发明名称
高压和低压废气再循环的协同

摘要
一种向引擎进气歧管供气的方法，包括：在第一限值内调整 LP EGR 流速和未冷却 HP EGR 流速，保证进气歧管中的目标稀释水平维持在稳定。所述方法还包括：在第二限值内调整所述 LP EGR 和未冷却 HP EGR 流速，与前一步骤不同，目的是在瞬态情况期间维持进气歧管中的稀释水平。
1. 一种向引擎进气歧管供气的方法，其包括步骤：
在第一限值内调整 LP EGR 流速和未冷却 HP EGR 流速，保证所述进气歧管中的目标稀释水平维持在稳态；以及
在第二限值内调整所述 LP EGR 和未冷却 HP EGR 流速，与前一步骤不同，其为了在瞬态情况期间维持所述进气歧管中的所述目标稀释水平。
2. 根据权利要求 1 所述的方法，其中所述第一和第二限值各包括 LPEGR 流速下限、LP EGR 流速上限、未冷却 HP EGR 流速下限和未冷却 HP EGR 流速上限。
3. 根据权利要求 1 所述的方法，其还包括当处于各自流速下限的所述 LP EGR 和未冷却 HP EGR 流速超过所述目标稀释水平时，设置所述 LPEGR 流速至其下限；设置所述未冷却 HP EGR 流速至其下限，且其与处于下限的所述 LP EGR 流速相结合，导致进气歧管稀释水平接近所述目标 FMAN；以及
4. 提高所述引擎的燃烧稳定性。
5. 根据权利要求 1 所述的方法，其还包括当处于各自上限的所述 LP EGR 和未冷却 HP EGR 流速不能保持所述目标稀释水平时，重设所述目标稀释水平至所述上限的总和。
6. 根据权利要求 1 所述的方法，其还包括当处于各自下限的所述 LP EGR 和未冷却 HP EGR 流速未超过所述目标稀释水平，且处于各自上限的所述 LP EGR 和未冷却 HP EGR 流速能保持所述目标稀释水平时，设置所述未冷却 HP EGR 流速至其下限；以及
7. 设置所述 LP EGR 流速至其上限；导致进气歧管稀释水平接近所述目标稀释水平的总和。
8. 根据权利要求 1 所述的方法，其还包括当处于各自下限的所述 LP EGR 和未冷却 HP EGR 流速未超过所述目标稀释水平，且处于各自下限的所述 LP EGR 和未冷却 HP EGR 流速能保持所述目标稀释水平时，设置所述 LP EGR 流速至其上限；以及
9. 当处于各自下限的所述 LP EGR 和未冷却 HP EGR 流速不能保持所述目标稀释水平时，重设所述目标稀释水平至所述上限的总和。
10. 根据权利要求 1 所述的方法，其还包括当所述 EGR 流速减少所述目标稀释水平小于所述未冷却 HP EGR 流速的所述下限时，设置所述未冷却 HP EGR 流速至其下限。
设置所述LP EGR流速至如下水平；其与处于下限的所述未冷却HP EGR流速相结合，导致进气歧管稀释水平接近所述目标稀释水平。
高压和低压废气再循环的协同

技术领域

[0001] 本发明涉及机动车辆工程领域，具体而言涉及机动车辆引擎系统的废气再循环 (EGR, Exhaust-gas recirculation)。

[0002] 背景技术和发明内容

[0003] 与同等输出功率的自然吸气引擎相比，增压引擎具有更高的燃烧和排气温度。这种高温可能增加氧化氮 (NOx, Nitrogen-oxide) 排放，且加速该引擎和相关排放系统里的材料老化。废气再循环 (EGR) 是一种对上述影响的方法。EGR 法可以用废气稀释所吸入的空气的方法来降低其中的氧含量。如果使用稀释过的空气和废气的混合气体代替普通空气来支持引擎中的燃烧，将可以得到更低的燃烧和排气温度。此外，通过降低节流阀损耗和热损失，EGR 还能提高汽油引擎的燃油经济性。

