker. Alternatively, quantifying the levels of the protein product of a biomarker may be used to measure the expression of the biomarker. Additional information regarding the methods discussed below may be found in Ausubel *et al.* (2003) or Sambrook *et al.* (1989). One 20 skilled in the art will know which parameters may be manipulated to optimize detection of the mRNA or protein of interest.

[0068] In some embodiments, said obtaining expression information may comprise 25 RNA quantification, *e.g.*, cDNA microarray, quantitative RT-PCR, *in situ* hybridization, Northern blotting or nuclease protection. Said obtaining expression information may comprise protein quantification, *e.g.*, protein quantification comprises immunohistochemistry, an ELISA, a radioimmunoassay (RIA), an immunoradiometric assay, a fluoroimmunoassay, a chemiluminescent assay, a bioluminescent assay, a gel electrophoresis, a Western blot analysis, a mass spectrometry analysis, or a protein microarray.

30 [0069] A nucleic acid microarray may be used to quantify the differential expression of a plurality of biomarkers. Microarray analysis may be performed using commercially

available equipment, following manufacturer's protocols, such as by using the Affymetrix GeneChip® technology (Santa Clara, CA) or the Microarray System from Incyte (Fremont, CA). For example, single-stranded nucleic acids (e.g., cDNAs or oligonucleotides) may be plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with 5 specific nucleic acid probes from the cells of interest. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescently labeled deoxynucleotides by reverse transcription of RNA extracted from the cells of interest. Alternatively, the RNA may be amplified by *in vitro* transcription and labeled with a marker, such as biotin. The labeled probes are then hybridized to the immobilized nucleic acids on the microchip under highly 10 stringent conditions. After stringent washing to remove the non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. The raw fluorescence intensity data in the hybridization files are generally preprocessed with the robust multichip average (RMA) algorithm to generate expression values.

15 [0070] Quantitative real-time PCR (qRT-PCR) may also be used to measure the differential expression of a plurality of biomarkers. In qRT-PCR, the RNA template is generally reverse transcribed into cDNA, which is then amplified via a PCR reaction. The amount of PCR product is followed cycle-by-cycle in real time, which allows for determination of the initial concentrations of mRNA. To measure the amount of PCR 20 product, the reaction may be performed in the presence of a fluorescent dye, such as SYBR Green, which binds to double-stranded DNA. The reaction may also be performed with a fluorescent reporter probe that is specific for the DNA being amplified.

25 [0071] A non-limiting example of a fluorescent reporter probe is a TaqMan® probe (Applied Biosystems, Foster City, CA). The fluorescent reporter probe fluoresces when the quencher is removed during the PCR extension cycle. Multiplex qRT-PCR may be performed by using multiple gene-specific reporter probes, each of which contains a different fluorophore. Fluorescence values are recorded during each cycle and represent the amount of 30 product amplified to that point in the amplification reaction. To minimize errors and reduce any sample-to-sample variation, qRT-PCR may be performed using a reference standard. The ideal reference standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. Suitable reference standards include, but are not limited to, mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase

(GAPDH) and β -actin. The level of mRNA in the original sample or the fold change in expression of each biomarker may be determined using calculations well known in the art.

[0072] Immunohistochemical staining may also be used to measure the differential expression of a plurality of biomarkers. This method enables the localization of a protein in the cells of a tissue section by interaction of the protein with a specific antibody. For this, the tissue may be fixed in formaldehyde or another suitable fixative, embedded in wax or plastic, and cut into thin sections (from about 0.1 mm to several mm thick) using a microtome. Alternatively, the tissue may be frozen and cut into thin sections using a cryostat. The sections of tissue may be arrayed onto and affixed to a solid surface (*i.e.*, a tissue microarray).
5 The sections of tissue are incubated with a primary antibody against the antigen of interest, followed by washes to remove the unbound antibodies. The primary antibody may be coupled to a detection system, or the primary antibody may be detected with a secondary antibody that is coupled to a detection system. The detection system may be a fluorophore or it may be an enzyme, such as horseradish peroxidase or alkaline phosphatase, which can convert a
10 substrate into a colorimetric, fluorescent, or chemiluminescent product. The stained tissue sections are generally scanned under a microscope. Because a sample of tissue from a subject with cancer may be heterogeneous, *i.e.*, some cells may be normal and other cells may be cancerous, the percentage of positively stained cells in the tissue may be determined. This measurement, along with a quantification of the intensity of staining, may be used to generate
15 an expression value for the biomarker.
20

[0073] An enzyme-linked immunosorbent assay, or ELISA, may be used to measure the differential expression of a plurality of biomarkers. There are many variations of an ELISA assay. All are based on the immobilization of an antigen or antibody on a solid surface, generally a microtiter plate. The original ELISA method comprises preparing a sample containing the biomarker proteins of interest, coating the wells of a microtiter plate with the sample, incubating each well with a primary antibody that recognizes a specific antigen, washing away the unbound antibody, and then detecting the antibody-antigen complexes. The antibody-antibody complexes may be detected directly. For this, the primary antibodies are conjugated to a detection system, such as an enzyme that produces a detectable
25 product. The antibody-antibody complexes may be detected indirectly. For this, the primary antibody is detected by a secondary antibody that is conjugated to a detection system, as
30

described above. The microtiter plate is then scanned and the raw intensity data may be converted into expression values using means known in the art.

[0074] An antibody microarray may also be used to measure the differential expression of a plurality of biomarkers. For this, a plurality of antibodies is arrayed and covalently attached to the surface of the microarray or biochip. A protein extract containing the biomarker proteins of interest is generally labeled with a fluorescent dye or biotin. The labeled biomarker proteins are incubated with the antibody microarray. After washes to remove the unbound proteins, the microarray is scanned. The raw fluorescent intensity data may be converted into expression values using means known in the art.

[0075] Luminex multiplexing microspheres may also be used to measure the differential expression of a plurality of biomarkers. These microscopic polystyrene beads are internally color-coded with fluorescent dyes, such that each bead has a unique spectral signature (of which there are up to 100). Beads with the same signature are tagged with a specific oligonucleotide or specific antibody that will bind the target of interest (*i.e.*, biomarker mRNA or protein, respectively). The target, in turn, is also tagged with a fluorescent reporter. Hence, there are two sources of color, one from the bead and the other from the reporter molecule on the target. The beads are then incubated with the sample containing the targets, of which up to 100 may be detected in one well. The small size/surface area of the beads and the three dimensional exposure of the beads to the targets allows for nearly solution-phase kinetics during the binding reaction. The captured targets are detected by high-tech fluidics based upon flow cytometry in which lasers excite the internal dyes that identify each bead and also any reporter dye captured during the assay. The data from the acquisition files may be converted into expression values using means known in the art.

[0076] *In situ* hybridization may also be used to measure the differential expression of a plurality of biomarkers. This method permits the localization of mRNAs of interest in the cells of a tissue section. For this method, the tissue may be frozen, or fixed and embedded, and then cut into thin sections, which are arrayed and affixed on a solid surface. The tissue sections are incubated with a labeled antisense probe that will hybridize with an mRNA of interest. The hybridization and washing steps are generally performed under highly stringent conditions. The probe may be labeled with a fluorophore or a small tag (such as biotin or digoxigenin) that may be detected by another protein or antibody, such that the labeled hybrid may be detected and visualized under a microscope. Multiple mRNAs may be detected

simultaneously, provided each antisense probe has a distinguishable label. The hybridized tissue array is generally scanned under a microscope. Because a sample of tissue from a subject with cancer may be heterogeneous, *i.e.*, some cells may be normal and other cells may be cancerous, the percentage of positively stained cells in the tissue may be determined.

5 This measurement, along with a quantification of the intensity of staining, may be used to generate an expression value for each biomarker.

[0077] In a further embodiment, the marker level may be compared to the level of the marker from a control, wherein the control may comprise one or more tumor samples taken from one or more patients determined as having a certain metastatic tumor or not having a 10 certain metastatic tumor, or both.

[0078] The control may comprise data obtained at the same time (*e.g.*, in the same hybridization experiment) as the patient's individual data, or may be a stored value or set of values, *e.g.*, stored on a computer, or on computer-readable media. If the latter is used, new patient data for the selected marker(s), obtained from initial or follow-up samples, can be 15 compared to the stored data for the same marker(s) without the need for additional control experiments.

III. Definitions

[0079] As used herein, "obtaining a biological sample" or "obtaining a blood sample" refer to receiving a biological or blood sample, *e.g.*, either directly or indirectly. For 20 example, in some embodiments, the biological sample, such as a blood sample or a sample containing peripheral blood mononuclear cells (PBMC), is directly obtained from a subject at or near the laboratory or location where the biological sample will be analyzed. In other embodiments, the biological sample may be drawn or taken by a third party and then transferred, *e.g.*, to a separate entity or location for analysis. In other embodiments, the 25 sample may be obtained and tested in the same location using a point-of care test. In these embodiments, said obtaining refers to receiving the sample, *e.g.*, from the patient, from a laboratory, from a doctor's office, from the mail, courier, or post office, *etc.* In some further aspects, the method may further comprise reporting the determination to the subject, a health care payer, an attending clinician, a pharmacist, a pharmacy benefits manager, or any person 30 that the determination may be of interest.

5 [0080] By "subject" or "patient" is meant any single subject for which therapy or diagnostic test is desired. This case the subjects or patients generally refer to humans. Also intended to be included as a subject are any subjects involved in clinical research trials not showing any clinical sign of disease, or subjects involved in epidemiological studies, or subjects used as controls.

10 [0081] As used herein, "increased expression" refers to an elevated or increased level of expression in a cancer sample relative to a suitable control (e.g., a non-cancerous tissue or cell sample, a reference standard), wherein the elevation or increase in the level of gene expression is statistically significant ($p < 0.05$). Whether an increase in the expression of a gene in a cancer sample relative to a control is statistically significant can be determined using an appropriate t-test (e.g., one-sample t-test, two-sample t-test, Welch's t-test) or other statistical test known to those of skill in the art. Genes that are overexpressed in a cancer can be, for example, genes that are known, or have been previously determined, to be overexpressed in a cancer.

15 [0082] As used herein, "decreased expression" refers to a reduced or decreased level of expression in a cancer sample relative to a suitable control (e.g., a non-cancerous tissue or cell sample, a reference standard), wherein the reduction or decrease in the level of gene expression is statistically significant ($p < 0.05$). In some embodiments, the reduced or decreased level of gene expression can be a complete absence of gene expression, or an expression level of zero. Whether a decrease in the expression of a gene in a cancer sample relative to a control is statistically significant can be determined using an appropriate t-test (e.g., one-sample t-test, two-sample t-test, Welch's t-test) or other statistical test known to those of skill in the art. Genes that are underexpressed in a cancer can be, for example, genes that are known, or have been previously determined, to be underexpressed in a cancer.

25 [0083] The term "antigen binding fragment" herein is used in the broadest sense and specifically covers intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies) formed from at least two intact antibodies, and antibody fragments.

30 [0084] The term "primer," as used herein, is meant to encompass any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Primers may be oligonucleotides from ten to twenty and/or thirty base pairs in length, but

longer sequences can be employed. Primers may be provided in double-stranded and/or single-stranded form, although the single-stranded form is preferred.

IV. Examples

[0085] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1 – Experimental Procedures

[0086] *Exosome isolation and purification.* Exosomes were purified by differential centrifugation as described previously (Thery *et al.*, 2006; Luga *et al.*, 2012). In short, supernatant from cells cultured for 24 hr were subjected to sequential centrifugation steps of 800g and 2000g and supernatant was filtered using 0.2 µm filter in culture bottles. Exosomes were pelleted at 100,000g in an SW40Ti swinging bucket rotor for 2hr (Beckman). Supernatant was discarded and PBS was added for a 1hr-washing step. The pellet was analyzed for exosome. Exosomes for RNA extraction were resuspended in 500ul of Trizol; exosomes for protein extraction were resuspended in 250ul of lysis buffer (8M Urea/2,5%SDS, 5 µg/ml leupeptin, 1 µg/ml pepstatin and 1 mM phenylmethylsulphonyl fluoride); and exosomes for treatments were resuspended in PBS. Frozen serum samples were thawed on ice and 500 µl were added to 12 mL PBS and the same aforementioned procedure was followed. Exosomes purified by centrifugation were treated (37°C, 60 minutes) with 500 g/mL proteinase K (Sigma-Aldrich) dissolved in RNase-free water, followed by heat inactivation of the protease (60°C, 10 minutes) and incubation (37°C, 15 minutes) with 2g/mL protease-free RNaseA (Sigma-Aldrich) followed by addition of 10X concentrated RNase inhibitor (Ambion). For exosomes treatment, exosomes were purified in duplicate and one of the pellets was used for protein quantification.

[0087] *Flow cytometry analysis of exosomes.* Exosomes preparations (5-10 µg) were incubated with 5 µl of 4-µm-diameter aldehyde/sulfate latex beads (Interfacial Dynamics,

Portland, OR) and resuspended into 400 μ l PBS containing 2% BSA. Exosomes-coated beads (20 μ l) were incubated with the following antibodies: anti-CD63 (Santa Cruz), anti-CD9 (abcam), anti-TSG101 (abcam), anti-flotillin-1 (Santa Cruz) for 30 minutes at 4°C followed, when needed, by incubation with FITC-conjugated secondary antibody and analyzed on a 5 FACS Calibur flow cytometer (BD Biosciences).

[0088] *Exosome Electroporation.* Exosomes at a total protein concentration of 100 μ g (measured by Bradford Assay) and 5 μ g of Dicer antibody (polyclonal SC-30226, Santa Cruz, CA), 5 μ g of Actin antibody, or 10 μ g of pre-miRNA-21, -10b and -cell were mixed in 400 μ l of electroporation buffer (1.15 mM potassium phosphate pH 7.2, 25 mM potassium 10 chloride, 21% Optiprep) and electroporated in a 4 mm cuvette using a Gene Pulser Xcell Electroporation System (Biorad) as described previously (Alvarez-Erviti *et al.*, 2011). After electroporation, exosome were treated with proteinase K and/or RNase when appropriate.

[0089] *Light Scattering Spectroscopy (LSS).* LSS spectra were collected using the experimental system described in FIG. 10B. The Fianium SC-450-2 broadband 15 supercontinuum laser was used as a source of white light. The light from the supercontinuum laser was focused into the sample with a long focus length lens. The samples consisting of liquid suspensions of either exosomes or microspheres were placed in a custom cubic-shaped quartz sample holder. The background signals were collected from the solvent samples with no exosomes or microspheres. The light scattered by exosomes or microspheres at 90° to the 20 incident beam was collected with the other long focus length lens and delivered to the Princeton Instrument Acton 2300i imaging spectrograph coupled with a high efficiency Andor Technology iXon DV885 EMCCD detector. The detection was performed in the 470–870-nm wavelength range. The detector was controlled by a computer, into which the data 25 were transferred, stored, and processed.

[0090] To calibrate the system and establish its ability to accurately detect sizes of the 25 particles, which can be smaller than the wavelength, the signals from phosphate buffered saline (PBS) suspensions of glass microspheres with nominal diameters of 24 nm and 100 nm and polystyrene microspheres with nominal diameters of 119 nm, 175 nm, 356 nm and 457 nm were measured. The spectra predicted by Mie theory were fitted to the data 30 using the previously developed least-squares minimization method (Fang *et al.*, 2003). The experimental spectra and resulting fits are shown in FIG. 1E for glass microspheres with nominal diameter of 100 nm and polystyrene microspheres with nominal diameter of 356 nm.

Here the deviation from the Rayleigh scattering multiplied by the forth power of the wavelength is shown to emphasize the non-Rayleigh behavior of the LSS spectra. By comparing LSS yielded size distributions for microspheres with the manufacturer provided specifications, it was concluded that the accuracy of the LSS method is estimated to be 10 nm. It was also established that the reconstructed size distributions are insensitive to the refractive indices of the microspheres and the solvent. It should be pointed out here that since light scattering of small particles is proportional to the six power of their size, detection of particles smaller than 50 nm in the presence of larger particles would require substantial increase in the signal-to-noise ratio of the experimental system.

10 [0091] LSS experiments with the PBS suspension of exosomes were then performed. The experimental LSS spectrum of the exosomes and the corresponding Mie fit are presented in FIG. 1B. The fit of the reconstructed spectrum is excellent. Using the mentioned above reconstruction technique (Fang *et al.* 2003; Itzkan *et al.* 2007; Fang *et al.* 2007) the size distribution of exosomes (see FIG. 1R right graph and insert), which peaked at 104 nm was found. This extracted size distribution was compared with the morphometric measurements performed on the TEM photographs of the similar exosome samples (FIG. 1A). Since number of particles on the TEM photographs was not large enough to plot statistically meaningful distribution, the mean size of the particles larger than 50 nm was calculated from the TEM photograph and found to be equal 95 nm. Thus, the LSS reconstructed size distribution and 15 morphometric measurements performed on the TEM photographs of exosomes agree with all the data.

20 [0092] *N-Rh-PE Treatments.* Cells were labeled with N-Rh-PE by incubating with 8 μ M N-Rh-PE (Avanti Polar Lipids, Alabaster, AL) diluted in ice-cold 1 X Hanks buffer (Invitrogen, Carlsbad, CA) for 1 hr on ice. Cells were then washed 3 times with ice-cold Hanks buffer before plating them back in DMEM medium. N-Rh-PE cells were used for 25 confocal imaging approximately 24 hr after labeling.

30 [0093] *Immunogold Labeling and Electron Microscopy.* Fixed specimens at an optimal concentration were dropped onto a 300 mesh carbon/formvar coated grids and allowed to absorb to the formvar for a minimum of 1 minute. For immunogold staining the grids were placed into a blocking buffer for a block/permeabilization step for 1 hr. Without rinsing, the grids were immediately placed into the primary antibody at the appropriate dilution overnight at 4°C (polyclonal anti-Dicer 1:10 SC-30226, Santa Cruz; monoclonal

anti-CD9 1:10, Abcam). As controls, some grids were not exposed to the primary antibody. The next day all of the grids were rinsed with PBS and then floated on drops of the appropriate secondary antibody attached with 10nm gold particles (AURION, Hatfield, PA) for 2 hours at room temperature. Grids were rinsed with PBS and were placed in 2.5% 5 Glutaraldehyde in 0.1M Phosphate buffer for 15 minutes. After rinsing in PBS and distilled water the grids were allowed to dry and stained for contrast with uranyl acetate. The samples were viewed with a Tecnai Bio Twin transmission electron microscope (FEI, Hillsboro, OR) and images taken with an AMT CCD Camera (Advanced Microscopy Techniques, Danvers, MA).

10 [0094] *Protein Blot and Antibodies.* To monitor endogenous gene responses, cells were harvested in RIPA buffer and exosomes in 8M Urea/2.5%SDS, 5 µg/ml leupeptin, 1 µg/ml pepstatin and 1 mM phenylmethylsulphonyl fluoride buffer. Proteins were loaded according to Bradford quantification onto acrylamide gels and transferred onto PVDF membranes (ImmobilonP) by wet electrophoretic transfer. For protein samples of serum 15 exosomes collected from the orthotopic xenograft models, a 4% acrylamide gel with 15 cm height was used to resolve human and mouse Dicer bands. In general, blots were blocked for 1hr at RT with 5% non-fat dry milk in PBS/0.05% Tween and incubated overnight at 4°C with the following primary antibodies: 1:500 anti-Dicer (SC-30226) Santa Cruz; 1:1000 anti-Ubiquitinylated proteins, clone FK2 Millipore; 1:500 anti-Flag M2-Peroxidase Clone M2 20 Sigma; 1:500 anti-CD43 ab9088 Abcam; 1:500 anti-PTEN, ab32199, Abcam; 1:300 anti-CD9 ab92726, Abcam; 1:500 anti-GADPH ab9483, Abcam; 1:250 anti-TRBP ab72110, Abcam; 1:300 anti-TSG101 ab83, Abcam; 1:400 anti-AGO2 ab32381, Abcam; 1:4000 anti-β-actin Peroxidase Clone AC-15, Sigma; 1:500 anti-GFP ab6556, Abcam; 1:500 anti-HOXD10 ab76897 Abcam. Secondary antibodies were incubated 1hr at RT. Washes after 25 antibody incubations were done on an orbital shaker, four times at 10 min intervals, with 1X PBS 0.05% Tween20. Blots were developed with chemiluminescent reagents from Pierce.

30 [0095] *Real-time PCR Analysis.* DNase treated RNA was retro-transcribed with MultiScribe Reverse Transcriptase (Applied Biosystems) and oligo-d(T) primers following total RNA purification with Trizol (Invitrogen). Real-time PCR for mRNAs was performed on an ABI PRISM 7300HT Sequence Detection System Instrument using SYBR Green Master Mix (Applied Biosystems) and β-actin as the control. The primers are listed in Table 1.

[0096] Pre-miRNAs were quantified using 150ng of DNase treated RNA and the SuperScript III Platinum One-Step RT-qPCR kit (Invitrogen) (Schmittgen *et al.*, 2004). The primers are listed in Table 1.

[0097] For miRNA expression analysis, 10ng of RNA was mixed with TaqMan MicroRNA Reverse Transcription Kit reagent containing specific miRNA primers and reverse-transcribed according to the manufacturer's instructions (Applied Biosystems). Reaction mixes were incubated at 16°C for 30 minutes, 42°C for 30 minutes and 85°C for 5 minutes. Real-time PCR was performed using ABI PRISM 7300HT Sequence Detection System Instrument (Applied Biosystems) using commercially available Assay-on-Demand System Instrument (Applied Biosystems) for each miRNA studied (Applied Biosystems). Expression of miRNAs was normalized to the expression of 18S rRNA (TaqMan Pre-Developed Assay Reagent; Applied Biosystems) that served as internal control for the RNA amount and integrity. Each measurement was performed in triplicate. Threshold cycle (C_t), the fractional cycle number at which the amount of amplified target reached a fixed threshold, was determined and expression was measured using the 2^{-ΔCt} formula, as previously reported (Livak and Schmittgen, 2001).

Table 1. qPCR Primer Sequences.

Primer Name	Primer Sequence	SEQ ID NO:
BiG2 F	5' CAGGAGGTGGTGAAGGACAT3'	1
BiG2 R	5' CCCGTTGGTCTGTGAGTTT3'	2
TSG101 F	5' GATACCCTCCCAATCCAGT3'	3
TSG101 R	5' GTCACTGACCGCAGAGATGA3'	4
Hrs F	5'AGTGGCTGTCGGGTATTCATC3'	5
Hrs R	5'CCGTCCATATCCCTGAAGAACATC3'	6
CD43 F	5'GCTGGTGGTAAGCCCAGAC3'	7
CD43 R	5'GGCTCGCTAGTAGAGACCAAA3'	8
hsa-Actin F	5'CATGTACGTTGCTATCCAGGC3'	9
hsa-Actin R	5'CTCCTTAATGTCACGCACGAT3'	10
mmu-Actin F	5'GGCTGTATTCCCTCCATCG3'	11
mmu-Actin R	5'CCAGTTGGTAACAATGCCATGT3'	12
Pre-miR-let7-a F	5'AGGTAGTAGGTTGTATAGTTAGG3'	13
Pre-miR-let7-a R	5'TAGGAAAGACAGTAGATTGTATAGT3'	14
Pre-miR-15b F	5'AGCACATCATGGTTACATGC3'	15
Pre-miR-15b R	5'CTAGAGCAGCAAATAATGATTGG3'	16
Pre-miR-26a F	5'TTCAAGTAATCCAGGATAGGCTGT3'	17
Pre-miR-26a R	5'TGCAAGTAACCAAGAATAGGCC3'	18
Pre-miR-31 F	5'TGAGTGTGTTCCCTCCCT3'	19
Pre-miR-31 R	5'GCCATGGCTGCTGTCAG3'	20
Pre-miR-125a F	5'GTCCCTGAGACCCTTAACC3'	21

Primer Name	Primer Sequence	SEQ NO:	ID
Pre-miR-125a R	5' AACCTCACCTGTGACCCTG3'	22	
Pre-miR-125b F	5' GTCCCTGAGACCCTAACTTG3'	23	
Pre-miR 125b R	5' AGCCTAACCCGTGGATT3'	24	
Pre-miR-200a F	5' TTCCACAGCAGCCCCTG3'	25	
Pre-miR-200a R	5' GATGTGCCTCGGTGGTGT3'	26	
Pre-miR-200c F	5' CTCGTCTTACCCAGCAGTGT3'	27	
Pre-miR-200c R	5' GTCATCATTACCAGGCAGTATTAG3'	28	
Pre-miR-335 F	5' GTCAAGAGCAATAACGAAAAATG3'	29	
Pre-miR-335 R	5' GAGGTCAGGAGCAATAATGAA3'	30	
Pre-miR-10a,b F	5' TACCCTGTAGATCCGAATTGTG3'	31	
Pre-miR-10a,b R	5' ATTCCCCTAGATACGAATTGTGA3'	32	
Pre-miR-21 F	5' GCTTATCAGACTGATGTTGACTG3'	33	
Pre-miR-21 R	5' CAGCCCCTCGACTGGTG3'	34	
Pre-miR-27a F	5' GCAGGGCTTAGCTGCTTG3'	35	
Pre-miR-27a R	5' GGCAGAACTTAGCCACTGT3'	36	
Pre-miR-155 F	5' GTTAATGCTAACCGTGTAGGG3'	37	
Pre-miR-155 R	5' GCTAATATGTAGGAGTCAGTTGGA3'	38	
Pre-miR-373 F	5' CTCAAAATGGGGCGCTT3'	39	
Pre-miR-373 R	5' CACCCCAAAATCGAAGCACT3'	40	
Pre-cel-1 F	5' CCACCCCGTTCTACATACTTC3'	41	
Pre-cel-1 R	5' ACCGTACCGAGCTGCATACT3'	42	

[0098] *Northern Blot.* Northern blot was performed using 3' Bio[TEG] DNA oligonucleotides of the reverse compliment to the mature miRNA as probes (see Table 2). Urea/acrylamide 15% gels were used to load 40 µg of exosomal RNA (DNase treated) 5 together with 1X RNA loading dye after 2 minutes at 95°C followed by a 2 minutes period on ice. MicroRNA marker was used according to manufacturer's instructions (N2102, New England BioLabs). Electrophoresis was done at 4°C during 3 hr using TBE 1X. Transfer was done using Whatman blotting papers and the BrightStar-Plus Positively Charged Nylon Membrane (Ambion) during 2 hr at 4°C with TBE 0.5X. The RNA was cross-linked to the 10 membrane using a UV transilluminator for 20 minutes. Membranes were pre-hybridized by rotating for 1 hr at 42°C in Ambion's ULTRAhyb®-Oligo hybridization solution (Ambion). The probes were thawed on ice and 150 ng were added per mL of hybridization buffer after 5 minutes incubation at 95°C, after which membranes were left in rotation overnight at 42°C. The following washes were done: 2X SSPE/0.5%SDS – twice for 15 minutes; 15 0.2SSPE/0.5%SDS – twice for 30 minutes and 2X SSPE - 5 minutes. These initial washing steps were followed by more washes and then the blots were developed using the BrightStar BioDetect Kit according to the manufacturer's instructions (Ambion). The blots were

exposed overnight with two stacked films. Blots were successfully stripped and re-probed twice more.

Table 2. Northern Probe Sequences.

Probe Name	Probe Sequence	SEQ ID NO:
miR-10b	5' CACAAATTGGTCTACAGGG3'	43
miR-21	5' TCAACATCAGTCTGATAAGCTA3'	44
miR-cel-1	5' AGTATGCAGCTGGTACGGT3'	45
pre-miR-10b	5' TGAAGTTTGATCGACCATATATTCCCTAGAATCGAA3'	46
pre-miR-21	5' TGTACAGACAGCCCATCGACTGGTGTTGCCATGAGAT3'	47
tRNAMet	5' CAGCACGCTTCCGCTGCGCCACTCT3'	48

5 [0099] *Cell Culture, Plasmids, Pre-miRNAs and siRNAs.* MCF10A, MCF7, MDA-MB231, A549, SW480 and HeLa human cell lines as well as NMuMG, 67NR and 4T1 mouse mammary cell lines were cultured in DMEM 10% FBS (all cells are originated from the American Type Culture Collection – ATCC). Transfections were performed using Lipofectamine 2000 reagent (Invitrogen) for siRNA. For synthetic pre-miRNA transfections
10 RNAiFect (Qiagen) was used in all cell lines. Sequences of siRNAs are listed in Table 3.

Table 3. siRNA Sequences.

siRNA Name	siRNA Sequence	SEQ ID NO:
Hrs	5' GGAACGAGCCAAGUACAATT3'	49
Hrs	5' UUGUACUUGGGCUCGUUCCGG3'	50
TSG101	5' GUUUAUCAUUCAAGUGUAATT3'	51
TSG101	5' UUACACUUGAAUGAUAAACTG3'	52
CD43	5' GGAGAGCCUUUGGUCUCUATT3'	53
CD43	5' UAGAGACCAAAGGCUCUCCGG3'	54
AGO2	5' GGCGUUACACGAUGCACUUTT3'	55
AGO2	5' AAGUGCAUCGUGUAACGCCTG3'	56

15 [00100] *Plasmids.* p-CMV-Tag4B-Dicer (Melo *et al.*, 2009); p-CMV6-CD63-GFP from Origene (RG217238); GFP-hAGO2 from Addgene (plasmid 11590); pGFP-shBiG2 from Origene (TG314697); pGFP-shDicer from Origene (TG304991); synthetic pre-miR-10b, -21 and -cel-1 were purchased from Ambion; 3'UTR-WTPTEN, 3'UTR-Mutant-PTEN (Dr. Joshua Mendell laboratory), 3'UTR-WTHOXD10 and 3'UTR-Mutant-HOXD10 (Dr. Robert Weinberg laboratory) are from Addgene.

[00101] *Immunocytochemistry and Confocal Microscopy.* Cells were plated at appropriate confluence in 12 well plates on inserted coverslips and cultured overnight. The next day cells were washed with cold PBS 1X and fixed for 20 min at RT with 4% PFA/PBS. Slides were permeabilized for 10 min at RT with PBS 0.5% Triton X-100, blocked 1 hr at RT with BSA 5%, and incubated overnight at 4°C with primary antibodies in PBST (PBS, 0.1% Triton) 2% BSA: 1:100 anti-Dicer (SC-30226) Santa Cruz; 1:500 anti-Flag Sigma; 1:50 anti-CD43 ab9088 (Abcam); 1:100 anti-TSG101 ab83 (Abcam); 1:500 anti-GFP ab6556 (Abcam); 1:100 anti-LAPM-1 ab25630 (Abcam); 1:100 anti-Hrs ab56468 (Abcam); 1:100 anti-BiG2 ab75001 (Abcam); 1:500 anti-biotin ab66233 (Abcam). Secondary antibodies goat 5 anti-rabbit Alexa 543 or goat anti-mouse Alexa-488 were incubated 1 hr at RT diluted 1:200 in PBST 2% BSA. DAPI was used to stain the nuclei. For exosomes analysis, harvested 10 exosomes were incubated with Triton X-0.05% for 15 min and subsequently with 5% BSA for 1 hr at RT. The first primary antibody (anti-CD9, 1:50) was incubated overnight in 100ul PBST at 4°C and the second primary antibody, anti-flag (1:50), was added the next day and 15 incubated for 1 hr at RT. Secondary antibodies were added consecutively and incubated also 1 hr at RT. Exosomes were plated on top of coverslips in 12 well plates in 4% PFA for 45 min and washed with cold PBS. Images were obtained with a Zeiss LSM510 Upright Confocal System using the recycle tool to maintain identical settings. Aggregated exosomes 20 lead to structures larger than 200 nm visible in confocal microscopy. For data analysis, images were selected from a pool drawn from at least two independent experiments. Figures show representative fields.

[00102] *In Vitro Dicing Assays.* Exosomal protein extracts (10 µg) were 25 incubated at 37°C with 3 pmol of pre-miR-10b, -21 and -cel-1 biotin-internally labeled hairpins in the presence of 3 mM MgCl₂, 30 mM NaCl and 100 mM Hepes, pH 7.5. The final volume of each reaction was 10 µl. Reactions were stopped by the addition of 10 µl of formamide gel loading buffer. RNA was resolved using denaturating polyacrylamide gel electrophoresis and developed with the BrightStar BioDetect Kit according to the manufacturer's instructions (Ambion).

[00103] *Cell Viability and Colony Formation Assays.* Cells were plated in 96 30 well plates and harvested exosomes were added at day 1 at a concentration of 100 µg/mL. Cell viability was determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. For colony formation experiments, cells were plated in 12

well plates and exosomes were added at day 1 and day 5 of culture at a concentration of 100 μ g/mL. After 8 days colonies were fixed and stained with MTT reagent.

5 [00104] *Illumina Human-HT12 mRNA Expression Array.* RNA was hybridized in an Illumina Human-HT12 mRNA expression array. Data was normalized using the neqc routine offered by the R package "limma" (Shi *et al.*, 2010). Gene abundances were determined by the median of the probes per gene. Clustering is done by arithmetic mean of euclidean distances of genes (rows) and samples (columns).

10 [00105] *miRNA expression array.* A custom miRNA array was used as described in9. The array contains 1833 human microRNA probes, 1084 mouse microRNA probes and other 78 noncoding RNAs probes. The probes are printed in duplicate. The GenBank accession ID associated with each probe is included. Bioinformatic analysis was performed using R (version 2.14.2) (on the world wide web at r-project.org) and Bioconductor (on the world wide web at bioconductor.org/). The raw intensity for each probe is the median feature pixel intensity with the median background subtracted. Setting 15 an offset 1 ensures that there will be no negative values after log-transforming data. Data was quantile normalized followed by log2 transform. Signals from probes measuring same miRNA were averaged. The analysis was performed using the functions of LIMMA library. The heatmaps were generated using the heatplot function of made4 library. When technical replicates were performed, the heatmap represented the average expression values obtained 20 from replicate measurements.

25 [00106] *Orthotopic Xenografts of Ovary, Endometrium and Breast Tumors.* Female athymic nu/nu mice (Harlan) between 4 to 6 weeks of age were housed in individually ventilated cages on a 12-hour light-dark cycle at 21 to 23°C and 40% to 60% humidity. Mice were allowed free access to an irradiated diet and sterilized water. All animal 25 protocols were reviewed and approved according to the Spanish Institutional Animal Care and Use Committees.

30 [00107] The primary tumor specimens were obtained at Hospital Universitari de Bellvitge (L'Hospitalet de Llobregat, Barcelona, Spain). The Institutional Review Board approved the study. Written informed consent was collected from patients. Non-necrotic tissue pieces (ca. 2-3mm³) from five representative resected human epithelial ovarian tumor (EOCs): serous, endometrioid, clear cell tumor and mucinous, were selected and placed in

DMEM (BioWhittaker) supplemented with 10% FBS and penicillin/streptomycin at room temperature. Under isofluorane-induced anesthesia, animals were subjected to a lateral laparotomy, their ovaries exposed and tumor pieces anchored to the ovary surface with prolene 7.0 sutures. Additionally, pieces of human breast and endometrial tumors were 5 implanted in the mammary fat pads and the endometrial wall, respectively.

[00108] Orthotopically engrafted tumors were allowed to grow and at the time of sacrifice 2 ml of blood were obtained from anesthetized mice by cardiac puncture. Samples were centrifuged at 14,000 rpm and frozen at -80°C.

[00109] *Immunoprecipitation.* Cells and exosomes were harvested, washed in 10 PBS and centrifuged or ultracentrifuged, respectively, to collect pellets. Ice-cold RIPA buffer or 8 M Urea/SDS buffer were added to cells and exosomes, respectively. Suspensions were gently rocked at 4°C, 15 min for cells and 2 hr for exosomes. The lysates were centrifuged at 14,000 g in a pre-cooled centrifuge for 15 minutes and the pellet was discarded. Protein A or G agarose/sepharose beads were washed twice with PBS and restored with 50% slurry with 15 PBS. A bead/slurry mix (100 µl) was added to 1 mL of cell lysate and 500 µl of exosomal lysate and incubated at 4°C for 10 min. Beads were removed by centrifugation at 14,000 x g at 4°C for 10 minutes and pellets discarded. Dicer antibody (5 µg for cells and 10 µg for exosomes) was added to 500 µl of cell lysate or 250 µl of exosomal lysate (1 µg/µl cells, 10 µg/µl exosomes) and incubated overnight at 4°C on an orbital shaker. 100 µl of Protein A or 20 G agarose/sepharose bead slurry were added and left at 4°C overnight. After centrifugation the supernatant was discarded and beads washed 3 times with ice-cold RIPA buffer for cells or Urea/SDS buffer for exosomes. The agarose/sepharose beads were boiled for 5 minutes to dissociate the immunocomplexes from the beads. The beads were collected by centrifugation and protein blot was performed with the supernatant.

[00110] *Culture Conditions in the Presence of Ca²⁺ Ionophore A23187.* Cells 25 (8 × 10⁷ cells) were seeded at 5 × 10⁵ cells/ml in DMEM. To treat the cells, A23187 (200 nM final concentration, Calbiochem, La Jolla, CA) was added to the cultures four hours later. Media from treated and non-treated cells was harvested and exosomes collected.

[00111] *Orthotopic injection of cells in nude mice.* Orthotopic tumor growth 30 was measured by injecting MCF10A non-tumorigenic breast epithelial cells, MCF10A non-tumorigenic breast epithelial cells exposed to MDA-MB231-derived exosomes and MDA-

MB-231 breast cancer cells (1×10^5 cells in 0.2 ml PBS) into the mammary fat pad of 3-week-old female athymic nude mice, as described previously (Welch, 1997). Tumor growth was monitored weekly by measuring the tumor length and width with a caliper and was reported as the mean tumor diameter as previously described (Welch, 1997). All animals 5 were euthanized 21 days post tumor cell injection.

[00112] *Statistics.* Error bars indicate S.D. between biological replicates. Technical as well as biological triplicates of each experiment were performed. Statistical significance was calculated by Student's t-test.

Example 2 – Results

10 [00113] *Isolation and Identification of Exosomes.* Exosomes from cancer cells (MDA-MB231 triple negative human metastatic breast carcinoma, MCF7 human breast adenocarcinoma, 67NR mouse non-metastatic breast carcinoma and 4T1 mouse metastatic breast carcinoma) and control cells (MCF10A non-tumorigenic human epithelial breast and NMuMG non-tumorigenic mouse epithelial breast) were isolated using established 15 ultracentrifugation methods (FIG. 10A) (Luga *et al.*, 2012; Thery *et al.*, 2006). The harvested exosomes were analyzed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Particles between 40-140 nm in size were identified (FIGs. 1A-B) (Thery *et al.*, 2002). Further, the identity of the exosomes was confirmed by detecting TSG101 and CD9, two exosomes markers (FIG. 1C) (Ostrowski *et al.*, 2010). The isolated exosomes were 20 also positive for the CD9 marker when analyzed by immunogold-labeling electron microscopy (FIG. 1A). Exosome coupled to latex beads were also analyzed by flow cytometry, showing surface expression of the tetraspanins CD9, CD63, TSG101 and flotillin1, which are commonly-used exosomes markers (FIG. 1D). Additionally, Light Scattering Spectroscopy (LSS) (Fang *et al.*, 2007; Itzkan *et al.*, 2007; Bang and Setabutr, 25 2010; Benitez-vieyra *et al.*, 2009; Khairkar *et al.*, 2010; Min *et al.*, 2010) was used to show that the isolated samples reveal a tight size distribution peaking at 104 nm in diameter (FIG. 1E, right panel). The LSS system allowed for accurate detection of all sizes of particles in exosomes extracts by using glass microspheres of different diameters as internal controls. LSS also excluded potential microvesicles and bacterial or cellular debris contamination in 30 these isolates (FIG. 1E, see inset on right graph). Furthermore, and in agreement with LSS data, the NanoSight nanoparticle tracking analysis revealed particles with a size distribution peaking at 105 ± 1.0 nm in diameter (FIG. 1F) further excluding the existence of potential

contaminants of different size ranges that exist in solution when it is not filtered (FIG. 1F, right graph). Colorimetric cell viability assay (MTT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry analysis for Anexin V and propidium iodide, and cytochrome C immunoblots of exosomes (FIGs. 10C-E) were used to 5 demonstrate the viability of cells before exosomes extraction in order to exclude the possibility of contamination of the isolates with apoptotic bodies or random cell debris. Exosomes isolated from cancer cells are collectively termed as oncosomes, as defined previously (Lee *et al.*, 2011). Exosomes isolated from control cells are collectively termed as normosomes.

10 [00114] *Oncosomes are Specifically Enriched in Oncogenic miRNAs when Compared to Normosomes.* The global miRNA content of oncosomes and normosomes were investigated. Microfluidics analysis of RNA isolated from exosomes revealed an increase in the small RNA content of oncosomes when compared to normosomes (FIG. 2F). Furthermore, a low correlation between the levels of miRNAs in normosomes (MCF10A- 15 derived) and oncosomes (MDA-MB-231-derived) was observed, with an R^2 value of 0.35 (FIG. 2A). Global miRNA array analysis showed an enrichment of miRNAs content in oncosomes when compared with normosomes. This analysis also revealed a very distinct miRNA expression profile in oncosomes when compared to normosomes. The miRNA array data showed 305 differentially expressed miRNAs between oncosomes and normosomes 20 (Table 5), with an overall enrichment of miRNA content in oncosomes when compared with normosomes. Enrichment of miRNAs in oncosomes was not a mere reflection of an increase in miRNAs in the cancer cells because the cancer cells showed a decrease in the overall amount of total small RNAs when compared to non-tumorigenic cells (FIG. 11A). Therefore, accumulation of miRNAs in exosomes appeared to be specific and targeted.

25 [00115] The expression of 15 miRNAs in the cancer cells and exosomes derived from these cells that were found to be differentially expressed in the miRNA array between oncosomes and normosomes were further evaluated (Tables 4 and 5). Six miRNAs from this collection have been implicated in cancer progression (oncogenic miRNAs: miR-10a, miR-10b, miR-21, miR-27a, miR-155 and miR-373) and nine miRNAs were reported to 30 possess tumor suppressive functions (tumor suppressor miRNAs: let7a, miR15b, miR26a, miR31, miR125a, miR125b, miR200a, miR200c, miR335) and are expressed in cells and exosomes derived from those cells (FIGs. 11B-C and Table 4). To determine the half-life of

miRNAs in exosomes, a cell-free system was developed to study them in isolated exosomes. Purified exosomes, free from cells, were placed in culture media and incubated for either 24h or 72h at 37°C. After the incubation period, the exosomes were analyzed for their miRNA content and compared to the cells from which they originated. There was a decrease in the 5 correlation values of these miRNAs in the oncosomes compared to the cells at 72h when compared to 24h ($R^2 = 0.60$ to $R^2 = 0.43$), while a high correlation was maintained between normosomes and MCF10A cells (cells used to derive the normosomes; $R^2 = 0.98$ to $R^2 = 0.98$) (FIG. 2B). A striking up-regulation of the six analyzed oncogenic miRNAs was observed exclusively in oncosomes cultured for 72h when compared to oncosomes cultured 10 for 24h, with an average fold-change of 17.6 and 13.2 for MDA-MB231 and 4T1 derived oncosomes, respectively, further supporting a specific increase in miRNA content in oncosomes with time (FIG. 2C middle and lower graphs and FIG. 11D right, up and lower graphs). Insignificant differences are noted for tumor suppressive miRNAs when oncosomes were cultured for either 24h or 72h (FIG. 2C and FIG. 11D). Normosomes did not reveal any 15 differences in their miRNA content irrespective of the culture time (FIG. 2C and FIG. 11D). The presence of all 15 miRNAs were identical in 72h cultured normosomes and cells they were derived from, with a correlation coefficient of 0.93 (FIG. 2E, left). The correlation coefficients of MDA-MB231 and 4T1 exosomes were significantly lower ($r^2 = 0.56$ and 0.42 , respectively), further supporting a specific alteration in miRNA levels of oncosomes with 20 time (FIG. 2E, middle and right). Additionally, the correlation levels decrease with increasing malignancy of the cells lines when oncosomes are compared from MCF7 ($r^2 = 0.76$), MDA-MB231 ($r^2 = 0.56$), 67NR ($r^2 = 0.64$) and 4T1 ($r^2 = 0.42$) (FIG. 2E and FIG. 11E). Therefore, the miRNA content of normosomes was a reflection of their cell-of-origin at all times, while oncosomes altered their miRNAs content with time in a cell-independent manner.

25 [00116] When miRNA content of MDA-MB231 and 4T1 oncosomes were compared to that of normosomes from MCF10A and NMuMG cells, an enrichment was observed of oncogenic miRNAs in oncosomes cultured for 24h with an average fold change of 2.7 and 2.0 respectively (FIG. 11B). At the 72h time point, an average fold-change of 30 and 18.2 was detected in oncogenic miRNAs in MDA-MB231 and 4T1 derived oncosomes, 30 respectively, when compared to MCF10A and NMuMG derived normosomes (FIG. 11B). Northern blots confirmed the up-regulation of oncogenic miR-10b and miR-21 exclusively in oncosomes, supporting both the miRNA array as well as the qPCR analysis (FIG. 2D).

[00117] *Oncosomes Contain Pre-miRNAs and the Core RLC Proteins.* Cell-free culture of freshly isolated oncosomes resulted in an increase in miRNA content, suggesting active biogenesis in exosomes. Additionally, microfluidics analysis also suggested the presence of larger RNA molecules (FIG. 2F). Therefore, the potential presence of pre-miRNAs in normosome and oncosome preparations was explored. Cell-free culture of exosomes for 24h or 72h after their isolation was performed and subjected to RNase treatment for depletion of any possible extra-exosomal RNA. This was followed by detection of pre-miRNAs in exosomes. The analyzed pre-miRNAs were the ones that corresponded to the 15 mature miRNAs previously evaluated (Table 4).

10 **Table 4.** The 15 miRNAs differentially expressed between oncosomes and normosomes.

MicroRNA ID	References
miR-let7-a	Kim <i>et al.</i> , 2012; Spizzo <i>et al.</i> , 2009
miR-15b	Cimmino <i>et al.</i> , 2005; Palamarchuk <i>et al.</i> , 2010
miR-26a	Kota <i>et al.</i> , 2009
miR-31	Valastyan <i>et al.</i> , 2009
miR-125a	Guo <i>et al.</i> , 2009; Spizzo <i>et al.</i> , 2009
miR-125b	Spizzo <i>et al.</i> , 2009; Zhang <i>et al.</i> , 2011
miR-200a	Park <i>et al.</i> , 2008; Spizzo <i>et al.</i> , 2009
miR-200c	Park <i>et al.</i> , 2008; Spizzo <i>et al.</i> , 2009
miR-335	Heyn <i>et al.</i> , 2011; Scarola <i>et al.</i> , 2010; Tavazoie <i>et al.</i> , 2008
miR-10a	Tan <i>et al.</i> , 2009
miR-10b	Spizzo <i>et al.</i> , 2009; Yigit <i>et al.</i> , 2012
miR-21	Spizzo <i>et al.</i> , 2009; Yan <i>et al.</i> , 2008
miR-27a	Guttilla and White, 2009; Mertens-Talcott <i>et al.</i> , 2007
miR-155	Mattiske <i>et al.</i> , 2012
miR-373	Spizzo <i>et al.</i> , 2009; Voorhoeve <i>et al.</i> , 2006

[00118] All 15 pre-miRNAs analyzed were present in exosomes (normosomes and oncosomes) (FIG. 3A and FIG. 12A). As observed with miRNAs, oncosomes were highly enriched in oncogenic pre-miRNAs, while tumor-suppressive pre-miRNAs were underrepresented (FIG. 3A and FIG. 12A). When exosomes were cultured for 24h or 72h, a significant down regulation of oncogenic pre-miRNAs was observed in oncosomes cultured for 72h when compared to oncosomes cultured for 24h. Such variation was not found in normosomes (FIG. 3B and FIG. 12B). The tumor-suppressive pre-miRNAs did not show any difference in oncosomes or normosomes (FIG. 3B and FIG. 12B). Moreover, decreasing amounts of oncogenic pre-miRNAs in oncosomes, but not in normosomes, was noted after 96h of culture, at which point the oncogenic pre-miRNA levels reached the levels of tumor-

suppressive pre-miRNAs (FIG. 3E and FIG. 12E). Down regulation of oncogenic pre-miRNAs in oncosomes was confirmed by Northern blotting for pre-miR10b and pre-miR21 (FIG. 3C). Next, a time-course analysis of pre-miRNAs and miRNAs in exosomes was performed. By culturing isolated oncosomes for 6h, 12h, 24h, 36h, 48h, 72h and 96h, it was
5 observed that the levels of the 6 analyzed pre-miRNAs were inversely proportional to their respective miRNAs with increased culture time (FIG. 3D). Mature miRNAs increased in quantity between 24 and 72h of culture, after which they reached a plateau (FIG. 3D). Therefore, oncosomes deplete their pre-miRNAs content with a concomitant increase in their respective mature miRNAs with time. This observation led to the hypothesis that oncosomes
10 have the ability for miRNA biogenesis.

[00119] To understand why the processing of pre-miRNAs in cultured exosomes starts after 24h and not immediately, all six miRNAs in MDA-MB-231 cells silenced for exportin-5 (XPO5) were monitored (FIGs. 12C and D). XPO5 is responsible for the transport of pre-miRNAs from the nucleus to the cytoplasm (Yi *et al.*, 2003). Silencing
15 XPO5 prevents the flow of pre-miRNAs from the nucleus to the cytoplasm and allows for an evaluation of cytoplasmic pre-miRNA processing without the introduction of new cytoplasmic pre-miRNA from the nucleus. MicroRNA-21 was monitored in MDA-MB-231siXPO5 cells before and after centrifugation (FIGs. 12C and D), which occurred at 4°C for 3 hours to mimic the conditions of exosomes isolation. A significant up-regulation of the miR-21 was
20 not observed at the same time points between centrifuged versus non-centrifuged cells, where the previous cells suffer a lag period of 24h (FIGs. 12C and D). Therefore, both cells and exosomes require a period of time to recover from the stress of centrifugation at 4°C to initiate the processing of pre-miRNAs. Such acclimatization is expected for enzymatic activities in cultured cells after tissue culture passage.

[00120] *Oncosomes Contain the Core RISC (RLC) Proteins.* Oncosomes deplete their pre-miRNAs concentration with concomitant increase in their respective mature miRNAs with time. This led us to examine miRNA biogenesis and pre-miRNA processing capabilities in exosomes. MicroRNA biogenesis requires key protein components of the RLC, Dicer, TRBP and AGO2 (Chendrimada *et al.*, 2005). It has been previously shown that
30 Dicer and TRBP form a complex that provides stability to Dicer protein, while AGO2 is recruited later in the biogenesis pathway to help with strand selection and the RNA unwinding process (Chendrimada *et al.*, 2005). Dicer protein was detected in oncosomes

derived from MCF7, MDA-MB231, 67NR and 4T1 cancer cells (FIG. 1C and FIGs. 4A-B). The possibility of detecting contaminating extra-exosomal Dicer protein was removed by treating all exosomes preparations with proteinase K before exosomal protein extraction as previously described (Montecalvo *et al.*, 2012) (FIG. 1C and FIGs. 4A-B). In addition, 5 various cancer cell lines such as A549 (human lung cancer), SW480 (human colorectal cancer), HeLa (human cervical cancer) and 4T07 (mouse breast cancer) also produce Dicer-containing exosomes (FIG. 13H). Dicer protein was not detected in normosomes produced by MCF10A (human non-tumorigenic breast epithelial cells) and NMuMG (mouse non-tumorigenic breast epithelial cells) cell lines (FIG. 1C and FIG. 4A). Immunogold labeling of 10 exosomes using transmission electron microscopy corroborated the presence of Dicer protein in oncosomes but not in normosomes (FIG. 4B and FIG. 13A). Additionally, anti-GFP antibody was used as another negative control in immunogold labeling experiments, and nothing was detected in the exosomes (FIG. 13B).

[00121] Dicer protein was further overexpressed with an N-terminal Flag tag in 15 MCF10A and MDA-MB231 cells (FIG. 13C). Immunoblotting and confocal microscopy further confirmed the presence of the Flag-Dicer protein specifically in oncosomes and not normosomes (FIG. 4C). Increasing intracellular Ca^{2+} levels stimulates exosomes secretion (Savina *et al.*, 2003). Ca^{2+} ionophore A23187 was added to the culture media of MCF10A and MDA-MB231 cells and exosomes were collected. We observed a significant increase in 20 exosomes production as judged by CD9 expression (FIG. 4D). Dicer protein was detected in oncosomes was but not in normosomes (FIG. 4D). These results further suggested that this is not the quantity of exosomes determining the content but rather a specific mechanism that leads to Dicer accumulation. In addition, Dicer expression was decreased via stable expression of two short-hairpin constructs in MCF10A and MDA-MB-231 cells (FIGs. 13D-25 E). The oncosomes derived from MDA-MB-231shDicer cells contained significantly less Dicer compared to shScramble or parental MDA-MB-231 cells detected by immunoblotting and immunogold labeling (FIGs. 4E-F). Dicer was also not detected in normosomes derived from MCF10AshDicer cells (FIG. 4E).

[00122] Additionally, RLC proteins, AGO2 and TRBP, were also detected in 30 oncosomes but not in normosomes (FIGs. 4G-H). Exosomes were extracted from MCF10A and MDA-MB231 cells transfected with a GFP tagged AGO2 (FIG. 4I). Using an anti-GFP antibody, the presence of GFP-AGO2 was detected in exosomes extracted from MDA-

MB231-GFP-AGO2 cells (FIG. 4J). Upon siRNA silencing of AGO2 in MCF10A and MDA-MB231 cells, a down regulation of AGO2 protein in MDA-MB231 derived oncosomes was observed (FIGs. 4K-L). We showed by immunoprecipitation that AGO2 binds Dicer in oncosomes while both are not detectable in normosomes (FIG. 4M). A fundamental partner that induces stability of Dicer and aids in its pre-miRNA cleavage activity is TRBP (Chendrimada *et al.*, 2005; Melo *et al.*, 2009). Immunoprecipitation revealed the presence of Dicer/TRBP complex in oncosomes but not in normosomes (FIG. 4N).

5 [00123] Immunoprecipitation using anti-Dicer antibody revealed that AGO2 binds to Dicer in oncosomes, while both are undetectable in normosomes (FIG. 13F). A fundamental partner that induces stability of Dicer and aids in its pre-miRNA cleavage activity is TRBP (Chendrimada *et al.*, 2005; Melo *et al.*, 2009). Immunoprecipitation with anti-Dicer antibody revealed the presence of Dicer/TRBP complex in oncosomes but not in normosomes (FIG. 13G).

10 [00124] *Oncosomes use RLC to Process Pre-miRNAs to Generate Mature miRNAs.* The functionality of RLC proteins (the dicing and silencing properties) in oncosomes was tested to generate mature miRNA from pre-miRNA. Exosomes that lacked Dicer were extracted from the MCF10AshDicer, MDA-MB231shDicer and 4T1shDicer cells (FIG. 14A). Pre-miRNAs and miRNAs content did not reveal any significant changes in the Dicer down regulated exosomes with time, indicating that the pre-miRNAs were not 15 processed to generate miRNA in absence of Dicer in oncosomes (FIGs. 5A-B and FIGs. 14B-C). Next, anti-Dicer and anti-TRBP antibodies were inserted into exosomes by electroporation and compared to oncosomes and normosomes electroporated with an anti-actin control antibody treated with proteinase K after electroporation to avoid the presence of antibodies 20 outside exosomes (FIG. 5C). Oncosomes electroporated with the control anti-actin antibody showed the same variations in pre-miRNA and miRNA levels as previously mentioned (FIGs. 5D-E and FIGs. 14D-E). In oncosomes with anti-Dicer and anti-TRBP antibodies, insignificant changes in levels of pre-miRNA and miRNA were observed with time, suggesting an inhibition of pre-miRNA processing (FIGs. 5D-E and FIGs. 14D-E). Total 25 miRNA content was assessed by miRNA expression arrays of oncosomes (MDA-MB-231 derived), anti-Dicer antibody electroporated oncosomes (MDA-MB231 derived) and normosomes (MCF10A derived) after 72h of cell-free culture. The total miRNA content of oncosomes with anti-Dicer antibody more closely resembled that of MCF10A normosomes

($R^2 = 0.79$) than MDA-MB231 derived oncosomes ($R^2 = 0.48$). When comparing oncosomes with oncosomes containing anti-Dicer antibody, 198 differentially expressed miRNAs were observed, 48% of which were significantly down regulated (Table 6). Of these, 19% are oncogenic while only 1% were reported to possess tumor suppressive properties based on 5 previously published literature (FIG. 14F, Table 6).

[00125] It is known that the enzymatic reaction that transforms a pre-miRNA into a mature miRNA is spontaneous and does not require any factors beyond the three RLC proteins, incorporated pre-miRNA, and Hsp90, a protein present in exosomes (Maniataki and Mourelatos, 2005; McCready *et al.*, 2010). To further confirm this, oncosomes were 10 electroporated with Geldanamycin, a drug that selectively inhibits Hsp90 activity (Miyata, 2005). A significant decrease in the amount of mature miRNAs synthesized in the presence of Geldanamycin was found when compared to controls (FIG. 6A). The effect of Hsp90 proteins on mature miRNA expression could be mediated via two potentially overlapping processes: an active role in aiding AGO2 activity in miRNA biogenesis and stabilization of 15 mature miRNAs bound to AGO2 proteins in the RISC.

[00126] To further confirm the specific pre-miRNA processing capability of oncosomes, synthetic pre-miRNAs -10b and -21 as well as the *C.elegans* precursor pre-cel-1 pre-miRNA were electroporated into exosomes to study their processing (FIG. 15A). Significant down regulation of the pre-miRNAs and up-regulation of their respective 20 miRNAs was observed in oncosomes after 72h culture (FIGs. 6B-C). Oncosomes with Dicer antibody did not reveal a difference in pre-miRNA content after 72h culture (FIGs. 6B-C). Oncosomes derived from shDicer cells did not reveal a difference in pre- miRNA content after 72h culture (FIGs. 6B-C). Additionally, pre-miR-10b, -21 and -cel-1 were internally 25 labeled with biotin-deoxythymidine (dT) and transfected them into MCF10A cells. The dT- modified pre-miRNAs were processed and resulted in the generation of mature miRNAs, confirmed the labeling did not alter their processing potential (FIGs. 15B-C). The modified pre-miRNAs were used in ‘dicing’ assays to show that Dicer containing exosomes were specifically capable of processing pre-miRNA and generate mature miRNAs (FIGs. 6D-F).

[00127] *Cytoplasmic CD43 in Cancer Cells Contributes to Mobilization of Dicer.* Multivesicular bodies (MVBs) are cellular organelles that contain endosomes that are 30 released eventually as exosomes upon fusion with the plasma membrane (Pant *et al.*, 2012). A possible mechanism that allows the recruitment of RISC proteins into endosomes and their

subsequent release into exosomes was explored. First, whether Dicer associates with MVBs in cancer cells when compared to control cells was explored. The cellular distribution of Dicer in conjunction with markers of MVBs and exosomes biogenesis pathway was compared. Hrs and BiG2 are early endosome markers and TSG101 is a marker for MVBs

5 (Razi and Futter, 2006; Shin *et al.*, 2004). Dicer co-localized with Hrs, BiG2 and TSG101 in MDA-MB231 and 4T1 cells (FIG. 16A). Exogenously delivered N-rhodamine-labelled phosphatidylethanolamine (NRhPE) is taken up by cells and retained within MVBs (Sherer *et al.*, 2003). Dicer staining in MDA-MB231 and 4T1 cells mostly co-localized with NRhPE in MVBs, which eventually generate exosomes. These data are in agreement with previous

10 observations in co-fractionation studies where Dicer, TRBP and AGO2 appeared in late endosomes/MVB fractions (Shen *et al.*, 2013). In contrast, there was no co-localization of Dicer with Hrs, BiG2, TSG101 or NRhPE in control cells (NMuMG and MCF10A) (FIG. 16A). Further, Hrs and TSG101 genes were silenced using two different siRNAs, as well as BiG2 using two different shRNAs, in MDA-MB231 and MCF10A cells, and Dicer protein expression was evaluated (FIG. 16B). Silencing of Hrs, BiG2 and TSG101 impairs MVBs

15 formation and led to down regulation of exosomes production (FIGs. 16C-E). Increased Dicer protein was observed in the cytoplasm and nucleus of MDA-MB231 cells with siHrs, shBiG2 or siTSG101. Similar results were obtained when 4T1 cells were used instead of MDA-MB231 cells. When Hrs, BiG2 or TSG101 genes were silenced in MCF10A cells, altered

20 Dicer protein expression and location (cytoplasm) was not observed. Interestingly, Dicer mRNA expression was decreased in siHrs, shBiG2 and siTSG101 MDA-MB231 and 4T1 cells (FIG. 16F). This could represent a negative feedback loop between the amount of Dicer protein in the cell and its transcription levels. These results suggest that exosomes-mediated export of Dicer protein is potentially a rate-limiting step for depletion of Dicer in cancer cells.

25 Impaired MVB formation led to Dicer protein accumulation throughout the cytoplasm and nucleus, without increasing Dicer transcription levels.

[00128] MVBs also sequester ubiquitinated proteins for subsequent degradation by lysosomes (Luzio *et al.*, 2009). We have shown that Dicer protein is not ubiquitinated and does not co-localize with LAMP-1, a widely used marker for lysosomes.

30 These results suggest that Dicer is not targeted for degradation in cancer cells but rather secreted via exosomes (FIG. 16G).

[00129] The signals that target proteins to MVBs and exosomes are largely unknown. Recently, a variety of plasma membrane anchor proteins, such as CD43, were speculated as likely mediators of protein transport into MVBs and exosomes (Shen *et al.*, 2011b). CD43 is predominantly a leukocyte transmembrane sialoglycoprotein, which is 5 expressed highly in cancer cells (in its truncated cytoplasmic form) and not in control cells (Shelley *et al.*, 2012). CD43 is detected in many solid tumors including breast cancer, where it correlates with cancer progression and metastasis (Shelley *et al.*, 2012). We explored whether CD43 might contribute to the transportation of RISC proteins to MVBs. We show that Dicer immunoprecipitates with CD43 protein in MDA-MB231 cells (FIG. 9A). When 10 CD43 is down regulated using siRNA in MCF10A and MDA-MB231 cells, Dicer levels significantly decrease in oncosomes (FIG. 9B and 16H), with a nuclear and cytoplasmic accumulation of Dicer protein. A down regulation of Dicer mRNA expression was observed in MDA-MB231siCD43 cancer cells but not in MCF10AsiCD43 non-tumorigenic cells, as 15 also observed before with siHrs, shBiG2 and siTSG101 (FIG. 16I).

[00130] *Oncosomes Alter the Transcriptome of Target Cells in a Dicer-Dependent Manner.* Cancer cells (MDA-MB231 cells) were transfected with CD63-GFP, a marker for exosomes (Escola *et al.*, 1998). The CD63-GFP MDA-MB231 cells were used to isolate GFP+ exosomes, which were subsequently incubated with MCF10A cells. Exosomes from MDA-MB231-CD63-GFP were shown to be green by using NanoSight complemented 20 with a laser beam that detects particles emitting green fluorescence (FIG. 17A). The CD63-GFP+ oncosomes were shown to enter MCF10A cells, where they appeared in the cytoplasm. Using miRNA expression arrays, it was shown that MCF10A cells exposed to MDA-MB231 derived oncosomes acquire a new miRNA expression profile distinct from the parental MCF10A cells and resembling MDA-MB231 cells. Using miRNA expression arrays, it was 25 shown that MCF10A cells exposed to MDA-MB-231-derived oncosomes acquire a new miRNA expression profile distinct from the parental MCF10A cells. Global transcriptome profiling of MCF10A treated with oncosomes more closely resembles MDA-MB231 cells. Such significant alterations in the mRNA expression profile is reversed when MCF10A cells 30 are exposed to MDA-MB231 oncosomes with Dicer antibody, and the expression pattern re-clusters with the parental MC10A cells.

[00131] An in-depth analysis of the miRNA and mRNA expression profiles of MCF10A cells exposed to MDA-MB231 oncosomes compared to parental MCF10A cells

revealed significant up-regulation of certain miRNAs and a down-regulation of their described mRNA targets in treated MCF10A cells. As an example, miRNA-21 and -10b were up-regulated (4.6 and 2.3 fold respectively) in treated MCF10A cells, among with other oncogenic miRNAs. MicroRNA-21 and -10b have been implicated in breast cancer progression, invasiveness and metastasis (Ma *et al.*, 2007; Yan *et al.*, 2011). As shown earlier, miR-21 and -10b were synthesized in oncosomes from their pre-miRNAs. PTEN and HOXD10 are described as miR-21 and miR-10b targets and were suppressed in the expression array analysis of MCF10A cells treated with oncosomes when compared to control MCF10A cells. Western blot analysis showed that PTEN and HOXD10 levels were suppressed in MCF10A cells exposed to oncosomes (FIGs. 7A-B). To examine whether miR-21 and miR-10b in oncosomes can silence PTEN and HOXD10 in MCF10A recipient cells, MCF10A cells were transiently transfected with luciferase reporters containing the wild-type 3'UTR of PTEN or HOXD10 genes that are capable of binding miR-21 and miR-10b. Mutant 3'UTR of PTEN or HOXD10 vectors were used as controls. A decrease in luciferase reporter activity was seen in MCF10A cells incubated with oncosomes, confirming functional delivery of miRNAs from oncosomes to recipient cells (FIG. 7C). In the oncosomes incubated MCF10A cells, PTEN and HOXD10 expression levels were evaluated at different time points. A significant decrease was detected in PTEN and HOXD10 expression immediately after treating the cells with 72h cultured exosomes (FIGs. 7A-B). PTEN and HOXD10 expression levels changed minimally in MCF10A cells treated with freshly isolated exosomes, suggesting that sufficient concentration of the mature miRNAs may not have been present at this time point (FIGs. 17B-C). MCF10A cells treated with 72h cultured oncosomes with anti-Dicer antibody revealed an insignificant down regulation of PTEN and HOXD10 (FIG. 7D and FIG. 17G). Additionally, processing of miR-15 in cells, a miRNA not detected in MDA-MB231-derived oncosomes, was not altered due to treatment of MCF10A cells with MDA-MB-231 exosomes containing Dicer antibody, showing an insignificant effect of Dicer antibody in treated cells (FIG. 17D). Some reports show down-regulation of miRNA targets in cells incubated with exosomes without a need for long culture periods (Kosaka *et al.*, 2013; Narayanan *et al.*, 2013; Pegtel *et al.*, 2010). MiR-182-5p is one of the miRNAs up-regulated in MCF10A cells upon oncosomes treatment and Smad4, a miR-182-5p target (Hirata *et al.*, 2012), is one of the genes down-regulated upon oncosomes treatment of these cells (FIG. 7E). Up-regulation of miR-182-5p in oncosomes during the culture period was not observed and pre-miR182-5p was not detected in oncosomes (FIG. 17E). Therefore, oncosomes also pack mature miRNAs without the need for processing pre-miRs. If such

mature miRs are in relevant stoichiometric amounts, they may be able to regulate gene expression of recipient cells, as shown previously (Ismail *et al.*, 2013; Kogure *et al.*, 2011; Kosaka *et al.*, 2013; Narayanan *et al.*, 2013; Pegtel *et al.*, 2010; Valadi *et al.*, 2007; Zhang *et al.*, 2010). However, if some mature miRNAs are not present in exosomes but their pre-miRNAs are, these can still have a biological effect on their targets since they will be processed into mature RLC associated miRNAs.

5 [00132] Cell viability and proliferation of MCF10A cells treated with 72h cultured oncosomes was increased, which was not observed when freshly isolated oncosomes were used (FIG. 7F). A difference was not observed when MCF10A cells were treated with 10 MDA-MB231 derived oncosomes containing anti-Dicer antibodies (FIG. 7F). The same pattern holds true for the colony formation capacity of MCF10A cells treated with oncosomes (FIGs. 7G and 17F). MCF10A cells treated with 72h-cultured oncosomes form colonies when compared to non-treated cells (FIG. 7G). Such colony formation was not observed when freshly isolated oncosomes or AB Dicer oncosomes were used (FIG. 7G).

15 [00133] *Oncosomes Induce Tumor Formation of Non-Tumorigenic Epithelial Cells and Activate Fibroblasts.* Recent studies suggest that exosomes derived from bone marrow mesenchymal stromal cells support multiple myeloma cell growth (Roccaro *et al.*, 2013). To address the functional ‘oncogenic potential’ of MCF10A and MCF10A cells with prior exposure to oncosomes (MCF10A cells-oncosomes), these cells were injected 20 orthotopically into the mammary fat pads of female nu/nu mice, similar to the protocol described recently (Luga *et al.*, 2012). MCF10A cells did not form tumors in these mice as also reported earlier (Mavel *et al.*, 2002; Thery *et al.*, 2002) (FIG. 7H). MCF10A cells-oncosomes formed tumors after 21 days, as well as the control MDA-MB231 cells (FIG. 7H). MCF10A cells incubated with oncosomes containing anti-Dicer antibody (but not control 25 anti-actin antibodies) showed a significant reduction in tumor volume (FIG. 7H). These results support the oncogenic conversion of MCF10A cells when exposed to oncosomes containing Dicer protein (FIGs. 7F-H and FIG. 17F).

30 [00134] *Serum exosomes from cancer patients contain Dicer and process pre-miRNAs to generate mature miRNAs.* Exosomes of human tumors were examined for RISC proteins. To achieve cancer cell specificity, freshly isolated human primary ovarian, breast and endometrial tumor pieces were orthotopically grafted into appropriate organs of female athymic nu/nu mice (FIGs. 18A-B). Serum exosomes from these mice were evaluated

by electron microscope (FIG. 18C). Size exclusion protein blotting of the content isolated from these exosomes demonstrated the existence of Dicer protein exclusively of human origin (hsa-Dicer) (FIG. 8A and FIG. 18D). Protein extracts from 4T1-derived exosomes and 4T1 cells were used as controls to show Dicer of mouse origin, which exhibits a different 5 molecular weight (mmu-Dicer) (FIG. 8A).

[00135] Oncosomes from MDA-MB231 cells were incubated with human dermal fibroblasts (HDF). Global gene expression profiling of oncosomes incubated fibroblasts reveals a significant impact on their transcriptome, when compared to control cells. Up-regulation of α SMA (ACTA) (18 fold), COL1A1 (12 fold), TGF β 1 (15 fold), CTGF 10 (8 fold), Ras (6 fold) and ERK (4 fold) was observed. Fibroblasts incubated with oncosomes proliferated at a higher rate (FIG. 8I). These results suggest that oncosomes can activate stromal fibroblasts to resemble a myofibroblast phenotype and display characteristic features associated with carcinoma-associated fibroblasts.

[00136] Next, exosomes were isolated from 100 μ l of fresh serum samples 15 from 8 healthy individuals (H) and 11 patients with breast carcinoma (BC) (FIG. 8B). Lipid bilayer membranes were distinguished by electron microscopy on exosomes (FIG. 8C). Serum of breast cancer patients contained significantly more exosomes when compared to serum of healthy donors (FIG. 8D). When equal number of exosomes were placed in culture for 24 and 72h, the 6 pre-miRNAs were found to be downregulated exclusively in breast 20 cancer patients and their respective mature miRNAs were up-regulated after 72h of culture, suggesting pre-miRNAs were processed into the mature form in the exosomes from fresh serum of breast cancer patients and not in the healthy controls (FIGs. 8E-F). Next, exosomes alone or combined with MCF10A cells, were injected orthotopically in the mammary fat pad of female nu/nu mice. Five out of 11 serum exosomes derived from breast cancer patients 25 combined with MCF10A cells formed tumors while none of the healthy donor exosomes or exosomes alone, formed tumors (FIG. 8G). Interestingly, exosomes that formed tumors were also shown to have the highest fold-change increase in the amount of mature miRNAs after 72h culture (FIGs. 8E-F).

[00137] Exosomes were further isolated from a new set of serum samples 30 obtained from 5 healthy individuals (C46, C45, C44, C43, and C41) and 4 patients with metastatic breast carcinoma (Met219, Met354, Met299 and Met356). Dicer expression in

exosomes was observed only in metastatic breast carcinoma samples and not in exosomes from serum of healthy individuals (FIG. 8H).

Table 5. Differentially expressed miRNAs between oncosomes (MDA-MB231 derived) and normosomes (MCF10A derived).

miRNA	p Value
mmu-miR-709	1.30E-06
hsa-miR-1308	3.71E-06
mmu-miR-615-3p	9.08E-06
hsa-miR-1260b	1.06E-05
mmu-miR-1937a	1.36E-05
mmu-mir-321-A	1.54E-05
hsa-miR-615-3p	1.80E-05
hsa-miR-1979	2.10E-05
mmu-miR-1937b	2.72E-05
hsa-mir-373	3.15E-05
mmu-miR-1937c	3.28E-05
hsa-miR-1273d-P	3.68E-05
mmu-miR-720	4.08E-05
mmu-miR-1274a	4.45E-05
hsa-mir-565-A	6.63E-05
mmu-miR-1931	6.77E-05
hsa-miR-1246	7.35E-05
hsa-mir-594-P	7.56E-05
hsa-mir-321-A	7.83E-05
mmu-miR-2145-1-P	9.36E-05
hsa-mir-639-P	9.54E-05
hsa-miR-720	0.000112771
hsa-miR-1280	0.000116
mmu-miR-3473	0.000136388
hsa-miR-1260	0.000178848
hsa-miR-1281	0.000193167
mmu-miR-1224-P	0.00019941
mmu-miR-690	0.000223064
hsa-miR-375-P	0.000242513
hsa-miR-4301	0.000254614
mmu-miR-700	0.000322167
mmu-miR-125b-5p	0.000333431
mmu-miR-1191-P	0.000412736
hsa-miR-1274a	0.000420621
hsa-miR-3197	0.00042765
mmu-miR-1935	0.000459256
hsa-miR-1975-P	0.000467699
hsa-miR-4324	0.000595518
hsa-miR-886-3p	0.00060906
hsa-miR-1274b	0.000643024
mmu-miR-1957	0.000679996

miRNA	p Value
hsa-miR-933	0.000752624
hsa-mir-675	0.000775607
hsa-miR-595	0.000835784
mmu-miR-2137	0.000867405
hsa-mir-572-P	0.000935968
mmu-miR-1195	0.000971222
hsa-miR-4294-P	0.001008217
mmu-mir-1899-P	0.00104201
mmu-miR-689-P	0.001048727
hsa-miR-199b-3p	0.001330193
hsa-miR-3117-P	0.001331776
mmu-mir-321-P	0.001407081
mmu-miR-1961-P	0.001479699
hsa-mir-10a	0.001756816
mmu-miR-669d-P	0.001842801
mmu-miR-1937b-2-P	0.001855411
hsa-miR-3125-P	0.00206976
mmu-miR-1934-P	0.002222993
hsa-miR-574-3p	0.002231887
hsa-miR-718	0.002533178
mmu-miR-1198	0.002640837
mmu-miR-2182-P	0.002722356
hsa-miR-1273	0.002723198
mmu-miR-2133-P	0.002794947
hsa-miR-92b*	0.003046008
hsa-miR-1290	0.003307286
hsa-miR-448	0.003318093
mmu-miR-689	0.003367203
mmu-miR-449a	0.003657703
mmu-miR-1937b-4-P	0.004021961
hsa-miR-4286	0.004068181
mmu-miR-1947	0.00408589
mmu-miR-342-3p	0.004178728
hsa-miR-1303-P	0.004771531
mmu-miR-2132	0.004826438
hsa-miR-4321-P	0.004925885
hsa-miR-4256-P	0.004994658
hsa-miR-4311	0.005120539
mmu-miR-130a	0.005138148
mmu-miR-1939	0.005186979
hsa-miR-1268-P	0.005383176
mmu-miR-31	0.005491579
mmu-miR-99b	0.005498217
mmu-miR-2141	0.005742427
hsa-miR-1202-P	0.005825202
mmu-miR-466b-3p	0.005831681
mmu-miR-2133	0.005962416

miRNA	p Value
hsa-miR-1268	0.006022349
hsa-miR-466	0.006338384
mmu-miR-494	0.006386665
hsa-miR-1289	0.006571828
hsa-miR-320b	0.006612583
hsa-miR-4254	0.006670963
hsa-mir-7-3-P	0.00673441
hsa-miR-923	0.006748425
hsa-miR-764	0.006790693
mmu-miR-291a-3p	0.007141562
mmu-miR-883b-3p	0.007204478
hsa-mir-594-A	0.00721747
mmu-miR-1948-P	0.007524668
hsa-miR-206	0.007553353
hsa-mir-565-P	0.007700663
mmu-miR-467e*	0.00778865
hsa-miR-1826	0.007812174
mmu-miR-467a*	0.007840082
mmu-miR-1983	0.007889552
hsa-miR-324-5p	0.008058633
mmu-let-7c	0.008070282
mmu-miR-1965	0.00810043
hsa-mir-632-P	0.008277449
hsa-miR-181a*MM2GT/AC	0.008292477
hsa-miR-1265	0.008367622
hsa-miR-323b-5p	0.008373161
hsa-mir-1914	0.008444953
hsa-mir-1910	0.008458754
hsa-miR-21	0.008557419
hsa-miR-431*	0.008595529
hsa-miR-3135-P	0.008851151
mmu-miR-187-P	0.009290275
mmu-miR-126-3p	0.009334952
mmu-miR-669a-P	0.00943601
hsa-miR-367	0.009568574
mmu-mir-320-P	0.009788835
hsa-miR-181a*MM1G/C	0.009821714
mmu-miR-484-P	0.009847016
mmu-miR-467c-P	0.010318688
hsa-miR-3154	0.010452692
mmu-miR-466d-3p	0.01047819
hsa-miR-3162-P	0.010642567
mmu-miR-201	0.010827783
mmu-miR-1946a	0.010877863
hsa-miR-937	0.011009279
hsa-miR-3147	0.011883963
hsa-mir-596-P	0.012205467

miRNA	p Value
hsa-miR-3148	0.012245577
hsa-miR-1304	0.012451991
hsa-miR-222MM2GG/AC	0.012512207
mmu-miR-125a-5p	0.012630083
hsa-miR-1272-P	0.012893462
hsa-miR-638	0.012956727
hsa-mir-320	0.013366703
hsa-miR-545*	0.013713081
hsa-mir-1908-P	0.01374103
hsa-let-7d-v2-P	0.013846844
mmu-mir-30d-P	0.014771375
hsa-miR-4297	0.015365603
mmu-miR-182	0.015432962
hsa-miR-3166-P	0.015893116
hsa-miR-494	0.015960208
mmu-miR-669o-P	0.016133286
hsa-miR-566	0.01616152
mmu-miR-1188	0.016736136
mmu-miR-2134-AP	0.016811955
hsa-miR-4259-P	0.016856716
mmu-miR-152	0.01715464
mmu-miR-2134	0.017178929
hsa-miR-3193-AP	0.017496022
hsa-miR-125b	0.017917521
hsa-miR-3124-P	0.018466818
hsa-miR-10b	0.018671177
hsa-miR-455-5p	0.018771585
mmu-miR-144	0.019121516
hsa-miR-130a	0.019424172
hsa-miR-1285	0.019710834
hsa-miR-516b*	0.020003951
hsa-miR-27a	0.020049082
hsa-miR-138-1*	0.020302422
mmu-miR-471	0.020513954
hsa-miR-4298-P	0.020520647
hsa-miR-301b	0.0205242
hsa-mir-147-P	0.020570657
hsa-miR-362-5p	0.020602873
mmu-mir-471-P	0.020639505
mmu-miR-466a-3p	0.020737186
hsa-miR-561	0.020878532
hsa-miR-486-5p	0.021122352
mmu-miR-2861	0.021313137
hsa-miR-587	0.021396357
mmu-miR-375	0.021423748
hsa-mir-329-2-P	0.021718025
mmu-miR-2861-P	0.022230123

miRNA	p Value
hsa-miR-144*	0.022500042
hsa-miR-1255a-P	0.022928296
hsa-mir-519a-2-P	0.023328916
hsa-miR-34c-5p	0.023452529
mmu-miR-466e-3p	0.023486196
mmu-miR-743b-5p	0.023621503
mmu-mir-350-P	0.023797354
mmu-miR-181d	0.024929082
hsa-miR-376a*	0.025160569
hsa-miR-1308-P	0.025400926
mmu-miR-467g	0.025684158
mmu-miR-1946a-P	0.025903246
hsa-miR-147-P	0.025981647
hsa-miR-923-P	0.026407247
mmu-miR-465c-5p	0.026498492
hsa-miR-891a	0.026826475
hsa-miR-28-5p	0.026908406
hsa-miR-4292	0.02699168
mmu-miR-677-P	0.027117156
hsa-miR-4257	0.027412394
hsa-miR-4326	0.027447003
hsa-miR-17*MM2GG/AA	0.02747134
hsa-miR-939-P	0.027590618
mmu-miR-2182	0.027770773
hsa-miR-220c-P	0.027834269
hsa-miR-3132-P	0.027949304
hsa-miR-532-5p	0.028123552
mmu-miR-1947-P	0.028342198
mmu-miR-29a	0.028448253
hsa-miR-3162	0.028472579
hsa-miR-375MM1C/G	0.028539316
hsa-miR-768-3p	0.028631264
mmu-miR-182-P	0.028668937
mmu-miR-205-P	0.029630816
hsa-miR-505	0.029688956
hsa-miR-3146-P	0.02981021
mmu-miR-721	0.029874269
mmu-miR-376c	0.030446032
hsa-miR-1179-P	0.030947356
mmu-miR-1970	0.030975459
hsa-miR-3133-P	0.031120572
hsa-miR-200c	0.031203313
hsa-miR-220a	0.031358991
mmu-miR-100	0.031556595
hsa-miR-1255b	0.031601448
hsa-miR-222MM1G/A	0.031650652
hsa-miR-885-3p	0.031822949

miRNA	p Value
hsa-miR-517b	0.032138191
hsa-miR-200a	0.032181877
hsa-miR-3141	0.032551657
mmu-miR-669h-3p	0.033076965
hsa-miR-1301	0.033141515
hsa-miR-877	0.033292052
hsa-mir-941-2	0.033355824
hsa-mir-487b-P	0.033372231
hsa-miR-4302	0.033621907
hsa-miR-99b	0.033827759
hsa-miR-1253	0.034018422
hsa-let-7a*	0.034034943
hsa-miR-34aMM2CT/TC	0.034301895
hsa-miR-3181-P	0.034366501
hsa-miR-3200	0.034397879
hsa-miR-3129-P	0.034538091
hsa-miR-93*	0.03464146
hsa-miR-548q-P	0.035140723
mmu-miR-466g	0.035388049
mmu-miR-155	0.035624947
hsa-miR-2278-P	0.03584678
hsa-miR-3065-5p	0.035885091
hsa-miR-633	0.035994294
hsa-miR-4265	0.036055664
mmu-miR-2135-P	0.036119609
hsa-miR-190	0.036305474
mmu-miR-669f	0.036533893
hsa-miR-1323	0.036541729
hsa-miR-588	0.036661363
mmu-miR-183*	0.037276389
hsa-mir-941-4	0.037411697
hsa-mir-1913	0.037527439
hsa-miR-2116*	0.037682483
hsa-miR-1178	0.037847724
mmu-miR-196a	0.038163687
mmu-miR-574-3p	0.038418252
hsa-miR-346	0.038809144
mmu-miR-1199	0.039417628
mmu-miR-681	0.039465517
hsa-miR-4292-P	0.039841449
hsa-miR-522	0.040524939
hsa-mir-611-P	0.040860413
hsa-miR-3171	0.040895673
hsa-miR-635	0.041506047
hsa-miR-1197-P	0.041944121
hsa-miR-604	0.04380685
mmu-let-7a*	0.043829675

miRNA	p Value
hsa-miR-335	0.043971349
mmu-miR-466c-3p	0.044407376
mmu-miR-466i	0.044504428
hsa-miR-1297	0.04456723
mmu-miR-338-5p	0.044824503
hsa-mir-526a-2-P	0.044992512
hsa-miR-181aMM2GC/AG	0.045005369
hsa-miR-15b*	0.0452752
hsa-miR-924-P	0.045840226
mmu-miR-190-P	0.046060702
hsa-miR-345	0.046092233
mmu-miR-711	0.046378698
hsa-miR-3116-2-P	0.046593825
hsa-miR-99a	0.046936625
mmu-miR-26a	0.04716311
hsa-miR-1248-P	0.047256233
mmu-miR-721-P	0.047540414
mmu-miR-801-P	0.048152879
hsa-miR-1826-P	0.048243592
hsa-miR-1236	0.048451235
hsa-miR-339-5p	0.048498093
mmu-miR-804	0.04863614
mmu-miR-467d*	0.048653868
mmu-miR-1191	0.048884442
hsa-miR-148a	0.048962197
hsa-miR-141	0.049152638
mmu-miR-1937a-P	0.049351966
mmu-miR-696	0.049529754
hsa-miR-302a	0.049722628

Table 6. Differentially expressed miRNAs between oncosomes (MDA-MB231 derived) and oncosomes with Dicer antibody (MDA-MB-231 derived).

miRNAs	Fold Change
mmu-miR-3470a-P	-68.72008593
mmu-miR-1186	-37.7790082
mmu-miR-3470b	-25.9441337
mmu-miR-1935	-21.29735527
mmu-miR-3473-P	-17.73956758
hsa-miR-665-P	-11.30652094
mmu-miR-3470a	-21.53678167
hsa-miR-1975-P	-8.378567946
mmu-miR-1195	-14.95080951
mmu-miR-1196	-41.418791
mmu-miR-669h-3p	7.716169349
mmu-miR-466l	6.182505826

miRNAs	Fold Change
mmu-miR-1954-P	-8.004541887
mmu-miR-681-P	-5.576609952
mmu-miR-467a*	7.720120341
hsa-miR-4294-P	-6.14881956
hsa-miR-718	-5.926179859
hsa-mir-1910-P	-5.828360182
hsa-miR-3188-P	-7.974527314
hsa-miR-324-5p	-5.711776077
mmu-miR-1937b-4-P	-5.520796704
mmu-miR-669d-P	6.842367137
mmu-miR-3473	-5.977639047
hsa-miR-595	-6.658387264
hsa-miR-3197	-6.118703616
hsa-miR-4256-P	4.894289461
mmu-miR-201	5.429305446
mmu-miR-2861-P	-5.546034309
mmu-miR-3471-2-P	-5.968684885
hsa-miR-3120-P	-5.809647124
mmu-miR-494	-5.460136383
mmu-miR-690	-6.785641527
hsa-mir-591-P	-4.676566053
hsa-miR-943	-4.21472556
hsa-miR-24-2*	-5.267717705
hsa-miR-891a	3.970259655
mmu-miR-467e*	4.371589059
mmu-miR-196a	-4.673219124
mmu-miR-763-P	-4.837159778
mmu-miR-689-P	-4.006113822
mmu-miR-1961-P	-4.02458343
mmu-miR-709	-43.11955582
hsa-miR-3147	-4.083582871
hsa-miR-1323	3.866709935
mmu-miR-761	-4.758191473
hsa-miR-1979	-22.63130882
hsa-miR-1255b	3.856857003
mmu-miR-3072	-3.955191268
hsa-miR-1248-P	3.690795669
hsa-mir-147-P	4.119353729
hsa-miR-3195	-5.808376336
hsa-miR-1273d-P	-7.045907865
mmu-miR-207	-4.467339352
mmu-miR-689	-3.348018214
hsa-miR-4257	-4.323649906
mmu-miR-466d-3p	3.585840199

miRNAs	Fold Change
hsa-miR-923	-3.344759672
mmu-miR-1931	-4.744652197
hsa-mir-650-P	-6.161006285
mmu-miR-466g	3.874674458
mmu-miR-1191-P	-4.045803649
hsa-mir-1538	-3.744109297
hsa-miR-1246	-3.337472797
hsa-miR-124*	3.31414605
hsa-miR-4321-P	-7.691122096
mmu-miR-1946a-P	-6.219634371
hsa-miR-1972-2-P	-5.073720863
hsa-miR-3200	3.335177401
mmu-miR-1947	-7.215369611
mmu-miR-6690-P	3.389226018
mmu-miR-466e-3p	3.534048216
mmu-miR-707	3.877366764
hsa-miR-4297	-6.529597429
hsa-miR-4313	-4.609062464
mmu-miR-1935-AP	-10.94537064
mmu-miR-467g	4.667383343
mmu-miR-2133	-4.243694889
hsa-miR-923-P	-3.64025311
hsa-miR-1236	3.197494004
hsa-miR-1280	-6.234163314
mmu-miR-1937b-2-P	-5.358528363
mmu-miR-499-P	3.275110007
hsa-miR-1263-P	3.338653962
hsa-miR-466	3.265124658
hsa-mir-595-P	-3.780075724
hsa-miR-1285-1-P	-3.392089631
mmu-miR-338-5p	3.139715849
hsa-miR-3140	3.152896366
mmu-miR-2182	-4.235843782
hsa-miR-23b*	-5.32306966
hsa-mir-639-P	-7.052485203
mmu-miR-1947-P	-5.939897094
mmu-miR-22	-3.74236459
mmu-miR-1970	-3.108998272
mmu-miR-665-P	-3.597686151
hsa-miR-3065-5p	3.113930424
mmu-miR-467c-P	3.155074202
hsa-miR-1268	-2.922890303
mmu-miR-24-2*	-3.48139554
hsa-mir-1914	-3.832959976

miRNAs	Fold Change
hsa-miR-3118-5-P	2.977569863
mmu-miR-1306-P	-3.281316308
mmu-miR-669f	5.194629536
mmu-miR-466b-3p	3.438581421
hsa-miR-1268-P	-3.678227949
hsa-mir-1913	-3.946642192
mmu-miR-3470b-P	-4.037857355
mmu-miR-32	2.989834039
hsa-miR-1826-P	-4.872011411
hsa-miR-147-P	3.923947787
hsa-miR-3172-P	3.056599217
hsa-miR-801	-6.14009908
hsa-miR-941-1	-4.658601465
mmu-miR-301a-P	2.770796433
mmu-miR-669a-P	3.643950881
hsa-miR-1289	3.559525037
hsa-miR-548j	2.858203465
hsa-miR-877*	-3.015914917
hsa-miR-10a	-5.70499997
mmu-miR-181c	2.79663413
hsa-miR-3149-P	3.067063437
mmu-miR-3099*	-3.100792371
mmu-miR-705-P	-4.314489552
mmu-miR-2861	-3.008526128
hsa-miR-1976	-2.80557125
mmu-miR-1934-P	-6.614312993
hsa-miR-138-1*	2.769430194
hsa-miR-1243	2.78669354
hsa-miR-3160	-3.16046745
hsa-miR-500	2.766201976
mmu-miR-1945	-3.975181107
hsa-mir-941-4	-4.644133225
hsa-miR-4301	-16.10443714
hsa-miR-1208	-3.230411171
hsa-mir-565-A	-8.232319234
hsa-miR-1244	2.796864338
mmu-miR-669j	3.675114173
hsa-miR-4314	2.810648214
hsa-miR-502-5p	2.743400714
hsa-miR-371-5p	2.607678279
mmu-miR-10b	-3.034387515
mmu-miR-26a	-3.497092003
mmu-miR-483*	-2.743822775
hsa-mir-487b-P	4.073173842

miRNAs	Fold Change
mmu-miR-1930-P	-3.656852693
hsa-miR-1255a	2.690838416
hsa-miR-202	-3.352756633
hsa-miR-4311	-2.706852207
hsa-miR-1226*	2.753774039
mmu-miR-1943-P	2.568476663
hsa-mir-594-P	-7.693094002
hsa-miR-21	-3.331077571
mmu-miR-466a-3p	2.590518002
hsa-miR-1301-P	2.83454983
hsa-miR-638	-5.006318026
hsa-mir-320	-3.08053158
mmu-miR-667	-2.55941239
mmu-miR-27a	2.535988521
hsa-miR-937	-3.726272762
hsa-miR-1255a-P	3.247591046
mmu-miR-505	2.610666762
hsa-miR-1263	2.736571865
mmu-miR-302b*	2.945119065
mmu-miR-721-P	2.91504884
hsa-miR-18b	2.611682702
hsa-mir-31	-2.702014494
mmu-miR-801-A	-6.683601538
has-let-7f-1*	3.908401267
hsa-miR-1259-P	2.644459942
mmu-mir-320-P	-3.437080879
mmu-miR-1939	-4.465923575
hsa-miR-1228	-2.567882638
hsa-miR-483-3p	-2.775662208
hsa-miR-129-5p	2.655425404
mmu-miR-145*	2.552327584
hsa-miR-544	3.017286257
hsa-miR-3124-P	3.475660577
hsa-let-7a*	3.67482271
hsa-miR-1308-P	-2.815549142
hsa-miR-124	2.518148474
mmu-miR-500-P	2.439916722
hsa-miR-589	2.619270955
hsa-miR-155MM1G/T	-3.153648547
hsa-miR-1254	3.039211354
hsa-miR-1259	2.60142506
mmu-mir-1904	2.553756257
hsa-miR-320e	-3.6162361
hsa-mir-373	-9.005026193

miRNAs	Fold Change
hsa-miR-3191-P	2.777191568
mmu-miR-700	-4.536931094
hsa-mir-539-P	2.617416119
hsa-miR-4259-P	3.451286701
hsa-miR-548h	2.525655861
mmu-miR-669e-P	2.554714867
mmu-miR-207-P	-3.619675577
hsa-mir-1908-P	-3.739948569
hsa-miR-4254	-4.156361026

* * *

[00138] All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

5

Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., and Rak, J. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. *Nature cell biology* 10, 619-624.

Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery 10 of siRNA to the mouse brain by systemic injection of targeted exosomes. *Nature biotechnology* 29, 341-345.

Ambros, V. (2004). The functions of animal microRNAs. *Nature* 431, 350-355.

Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., 15 Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., *et al.* Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. *Proceedings of the National Academy of Sciences of the United States of America* 108, 5003-5008.

Ausubel *et al.*, *Current protocols in molecular biology*, John Wiley & Sons Ltd, Wiley 20 Interscience, 2003.

Bang, G.M., and Setabutr, P. (2010). Periocular capillary hemangiomas: indications and options for treatment. *Middle East Afr J Ophthalmol* 17, 121-128.

Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. *Cell* 136, 215-233.

Bartels, C.L., and Tsongalis, G.J. (2009). MicroRNAs: novel biomarkers for human cancer. *Clinical chemistry* 55, 623-631.

Benitez-vieyra, S., Medina, A.M., and Cocucci, A.A. (2009). Variable selection patterns on the labellum shape of *Geoblasta pennicillata*, a sexually deceptive orchid. *J Evol Biol* 22, 2354-2362.

Bernstein, E., Kim, S.Y., Carmell, M.A., Murchison, E.P., Alcorn, H., Li, M.Z., Mills, A.A., 30 Elledge, S.J., Anderson, K.V., and Hannon, G.J. (2003). Dicer is essential for mouse development. *Nature genetics* 35, 215-217.

Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. *Nature* 436, 740-744.

5 Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. *Trends Cell Biol* 19, 43-51.

Cosacov, A. *et al.* New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). *Am J Bot* 96, 2240-2255, (2009).

10 de Laurentiis, A., Gaspari, M., Palmieri, C., Falcone, C., Iaccino, E., Fiume, G., Massa, O., Masullo, M., Tuccillo, F.M., Roveda, L., *et al.* (2011). Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. *Mol Cell Proteomics* 10, M111 007898.

15 Escola, J.M., Kleijmeer, M.J., Stoorvogel, W., Griffith, J.M., Yoshie, O., and Geuze, H.J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. *The Journal of biological chemistry* 273, 20121-20127.

Fang, H., Qiu, L., Vitkin, E., Zaman, M. M., Andersson, C., Salahuddin, S., Kimerer, L. M., Cipolloni, P. B., Modell, M. D., Turner, B. S., *et al.* (2007). Confocal light absorption and scattering spectroscopic microscopy. *Applied optics* 46, 1760-1769.

20 Filipowicz, W. (2005). RNAi: the nuts and bolts of the RISC machine. *Cell* 122, 17-20.

Fukagawa, T., Nogami, M., Yoshikawa, M., Ikeno, M., Okazaki, T., Takami, Y., Nakayama, T., and Oshimura, M. (2004). Dicer is essential for formation of the heterochromatin structure in vertebrate cells. *Nature cell biology* 6, 784-791.

25 Gallo, A., Tandon, M., Alevizos, I., and Illei, G. G. (2012). The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. *PloS one* 7, e30679.

Gibbings, D. J., Ciaudo, C., Erhardt, M., and Voinnet, O. (2009). Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. *Nature cell biology* 11, 1143-1149.

30 Gregory, R. I., Chendrimada, T. P., Cooch, N., and Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. *Cell* 123, 631-640.

Grelier, G., Voirin, N., Ay, A.S., Cox, D.G., Chabaud, S., Treilleux, I., Leon-Goddard, S., Rimokh, R., Mikaelian, I., Venoux, C., *et al.* (2009). Prognostic value of Dicer

expression in human breast cancers and association with the mesenchymal phenotype. British journal of cancer 101, 673-683.

5 Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., and Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20, 621-667.

Guescini, M., Genedani, S., Stocchi, V., and Agnati, L.F. (2010). Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117, 1-4.

Gyorgy, B., Szabo, T.G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., *et al.* (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68, 2667-2688.

10 Haase, A. D., Jaskiewicz, L., Zhang, H., Laine, S., Sack, R., Gatignol, A., and Filipowicz, W. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO reports 6, 961-967.

Hirata, H., Ueno, K., Shahryari, V., Tanaka, Y., Tabatabai, Z. L., Hinoda, Y., and Dahiya, R. 15 (2012). Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer. PloS one 7, e51056.

Hood, J.L., San, R.S., and Wickline, S.A. (2011). Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer research 71, 3792-3801.

15 Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah, P., Wisler, J., Eubank, T. D., Tridandapani, S., *et al.* (2013). Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121, 984-995.

20 Itzkan, I., Qiu, L., Fang, H., Zaman, M. M., Vitkin, E., Ghiran, I. C., Salahuddin, S., Modell, M., Andersson, C., Kimerer, L. M., *et al.* (2007). Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels. Proceedings of the National Academy of Sciences of the United 25 States of America 104, 17255-17260.

Kahlert, C., and Kalluri, R. (2013). Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl) 91, 431-437.

30 Karube, Y., Tanaka, H., Osada, H., Tomida, S., Tatematsu, Y., Yanagisawa, K., Yatabe, Y., Takamizawa, J., Miyoshi, S., Mitsudomi, T., *et al.* (2005). Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer science 96, 111-115.

Khairkar, P.H., Bang, G.M., Singh, A.B., and Tiple, P.G. (2010). Possible cross-sensitivity between sertraline and paroxetine in a panic disorder patient. Indian J Pharmacol 42, 110-111.

King, H.W., Michael, M.Z., and Gleadle, J.M. (2012). Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12, 421.

Kogure, T., Lin, W. L., Yan, I. K., Braconi, C., and Patel, T. (2011). Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54, 1237-1248.

Kosaka, N., Iguchi, H., Hagiwara, K., Yoshioka, Y., Takeshita, F., and Ochiya, T. (2013).

Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. The Journal of biological chemistry 288, 10849-10859.

Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R., and Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature genetics 39, 673-677.

Kumar, S., Ansari, F.A., and Scaria, V. (2009). Prediction of viral microRNA precursors based on human microRNA precursor sequence and structural features. Virol J 6, 129.

Lee, T.H., D'Asti, E., Magnus, N., Al-Nedawi, K., Meehan, B., and Rak, J. (2011). Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'. Semin Immunopathol 33, 455-467.

Li, L., Zhu, D., Huang, L., Zhang, J., Bian, Z., Chen, X., Liu, Y., Zhang, C. Y., and Zen, K. (2012). Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PloS one 7, e46957.

Liu, C. G., Calin, G. A., Volinia, S. & Croce, C. M. MicroRNA expression profiling using microarrays. Nat Protoc 3, 563-578, (2008).

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.

Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabro, L., Spada, M., Perdicchio, M., Marino, M.L., Federici, C., Iessi, E., *et al.* (2009). High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PloS one 4, e5219.

Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., *et al.* (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.

Luga, V., Zhang, L., Viloria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., Hosein, A.N., Basik, M., and Wrana, J.L. (2012). Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. *Cell* 151, 1542-1556.

5 Luzio, J.P., Parkinson, M.D., Gray, S.R., and Bright, N.A. (2009). The delivery of endocytosed cargo to lysosomes. *Biochemical Society transactions* 37, 1019-1021.

Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. *Nature* 449, 682-688.

10 MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V., and Doudna, J. A. (2008). In vitro reconstitution of the human RISC-loading complex. *Proceedings of the National Academy of Sciences of the United States of America* 105, 512-517.

Maehama, T. (2007). PTEN: its deregulation and tumorigenesis. *Biological & pharmaceutical bulletin* 30, 1624-1627.

15 Maniataki, E., and Mourelatos, Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. *Genes & development* 19, 2979-2990.

Mao, X., Sun, Y., and Tang, J. (2013). Serum miR-21 is a diagnostic and prognostic marker of primary central nervous system lymphoma. *Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology*.

20 Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., Enzo, E., Guzzardo, V., Rondina, M., Spruce, T., *et al.* (2010). A MicroRNA targeting dicer for metastasis control. *Cell* 141, 1195-1207.

Mathivanan, S., Ji, H., and Simpson, R.J. (2010). Exosomes: extracellular organelles important in intercellular communication. *Journal of proteomics* 73, 1907-1920.

25 Mavel, S., Thery, I., and Gueiffier, A. (2002). Synthesis of imidazo[2,1-a]phthalazines, potential inhibitors of p38 MAP kinase. Prediction of binding affinities of protein ligands. *Arch Pharm (Weinheim)* 335, 7-14.

McCready, J., Sims, J. D., Chan, D., and Jay, D. G. (2010). Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. *BMC cancer* 10, 294.

30 Melo, S., Villanueva, A., Moutinho, C., Davalos, V., Spizzo, R., Ivan, C., Rossi, S., Setien, F., Casanovas, O., Simo-Riudalbas, L., *et al.* (2011). Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-

mediated microRNA processing. *Proceedings of the National Academy of Sciences of the United States of America* 108, 4394-4399.

5 Melo, S.A., Moutinho, C., Ropero, S., Calin, G.A., Rossi, S., Spizzo, R., Fernandez, A.F., Davalos, V., Villanueva, A., Montoya, G., *et al.* (2010). A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. *Cancer cell* 18, 303-315.

Melo, S.A., Ropero, S., Moutinho, C., Aaltonen, L.A., Yamamoto, H., Calin, G.A., Rossi, S., Fernandez, A.F., Carneiro, F., Oliveira, C., *et al.* (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. *Nature genetics* 41, 365-370.

10 Merritt, W.M., Lin, Y.G., Han, L.Y., Kamat, A.A., Spannuth, W.A., Schmandt, R., Urbauer, D., Pennacchio, L.A., Cheng, J.F., Nick, A.M., *et al.* (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. *The New England journal of medicine* 359, 2641-2650.

15 Min, M., Bang, G.S., Lee, H., and Yu, B.C. (2010). A photoswitchable methylene-spaced fluorinated aryl azobenzene monolayer grafted on silicon. *Chem Commun (Camb)* 46, 5232-5234.

Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., Gonzalez, S., Sanchez-Cabo, F., Gonzalez, M. A., Bernad, A., and Sanchez-Madrid, F. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells.

20 Nature communications 2, 282.

Miyata, Y. (2005). Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. *Current pharmaceutical design* 11, 1131-1138.

Montecalvo, A., Larregina, A. T., Shufesky, W. J., Stolz, D. B., Sullivan, M. L., Karlsson, J. M., Baty, C. J., Gibson, G. A., Erdos, G., Wang, Z., *et al.* (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. *Blood* 119, 756-766.

25 Narayanan, A., Iordanskiy, S., Das, R., Van Duyne, R., Santos, S., Jaworski, E., Guendel, I., Sampey, G., Dalby, E., Iglesias-Ussel, M., *et al.* (2013). Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. *The Journal of biological chemistry* 288, 20014-20033.

30 Nicoloso, M.S., Spizzo, R., Shimizu, M., Rossi, S., and Calin, G.A. (2009). MicroRNAs--the micro steering wheel of tumour metastases. *Nature reviews Cancer* 9, 293-302.

Ostrowski, M., Carmo, N.B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C.F., Schauer, K., Hume, A.N., Freitas, R.P., *et al.* (2010). Rab27a and Rab27b control

different steps of the exosome secretion pathway. *Nature cell biology* 12, 19-30; sup pp 11-13.

Ozen, M., Creighton, C.J., Ozdemir, M., and Ittmann, M. (2008). Widespread deregulation of microRNA expression in human prostate cancer. *Oncogene* 27, 1788-1793.

5 Pant, S., Hilton, H., and Burczynski, M.E. (2012). The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. *Biochemical pharmacology* 83, 1484-1494.

Park, H.J., Bang, G., Lee, B.R., Kim, H.O., and Lee, P.H. (2011). Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple 10 system atrophy parkinsonism. *Cell Transplant* 20, 827-835.

Pegtel, D. M., Cosmopoulos, K., Thorley-Lawson, D. A., van Eijndhoven, M. A., Hopmans, E. S., Lindenberg, J. L., de Gruyl, T. D., Wurdinger, T., and Middeldorp, J. M. (2010). Functional delivery of viral miRNAs via exosomes. *Proceedings of the National Academy of Sciences of the United States of America* 107, 6328-6333.

15 Peinado, H., Aleckovic, M., Lavoie, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., *et al.* (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. *Nat Med* 18, 883-891.

Razi, M., and Futter, C. E. (2006). Distinct roles for Tsg101 and Hrs in multivesicular body 20 formation and inward vesiculation. *Molecular biology of the cell* 17, 3469-3483.

Roccaro, A. M., Sacco, A., Maiso, P., Azab, A. K., Tai, Y. T., Reagan, M., Azab, F., Flores, L. M., Campigotto, F., Weller, E., *et al.* (2013). BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. *The Journal of clinical investigation*.

25 Rothstein, D. M. *et al.* Targeting signal 1 through CD45RB synergizes with CD40 ligand blockade and promotes long term engraftment and tolerance in stringent transplant models. *J Immunol* 166, 322-329 (2001).

Sambrook *et al.*, *Molecular cloning: A laboratory manual*, Cold Spring Harbor Laboratory Press, 1989.

30 Savina, A., Furlan, M., Vidal, M., and Colombo, M.I. (2003). Exosome release is regulated by a calcium-dependent mechanism in K562 cells. *The Journal of biological chemistry* 278, 20083-20090.

Schmittgen, T.D., Jiang, J., Liu, Q., and Yang, L. (2004). A high-throughput method to monitor the expression of microRNA precursors. *Nucleic acids research* 32, e43.

Shen, B., Fang, Y., Wu, N., and Gould, S.J. (2011a). Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. *The Journal of biological chemistry* 286, 44162-44176.

5 Shen, B., Wu, N., Yang, J.M., and Gould, S.J. (2011b). Protein targeting to exosomes/microvesicles by plasma membrane anchors. *The Journal of biological chemistry* 286, 14383-14395.

Shen, J., Xia, W., Khotskaya, Y. B., Huo, L., Nakanishi, K., Lim, S. O., Du, Y., Wang, Y., Chang, W. C., Chen, C. H., *et al.* (2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. *Nature* 497, 383-387.

10 Sherer, N.M., Lehmann, M.J., Jimenez-Soto, L.F., Ingundson, A., Horner, S.M., Cicchetti, G., Allen, P.G., Pypaert, M., Cunningham, J.M., and Mothes, W. (2003). Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. *Traffic* 4, 785-801.

Shi, W., Oshlack, A., and Smyth, G.K. (2010). Optimizing the noise versus bias trade-off for 15 Illumina whole genome expression BeadChips. *Nucleic acids research* 38, e204.

Shin, H. W., Morinaga, N., Noda, M., and Nakayama, K. (2004). BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. *Molecular biology of the cell* 15, 5283-5294.

20 Simons, M., and Raposo, G. (2009). Exosomes--vesicular carriers for intercellular communication. *Curr Opin Cell Biol* 21, 575-581.

Simpson, R.J., Jensen, S.S., and Lim, J.W. (2008). Proteomic profiling of exosomes: current 25 perspectives. *Proteomics* 8, 4083-4099.

Skog, J., Wurdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Sena-Esteves, M., Curry, W.T., Jr., Carter, B.S., Krichevsky, A.M., and Breakefield, X.O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. *Nature cell biology* 10, 1470-1476.

Tang, G. (2005). siRNA and miRNA: an insight into RISCs. *Trends Biochem Sci* 30, 106-114.

30 Taylor, D.D., and Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. *Gynecologic oncology* 110, 13-21.

Taylor, D.D., and Gercel-Taylor, C. (2011). Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. *Semin Immunopathol* 33, 441-454.

Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. *Current protocols in cell biology / editorial board, Juan S Bonifacino [et al]* Chapter 3, Unit 3 22.

Thery, C. *et al.* Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. *Nat Immunol* 3, 1156-1162, (2002).

Thery, C., Zitvogel, L., and Amigorena, S. (2002). Exosomes: composition, biogenesis and function. *Nat Rev Immunol* 2, 569-579.

Thery, C. (2011). Exosomes: secreted vesicles and intercellular communications. *F1000 biology reports* 3, 15.

Thery, M., and Casas, J. (2002). Predator and prey views of spider camouflage. *Nature* 415, 133.

Thomson, D. W., Bracken, C. P., Szubert, J. M., and Goodall, G. J. (2013). On measuring miRNAs after transient transfection of mimics or antisense inhibitors. *PloS one* 8, e55214.

Tse, J.C., and Kalluri, R. (2011). Waking up dormant tumors. *Breast cancer research : BCR* 13, 310.

20 Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. *Nucleic acids research* 39, 7223-7233.

Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nature cell biology* 9, 654-659.

25 van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., van Eijndhoven, M. A., Pegtel, D. M., Stoorvogel, W., Wurdinger, T., and Verhaar, M. C. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. *Blood* 121, 3997-4006, S3991-3915.

30 Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., and Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. *Nature cell biology* 13, 423-433.

Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., *et al.* (2006). A microRNA expression signature of

human solid tumors defines cancer gene targets. *Proceedings of the National Academy of Sciences of the United States of America* 103, 2257-2261.

Welch, D.R. (1997). Technical considerations for studying cancer metastasis *in vivo*. *Clinical & experimental metastasis* 15, 272-306.

5 Wiesen, J.L., and Tomasi, T.B. (2009). Dicer is regulated by cellular stresses and interferons. *Mol Immunol* 46, 1222-1228.

Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., Zeng, Y. X., and Shao, J. Y. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor 10 prognosis. *RNA* 14, 2348-2360.

Yan, L.X., Wu, Q.N., Zhang, Y., Li, Y.Y., Liao, D.Z., Hou, J.H., Fu, J., Zeng, M.S., Yun, J.P., Wu, Q.L., *et al.* (2011). Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, *in vitro* migration and *in vivo* tumor growth. *Breast cancer research : BCR* 13, R2.

15 Yang, C., and Robbins, P.D. (2011). The roles of tumor-derived exosomes in cancer pathogenesis. *Clin Dev Immunol* 2011, 842849.

Yang, X., Meng, S., Jiang, H., Zhu, C., and Wu, W. (2011). Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. *J Surg Res* 171, 826-832.

20 Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. *Genes & development* 17, 3011-3016.

Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Koppel, T., Jahantigh, M. N., Lutgens, E., *et al.* (2009). Delivery of microRNA-126 25 by apoptotic bodies induces CXCL12-dependent vascular protection. *Science signaling* 2, ra81.

Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., *et al.* (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. *Molecular cell* 39, 133-144.

CLAIMS

1. An in vitro method of detecting cancer biomarker in a subject comprising:
 - (a) obtaining a biological sample from the subject;
 - (b) measuring the level of:
 - 5 (i) a RISC protein in an exosome fraction of the sample;
 - (ii) a precursor miRNA;
 - (iii) one or more miRNA(s) selected from the miRNAs provided in Table 5 in an exosome fraction of the sample; and/or
 - (iv) a primary miRNA or precursor miRNA processing activity in an exosome fraction of the sample; and
 - (c) identifying the subject having or not having a cancer biomarker based on the measured level of said miRNA(s), precursor miRNA, RISC protein or miRNA processing activity.
2. The method of claim 1, wherein the sample is essentially free of cells.
- 15 3. The method of claim 1, wherein the sample is a lymph, saliva, urine or plasma sample.
4. The method of claim 1, further comprising purifying an exosome fraction of the sample or increasing production of an exosome fraction of the sample.
- 20 5. The method of claim 1, wherein the cancer is a breast cancer, lung cancer, head & neck cancer, prostate cancer, esophageal cancer, tracheal cancer, brain cancer, liver cancer, bladder cancer, stomach cancer, pancreatic cancer, ovarian cancer, uterine cancer, cervical cancer, testicular cancer, colon cancer, rectal cancer or skin cancer.
6. The method of claim 5, wherein the cancer is a breast cancer.
- 25 7. The method of claim 1, further comprising measuring the level of at least 2, 3, 4, 5, 6, 7, 8, 9, 10 of said miRNAs.
8. The method of claim 1, further comprising measuring the level of DICER, AGO2, or TRBP.

9. The method of claim 1, wherein measuring the level of a precursor miRNA comprises measuring the level of a precursor of one of the miRNA(s) of Table 5.

10. The method of claim 1, wherein the subject has previously been treated for a cancer.

5 11. The method of claim 10, wherein the subject has previously had a tumor surgically removed.

12. The method of claim 1, wherein identifying the subject as having or not having a cancer biomarker further comprises correlating the measured miRNA level(s), precursor miRNA level; RISC level or miRNA processing activity with a risk for cancer.

10 13. The method of claim 1, wherein identifying the subject as having or not having a cancer biomarker further comprises analysis of the measured miRNA level(s), precursor miRNA level; RISC level or miRNA processing activity using an algorithm.

14. The method of claim 13, wherein said analysis is performed by a computer.

15. The method of claim 1, further comprising:

b) measuring the level of:

(i) a RISC protein in an exosome fraction of the sample and a reference sample;

(ii) a precursor miRNA in an exosome fraction of the sample and a reference sample;

20 (iii) one or more miRNA(s) selected from the miRNAs provided in Table 5 in an exosome fraction of the sample and a reference sample; and/or

(iv) a miRNA processing activity in an exosome fraction of the sample and a reference sample; and

25 (c) identifying the subject as having or not having a cancer biomarker by comparing the level of RISC, precursor miRNA, miRNA(s), or miRNA processing activity in the sample from the subject to the level of miRNA(s), precursor miRNA, RISC or miRNA processing activity in the reference sample.

16. The method of claim 1, wherein measuring RISC protein levels comprises performing a Western blot, an ELISA or binding to an antibody array.

17. The method of claim 1, wherein measuring miRNA levels comprises measuring processed miRNA levels.

18. The method of claim 1, wherein measuring miRNA levels comprises performing RT-PCR, Northern blot or an array hybridization.

5 19. The method of claim 1, further comprising reporting whether the subject has or does not have a cancer biomarker.

20. The method of claim 19, wherein reporting comprises preparing a written or electronic report.

10 21. The method of claim 19, further comprising providing the report to the patient, a doctor, a hospital or an insurance company.

22. A method of treating a subject comprising:
selecting a subject identified as having a cancer biomarker in accordance with
claim 1; and
administering an anti-cancer therapy the subject.

15 23. The method of claim 22, wherein the anti-cancer therapy is a chemotherapy, a radiation therapy, a hormonal therapy, a targeted therapy, an immunotherapy or a surgical therapy.

24. The method of claim 22, wherein the anti-cancer therapy is targeted to the brain.

20 25. A method of treating a subject comprising:
(a) obtaining the level of (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA level; (iii) a RISC protein; or (iv) a miRNA processing activity, in an exosome fraction of a sample from the subject;
(b) selecting a subject having a cancer biomarker based on the level of said
25 mRNA(s), precursor miRNA; RISC protein or miRNA processing activity; and
(c) treating the selected subject with an anti-cancer therapy.

26. The method of claim 25, wherein the anti-cancer therapy is a chemotherapy, a radiation therapy, a hormonal therapy, a targeted therapy, an immunotherapy or a surgical therapy.

27. A method of selecting a subject for a diagnostic procedure comprising:

5 (a) obtaining the level of (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA; (iii) a RISC protein; or (iv) a miRNA processing activity, in an exosome fraction of a sample from the subject;

(b) selecting a subject having a cancer biomarker based on the level of said mRNA(s), precursor miRNA, RISC protein or miRNA processing activity; and

10 (c) performing a diagnostic procedure on the selected on the subject.

28. The method of claim 27, wherein the diagnostic procedure comprises diagnostic imaging.

29. The method of claim 28, wherein the imaging is a X-ray, CT, MRI or PET imaging.

15 30. A tangible computer-readable medium comprising computer-readable code that, when executed by a computer, causes the computer to perform operations comprising:

a) receiving information corresponding to a level of (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA; (iii) a RISC protein; or (iv) a miRNA processing activity, in an exosome fraction of a sample from 20 the subject; and

b) determining a relative level of one ore more of said miRNAs or RISC proteins compared to a reference level, wherein altered level compared to a reference level indicates that the subject has a cancer biomarker.

31. The tangible computer-readable medium of claim 30, further comprising 25 receiving information corresponding to a reference level of (i) one or more miRNA(s) selected from the miRNAs provided in Table 5; (ii) a precursor miRNA (iii) a RISC protein; or (iv) a miRNA processing activity, in an exosome fraction of a subject no having a cancer.

32. The tangible computer-readable medium of claim 30, wherein the reference level is stored in said tangible computer-readable medium.

33. The tangible computer-readable medium of claim 30, wherein the receiving information comprises receiving from a tangible data storage device information corresponding to a level of miRNA; a precursor miRNA; RISC protein or miRNA processing activity, in a sample from a subject.

5 34. The tangible computer-readable medium of claim 30, further comprising computer-readable code that, when executed by a computer, causes the computer to perform one or more additional operations comprising: sending information corresponding to the relative level of miRNA; a precursor miRNA; RISC protein or miRNA processing activity, to a tangible data storage device.

10 35. The tangible computer-readable medium of claim 30, wherein the receiving information further comprises receiving information corresponding to a level of at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 of said miRNAs in a sample from a subject.

15 36. The tangible computer-readable medium of claim 30, wherein the computer-readable code, when executed by a computer, causes the computer to perform operations further comprising: c) calculating a diagnostic score for the sample, wherein the diagnostic score is indicative of the probability that the sample is from a subject having a cancer.

20 37. An in vitro method of detecting cancer biomarker in a subject comprising:
(a) obtaining a biological sample from the subject;
(b) measuring the level of one or more miRNA(s) in the sample selected from the miRNAs provided in Table 5; and
(c) identifying the subject having or not having a cancer biomarker based on the measured level of said miRNA(s).

38. The method of claim 37, wherein the sample is essentially free of cells.

25 39. The method of claim 37, wherein the sample is an exosome fraction of a body fluid.

40. The method of claim 37, wherein the sample is a lymph, saliva, urine or plasma sample.

41. An in vitro method for delivery of active inhibitory RNA comprising contacting a cell with an inhibitory RNA that is provided in association with a RISC protein complex.

42. The method of claim 41, wherein the RISC protein complex comprises TRBP,
5 DICER and AGO2.

43. The method of claim 41, wherein the inhibitory RNA is a siRNA or shRNA.

44. The method of claim 41, wherein the inhibitory RNA is a human miRNA.

45. The method of claim 41, wherein the inhibitory RNA and RISC protein complex are comprises in a liposome, a nanoparticle or a microcapsule comprising a lipid
10 bilayer.

46. The method of claim 46, wherein the microcapsule is an exosome.

47. The method of claim 41, wherein contacting a cell comprises transfecting a cell with the inhibitory RNA and RISC protein complex.

48. The method of claim 41, further comprising administering the inhibitory RNA
15 and RISC protein complex to a subject.

49. A composition comprising a recombinant or synthetic inhibitory RNA in association with a RISC protein complex, said complex comprised in a liposome, a nanoparticle or a microcapsule.

50. The composition of claim 49, wherein the RISC protein complex comprises
20 TRBP, DICER and AGO2.

51. The composition of claim 49, wherein the inhibitory RNA is a siRNA or shRNA.

52. The composition of claim 49, wherein the inhibitory RNA is a human miRNA.

53. The composition of claim 49, wherein the complex is comprised in a synthetic
25 liposome, a nanoparticle or a microcapsule.

54. The composition of claim 49, wherein the microcapsule is an exosome.

1/80

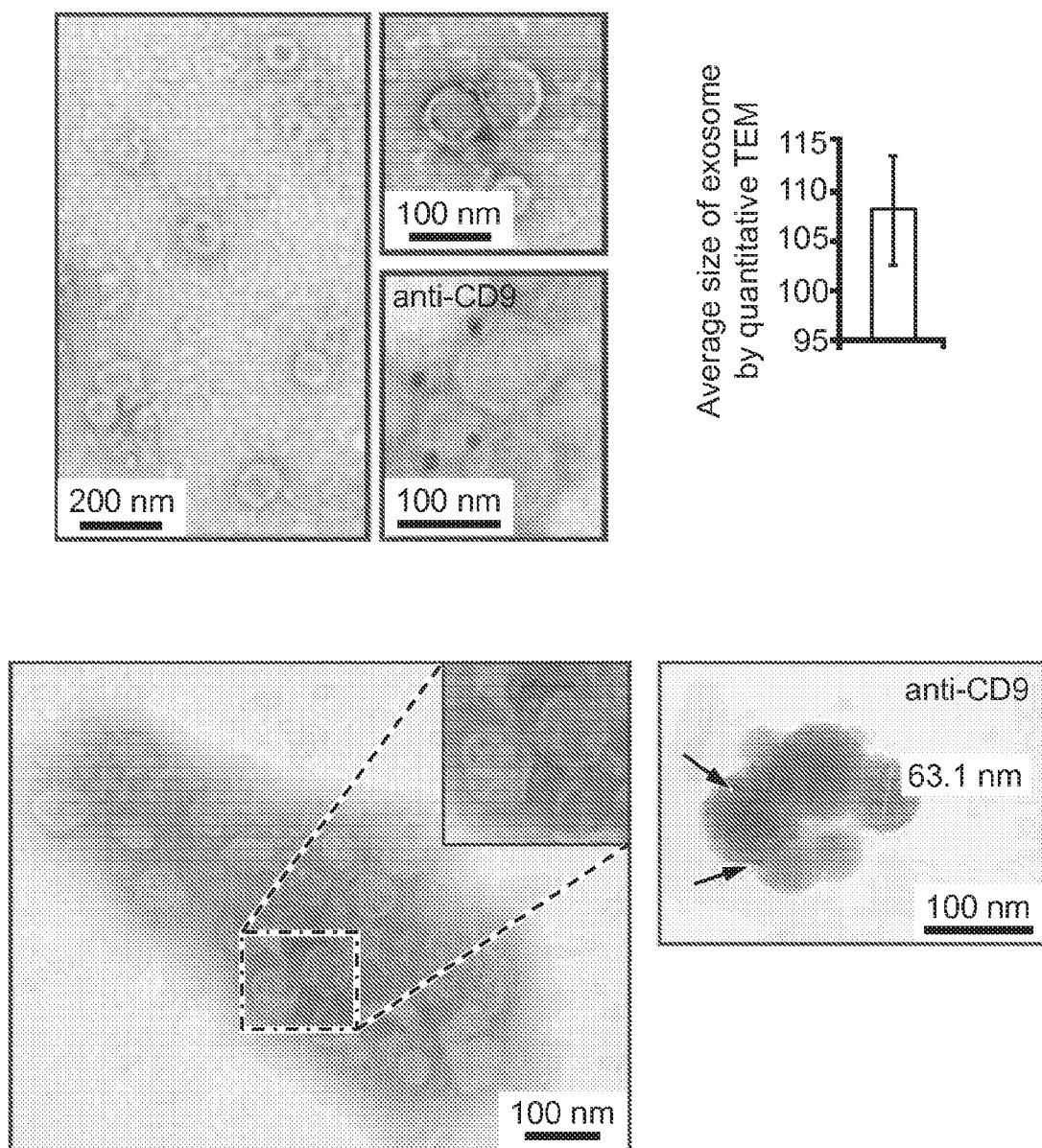


FIG. 1A

2/80

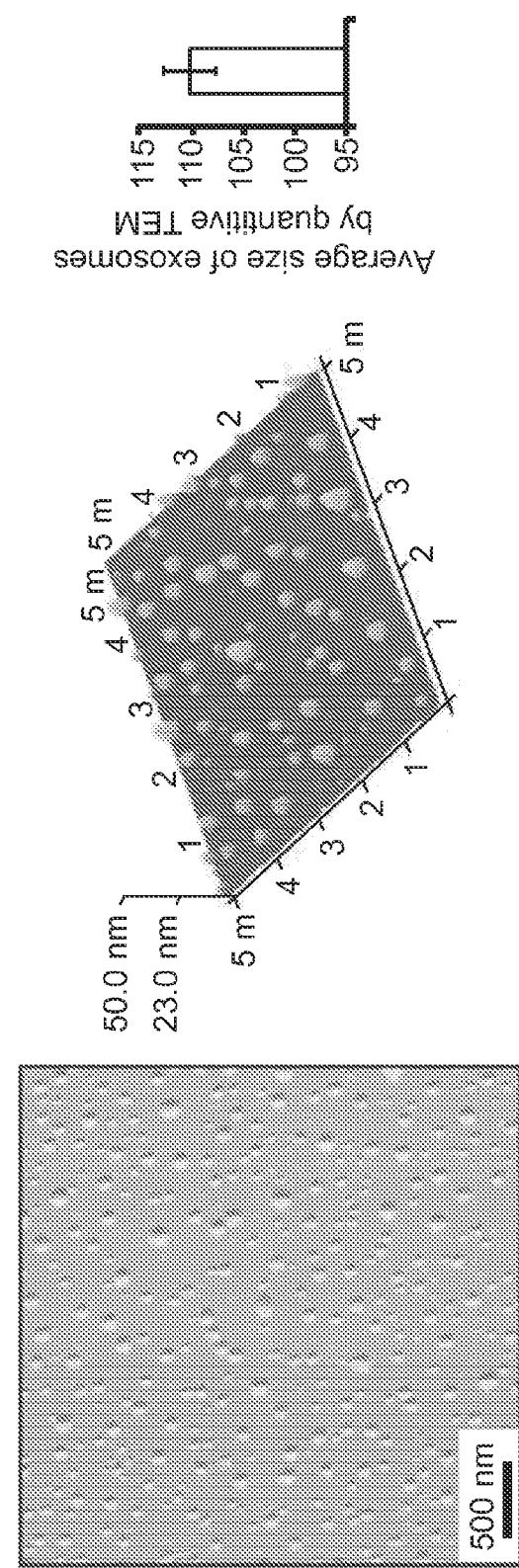
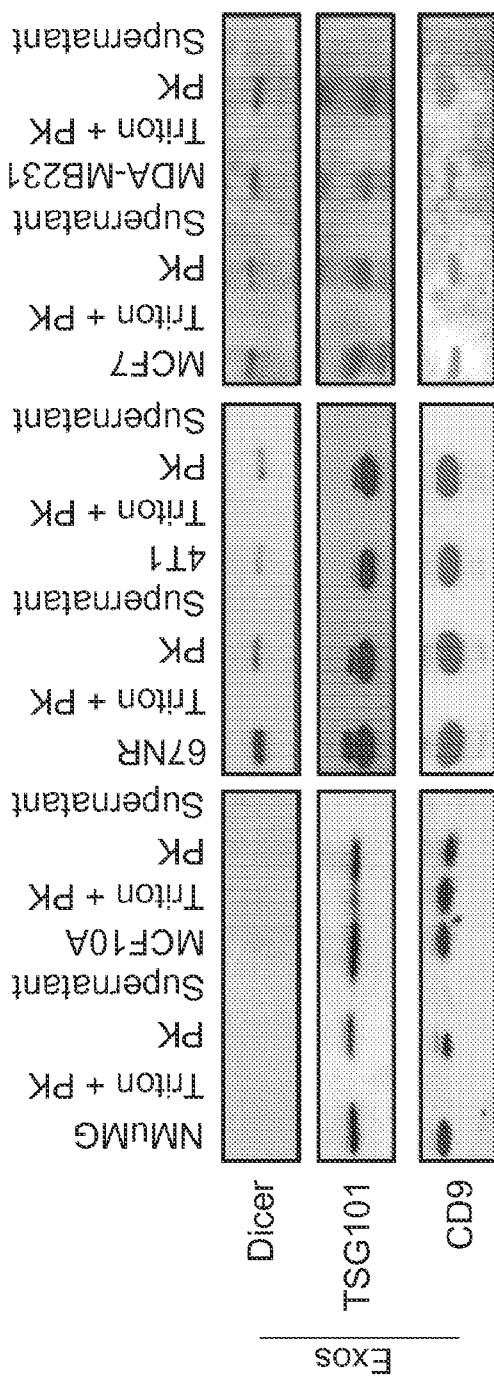