[0004] 在包含涡轮增压器压缩机和涡轮的增压引擎系统中，废气可通过高压 (HP, High pressure) EGR 环路或低压 (LP, Low pressure) EGR 环路再循环。在 HP EGR 环路中，废气从涡轮机上游进入，与压缩机下游的进入空气混合。在 LP EGR 环路中，废气从涡轮机下游进入，与压缩机上游的进入空气混合。HP 和 LP EGR 法可在在引擎的负荷-速度图的不同区域中获得最佳效率。例如，在运行化学计量空气燃料比的增压汽油引擎中，HP EGR 需要低负载，引入真空可提供充足的流动位能；LP EGR 需要高负载，LP EGR 环路提供更大的流动位能。这两种方式之间还存在其他折衷，汽油和柴油机皆如此。二者间的这种互补性促使引擎设计人员考虑同时具有 HP EGR 和 LP EGR 回路的冗余 EGR 系统。

[0005] 尤其在增压柴油引擎中，要将 NOx 排放控制在可接受范围内，EGR 流速需相当高。这就可能导致许多问题。首先，高水平的进气稀释会导致引擎负载较低时燃烧稳定性不佳，从而导致碳氢化合物 (HC) 和一氧化碳 (CO) 排放量增加。第二，在较高的 HP EGR 流速下，经过压缩机的物质大幅减少，使得压缩机容易喘振。要解决第一个问题，可将未经冷却的 (即旁通) HP EGR 混入进气中，以便增加歧管空气温度 (MAT, Manifold air temperature)。要解决第二个问题，可以使用 LP EGR。LP EGR 可以增加流经压缩机的气流，防止喘振，但流经排气冷却器时会冷却。简言之，要获得高 MAT，废气可途经未冷却 HP EGR 系统，但会引起喘振。要避免喘振，废气可途经充分冷却的 LP EGR 系统，但这将增加 HC 和 CO 的排放。同时，使用冷却 HP EGR 作为补充或替代方案，会引出其他问题。例如，如果允许冷却 HP EGR 流速降至适当水平以下，EGR 冷却器中可能出现过量污垢。

[0006] 在较高的引擎载荷和转速下，还会出现其他问题。经过 LP EGR 环路的流动废气会增加经过压缩机的整体流速，从而导致超速状况并降低压缩机效率。这种情况一旦过量，就可能导致压缩机阻塞。经过 LP EGR 环路的流动废气还会增加压缩机入口处的气体温度，反之又增加压缩机出口温度。另一方面，低负载的未冷却 HP EGR 可能引起过量 MAT，从而降低引擎功率且 / 或导致引擎中流出色过量烟雾。这些情况也可能导致压缩机容易喘振。

[0007] 此外，瞬态情况期间会出现形式各异的问题。LP EGR 虽然能提高低引擎载荷下的涡轮增压器效率，但进气系统的净化需要更长的时间。这是因为净化体积不仅包括进气歧管，还包括从进气歧管到压缩机进气口的一切部件。HP EGR 虽然进气歧管的净化更为容易，
但会降低通过涡轮机的质量流。这样便会降低涡轮增压器速度，增加迟滞。因此，两种 EGR
法都或有可能降低引擎对载荷及速度瞬变作出反应的能力。
[0008] 在催化器升温期间会出其他问题——另一种瞬态情况。充分冷却的 LP EGR 不
会使排废温度象未冷却的 HP EGR 那么高。因此，在运行 LP EGR 的一些例子中，催化器熄灯
(light-off) 的延迟可能无法接受。另一方面，未冷却 HP EGR 允许更高的排废温度，但通过
排废系统的质量流量大大减少。这可减少废气中的热能，并且也可降低传热系数。
[0009] 本发明的发明者已经认识到这些问题和他们之间的交互关系，并且设计出一系列
解决方法。因此，本发明的一个实施例提供了一种向引擎进气歧管供气的方法。所述方
法包括步骤：在第一限值内调 LP EGR 流速和未冷却 HP EGR 流速，保证进气歧管中的目
标稀释水平维持稳态。所述方法还包括步骤：在第二限值内调整所述 LP EGR 和未冷却 HP
EGR 流速，与前一步骤不同，其在瞬态情况期间维持进气歧管中的目标稀释水平。以此方
式，便可在稀释度和瞬态情况期间协调操控 HP 和 LP EGR。根据情况不同而动态地改变 HP 和
LPEGR 类型流速的值，可以增加引擎的寿命、燃油经济性，改善对排放物的控制，同时可以对瞬
变迅速反应。
[0010] 应知，以上发明内容是为了介绍一系列精选概念的简化形式，下文的说明将对所
述概念进行详细描述。这些详细描述并不能确定本发明主题的主要或关键特征，详细说明
后根据的权利要求定义了要求保护的主题的范围。此外，要求保护的主题并不限于解决了
任何本文所提缺点的实施方法。

附图说明
[0011] 图 1 和图 2 所示为根据本发明实施例的机动车辆引擎系统实例的各方面的示意图。
[0012] 图 3 所示为根据本发明实施例的机动车辆冷却系统实例的各方面的示意图。
[0013] 图 4 至图 8 所示为根据本发明不同实施例向引擎系统进气歧管供气的方法举例。

具体实施方式
[0014] 下面结合上述实施例描述本发明的主题。在一个或一个以上的实施例中，实
质相同的组件、步骤和其他元素采取协调一致的元件符号标记，并尽可能减少重复描述。但
应注意，采取协调一致的元件符号标记的元素之间也可能存在某种程度的区别。还应注意，
本发明中的图式仅作示意用，通常不是按比例绘制。甚至，为了某些部件或相互关系表
现得更清楚，图式中的各种绘制比例、纵横比及元件数量可能经过了故意的改变。
[0015] 图 1 所示为一实施例中的引擎系统实例 10 的各方面的示意图。在引擎系统 10 中，
空气清洁器 12 连结到压缩机 14 的入口。空气清洁器将新鲜空气从周围环境引入，并向压
缩机提供经过滤的新鲜空气。压缩机可以是任何适当的单气空气压缩机，例如马达或驱动
轴驱动的超级增压器压缩机。但是，在图 1 所示的实施例中，压缩机是一个以机械方式连接
到涡轮机 16 的涡轮增压器压缩机，所述涡轮机通过扩散排气歧管 18 排出的引擎废气驱动。
排泄阀 20 横跨压缩机从出口连结到入口，这样便于压缩机下游流出的压缩供气均被释放到
压缩机的处所上游。这一动作可用于例如转移或减轻压缩机喘振。在另一个实施例中，压
缩机和涡轮机可以连结在一个双级涡轮增压器里。在另一个实施例中，压缩机和涡轮机可
以连结在可变几何涡轮增压器（VGT）里，所述涡轮机几何形随着引擎转速的函数积极地变化。在一个实施例中，压缩机的排泄阀可以构设成将压缩供气释放到引擎系统的另一个处所。

[0016] 一个实施例中，供气冷却器为一个冷却器，其构设成将压缩供气冷却到适合于进入进气歧管的温度。另一个实施例中，供气冷却器是冷却器，冷却器置于进气歧管。

[0017] 通过一系列进气阀 30 和排气阀 32，进气歧管 24 和排气歧管 18 各自连接到一系列燃烧室 28。在一个实施例中，各进气和排气阀可以为电子驱动。另一个实施例中，各进气和排气阀可以为凸轮驱动。可以根据需要选择电子驱动或凸轮驱动，调整进气和排气阀开关时，以获得良好的燃烧和排气控制性能。尤其是可以调整阀的开关时，使之当一个或一个以上燃烧室中还有相当一定量的来自前一燃烧室的废气时，开始燃烧。此可调阀正时实现了“内 EGR”模式，该模式可用于在选定的操作条件下降低峰值燃烧温度。在一些实施例中，除了下文所描述的“外 EGR”模式还可以使用可调阀正时。