FIG. 1B

3/80

FIG. 1C

4/80

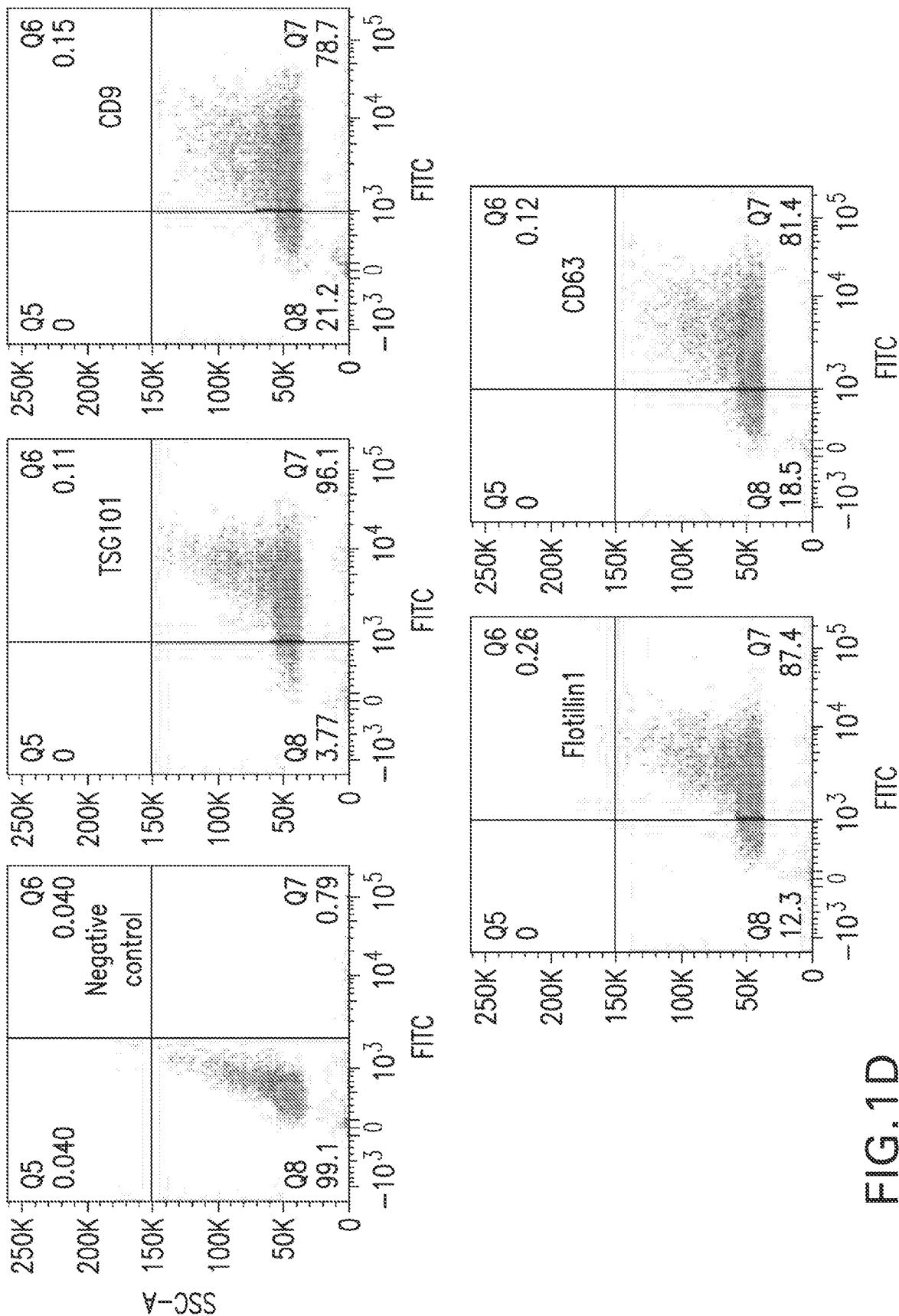


FIG. 1 D

5/80

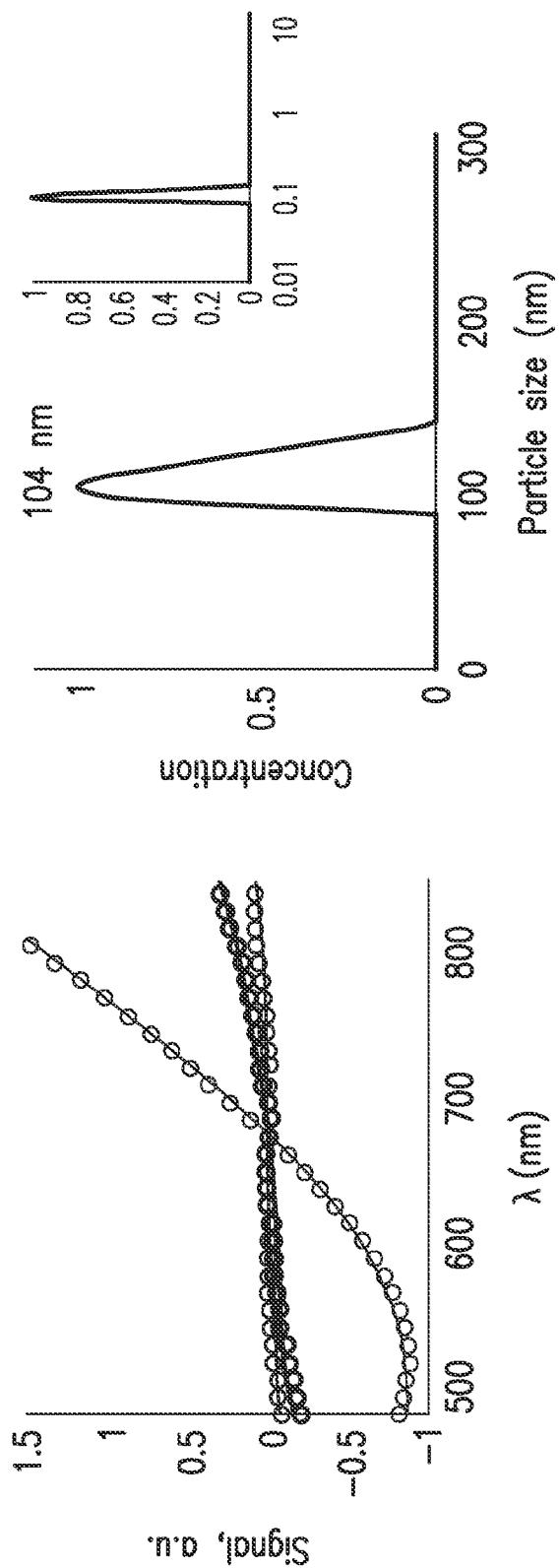


FIG. 1E

6/80

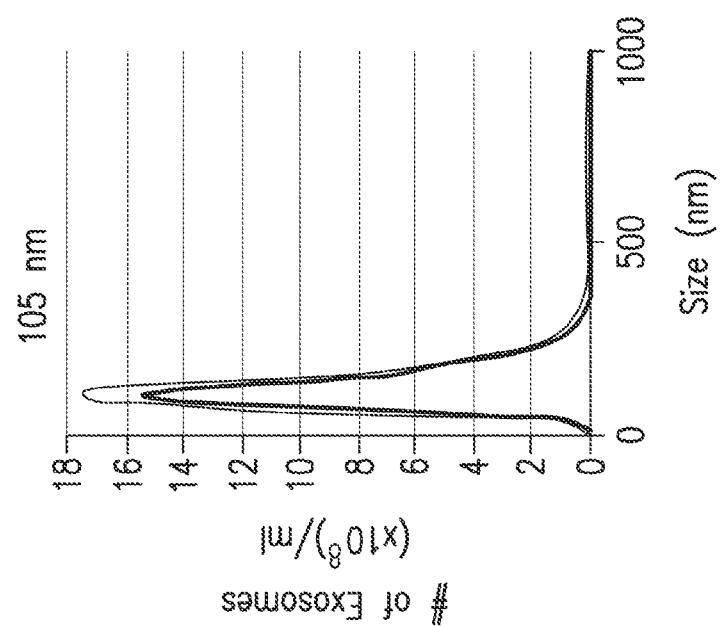
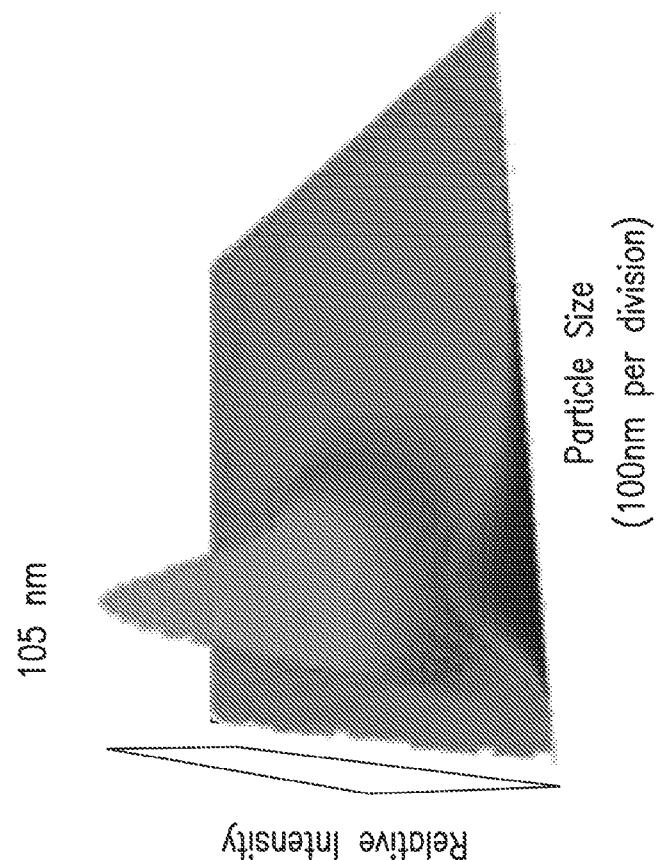



FIG. 1F

7/80

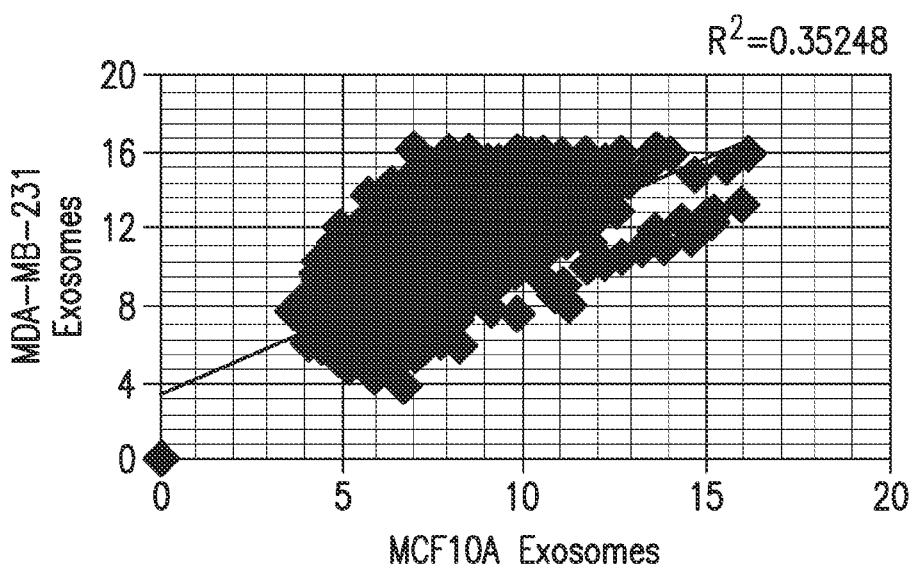


FIG.2A

8/80

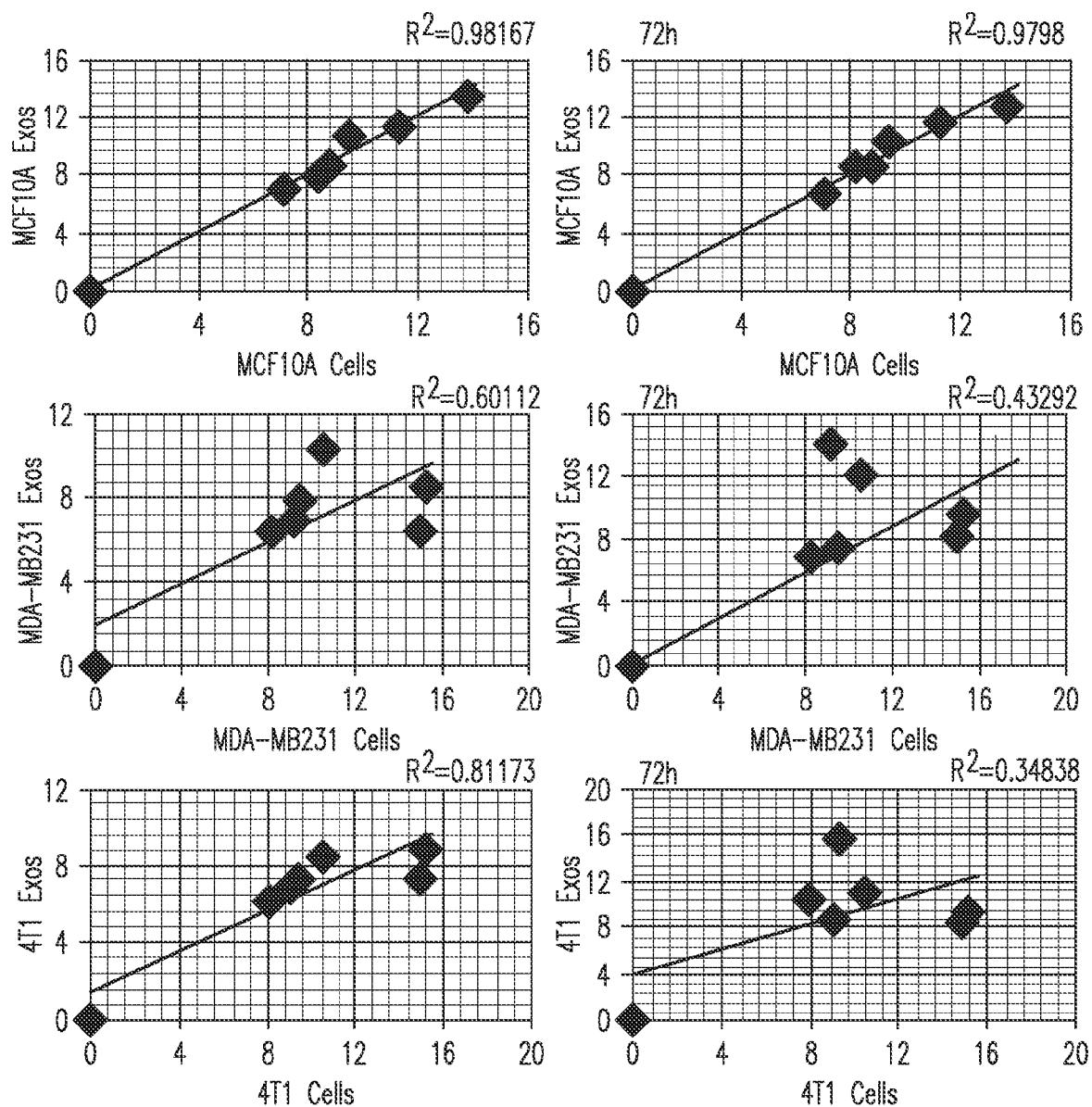


FIG. 2B

9/80

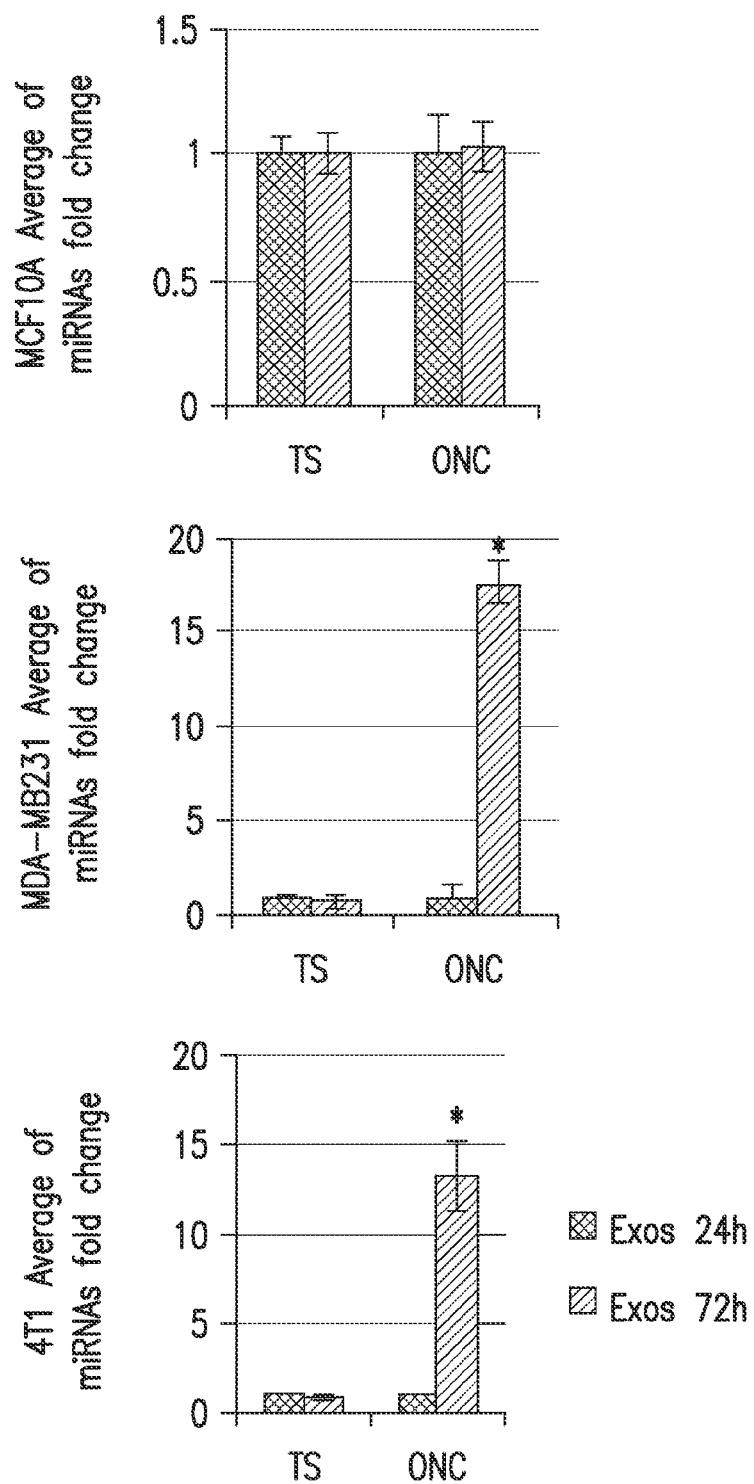


FIG. 2C

10/80

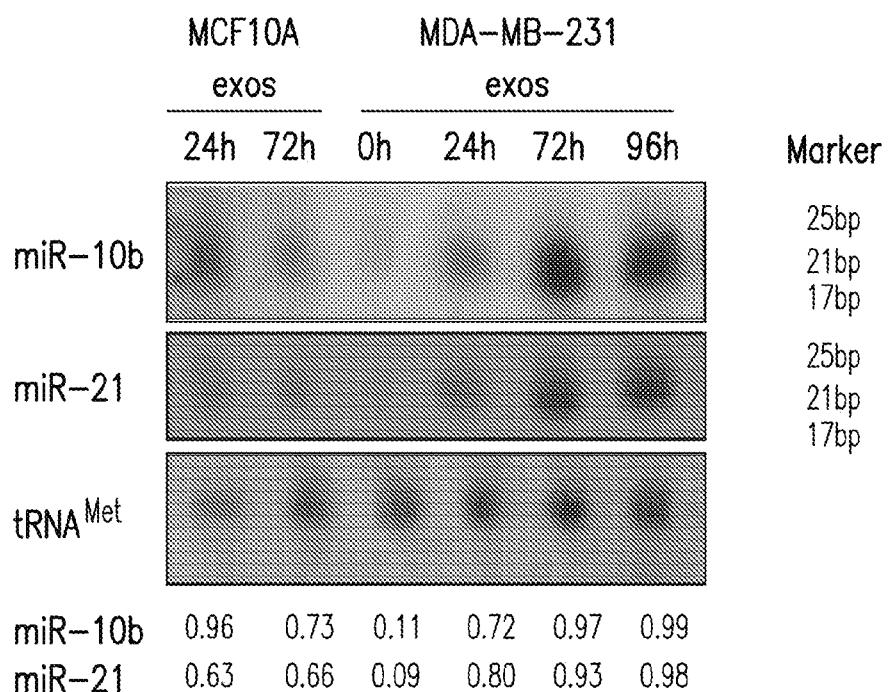


FIG.2D

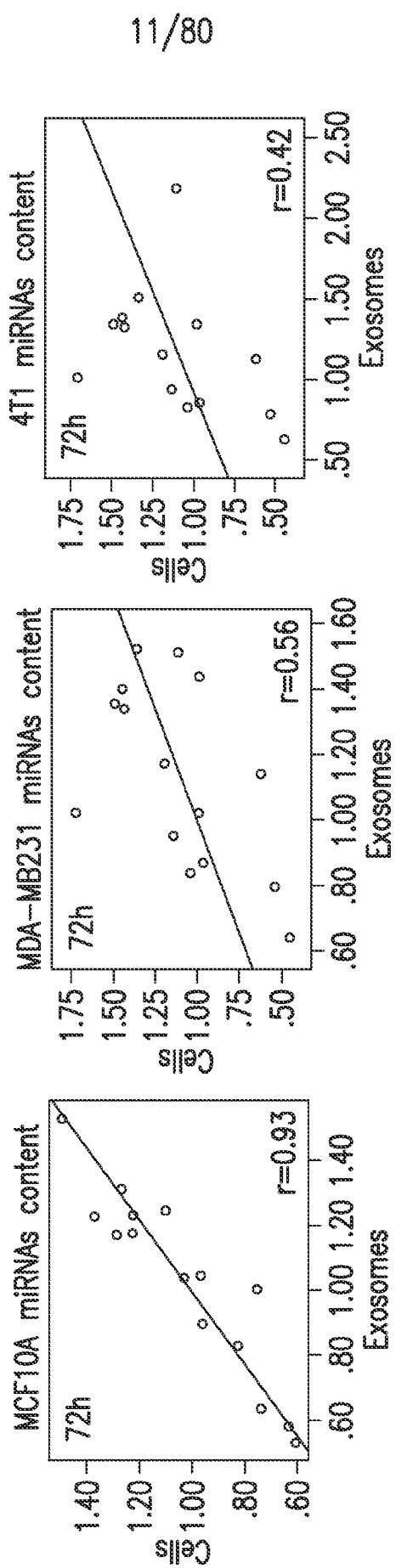


FIG. 2E

12/80

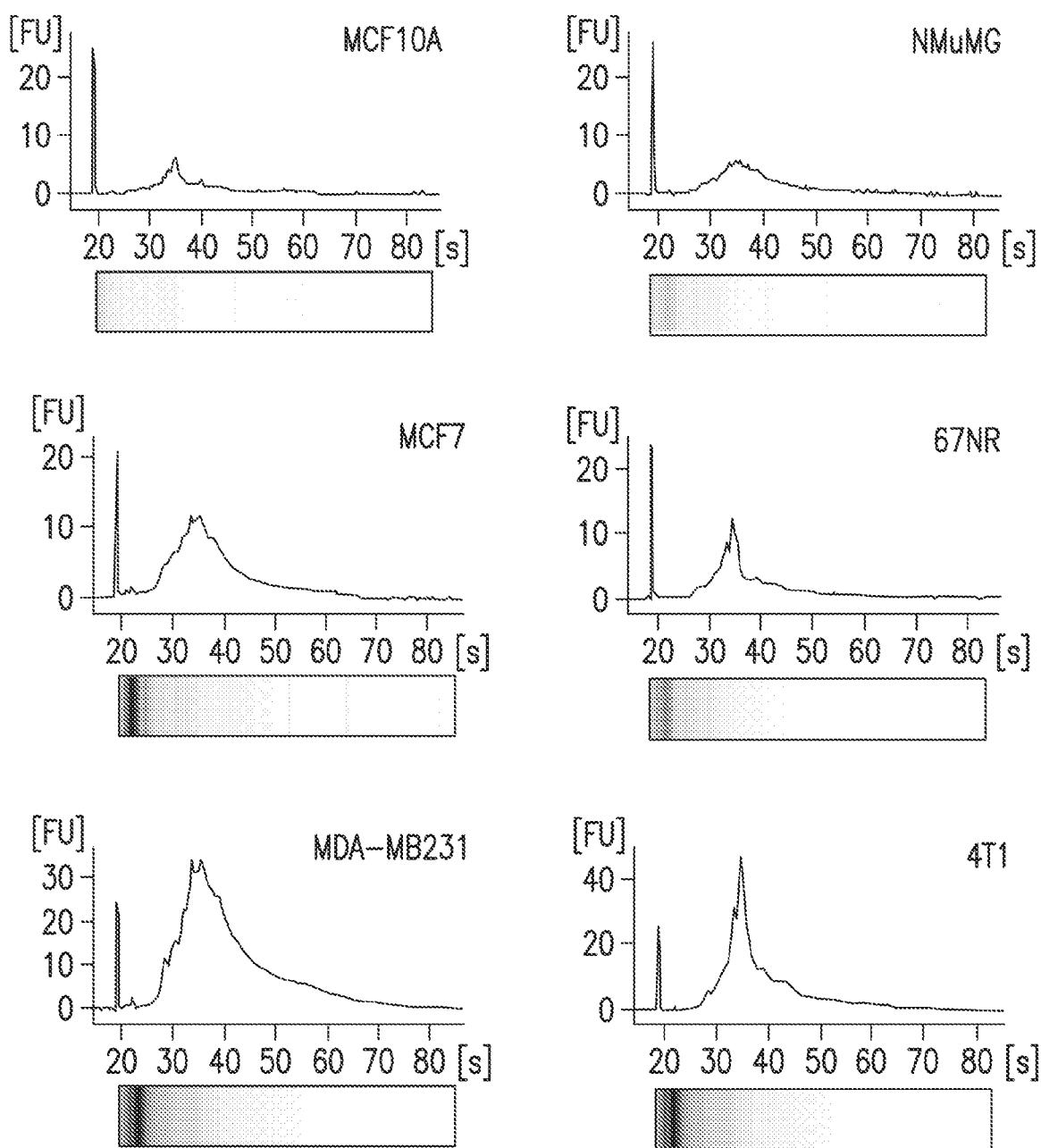


FIG. 2F

13/80

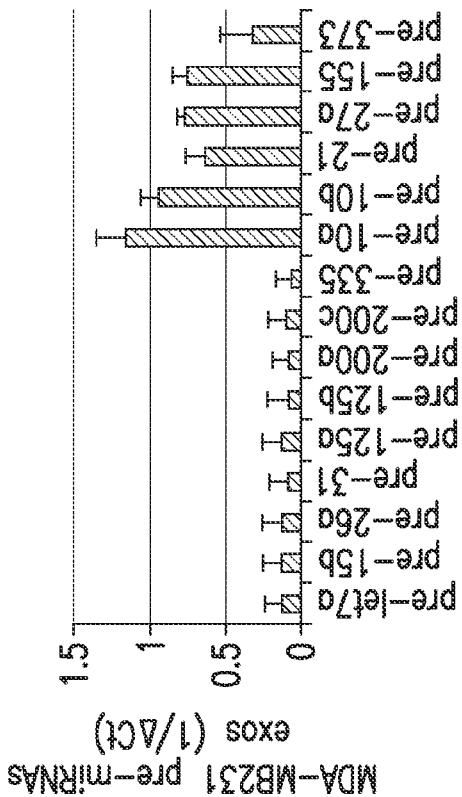


FIG. 3A

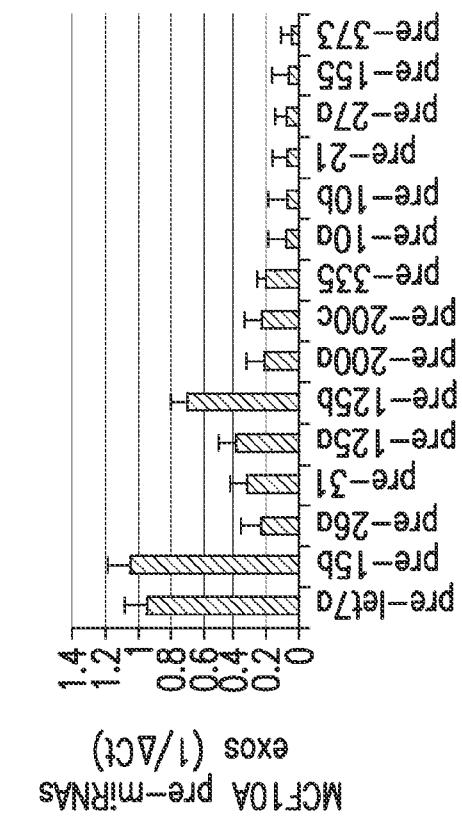
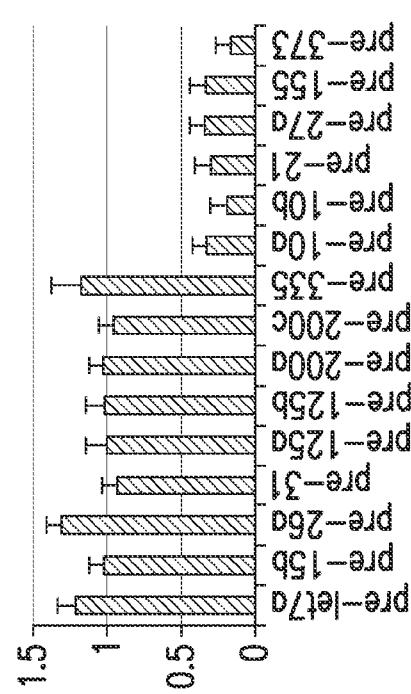
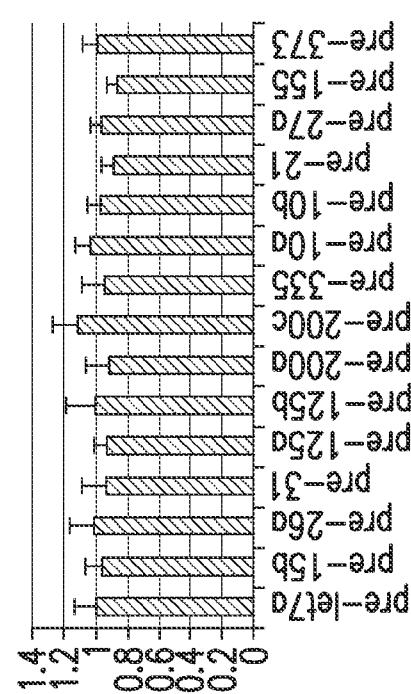



(fold change 72 vs 24h)
MCF10A pre-miRNAs exos

FIG. 3B

14/80

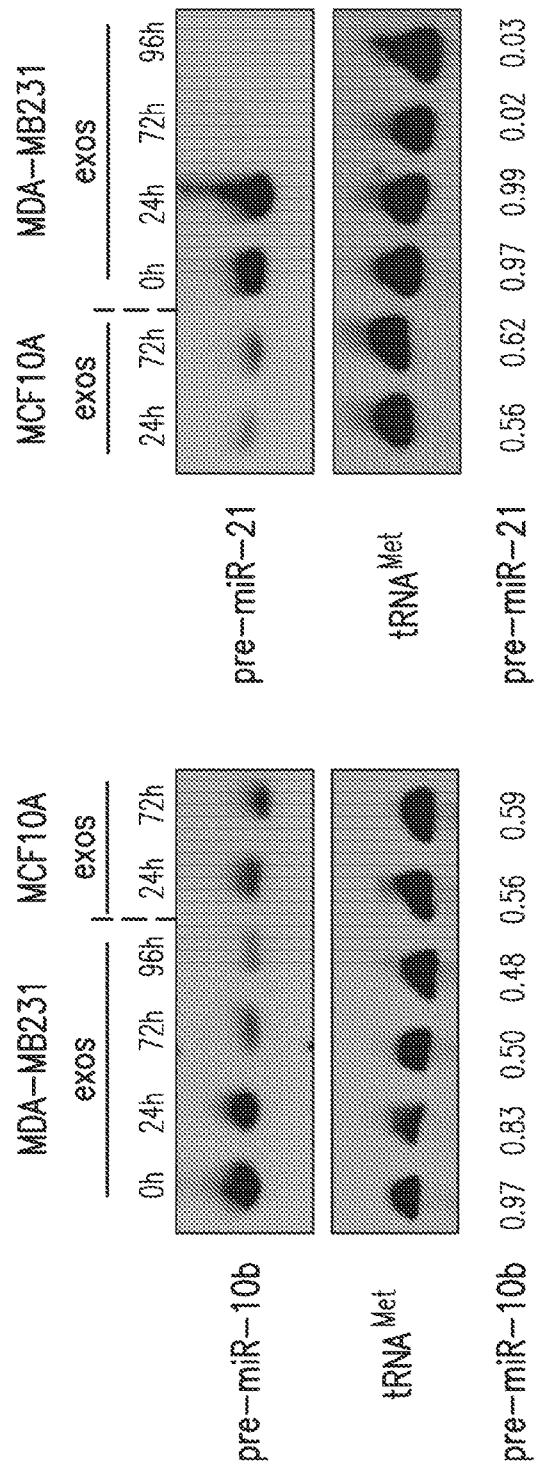


FIG. 3C

15/80

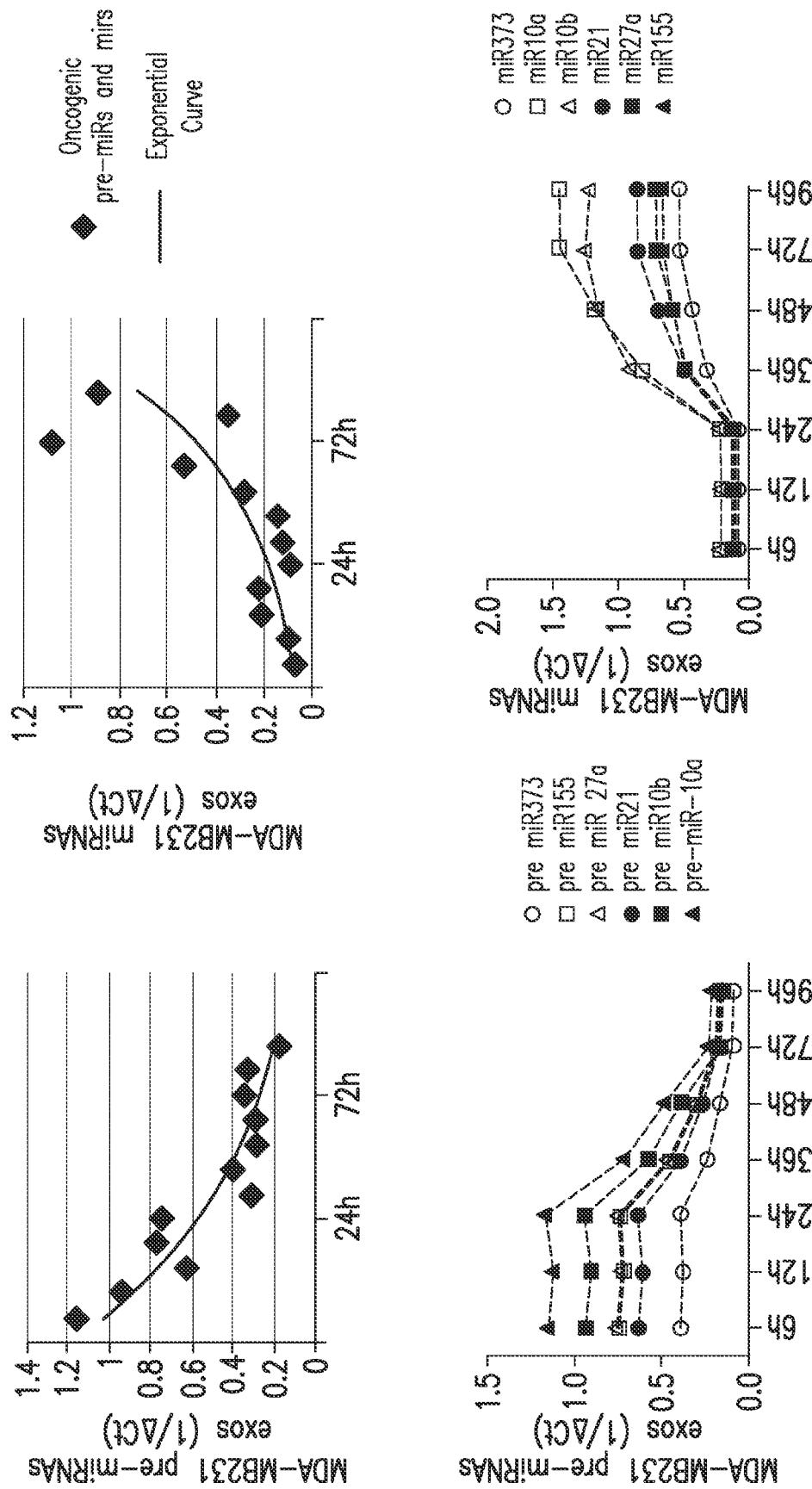


FIG. 3D

16/80

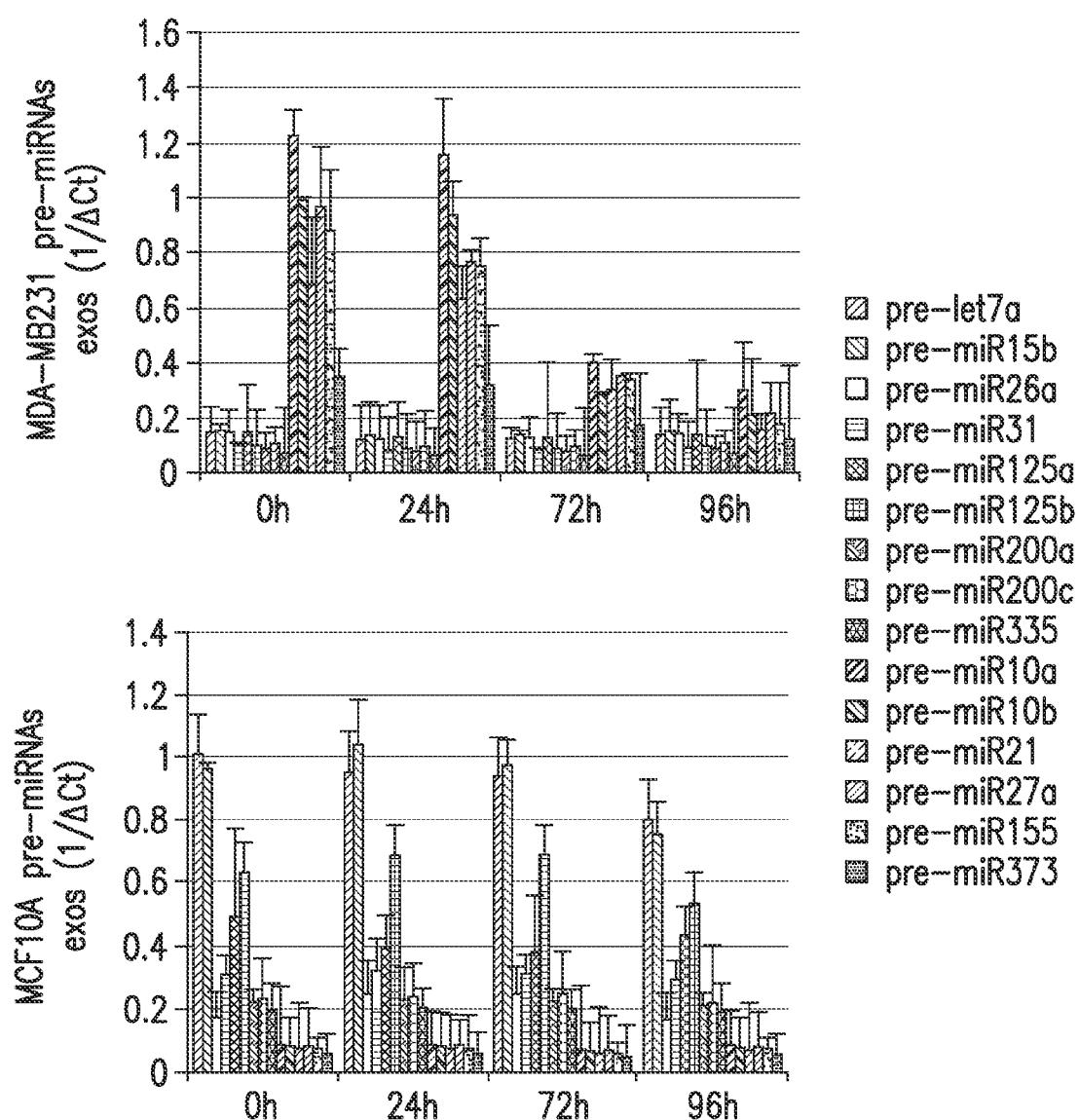


FIG. 3E

17/80

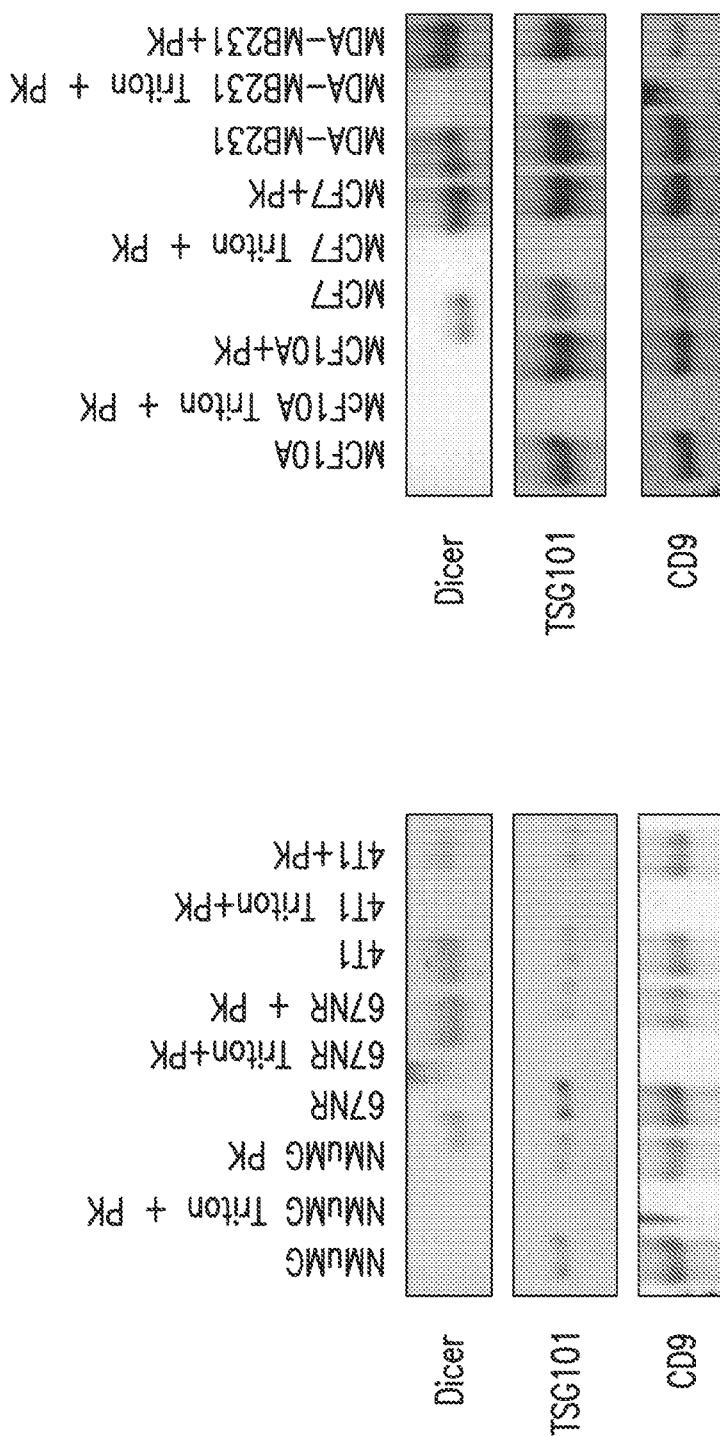


FIG. 4A

18/80

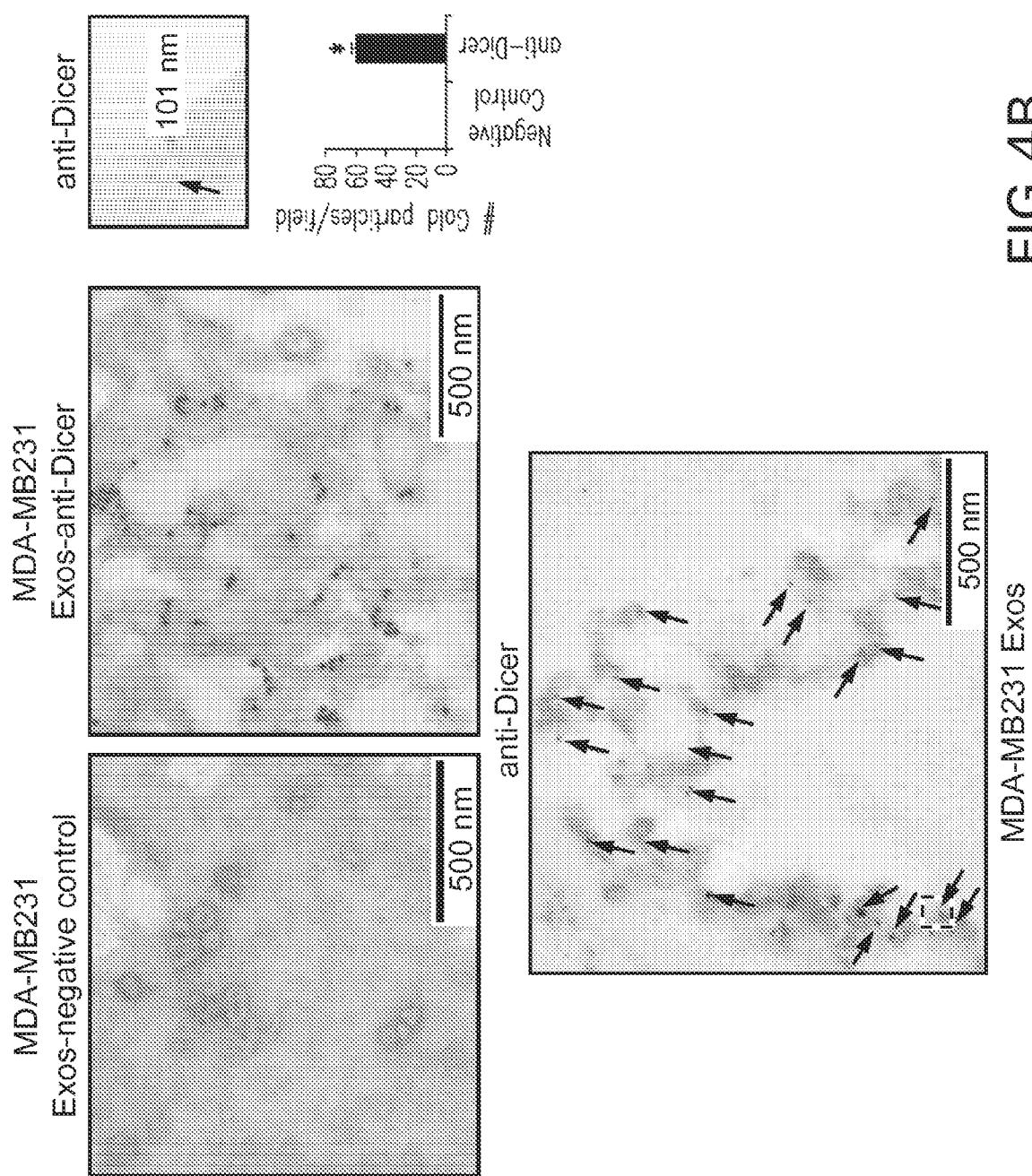


FIG. 4B

19/80

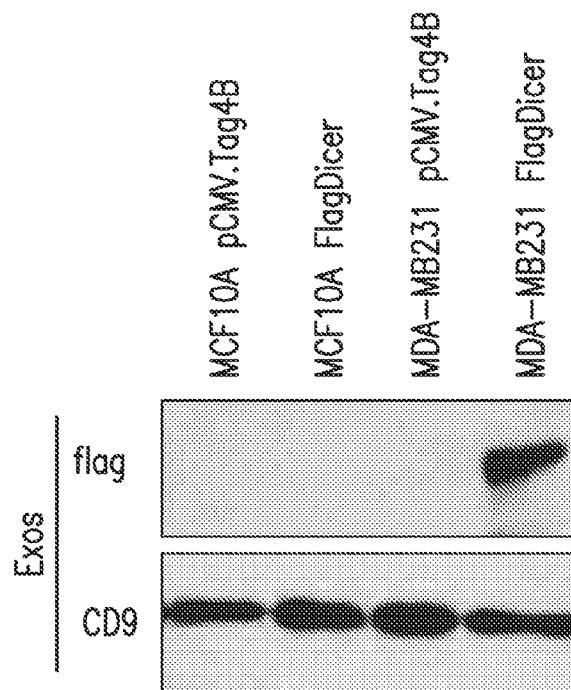


FIG. 4C

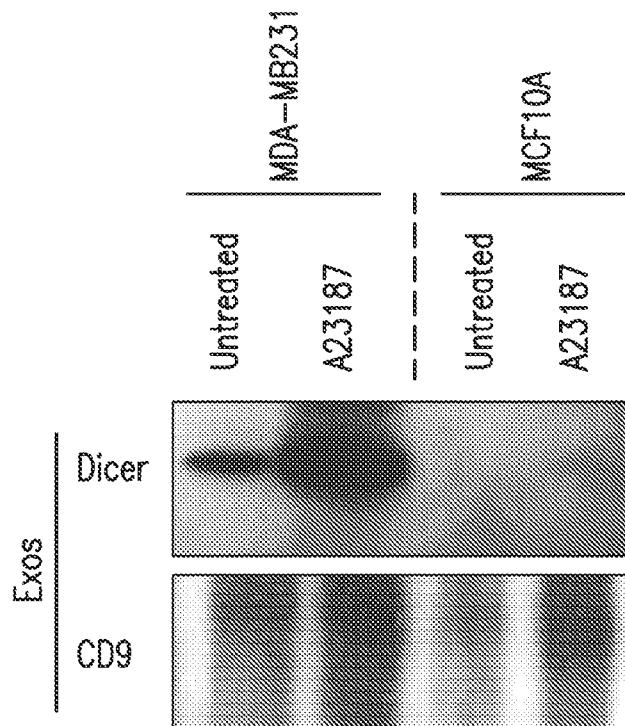


FIG. 4D

20/80

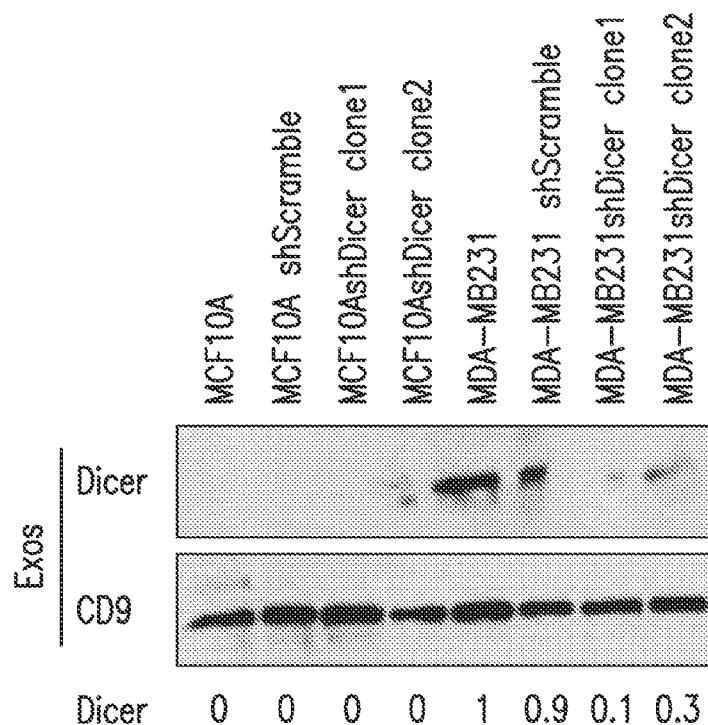


FIG. 4E

MDA-MB231
shDicer exos-anti-Dicer

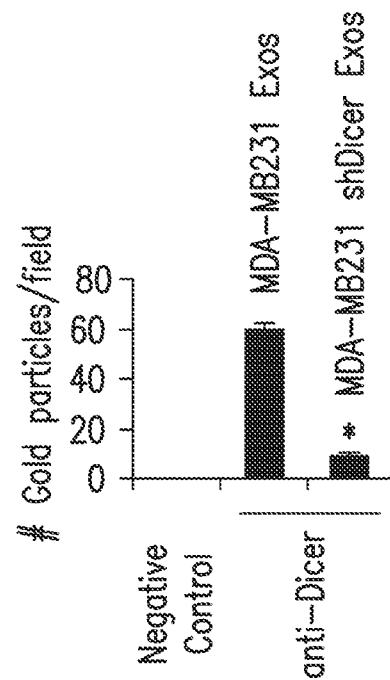
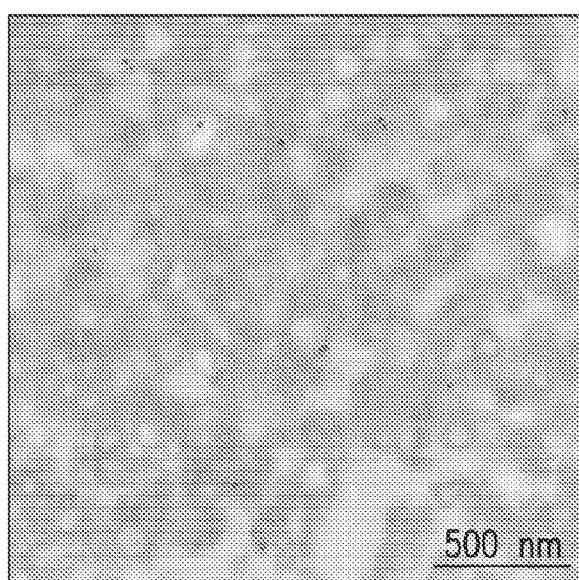



FIG. 4F

21/80

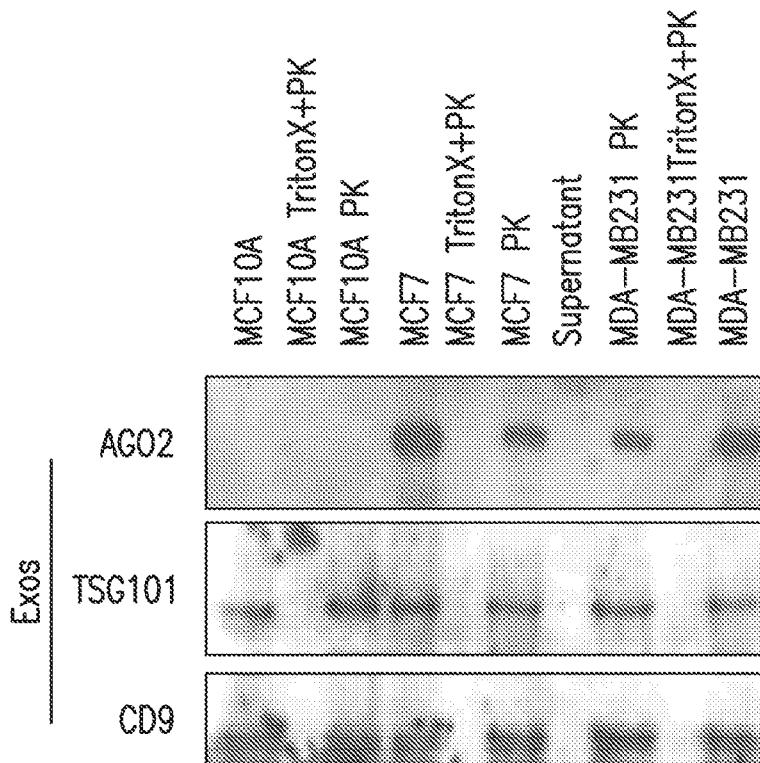


FIG. 4G

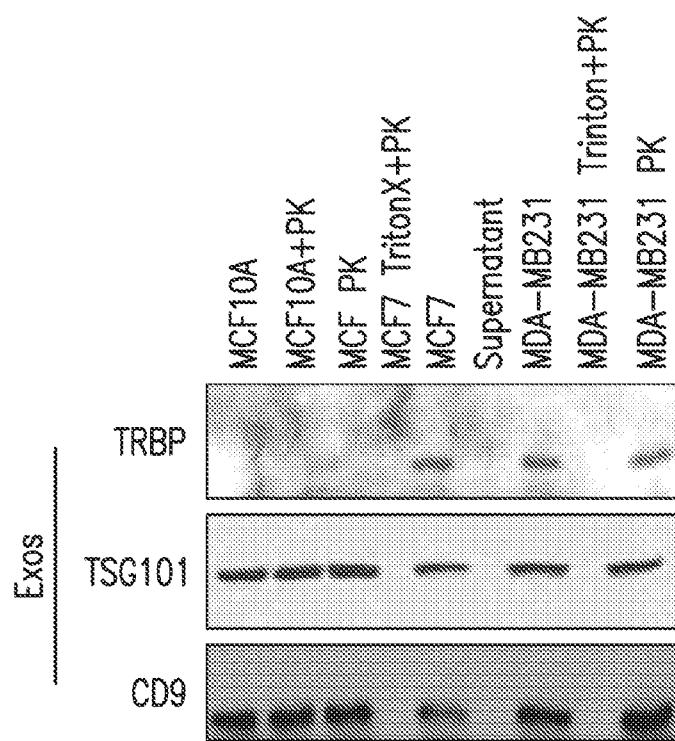


FIG. 4H

22/80

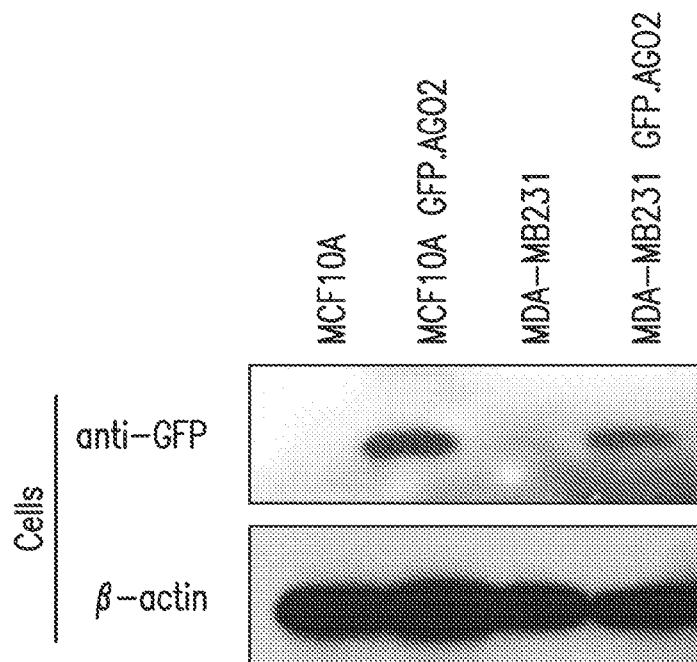


FIG. 4I

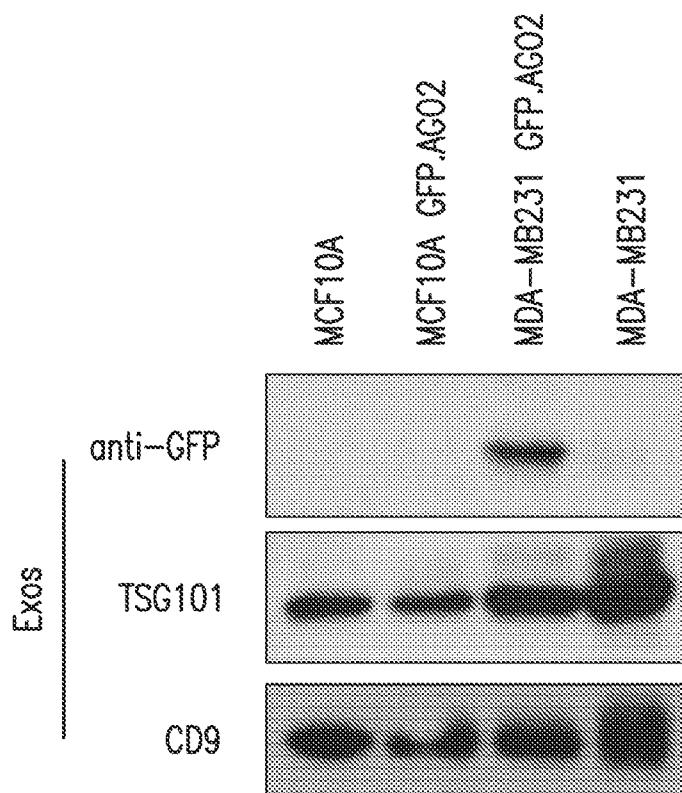


FIG. 4J

23/80

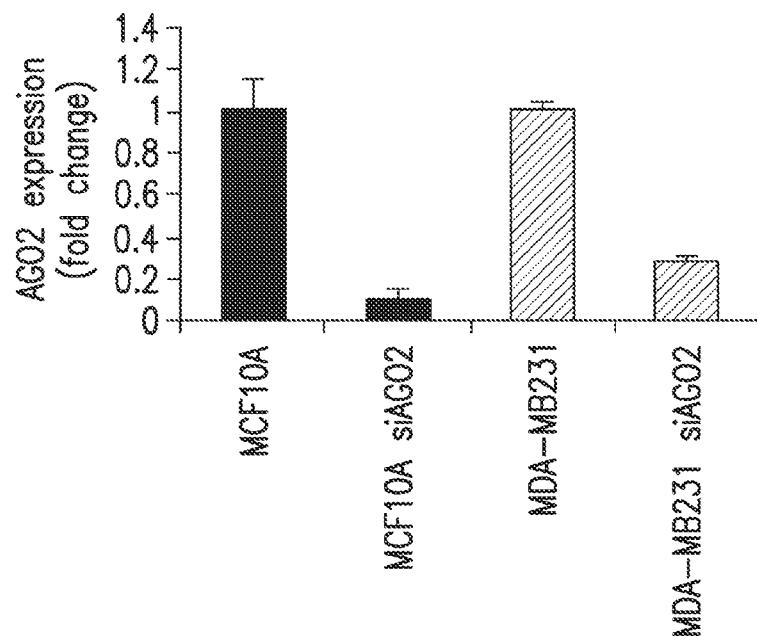


FIG. 4K

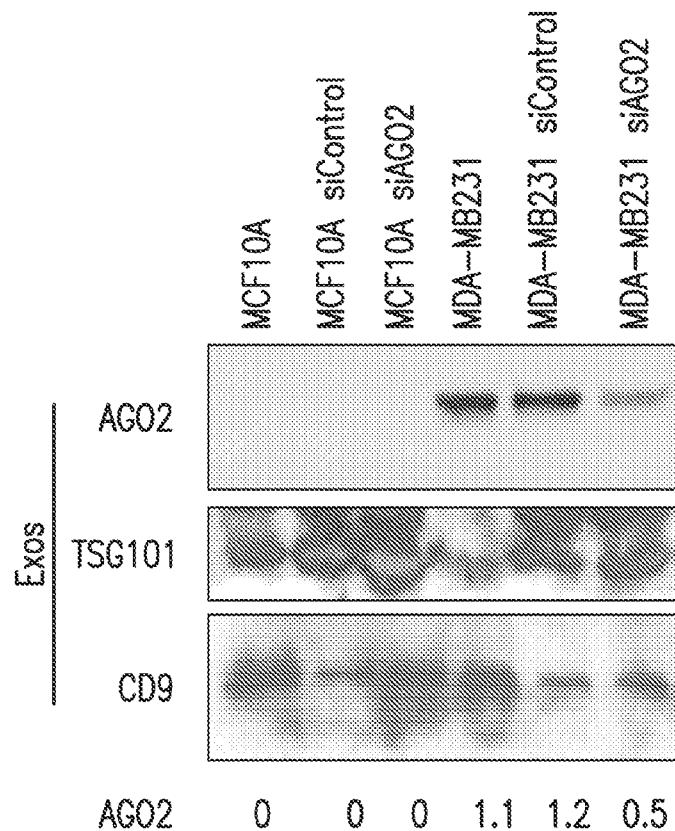


FIG. 4L

24/80

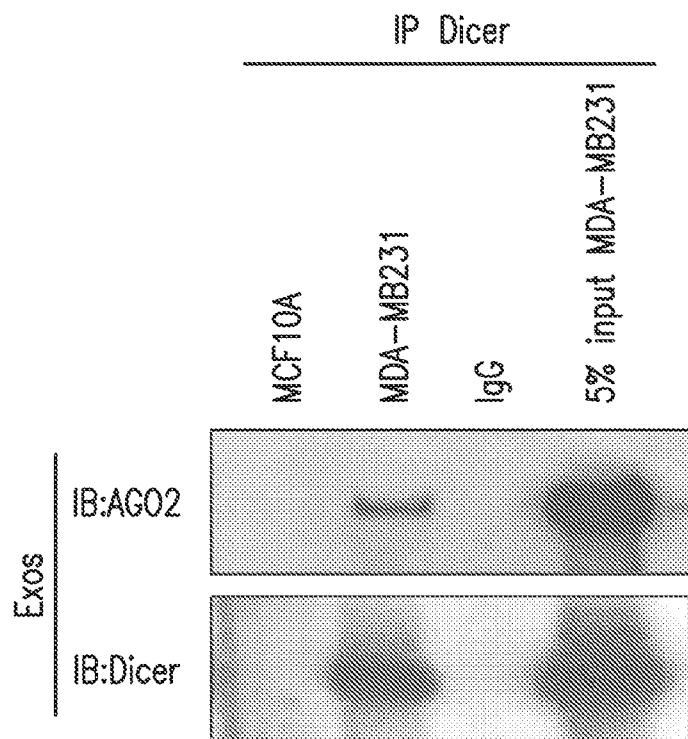


FIG.4M

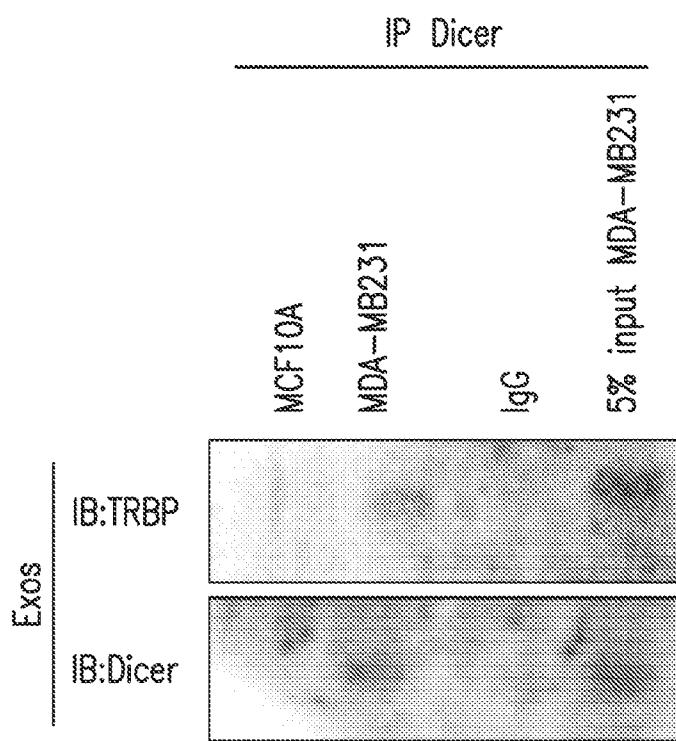


FIG.4N

25/80

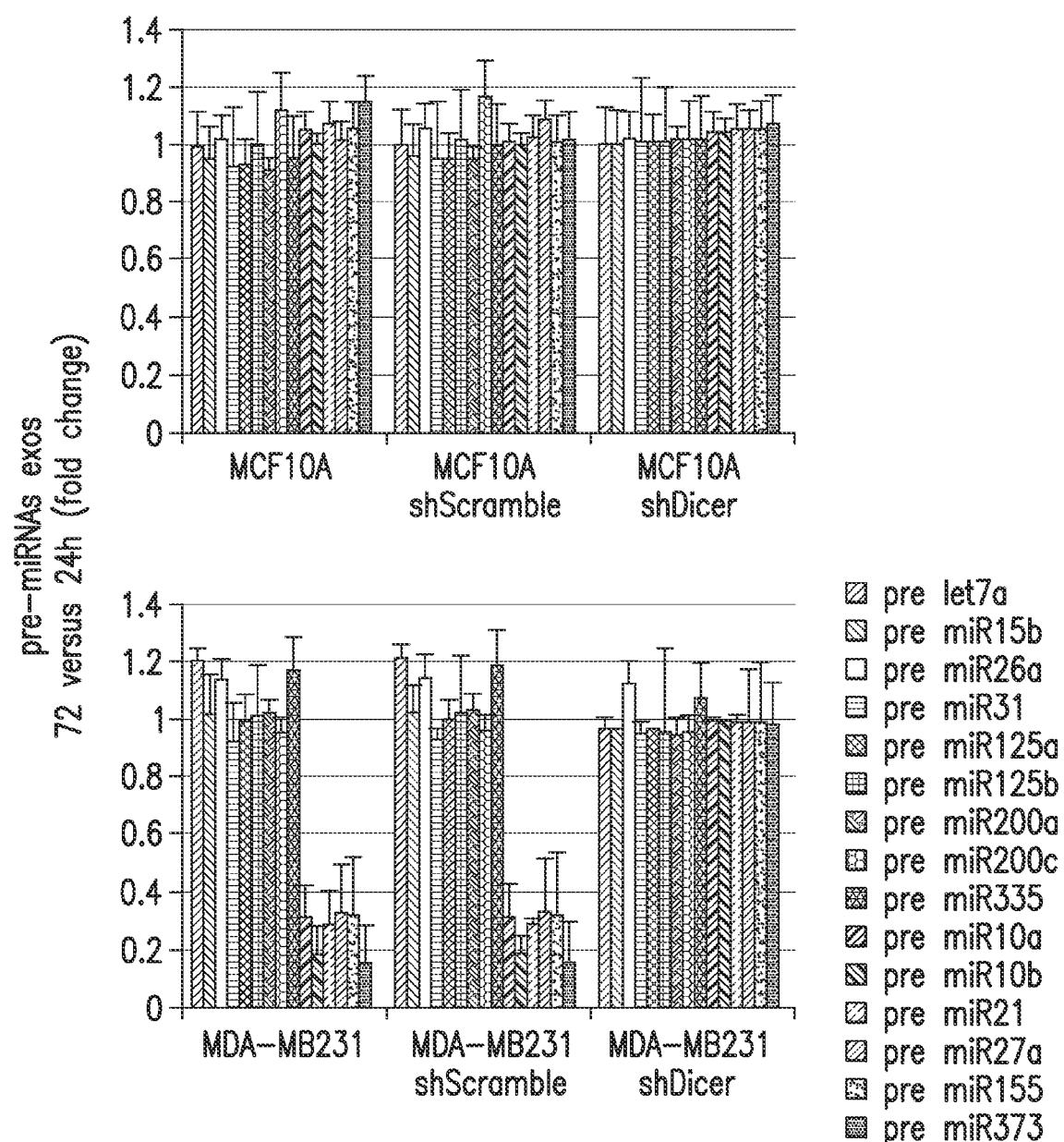


FIG. 5A

26/80

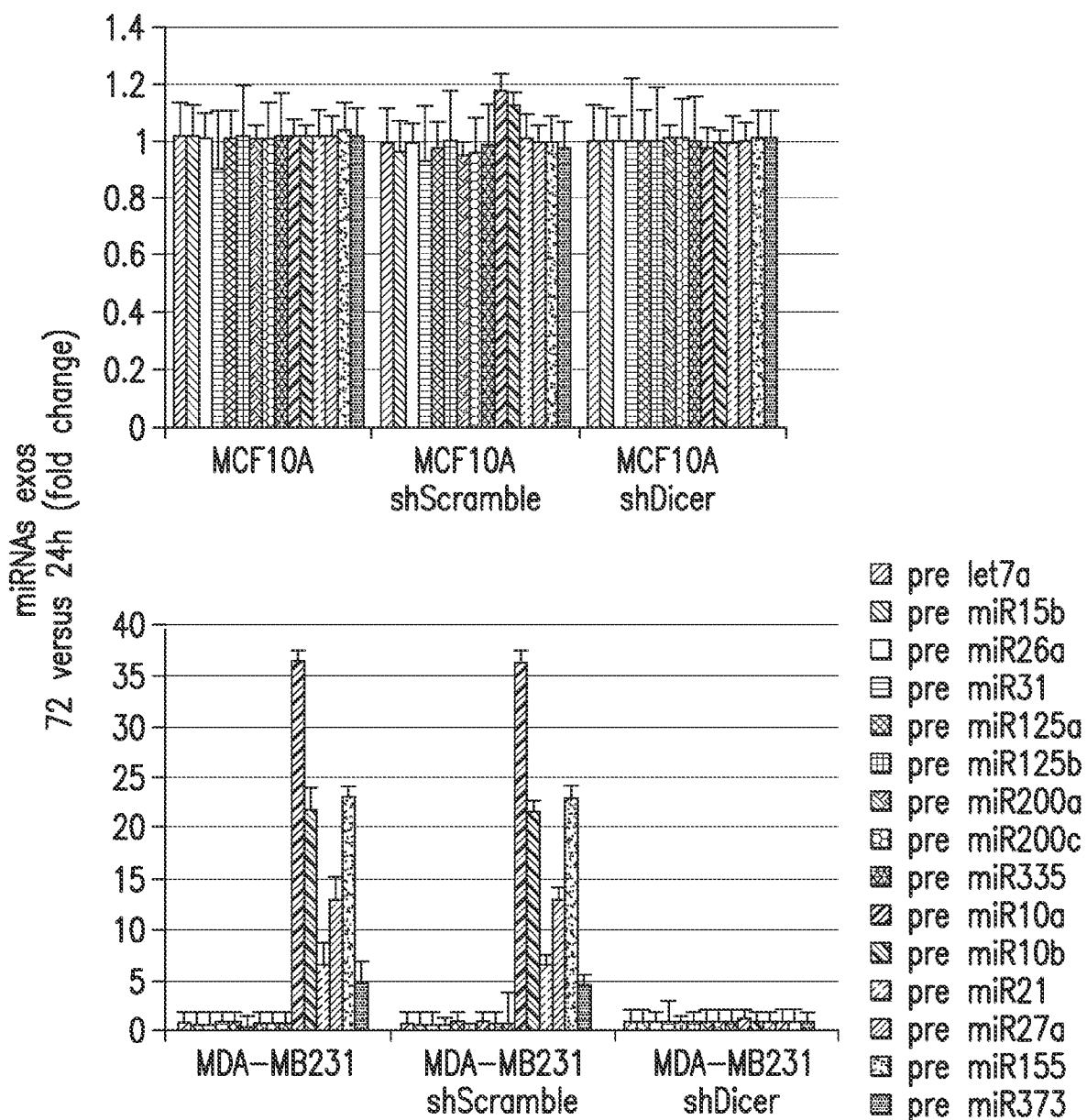


FIG.5B

27/80

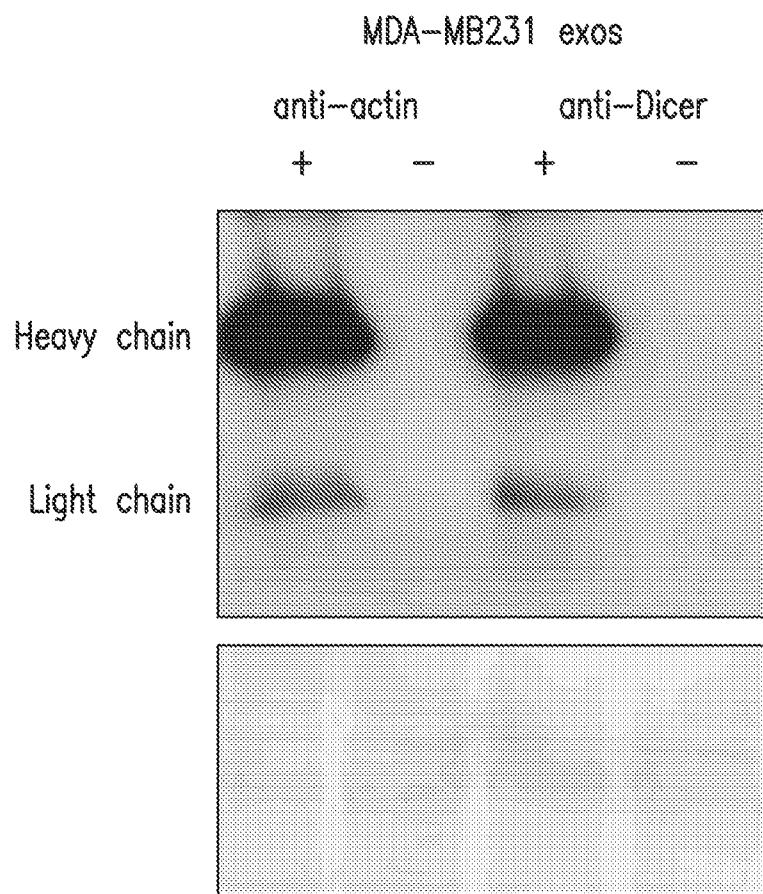


FIG.5C

28/80

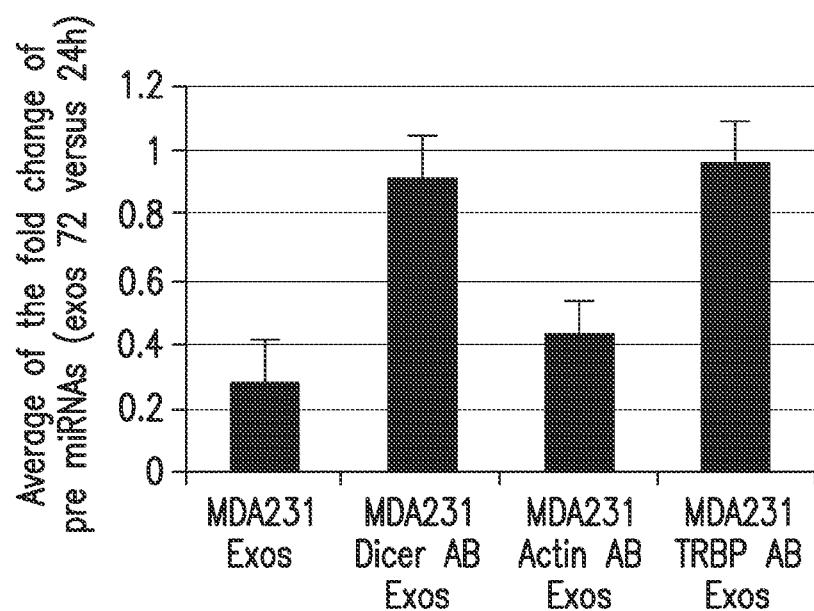


FIG. 5D

29/80

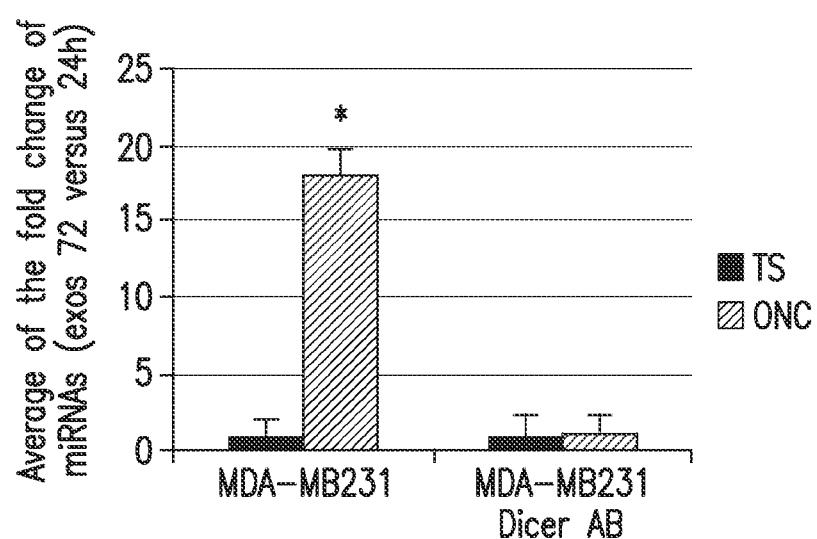
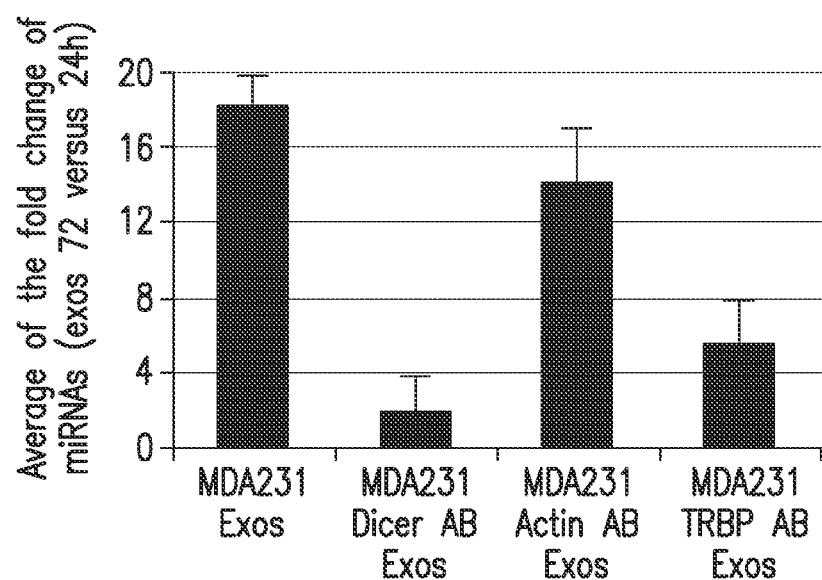



FIG. 5E

30/80

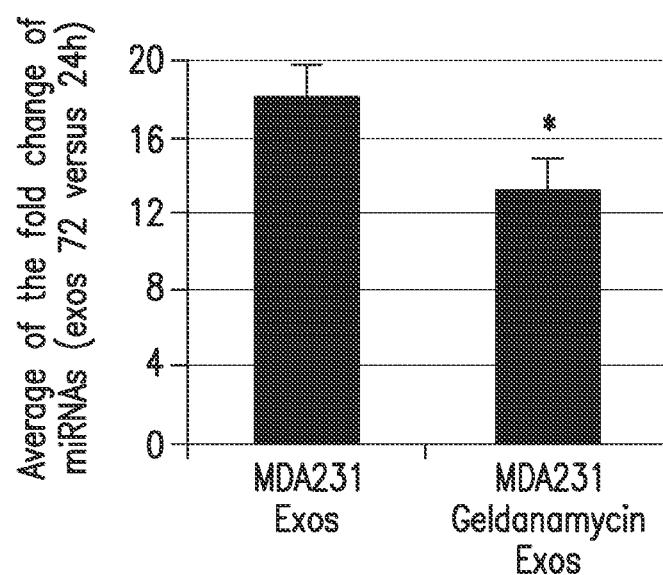


FIG.6A

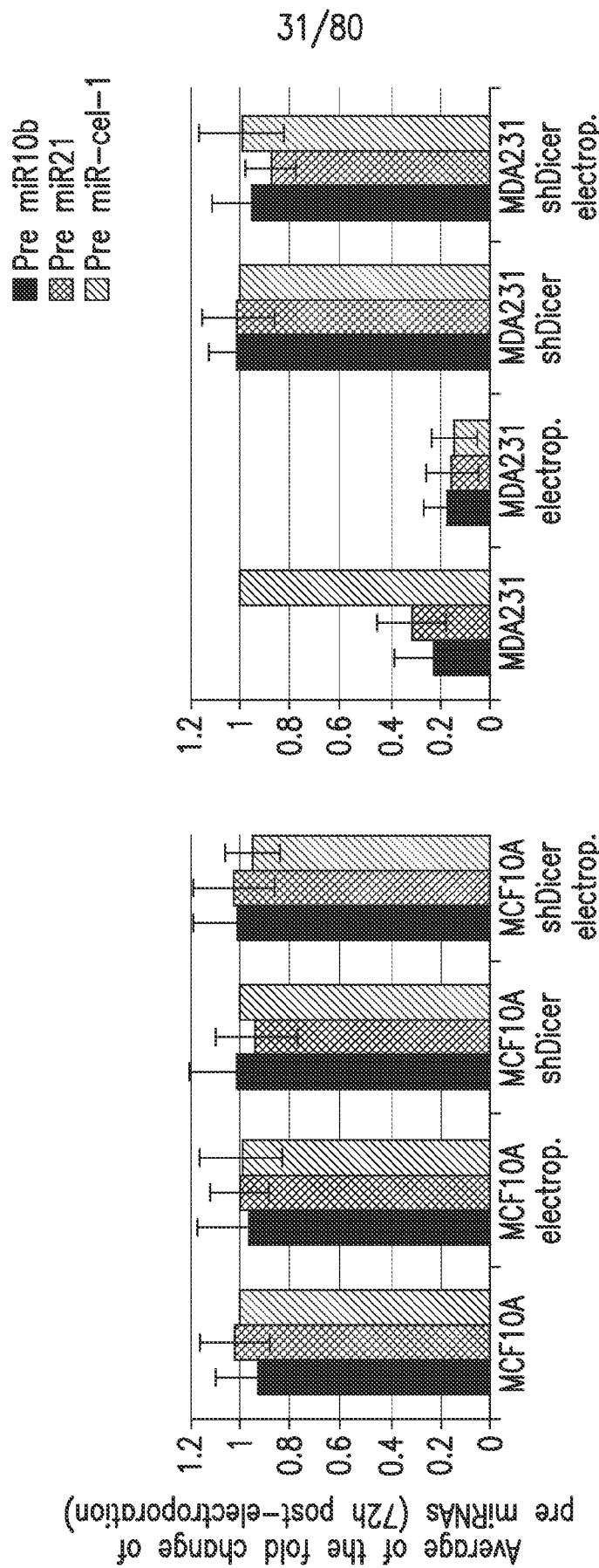


FIG. 6B

32/80

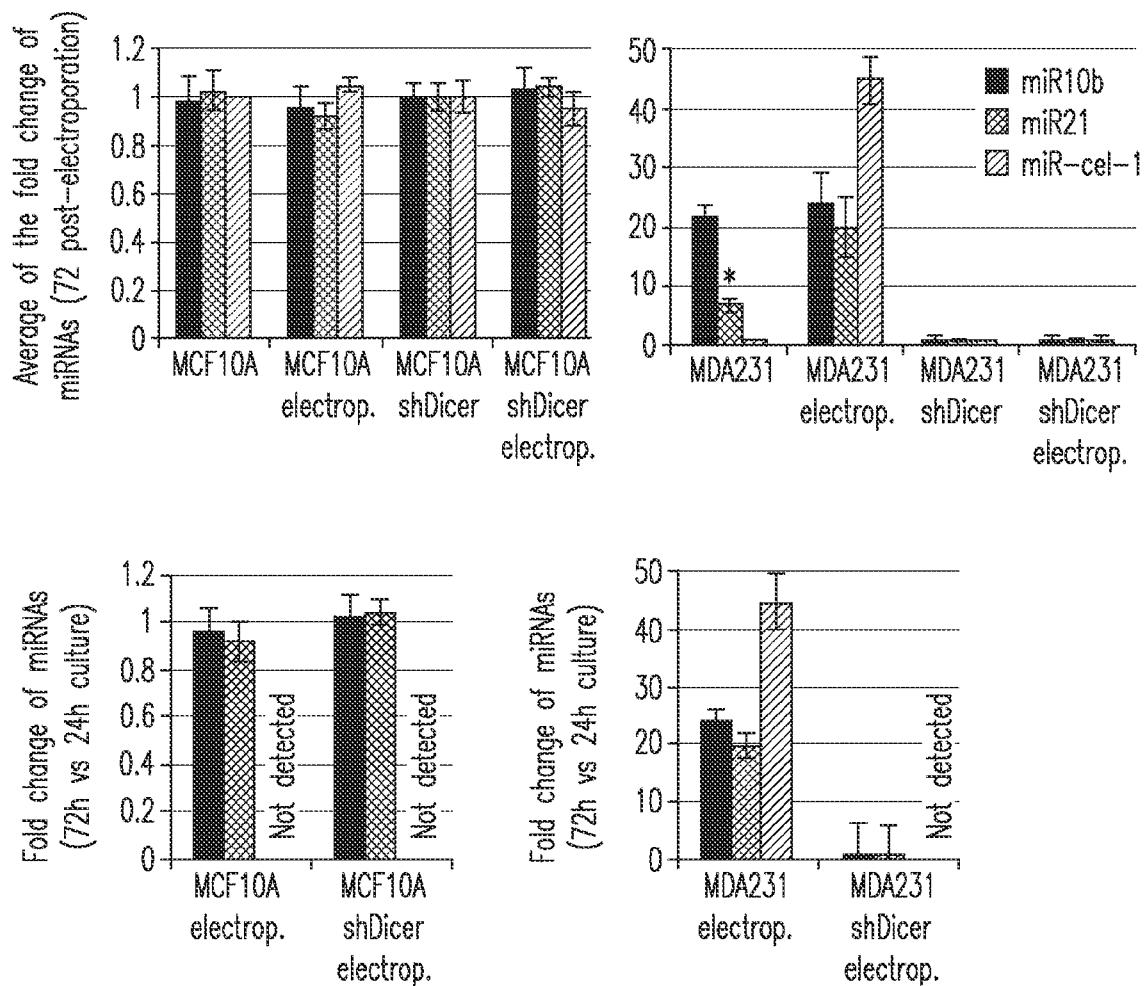
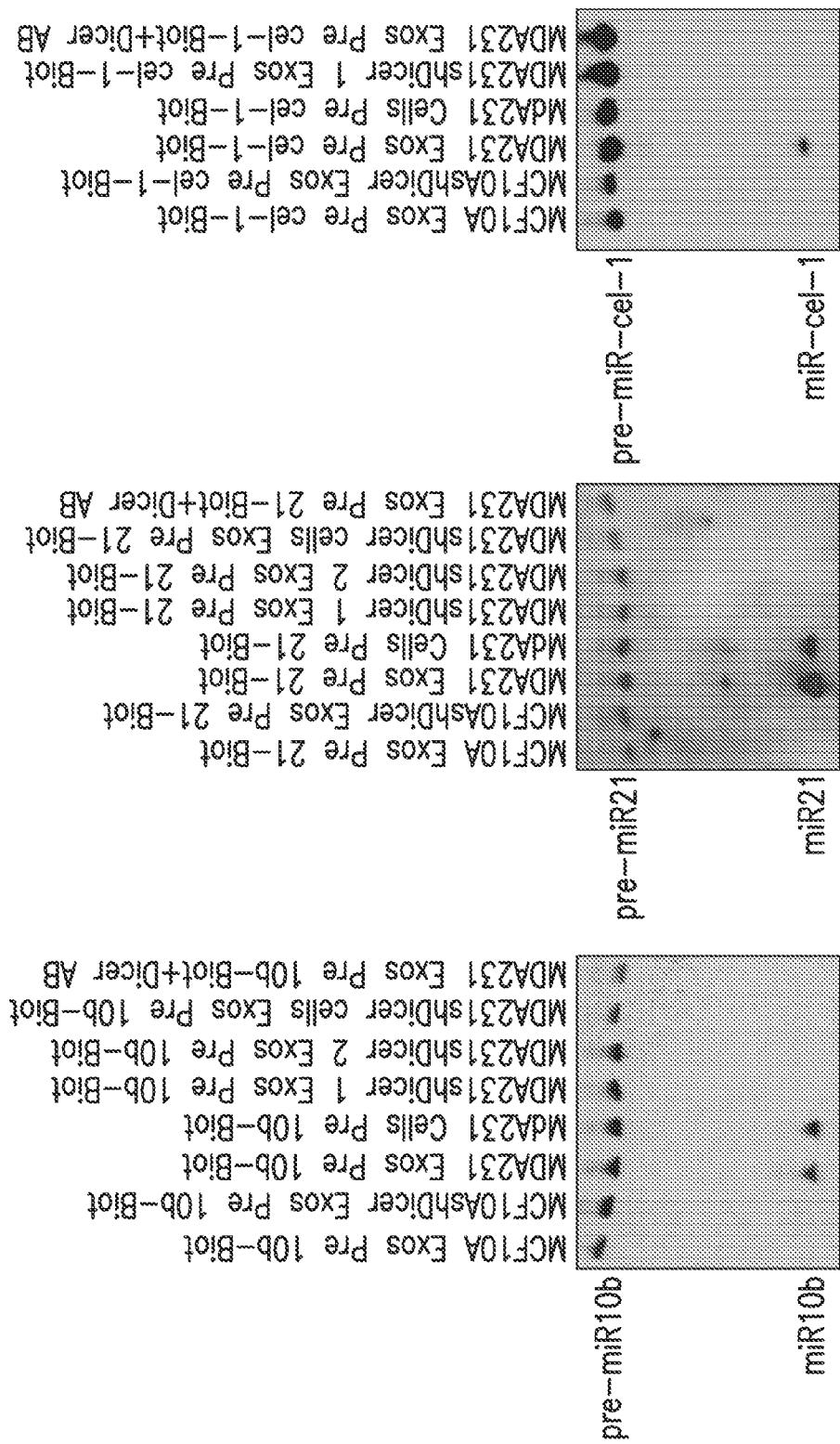