[0018] 图 1 所示为电子控制系统 34。在一些实施例中，至少一个进气或排气阀被构设成根据可调正时进行开或关，这时可以通过电子控制系统控制可调正时，以此调整燃烧时一个燃烧室内的存在量。要评估与引擎系统各控制功能相关的操作情况，可将电子控制系统以可操作地结合到多个设于整个引擎系统的传感器：流传感器、温度传感器、踏板位置传感器、压力传感器等。

[0019] 燃烧室 28 中，可以采用火花点火或/或压缩点火的任何变形形式启动燃烧。此外，燃烧室可以接受多种燃料：汽油、酒精、柴油、生物柴油、压缩天然气等的任何一种燃料。燃料可以采用直接喷射、开口喷射、节流阀喷射或其任何组合。

[0020] 在引擎系统 10 中，HP EGR 冷却器 228 连结到排气歧管 18 的下游和涡轮机 16 的上游。HP EGR 冷却器为一冷却器，其构设成将废气冷却到适合于混合到压缩供气中的水平。HP 废气从 HP EGR 冷却器流经分配阀 36 到进气歧管 24；所述分配阀控制循环废气经引擎系统的外 HP EGR 路径的流动。更一般而言，控制 EGR 的分配阀既可以位于 EGR 冷却器的上游亦可位于其下游。此外，还可以包括一冷却器旁通线和阀，用以提供无需经过冷却器的 EGR 路径。下文将深入描述的这种构设可以用来共使质上未冷却的 HP EGR 流到进气歧管。

[0021] 引擎系统 10 还包括废气门 38，其横跨涡轮机 16 从入口连接到出口。如前所述，从废气歧管 18 流出的废气流到涡轮机 16 并驱动涡轮机。需要减小涡轮机扭矩时，可以将一部分废气改由废气门 38 经过，从而绕过涡轮机。继而，来自涡轮机和废气门的混合流经废气后处理装置 40、42 和 44。在本发明的不同实施例中，所述废气后处理装置的性质、数量和设置可以不同。一般而言，废气后处理装置可包括至少一个废气后处理催化剂，其被构设成催化废气处理，从而减少废气流中一或多种物质的量。例如，可将一种废气后处理催化剂构设成在废气流稀释时捕获废气中的 NOX，在废气流变浓时捕获的 NOX。在其他例子中，废气后处理催化剂可以构设成改变 NOX 的比例或借助于一还原剂选择性地减少 NOX。在其他例子中，废气后处理催化剂可以构设成氧化废气流中的剩余碳氢化合物和/或一氧化碳。可将不同的具有类似功能的废气后处理催化剂设于废气后处理装置的封闭涂层里或
其他某处，且彼此可间可分可合。在一个实施例中，废气后处理装置可包括被构设成截获并氧化废气流中烟灰颗粒的再生过滤器。在本实施例和他实施例中，废气后处理装置 40 可包括催化熄灯和 / 或三效催化剂。

[0022] 继续见图 1，引擎系统 10 包括排气节流阀 46。排气节流阀为被构设成控制涡轮机 16 排气压力下游的可调阀。这种控制可以用来达到调节 LP EGR（参见下文）或其他目的。消音器 48 连接至排气节流阀的下游。从废气后处理装置流出的全部或部分处理的废气流可以过消音器释放到环境中。然而，根据不同的操作情况，也可以通过 LP EGR 冷却器 22C 吸收部分经过处理的废气。LP EGR 冷却器为水 - 液热交换器，其被构设成将废气冷却到适合于混合到进气气流中的温度。从 LP EGR 冷却器离开后，LP 废气流到压缩机 14 的入口。在图示的实施例中，LP EGR 流可通过排气节流阀 46 由部分地被控制。排气节流阀的全部关闭将增大引擎系统 10 中的 LP EGR 流动位能。

[0023] 在一些实施例中，排泄阀 20、进气节流阀 26、分配阀 36、废气门 38 和排气节流阀 46 可以是以被构设成根据电子控制系统 34 的指令开和关的电子控制阀。此外，上述阀可以是以连续方式切换。所述电子控制系统以可操作方式连接到每个阀，并且被设成按照实现任何本发明所述功能的需要，调整和 / 或调节。

[0024] 通过将控制分配阀 36 和排气节流阀 46，以及调整排气和进气阀正时（参见上文），电子控制系统 34 可使引擎系统 10 可以在不同的操作情况下将进气空气送入燃烧室 28。这些包括以下几种情况：进气空气无 EGR 或 EGR 设置于每个燃烧室内部（例如通过可调阀时控）的情况；EGR 抽取自涡轮机 16 的排出点上游、并送至压缩机 14 的混合点下游（外部 HP EGR）的情况；以及 EGR 抽取自涡轮机的排出点下游、并送至压缩机的混合点上游（外部 LP EGR）的情况。

[0025] 应知，图 1 的每个方面都不打算限制本发明。尤其，外部 HP 和 LPEGR 的排出点和混合点在不同实施例中可以有所不同，但仍然完全符合本发明。例如，尽管图 2 所示的外部 LP EGR 是抽取自废气后处理装置 40 的下游，但在其他实施例中，外部 LP EGR 也可抽取自废气后处理装置 44 的下游，或废气后处理装置 40 的上游。尽管本文未详细描述，HP 和 LP EGR 混合点可包括适当的气混结构。

[0026] 图 2 所示为一实施例中的引擎系统实例 50 的该方面的示意图。和引擎系统 10 一样，引擎系统 50 包括外部 HP EGR 路径和外部 LP EGR 路径。但引擎系统 50 中，分配阀 52 连结 LP EGR 冷却器 22C 的下游，用于控制 LP EGR 流速。因此，引擎系统 50 不包括排气节流阀。自然应知，其他完全符合本发明的实施例也可同时包括 LP EGR 路径上的分配阀和排气节流阀。

[0027] 图 3 所示为机动车冷却系统实例 54 的该方面的示意图。所述冷却系统包括冷却器 56。冷却器被构设成流体以液体引擎冷却剂（例如水或含水防冻液）穿过连接各冷却系统部件的导管。所述冷却系统也包括热交换器 22。举例而言，热交换器可包括气冷却器 22A、HP EGR 冷却器 22B、LP EGR 冷却器 22C，或者是其它任何用于机动车车辆引擎的气 - 液热交换器。

[0028] 热交换器 22 包括内部气体导管 58，用于引导气流，例如空气流或废气流。该热交换器还包括内部冷却剂导管 60，用于引导液体引擎冷却剂。如图 3 所示，热交换器的内部冷却剂导管为一条封闭冷却环路的一段。封闭的冷却剂环路包括散热片 62 和其他引擎组件。
在一个实施例中，封闭冷却剂环路可包括多个引擎系统的汽缸套、供冷却系统 54 的安装。

[0029] 在热交换器 22 中，冷却剂冷却和冷却剂冷却被设成增加流经其内的气体和液体之间的热交换速率。为此目的，热交换器可在管路之间供油或（例如若干个）的共享分界面。同样，散热片 62 的冷却剂冷却管内设成增加和环境空气的热交换。在图 3 所示的实施例中，风扇 64 去散热片对面，且被设成增加环境空气在散热片内及周边区域中的传送。

[0030] 在某些状态下，冷却系统 54 被可控制成以可控方式限制热交换器 22 和或 62 中的热交换速率。这种控制的实现可以通过电子控制系统 34，或安装有冷却系统 54 驱动的任何电子控制系统。在图 3 所示的实施例中，热交换器包括双向旁通冷却 66，其以可控方式转移流经外部气体冷却 68 的一部分气流。热交换器也包括双向旁通冷却 70，其以可控方式转移流经外部冷却剂冷却 72 的一部分冷却剂气流。所述双向旁通冷却可以是电子可控分配阀。在图示的实施例中，双向旁通冷却 70 提供两个流位置：第一和第二流位置。第一流位置是散热片流出的冷却剂冷却流经热交换器 22 的内部冷却器冷却 60；第二流位置是散热片流出的冷却剂冷却流经外部冷却器冷却 72。双向旁通冷却 66 也提供两个流位置：第一和第二流位置。第一流位置是气体流经热交换器的内部气体冷却 58；第二流位置是气体流经外部气体冷却 68。