FIG. 6C

三
6
三
8

Ш
6
Г
Ш

34/80

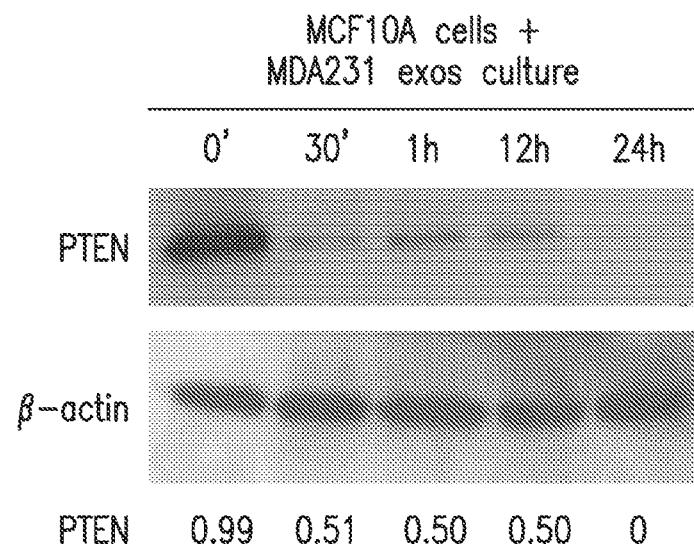


FIG. 7A

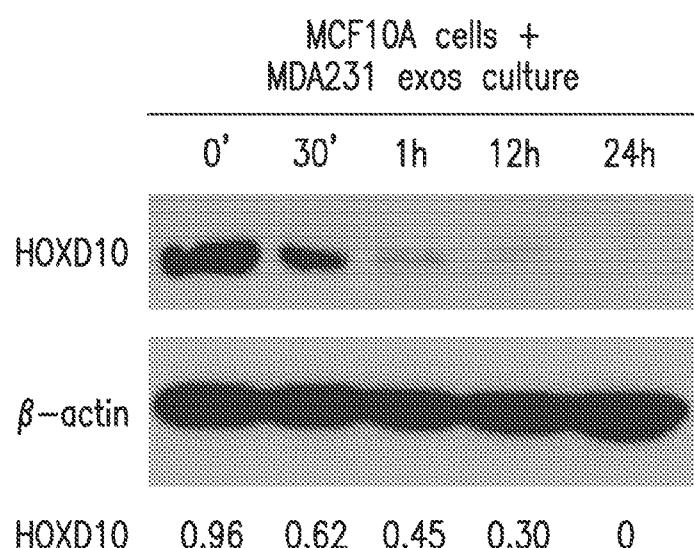


FIG. 7B

35/80

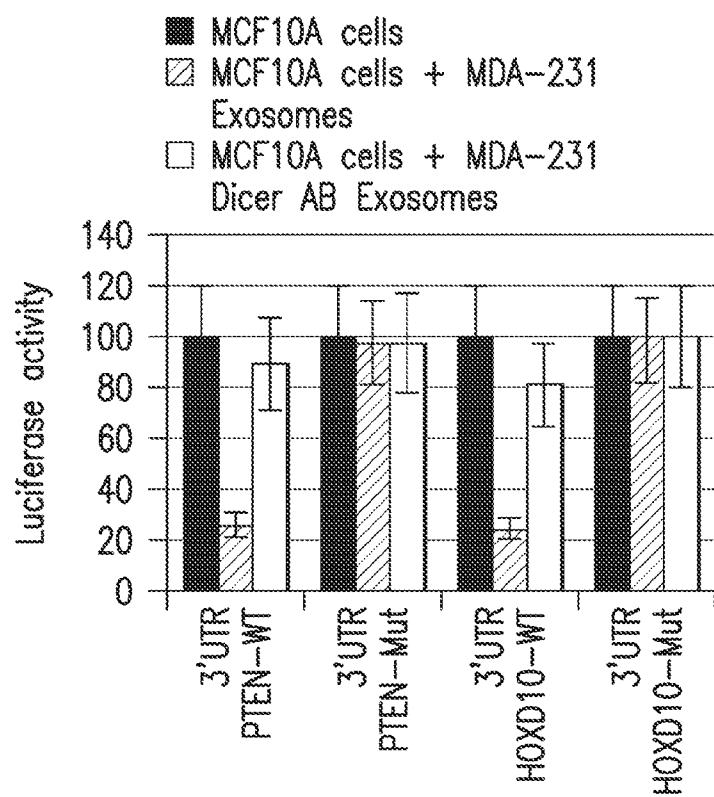


FIG. 7C

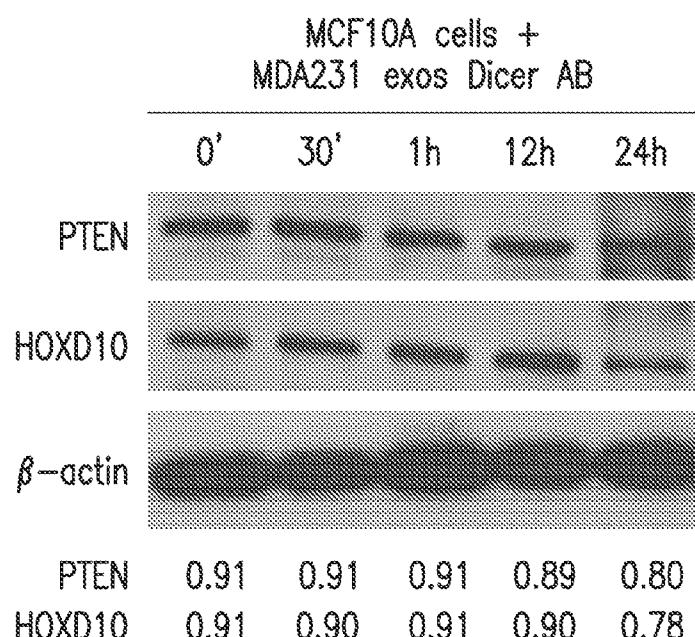


FIG. 7D

36/80

FIG. 7E

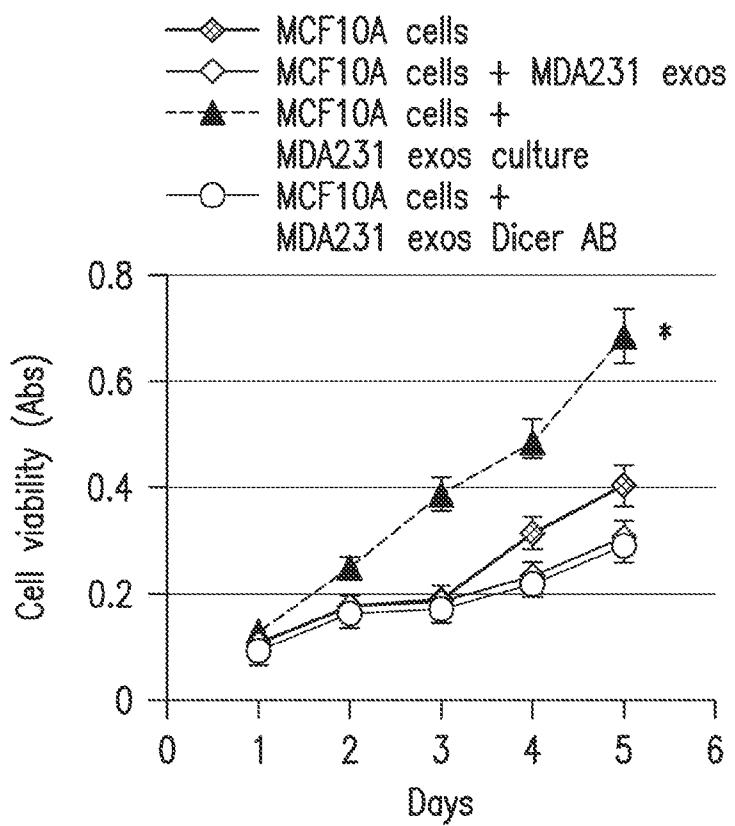


FIG. 7F

37/80

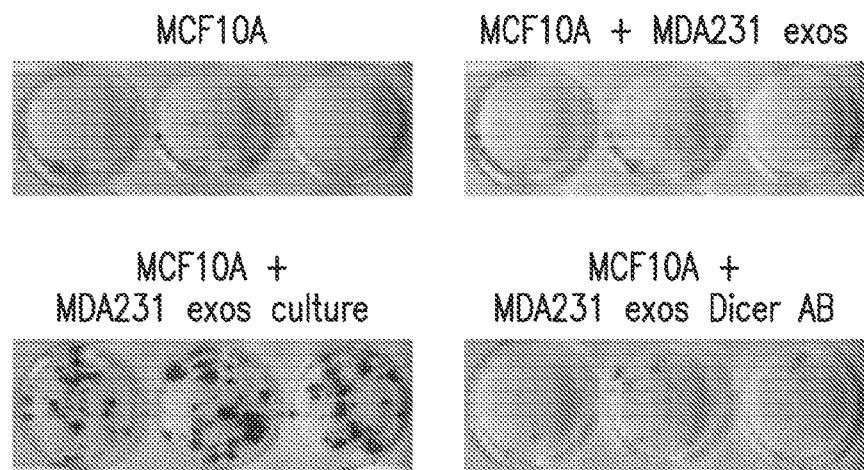


FIG. 7G

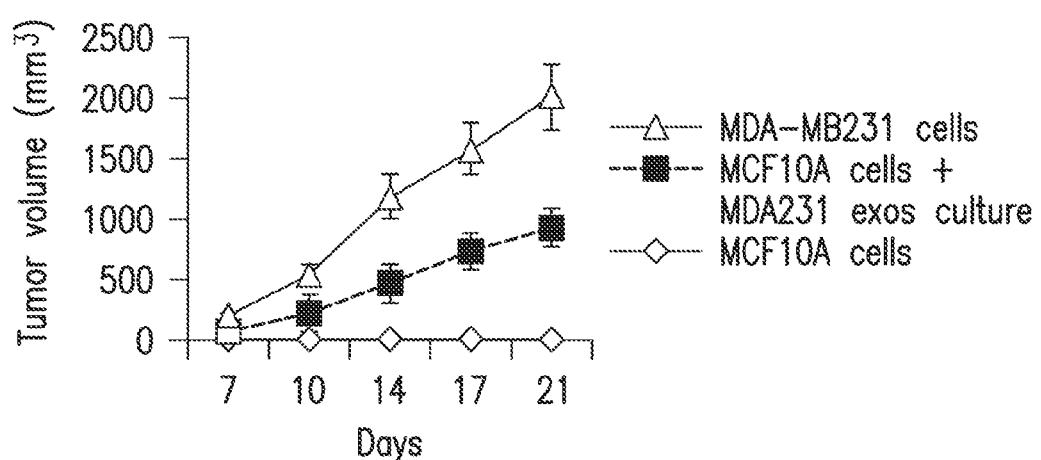
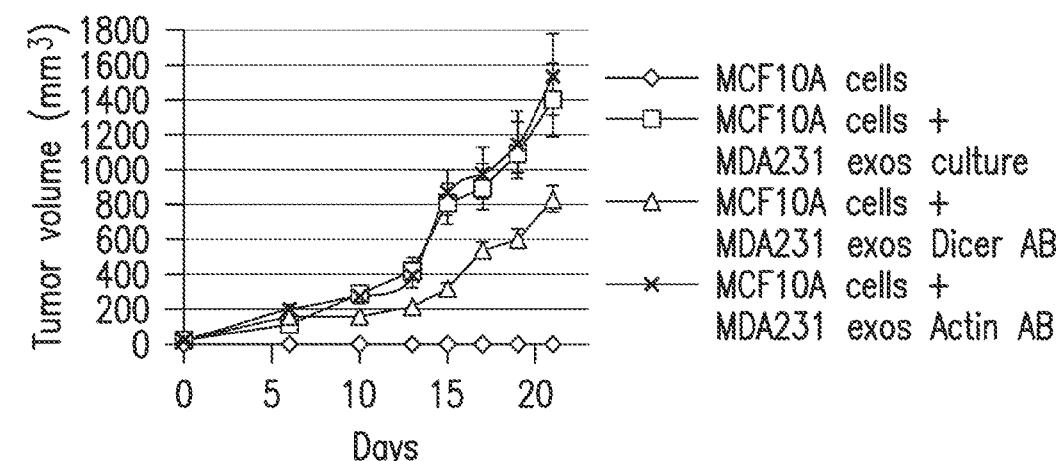



FIG. 7H

38/80

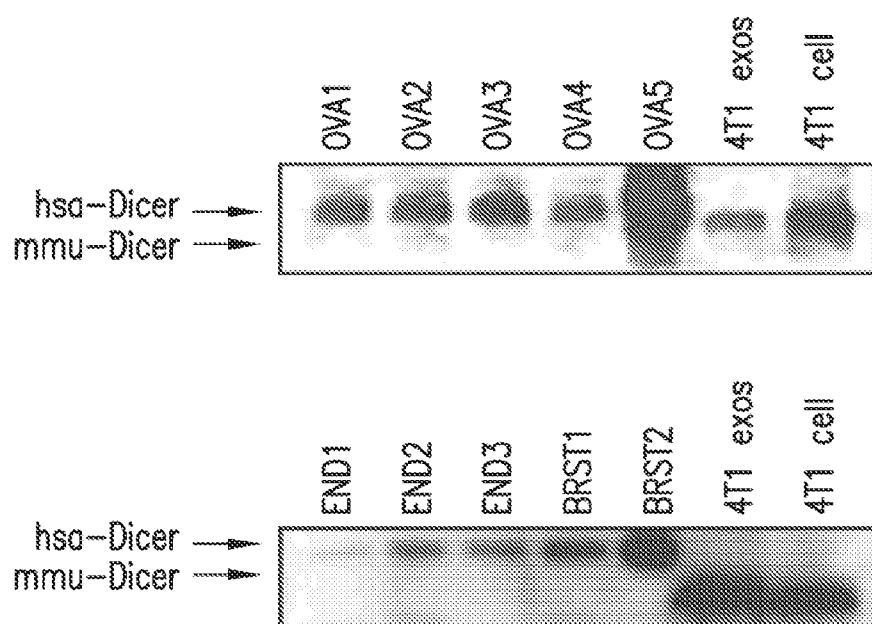


FIG.8A

39/80

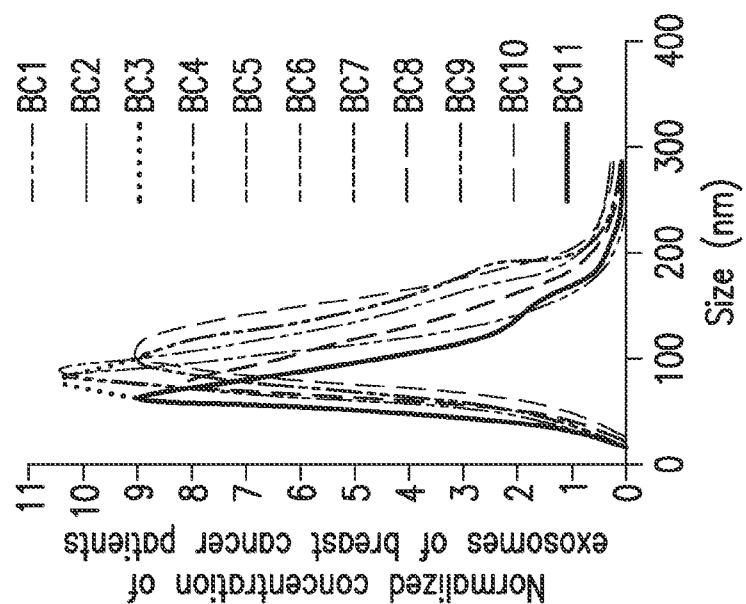
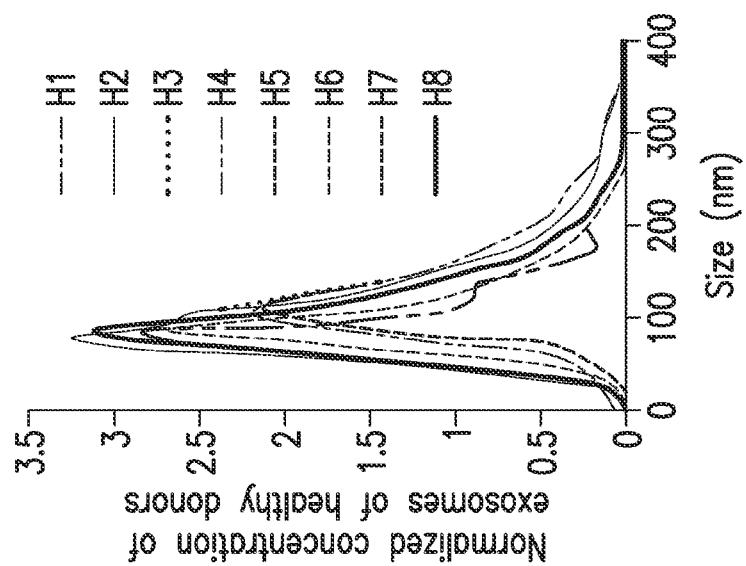



FIG. 8B

40/80

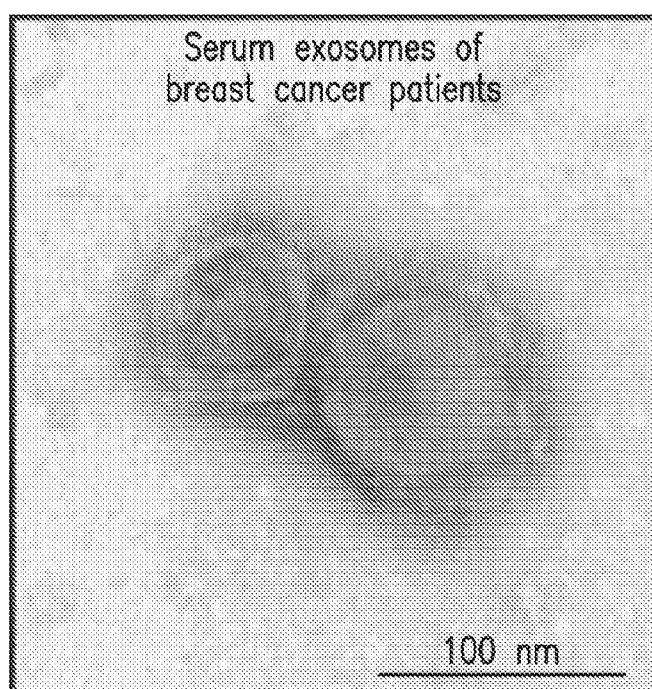


FIG.8C

41/80

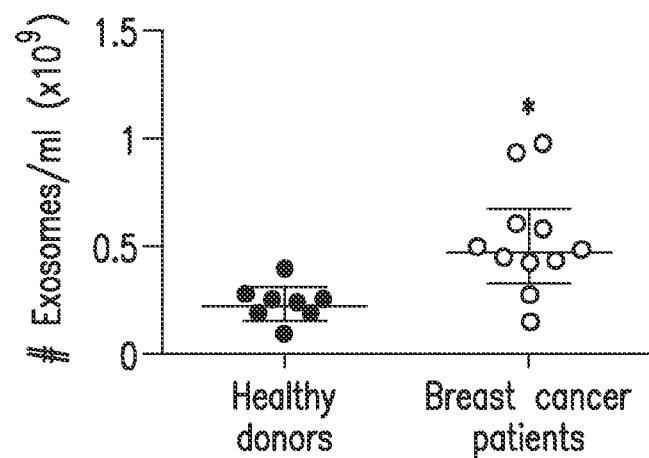


FIG.8D

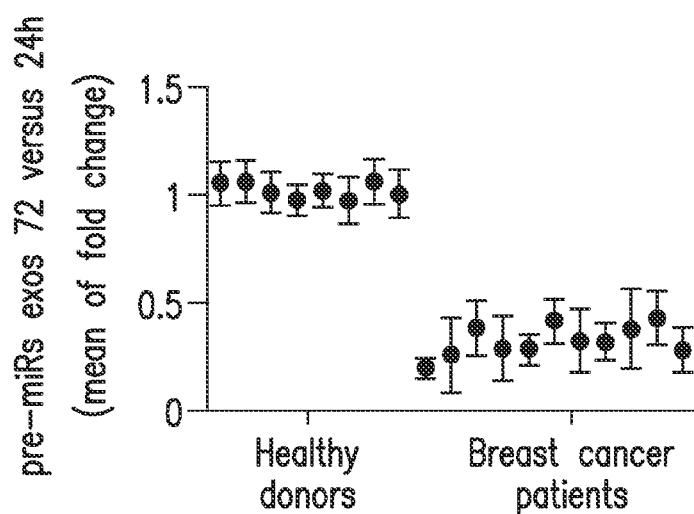


FIG.8E

42/80

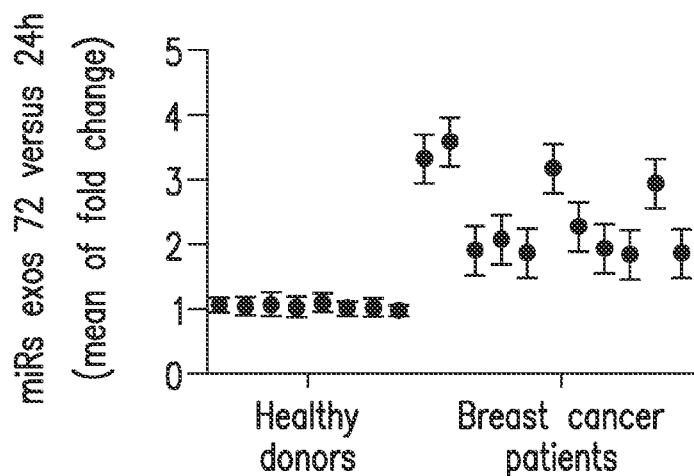


FIG.8F

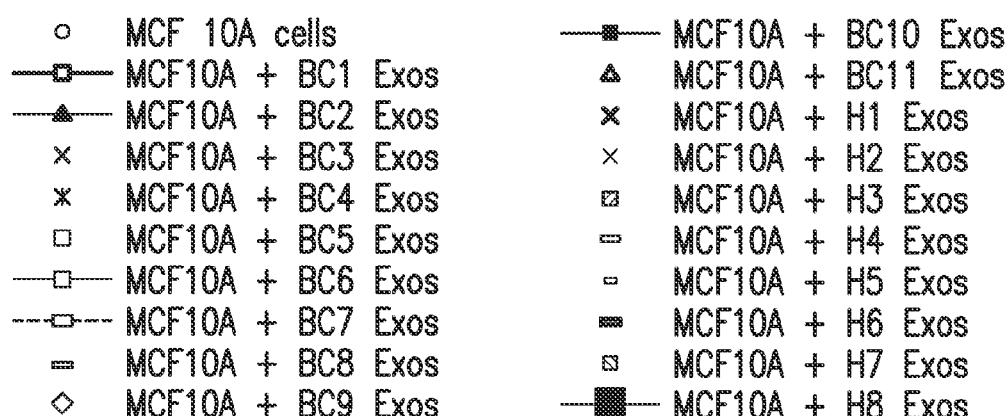


FIG.8G

43/80

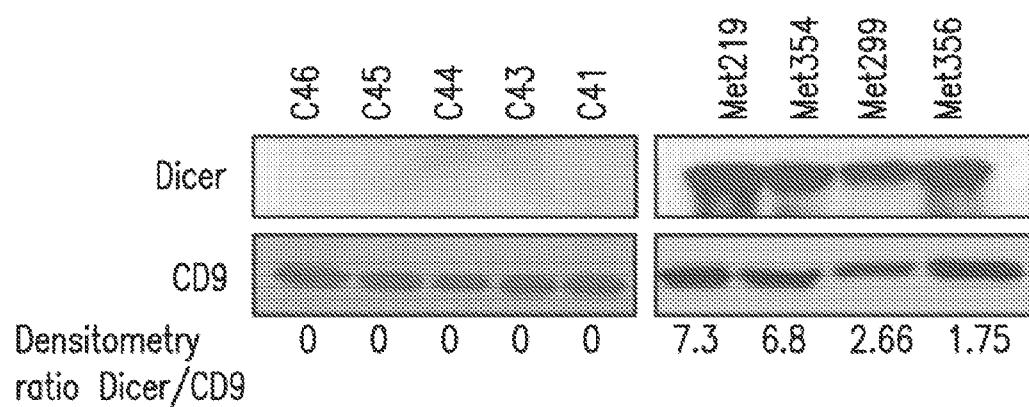


FIG. 8H

44/80

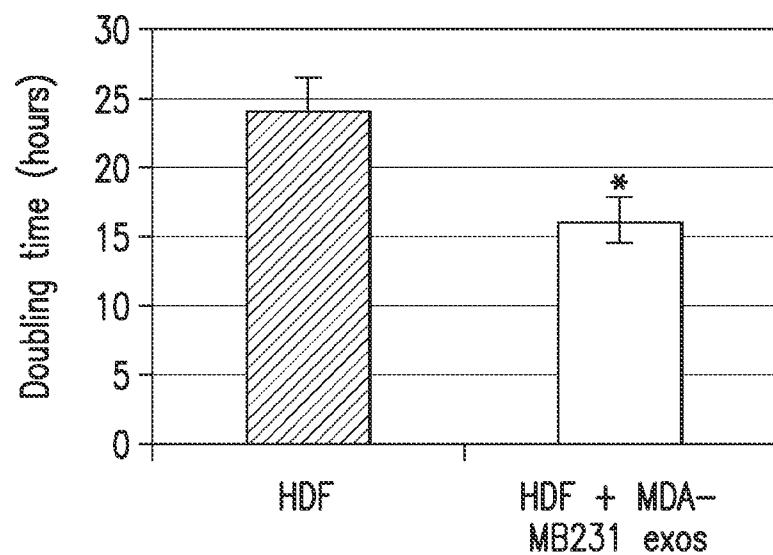


FIG.8I

45/80

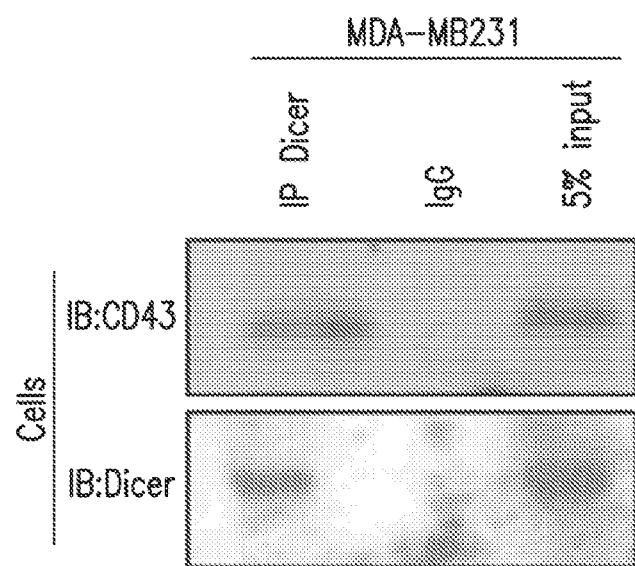


FIG.9A

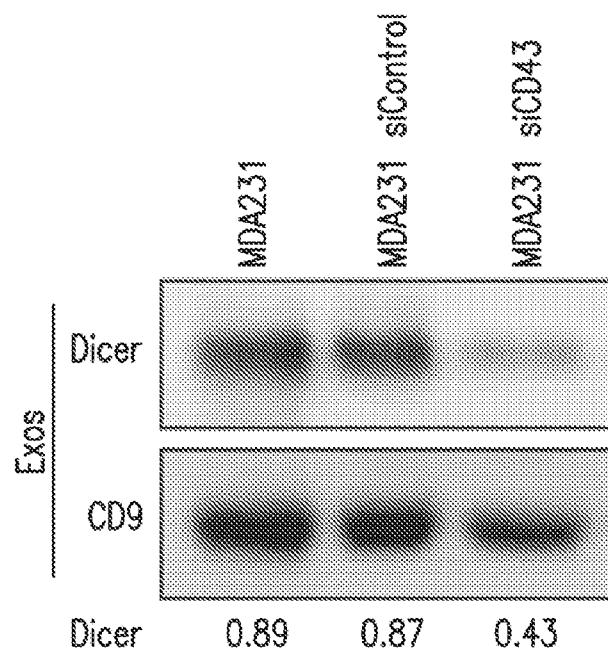


FIG.9B

46/80

FIG. 10A

47/80

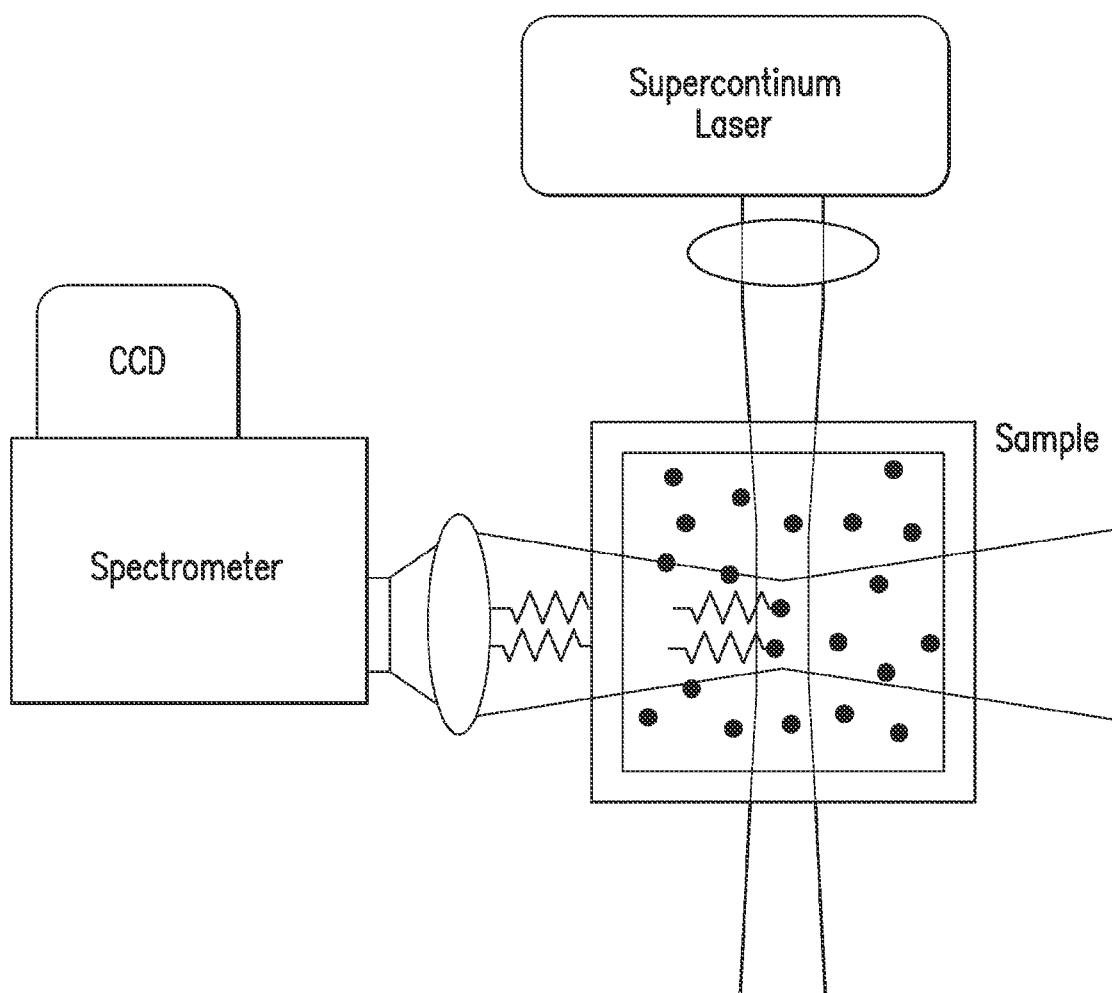


FIG. 10B

48/80

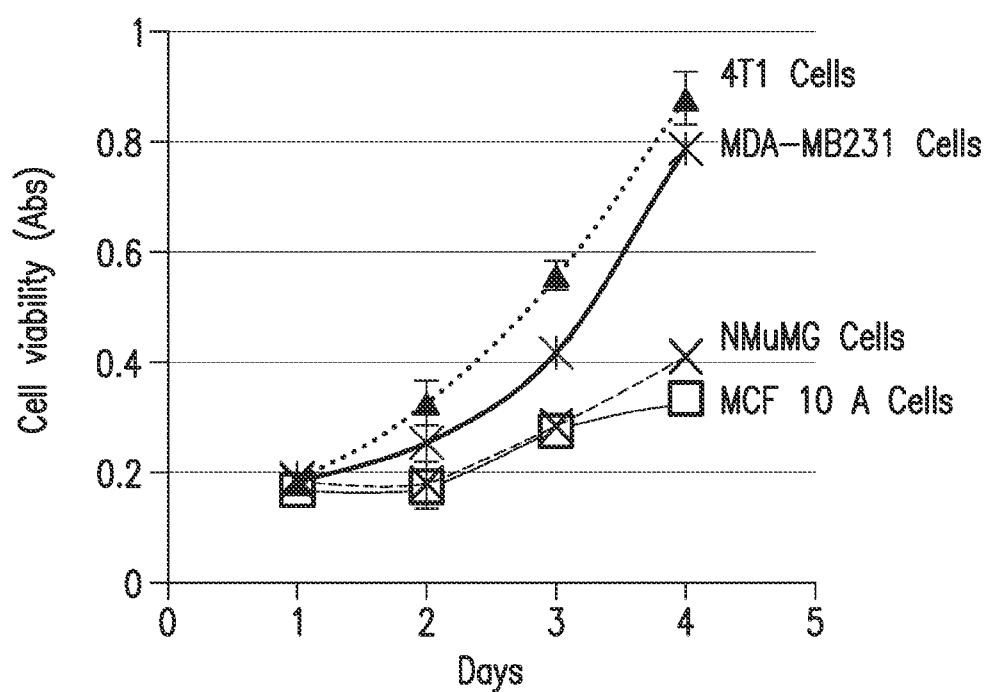


FIG. 10C

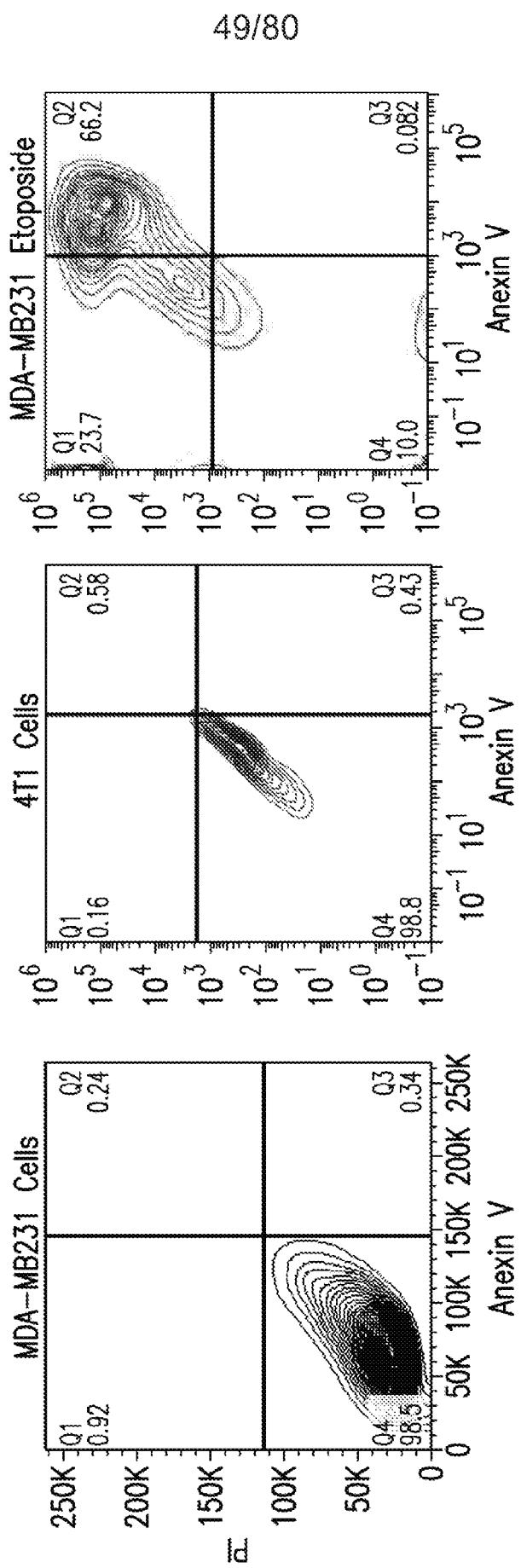


FIG. 10D

50/80

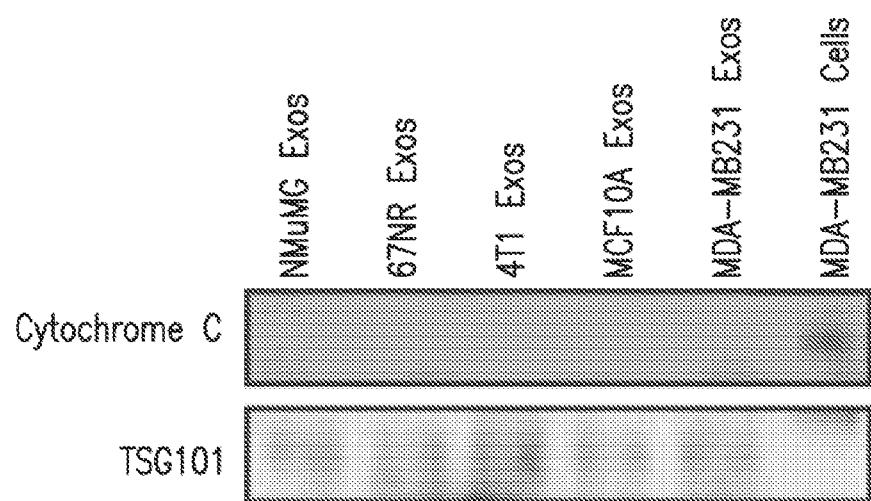


FIG. 10E

51/80

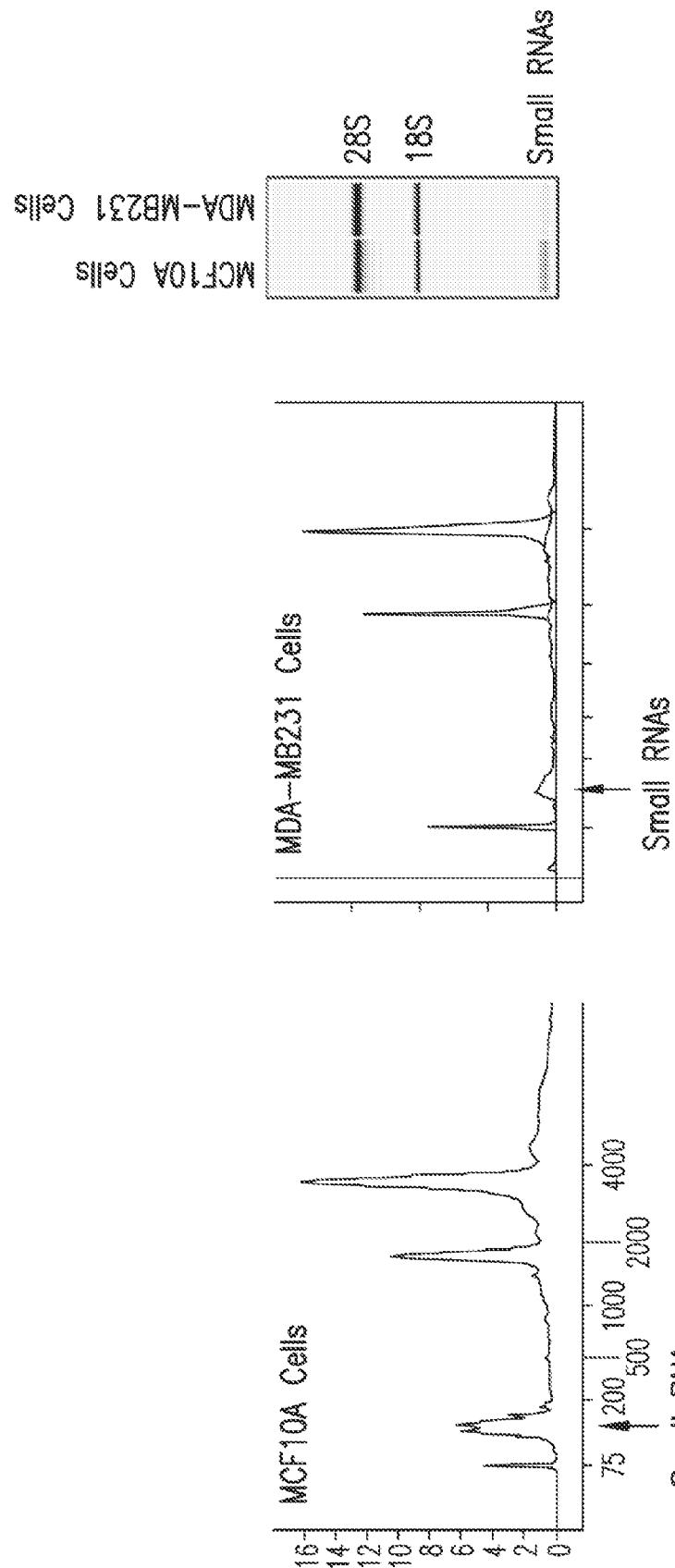


FIG. 11A

52/80

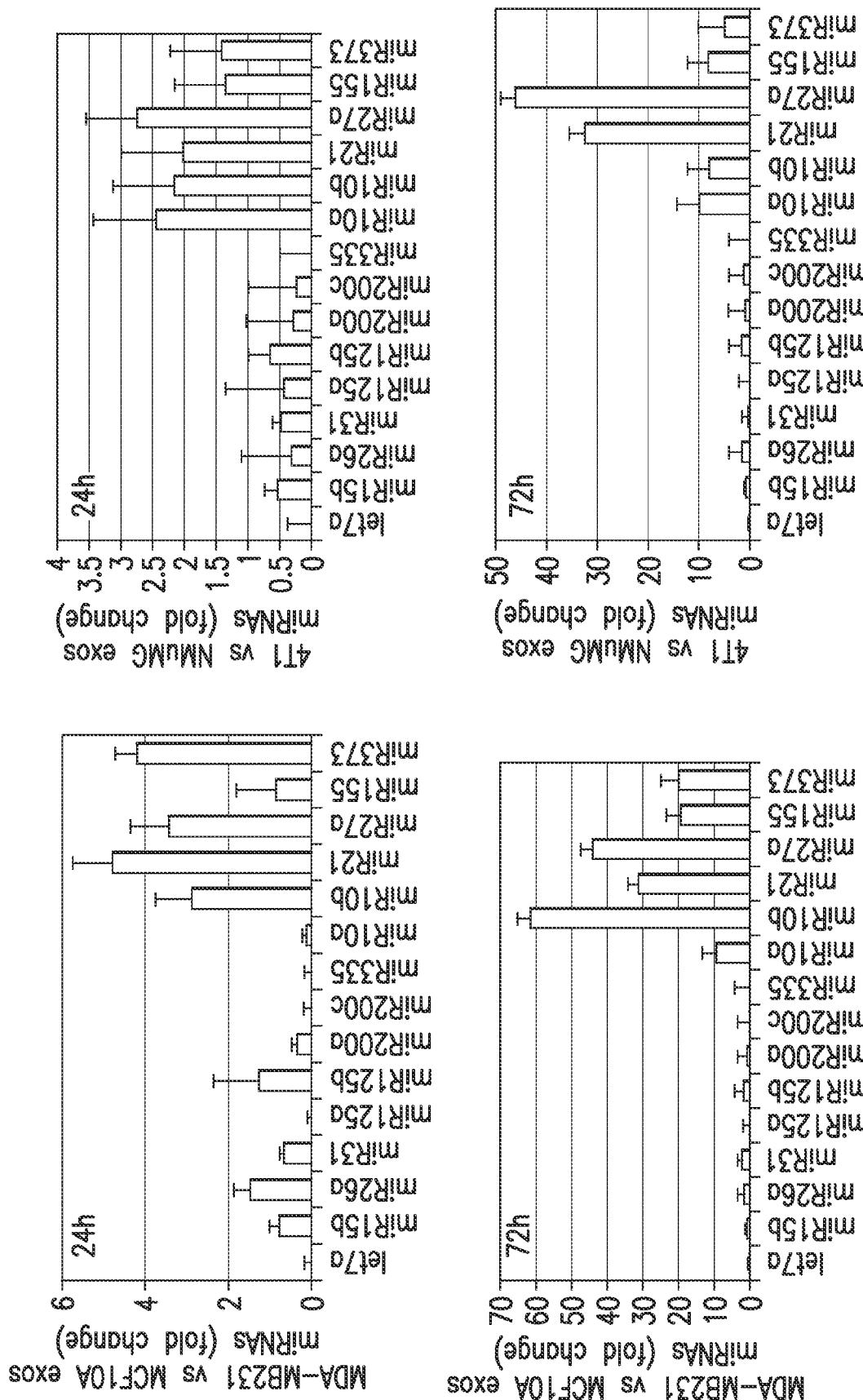


FIG. 11B

53/80

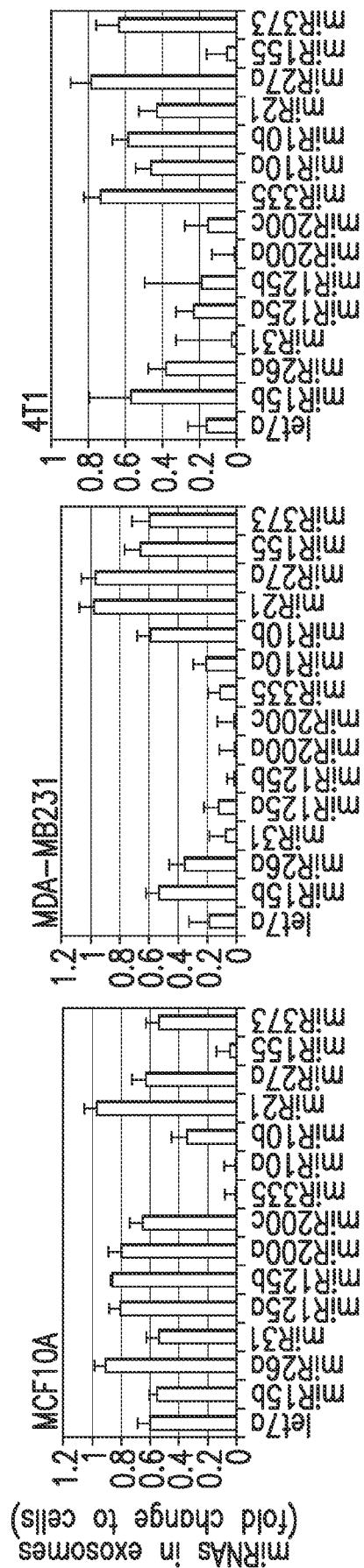
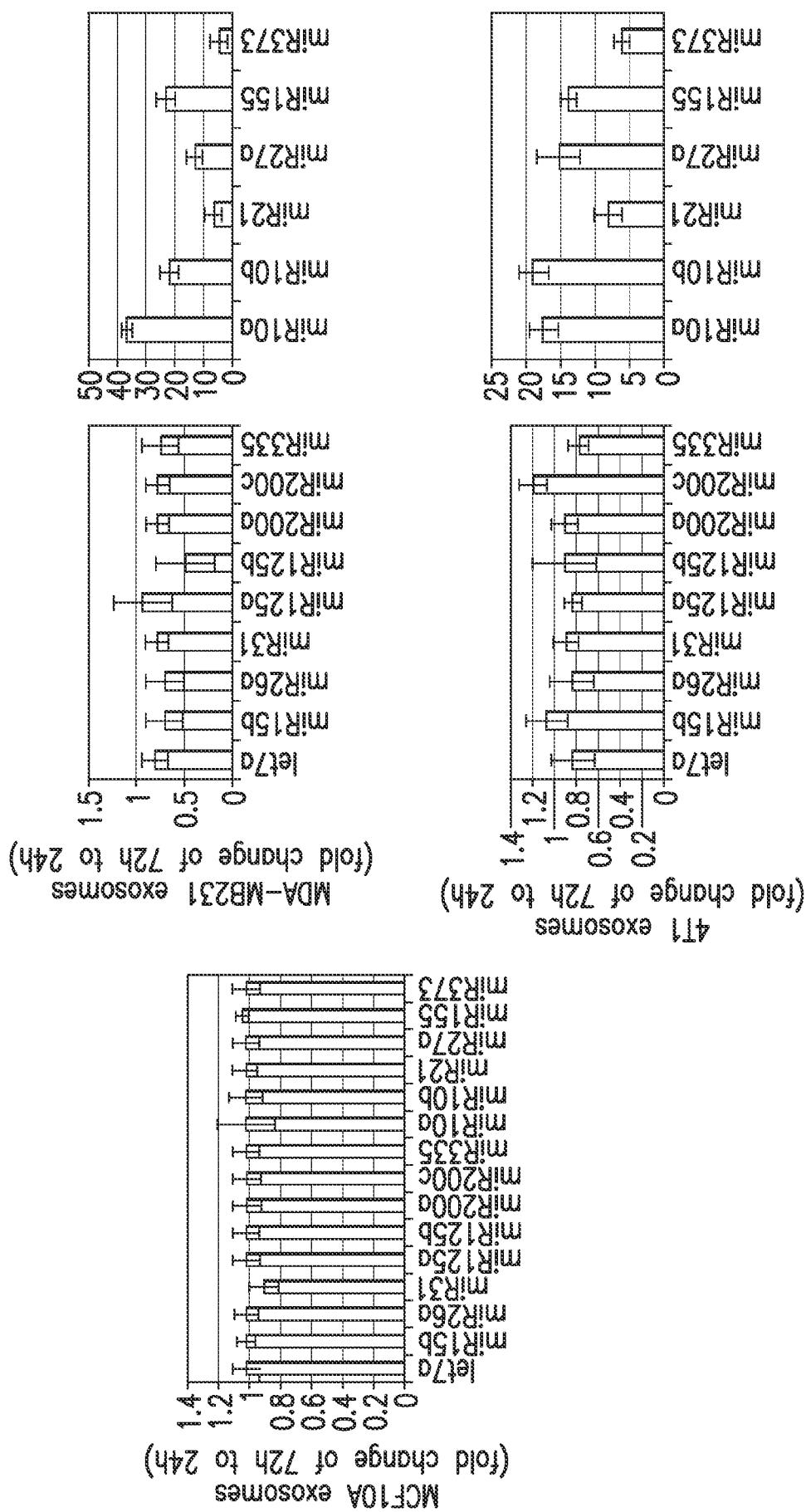



FIG. 11C

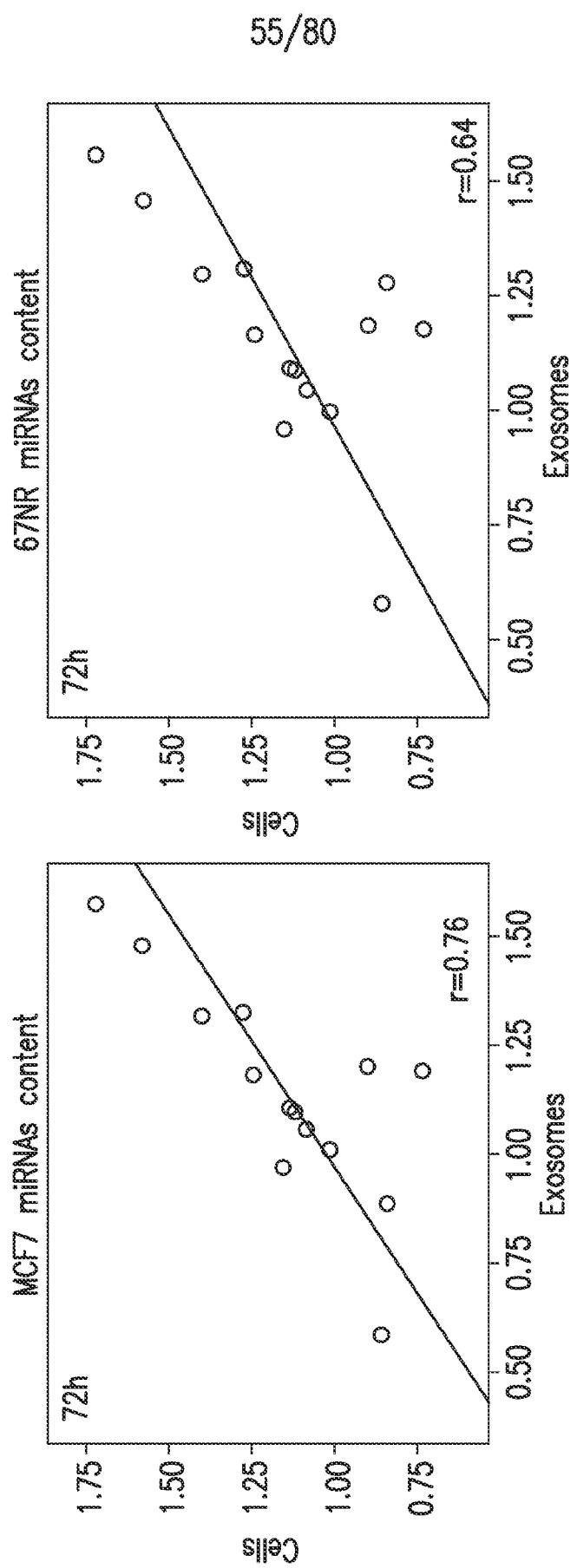


FIG. 11E

56/80

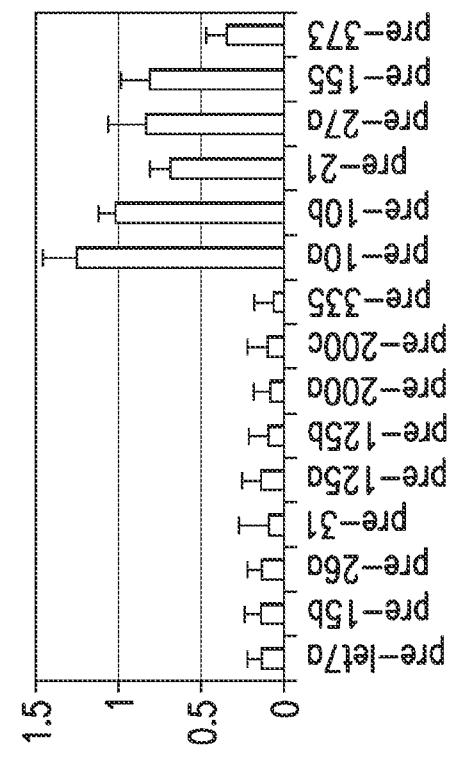
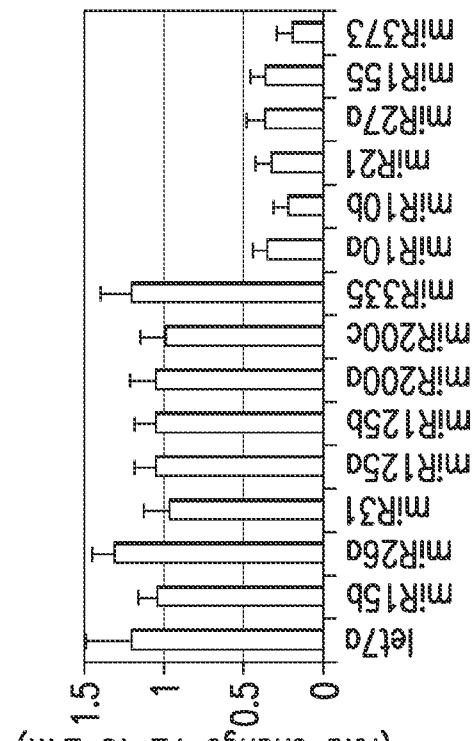
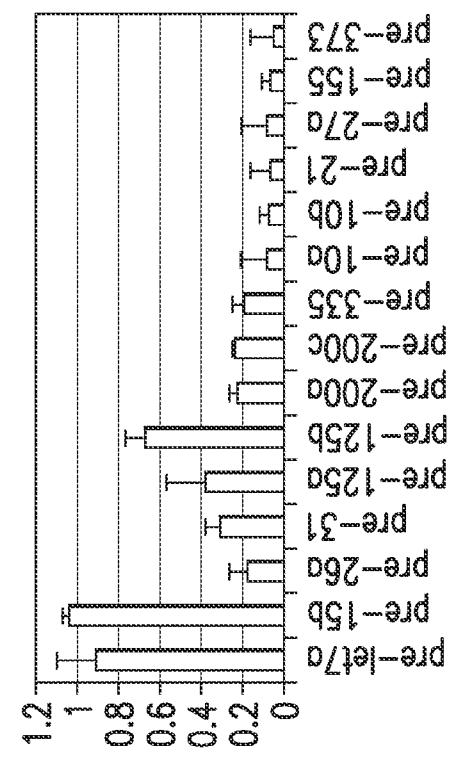
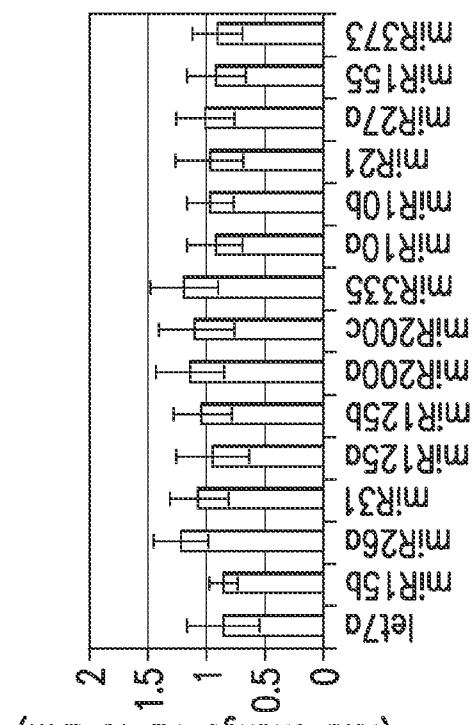




4T1 pre-miRNAs
exos (1/Act)4T1 pre-miRNAs exos
(fold change T2 vs 24h)NMU MG pre-miRNAs
exos (1/Act)NMU MG pre-miRNAs exos
(fold change T2 vs 24h)

FIG. 12A

FIG. 12B



FIG. 12C

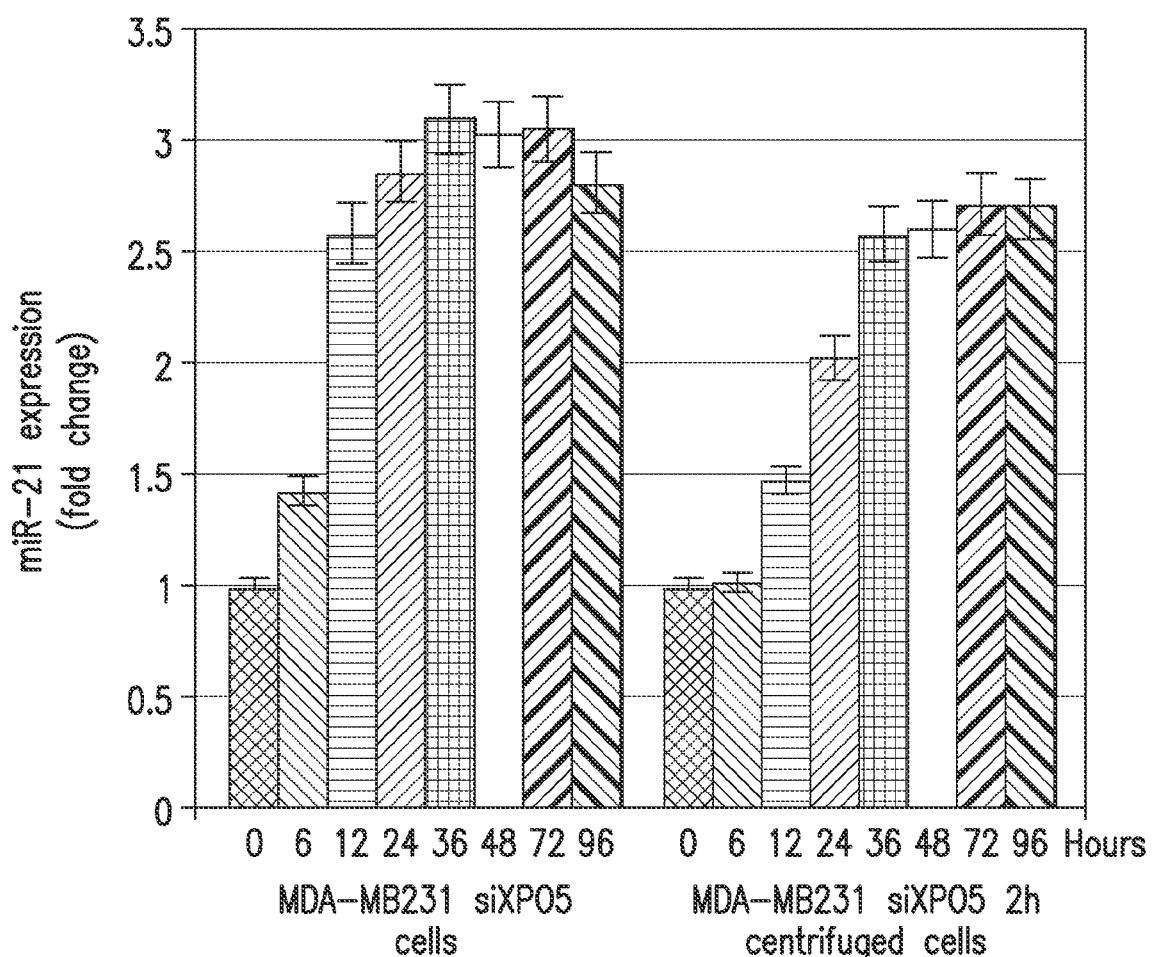


FIG. 12D

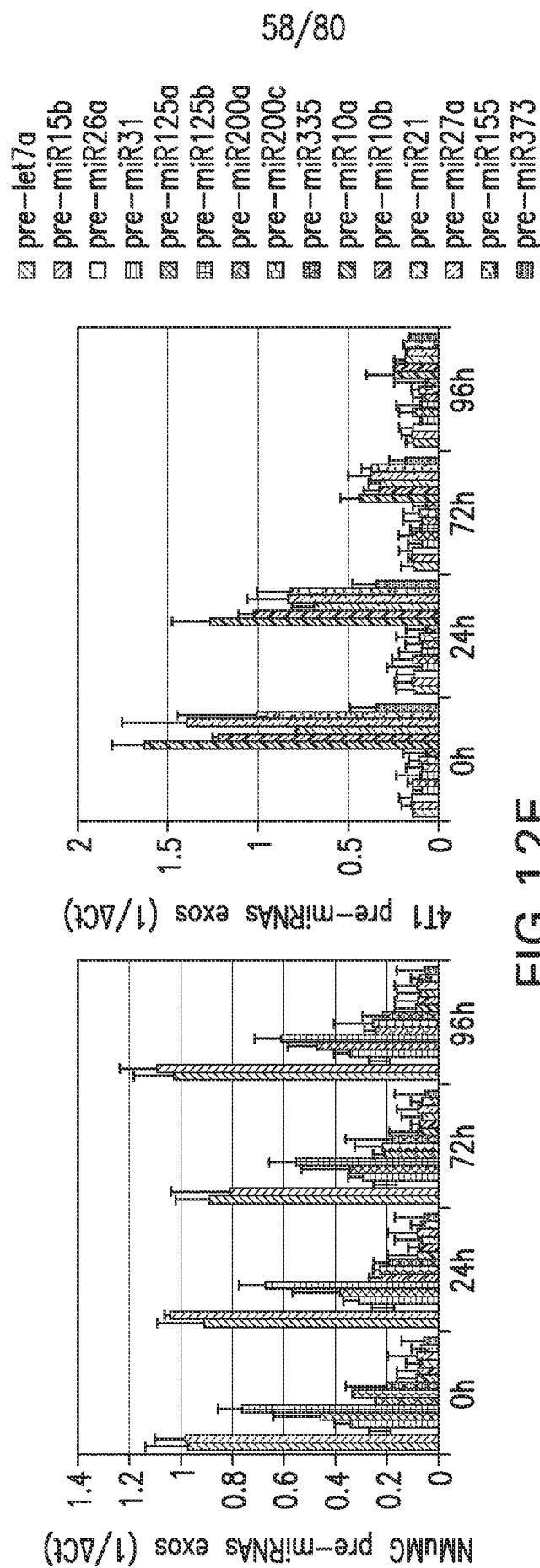


FIG. 12E

59/80

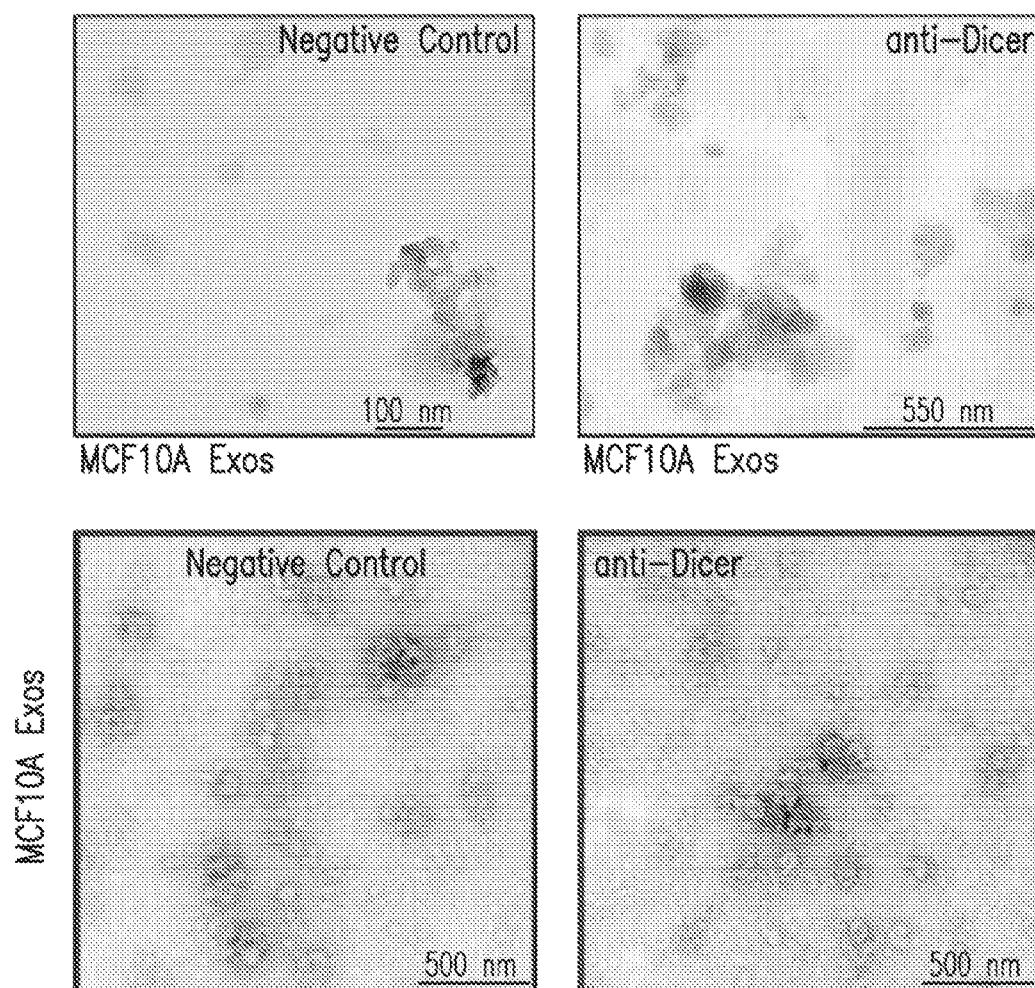


FIG. 13A

60/80

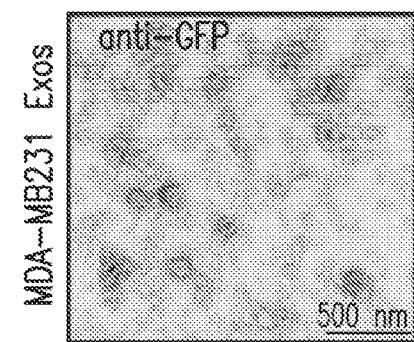


FIG. 13B

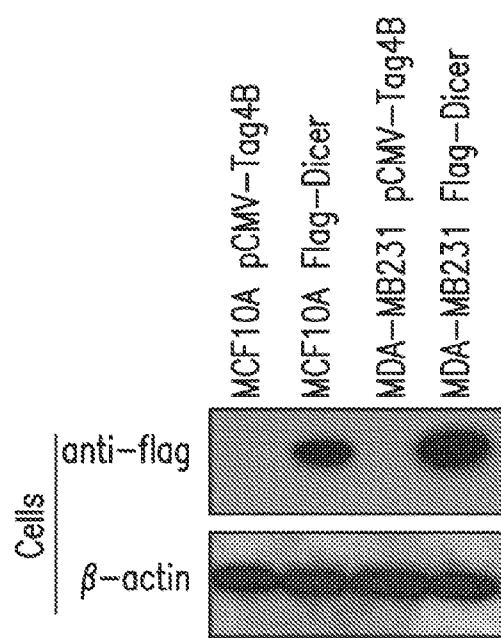


FIG. 13C

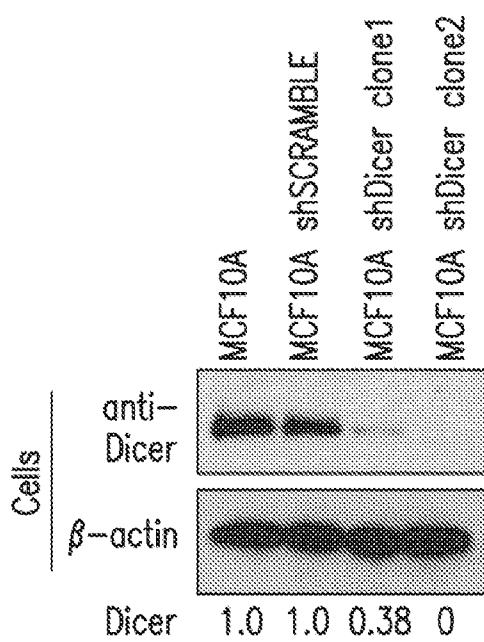


FIG. 13D

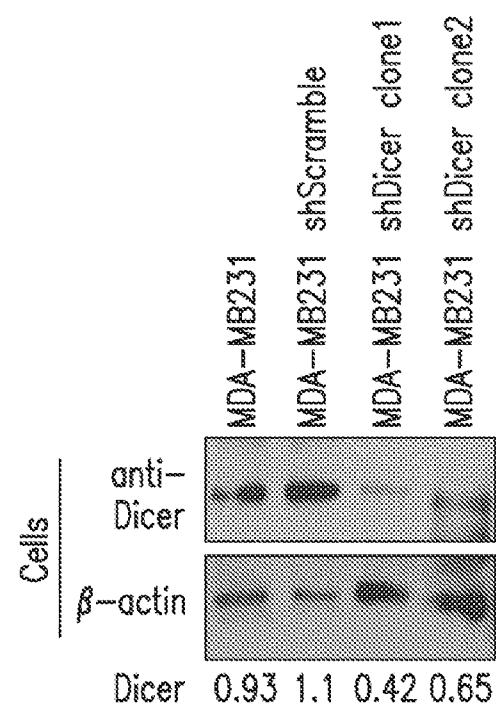


FIG. 13E

61/80

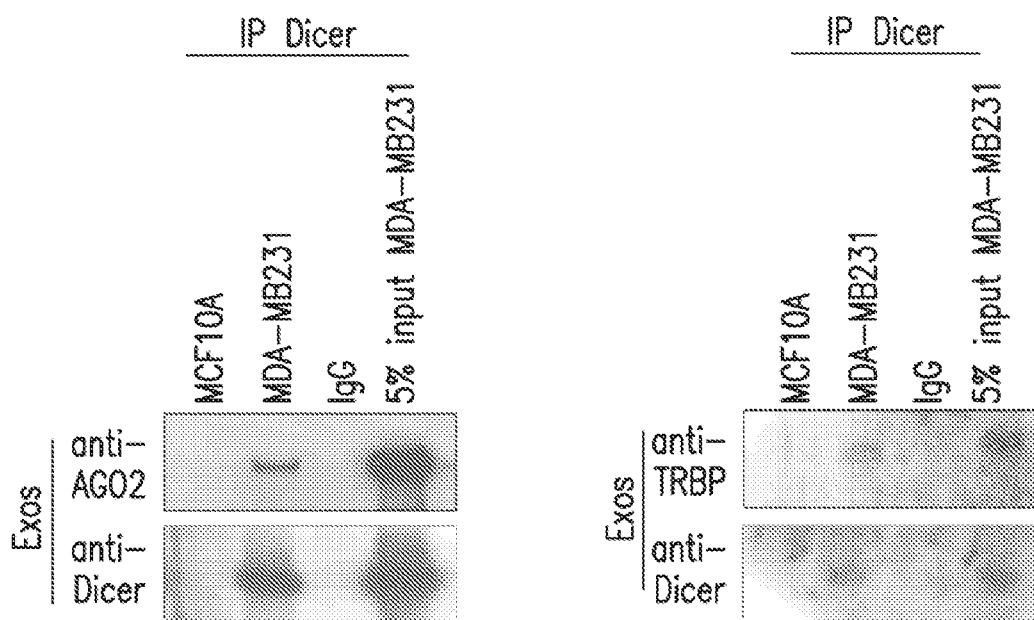


FIG. 13F

FIG. 13G

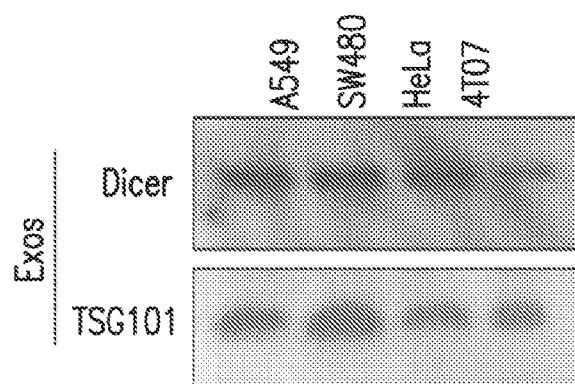


FIG. 13H

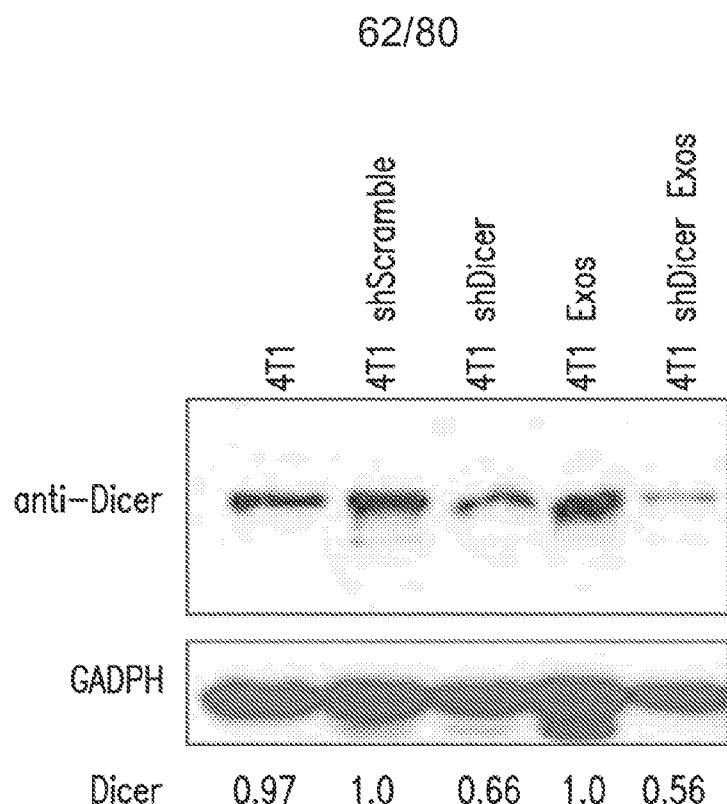


FIG. 14A

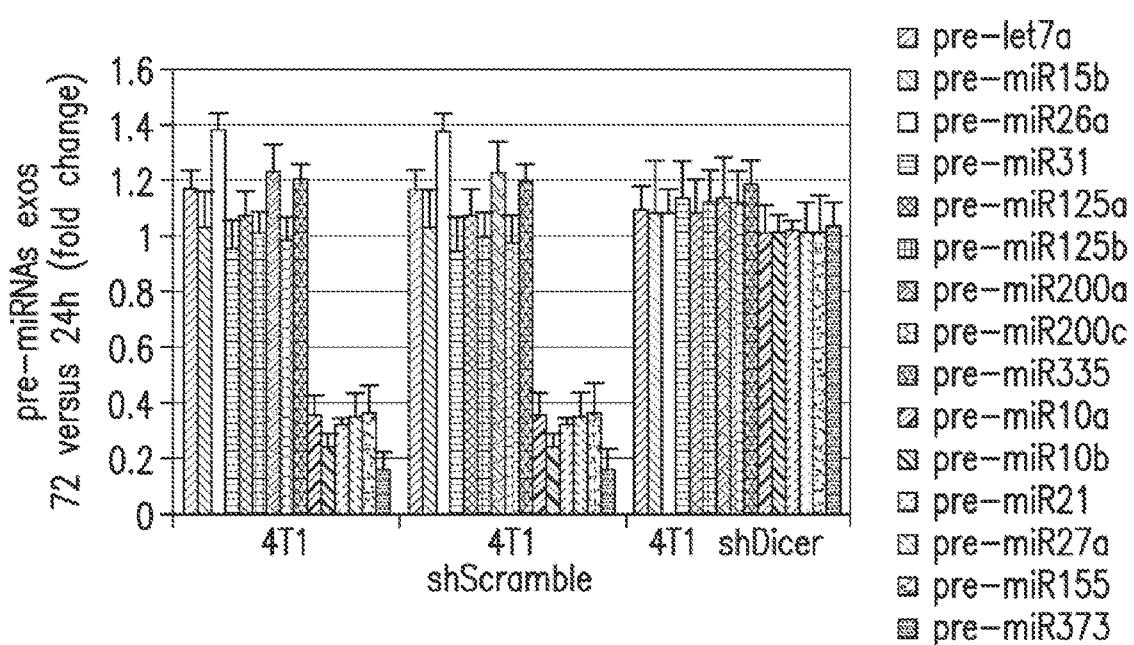


FIG. 14B

63/80

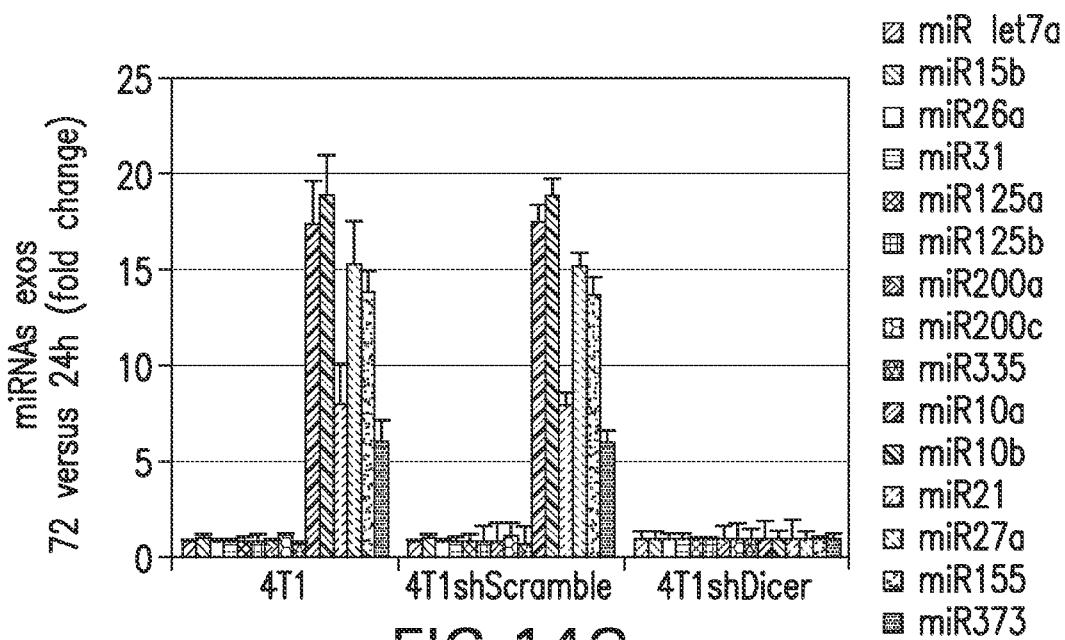


FIG. 14C

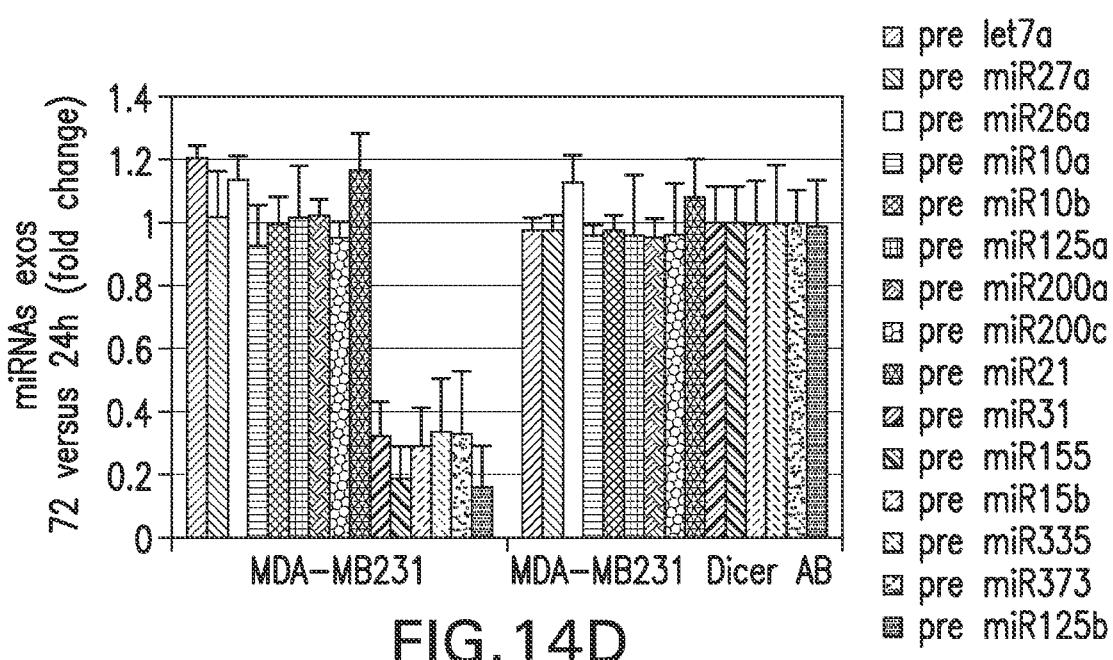


FIG. 14D

64/80

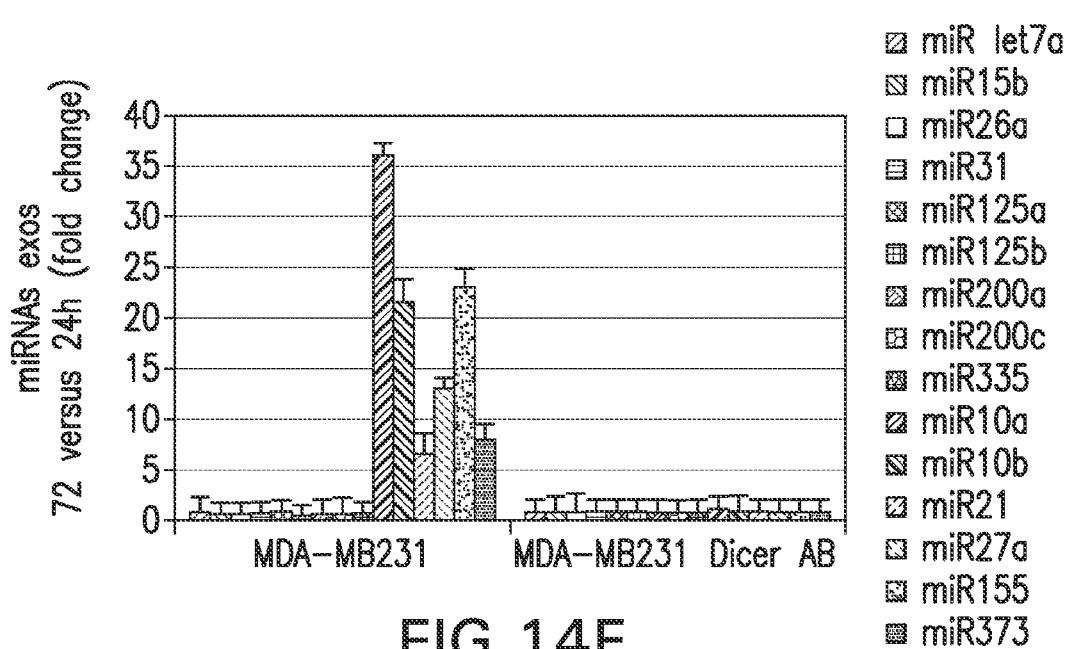


FIG. 14E

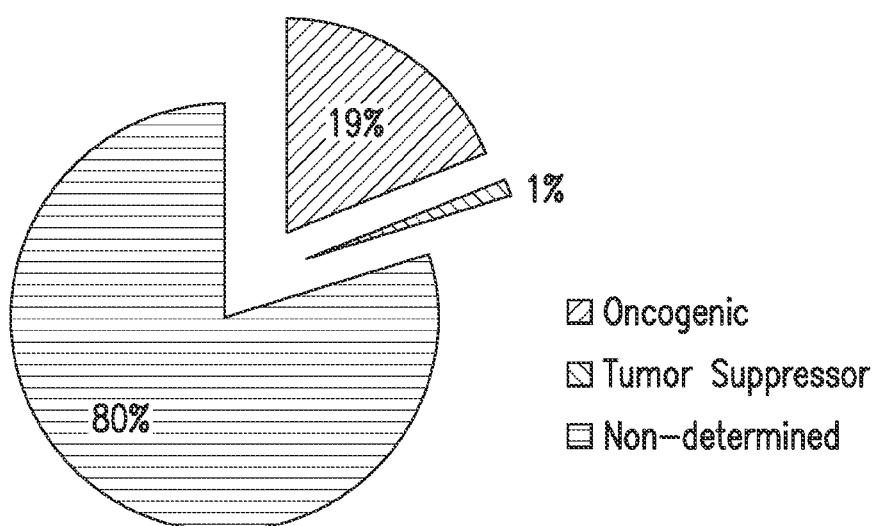


FIG. 14F

65/80

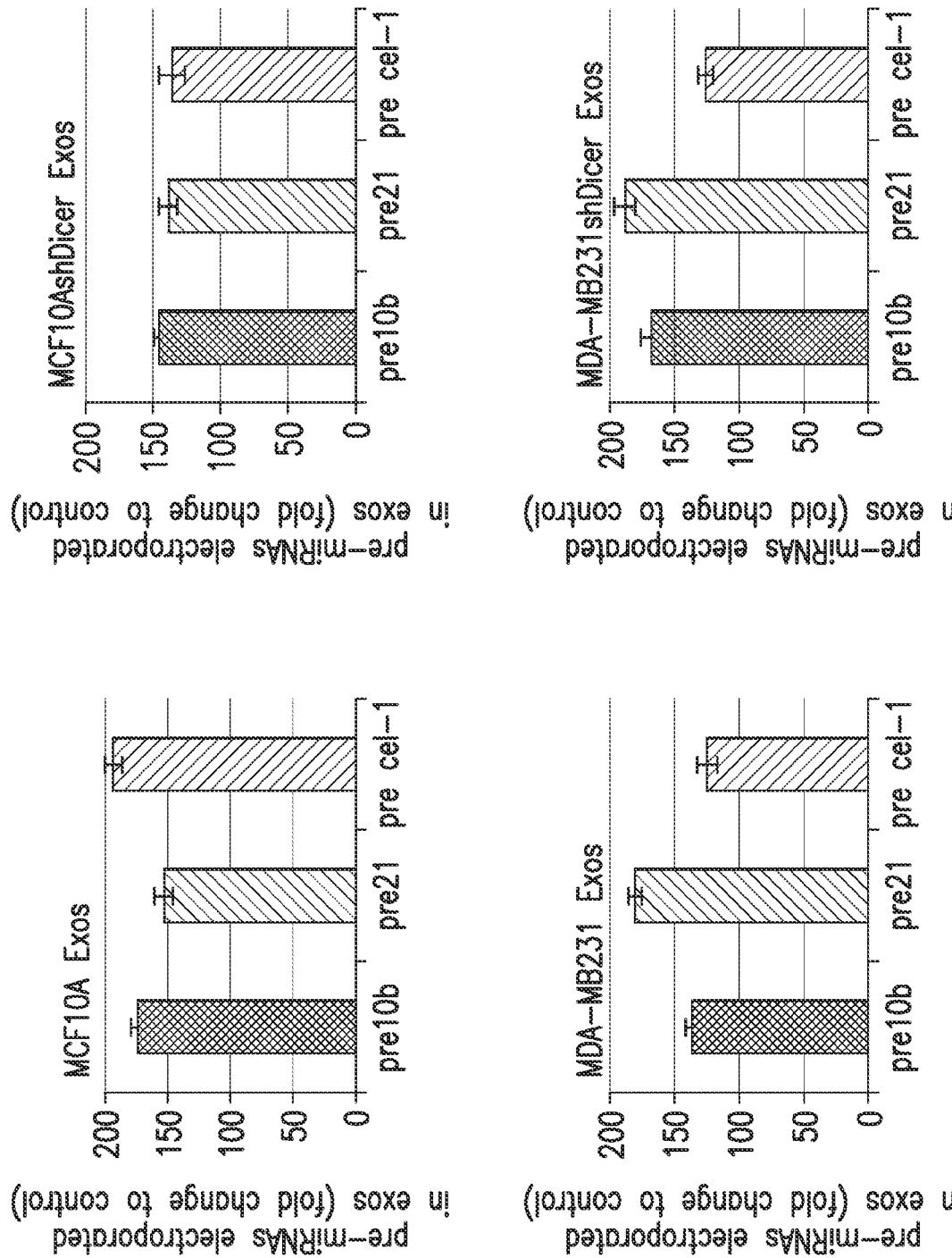


FIG. 15A

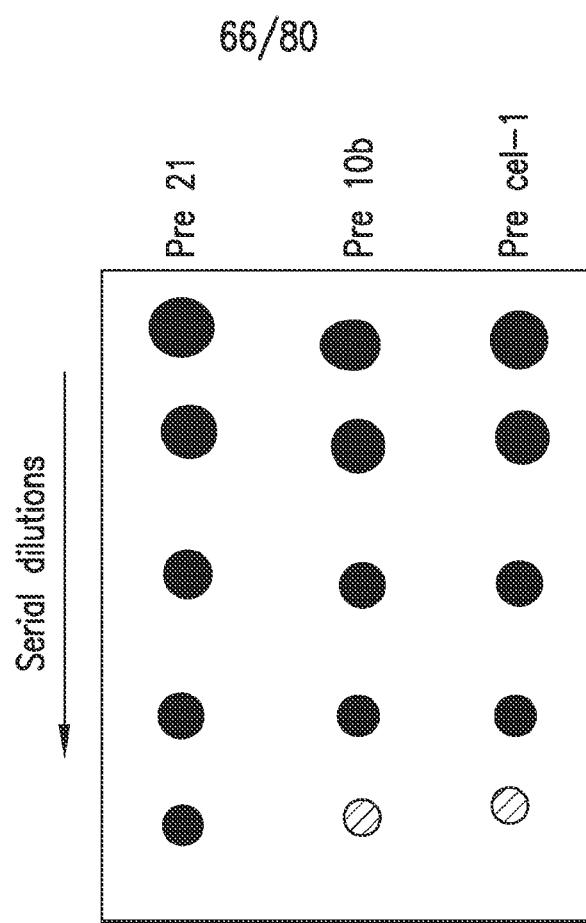


FIG. 15B

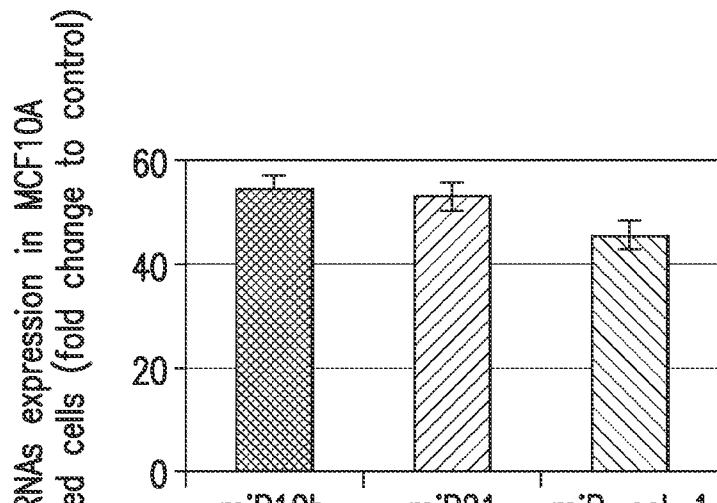


FIG. 15C

67/80

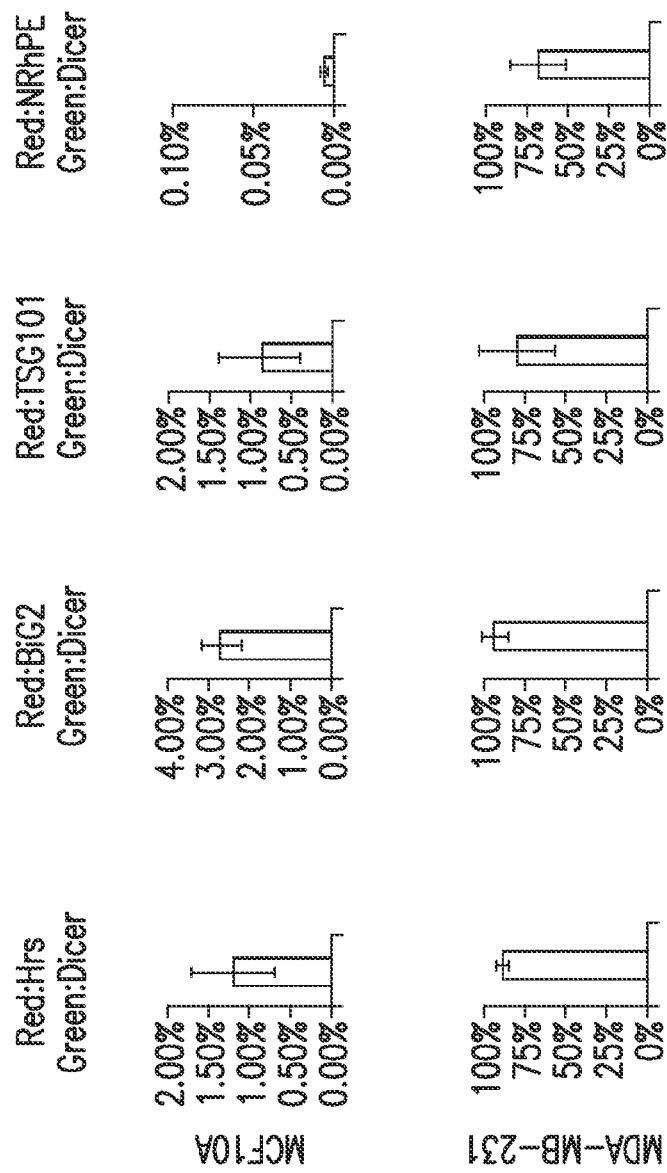


FIG. 16A

68/80

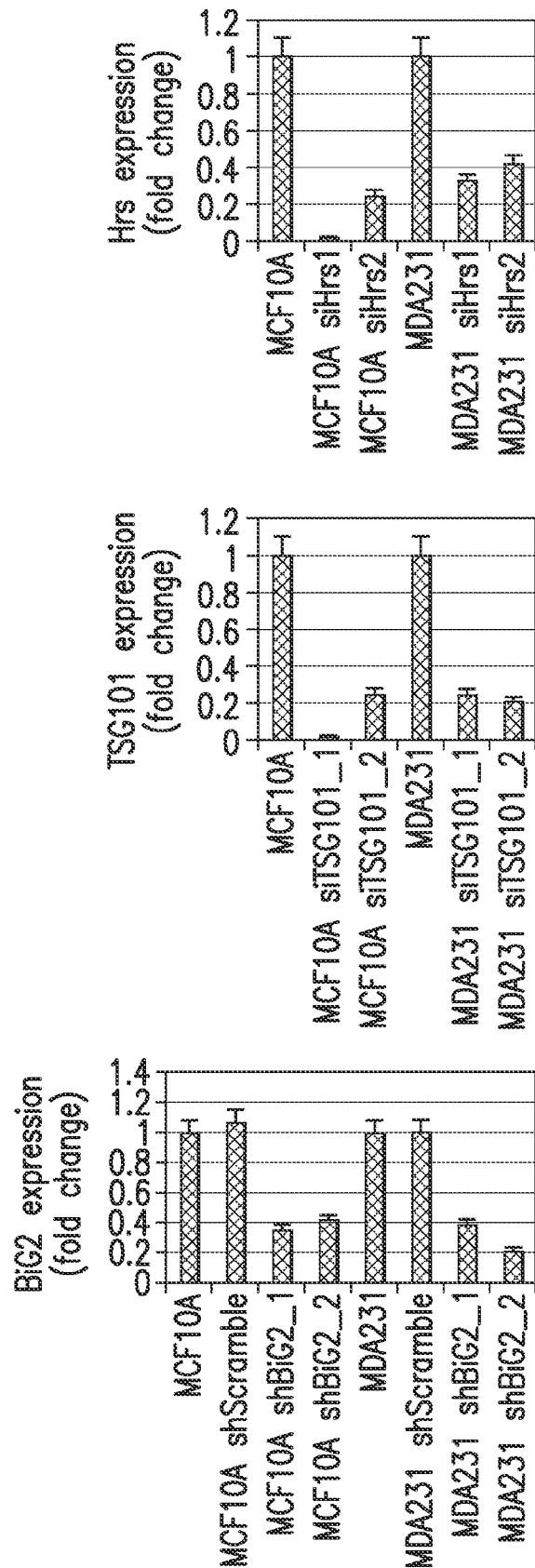


FIG. 16B

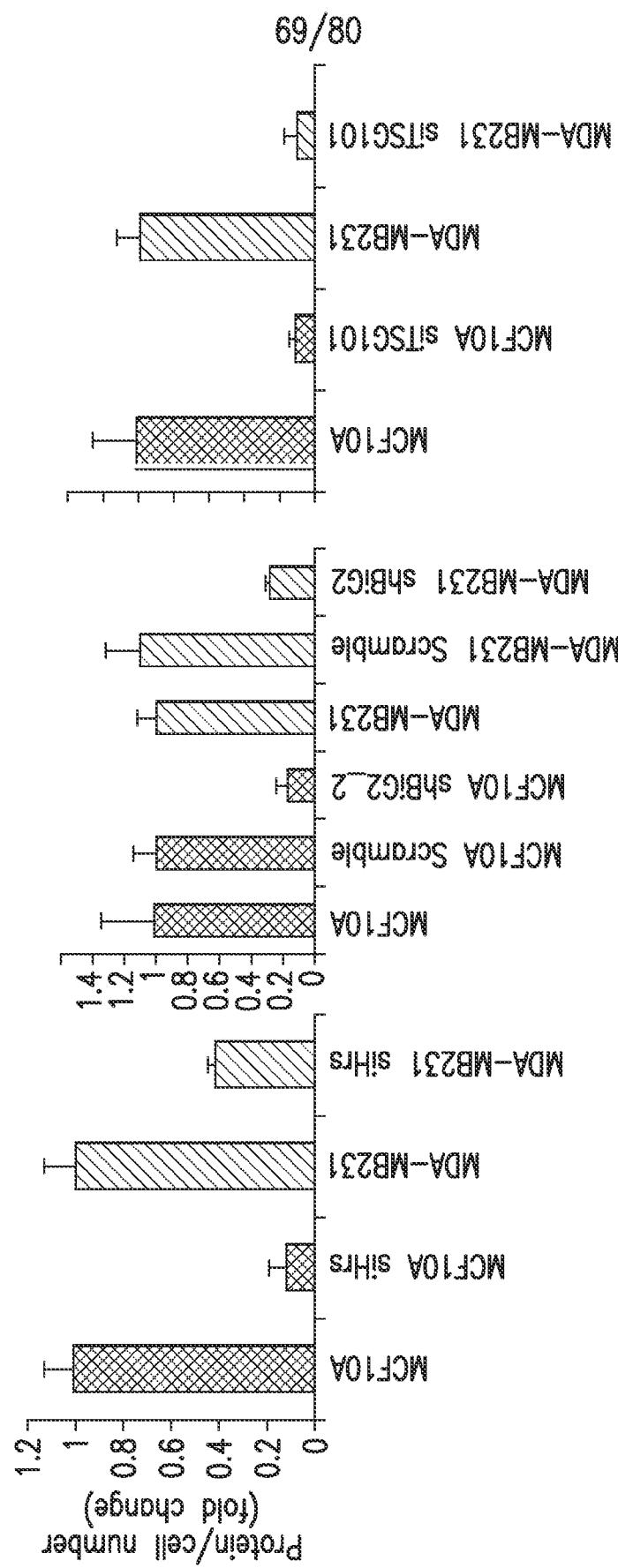


FIG. 16C

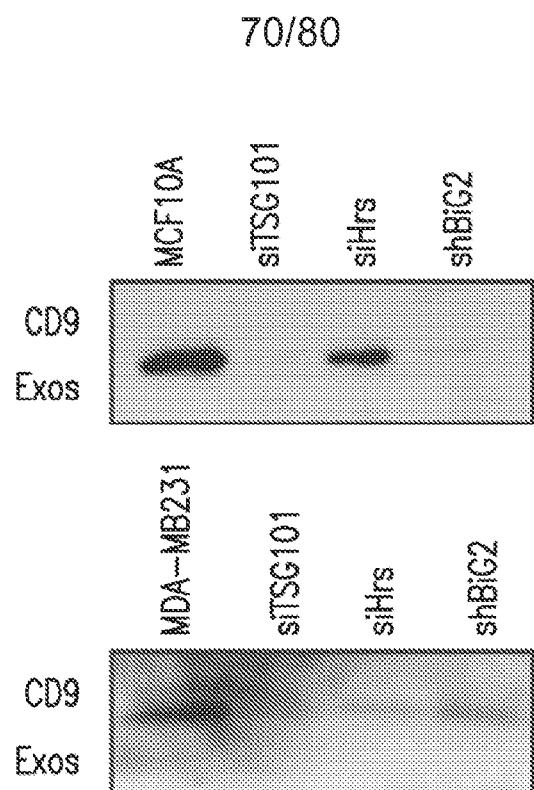


FIG. 16D

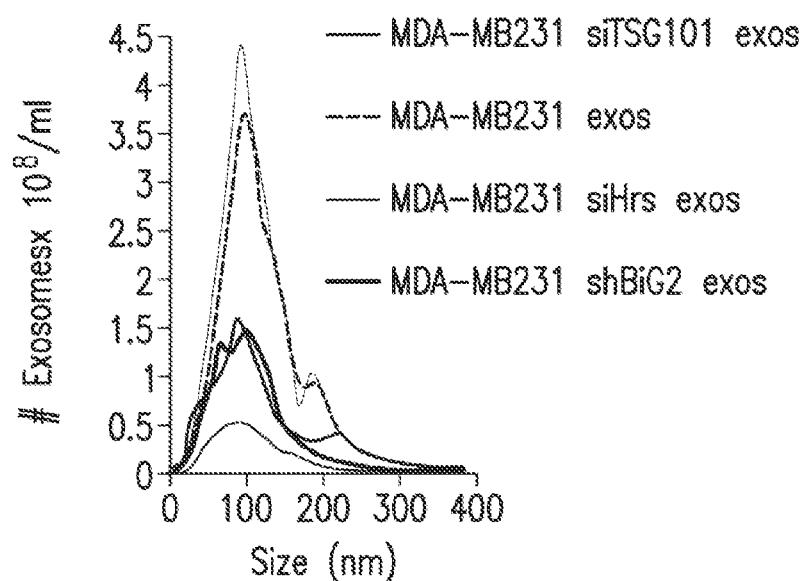


FIG. 16E

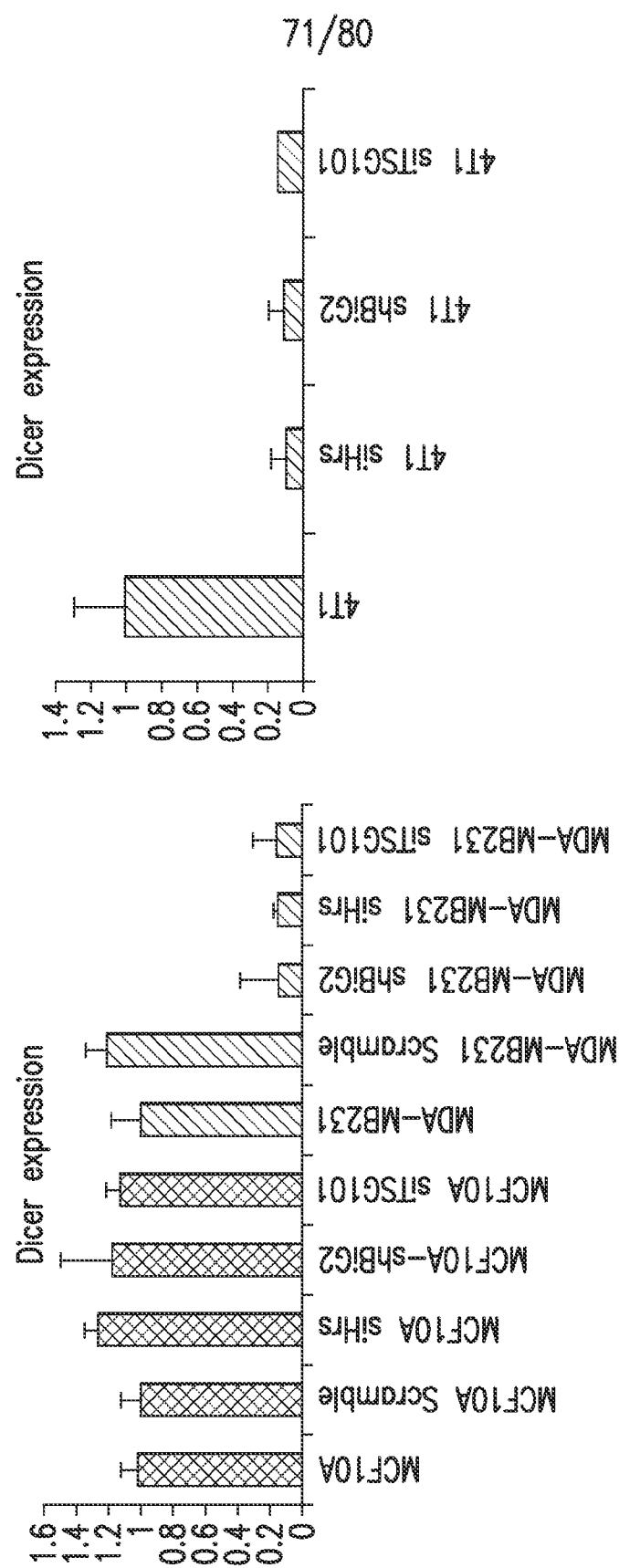


FIG. 16F

72/80

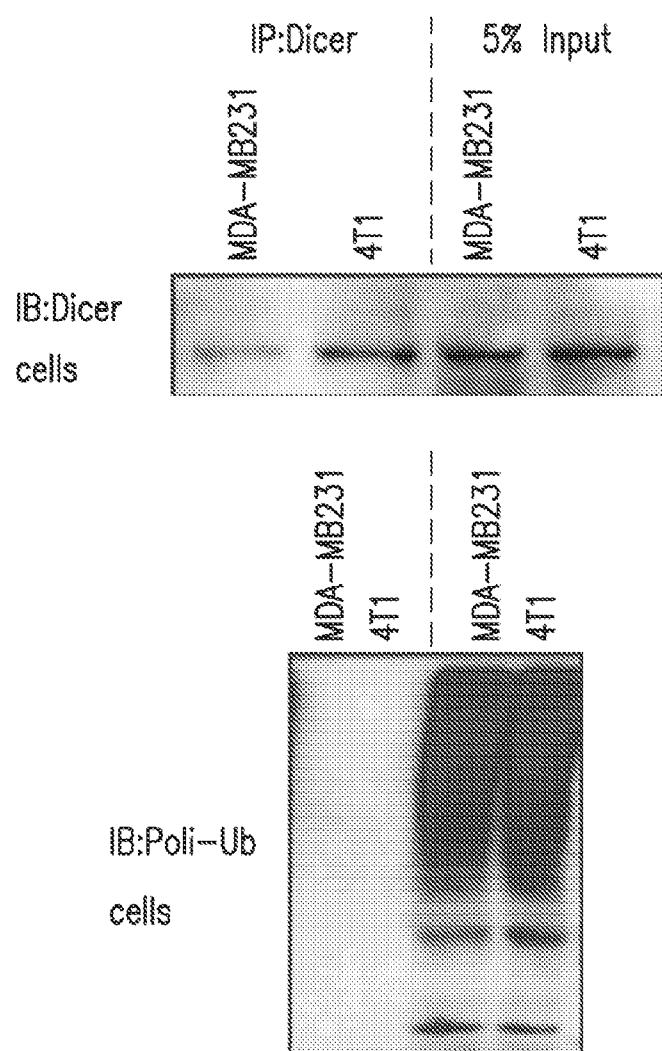


FIG. 16G

73/80

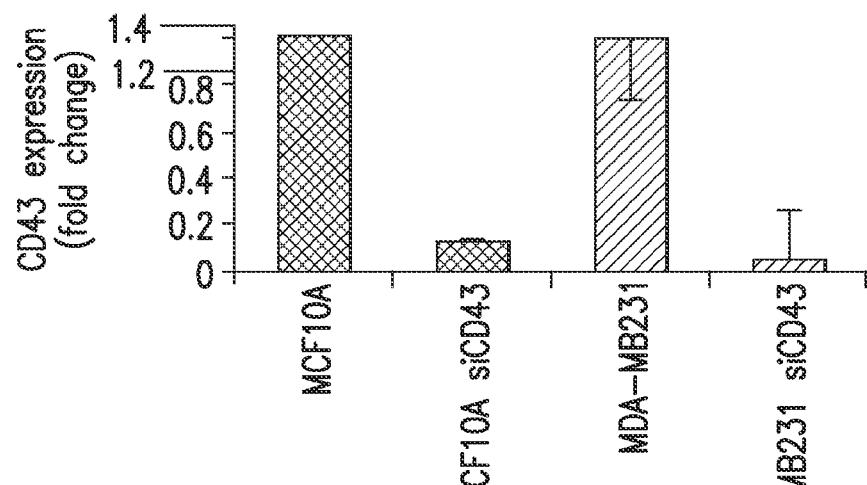


FIG. 16H

FIG. 16I

74/80

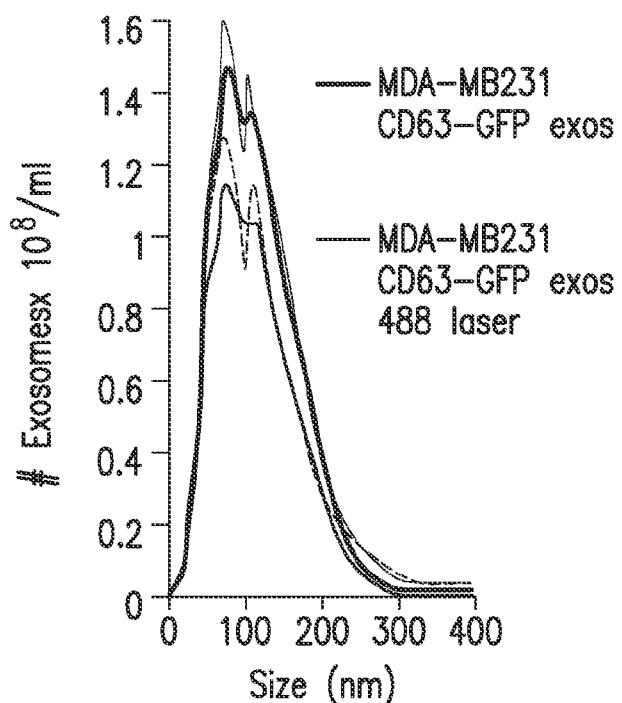


FIG.17A

75/80

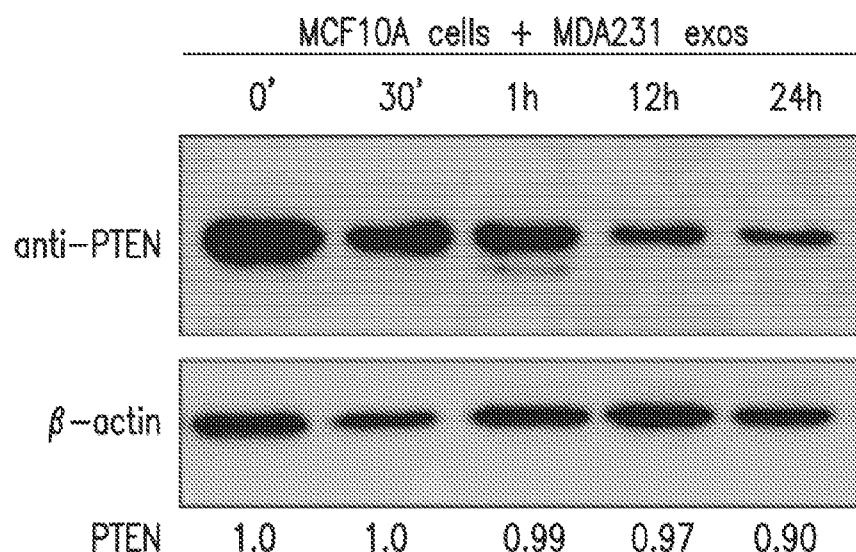


FIG.17B

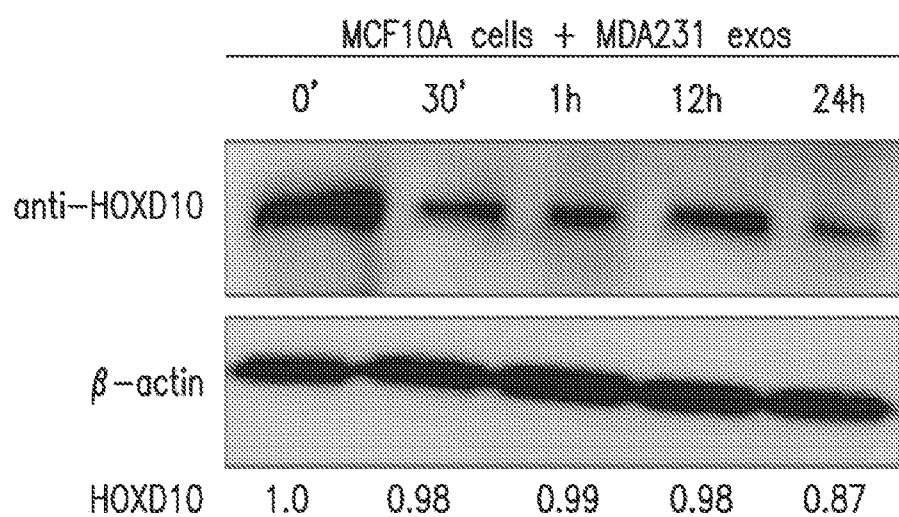


FIG.17C

76/80

FIG. 17D

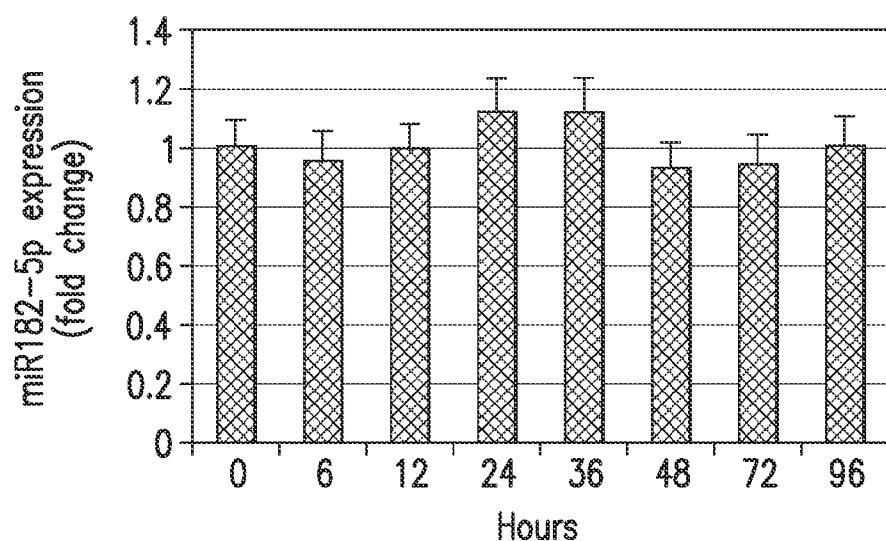


FIG. 17E

77/80

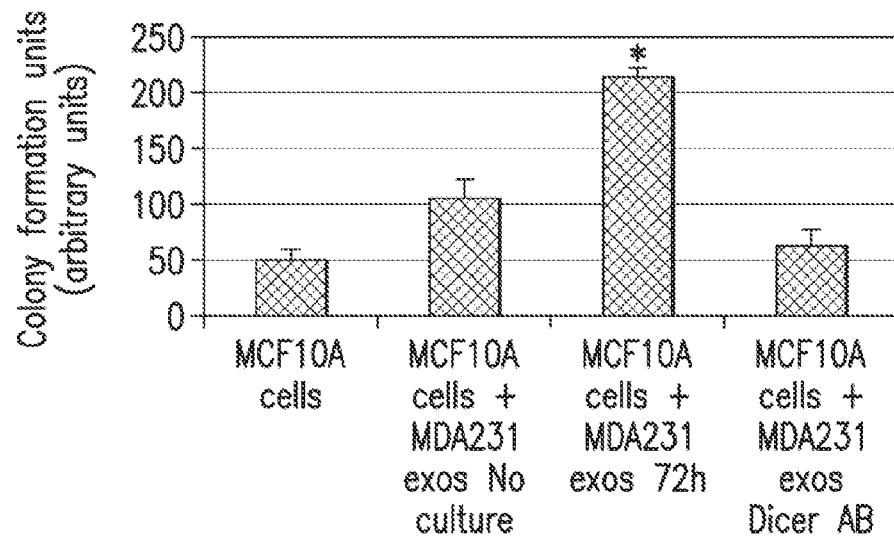


FIG.17F

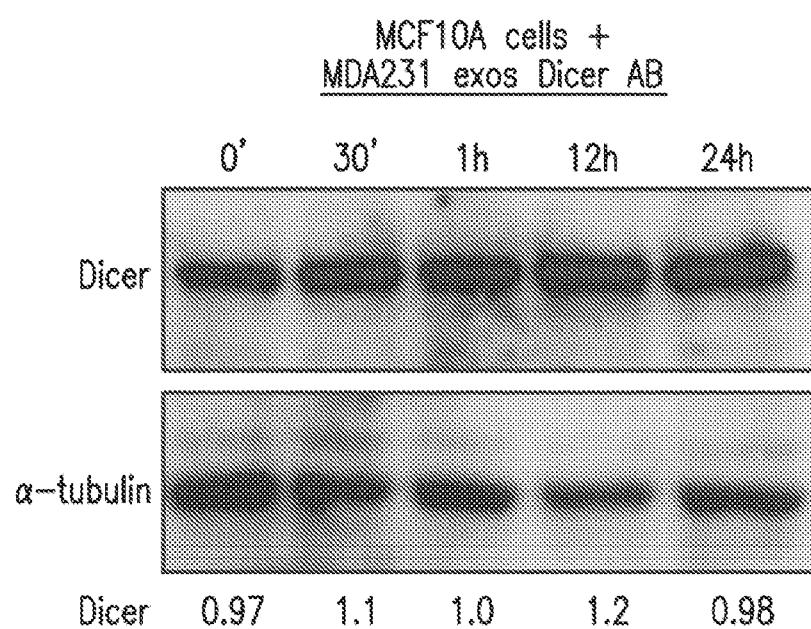


FIG.17G

78/80

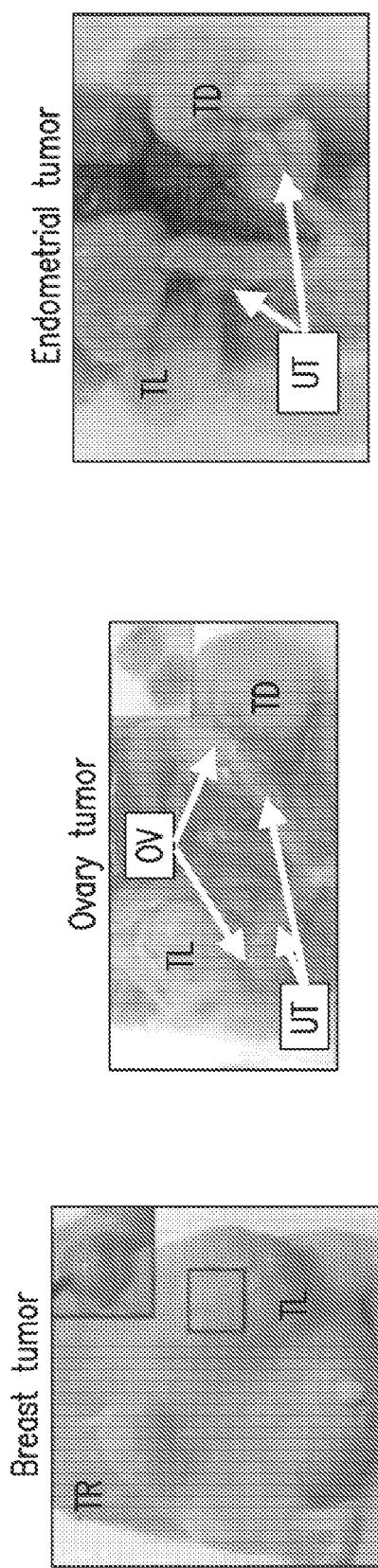


FIG. 18A

79/80

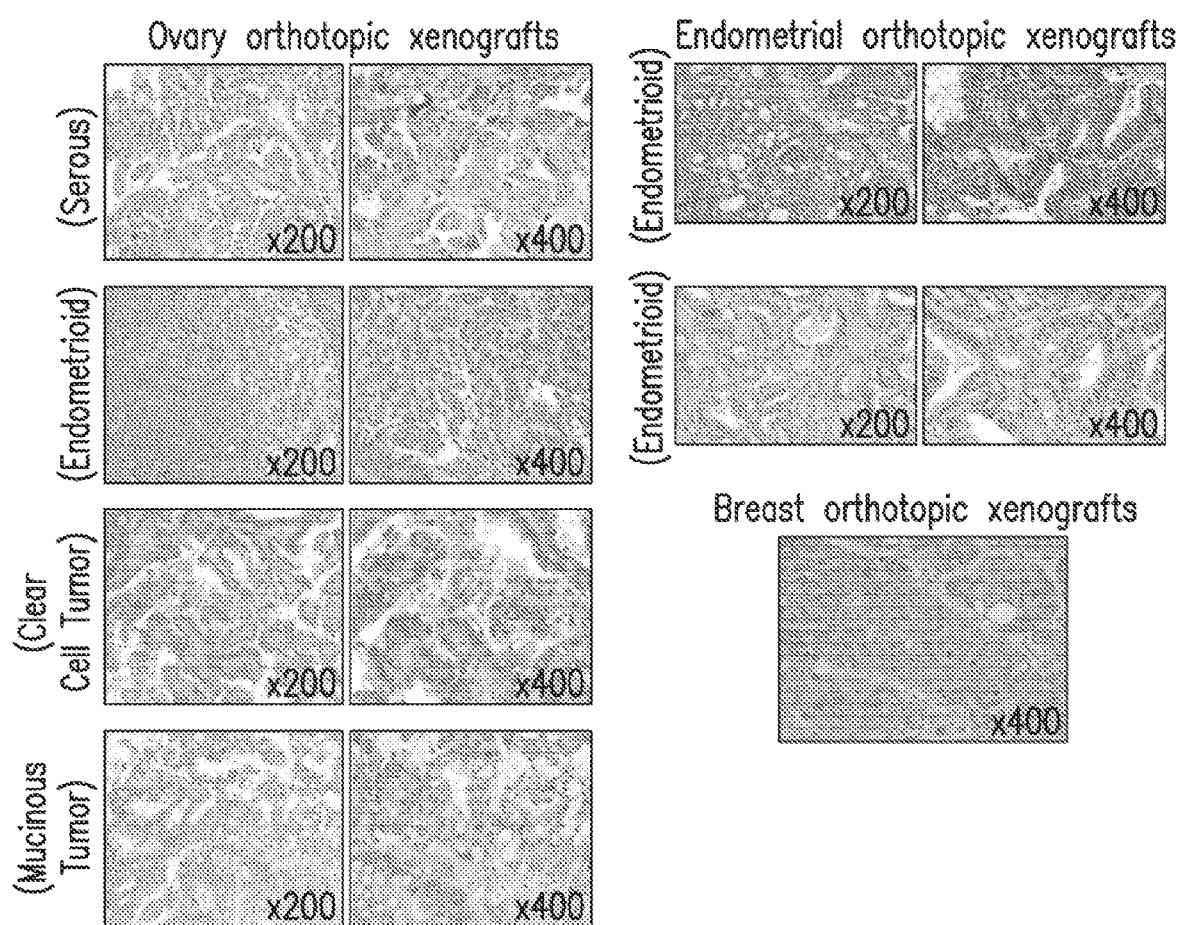


FIG. 18B

80/80

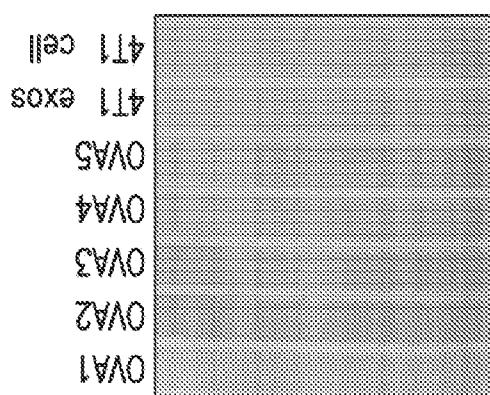


FIG. 18D

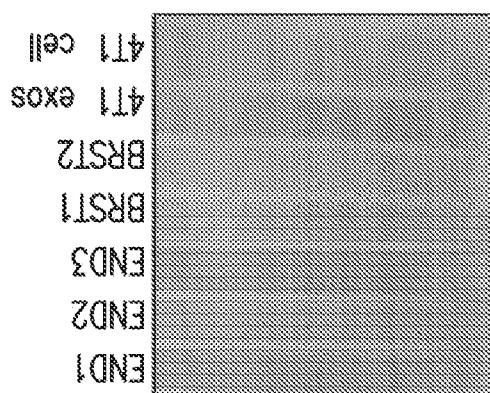


FIG. 18C

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/027541

A. CLASSIFICATION OF SUBJECT MATTER

C12Q 1/68(2006.01)i, C12N 15/11(2006.01)i, A61K 48/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C12Q 1/68; A61K 31/7088; C40B 30/04; G01N 33/574; C12N 15/11; A61K 48/00Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: computer readable medium, cancer, miRNA, RISC, TRBP, DICER, AGO2, exosome

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2011-0237450 A1 (KLASS et al.) 29 September 2011 See abstract and paragraphs [0321], [0337], [0338], [0343], [0860] and [0862].	30-36
A		41-47, 49-54
X	MACFARLANE et al., 'MicroRNA: biogenesis, function and role in cancer' Current genomics, Vol.11, No.7, pp.537-561 (23 August 2010) See abstract, pages 551, 552 and 541 and figure 3.	41-47, 49-54
A		30-36
A	US 2011-0054009 A1 (CROCE et al.) 03 March 2011 See abstract and claim 1.	30-36, 41-47, 49-54
A	SEN et al., 'A brief history of RNAi: the silence of the genes' The FASEB Journal, Vol.20, No.9, pp.1293-1299 (2006) See abstract and figure 1.	30-36, 41-47, 49-54
A	US 2012-0238467 A1 (TAYLOR et al.) 20 September 2012 See abstract and claim 1.	30-36, 41-47, 49-54

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
10 July 2014 (10.07.2014)

Date of mailing of the international search report

21 July 2014 (21.07.2014)

Name and mailing address of the ISA/KR

 International Application Division
 Korean Intellectual Property Office
 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
 Republic of Korea
 Facsimile No. +82-42-472-7140

Authorized officer

KIM, Seung Beom

Telephone No. +82-42-481-3371

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2014/027541**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 1-29, 37-40, 48
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 1-29, 37-40 and 48 pertain to methods for treatment of the human body by therapy, as well as diagnostic methods, and thus relate to a subject matter which this International Searching Authority is not required, under PCT Article 17(2)(a)(i) and PCT Rule 39.1(iv), to search.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2014/027541

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2011-0237450 A1	29/09/2011	CA 2743211 A1 CN 102301002 A EP 2350320 A2 EP 2350320 A4 EP 2730662 A1 GB 0921348 D0 GB 2463401 A GB 2463401 A8 GB 2463401 B IL 212768 D0 JP 2012-508577 A US 2010-184046 A1 US 2010-203529 A1 US 2011-151460 A1 US 2013-005599 A1 US 7897356 B2 US 8211653 B2 US 8278059 B2 WO 2010-056337 A2 WO 2010-056337 A3	20/05/2010 28/12/2011 03/08/2011 14/11/2012 14/05/2014 20/01/2010 17/03/2010 15/05/2013 29/01/2014 31/07/2011 12/04/2012 22/07/2010 12/08/2010 23/06/2011 03/01/2013 01/03/2011 03/07/2012 02/10/2012 20/05/2010 10/09/2010
US 2011-0054009 A1	03/03/2011	AU 2009-219197 A1 AU 2009-219197 B2 CA 2716938 A1 CN 102027129 A CN 102027129 B EP 2260109 A2 EP 2260109 A4 JP 2011-517283 A US 2013-085077 A1 WO 2009-108860 A2 WO 2009-108860 A3 WO 2009-108860 A8	03/09/2009 10/04/2014 03/09/2009 20/04/2011 12/03/2014 15/12/2010 08/06/2011 02/06/2011 04/04/2013 03/09/2009 14/01/2010 27/01/2011
US 2012-0238467 A1	20/09/2012	US 2009-239630 A1 US 2010-151480 A1 US 8637254 B2	24/09/2009 17/06/2010 28/01/2014

摘要

本发明提供通过使用包含 miRNA 和其前体的外来体来诊断和治疗癌症的方法。例如，在一些方面，癌症可通过确定来自受试者的样品中的外来体的 miRNA 含量或通过检测外来体中的 miRNA 加工来进行诊断或评估。