[0031] 双向旁通冷却可以透过电子控制系统 34 控制。电子控制系统可以透过增加绕经旁通冷却的气体或冷却剂的量，降低热交换速率（反之亦然）。同样，可将冷却剂冷却 56 和风扇 64 以可操作方式连结到电子控制系统。电子控制系统可被构建改变冷却剂冷却和风扇速度，从而提供冷却剂和环境空气之间的所需的热交换速率。

[0032] 在本发明所设想的实施例中，电子控制系统 34 可被构建改变上述热交换速率中任何或全部，从而保证冷却系统 54 和安装有冷却系统的引擎系统的整体性能。相应地，冷却系统 54 包括传感器 74，其以可操作方式连结到电子控制系统。电子控制系统被构建成向传感器询问后判定未冷却气流的温度。根据传感器的回复和其他因素，电子控制系统便可判定气体是该流过热交换器的内部气体冷却 58，还是绕经外部气体冷却 68。

[0033] 同样，电子控制系统 34 也可以在其他状态下，判定气体是该流过热交换器还是旁通冷却。如果热交换器 22 是例如 HP EGR 冷却器，则让废气流通过热交换器内部气体冷却将启动冷却 HP EGR 的模式。另一方面，废气流通过旁通冷却将启动未冷却（即旁通）HP EGR 的模式。这些模式可适用于不同的环境下，如下文将深入描述。此外，本文构想成熟的冷却系统中，双向旁通冷却 66 可以为一个分配器，且被构建成以可控方式转移 HP EGR 的一部分，使之流经外部气体冷却 68，同时允许剩余的 HP EGR 流经内部气体冷却。以此方式，可按需要在冷却和未冷却 EGR 之间选择任何分割。

[0034] 自然应知，图 3 只绘制了一个示例冷却系统的一个部分，因此可使用其他更为复杂的冷却系统。尽管图 3 只绘制了冷却系统 54 中的一个热交换器，但其可包括多个热交换器，例如 EGR 冷却器和供气冷却器。所述多个冷却器以平行或串联形式流体地设置，各冷却器可作为相同的散热片冷却的引擎冷却剂。在其他实施例中，冷却系统可包括多个非连通冷却剂环路。

[0035] 以上所述的构设提供了不同的向引擎进气歧管供气的方法。下面相应地将参照上述构设举例说明这些方法。然而应知，本文所述的方法以及完全属于本发明范围的其他方
法，也可以通过其他构设实现。本文所述的方法包括由传感器执行的各种测量和/或感应动作。这些方法也包括各种计算、对比和决策动作，这些动作可通过操作方式连接到传感器的控制系统执行。所述方法更包括电子控制系统在决策事件后作为回路而选择性输出的信号和控制动作。

[0036] 图4举例说明了同一实施例的系统在进气歧管切气的方法76。在78处，预测

引擎速度和引擎负荷。为达此目的，电控控制系统可以询问一个或一个对应于发动机速度

和负载的引擎系统传感器。在其他实施例中，可以感应适当的相关度量例如空气流量、燃

料喷射量和/或内扭矩，并用其计算有效的引擎速度和负荷。与之结合，可感应一个对应

于驱动装置引擎扭矩需求（例如踏板位置）的度量，从而得到引擎速度和负荷的预测。

[0037] 在80处，判断所预测的引擎速度和负荷是否符合引擎稳定态的操作状态。若引

擎速度或负荷不符合稳定态操作情况，则方法进行到82，此时根据预测速度和负荷选择瞬时

EGR流速限值。否则，方法进行到84，此时使用稳定态EGR流速限值控制EGR。

[0038] 处于稳定态时，可根据若干目标来定义EGR流速限值，如为了避免不良的操作情

况，例如压缩机喘振、阻塞以及进气过热等。除了上述所述情况，稳定限值还可以起到保持

燃烧稳定性和压缩机效率以及控制排放的作用。因此，一个实施例时将稳定EGR流速限值设

置如下：LPEGR流速下限对应于避免发生压缩机喘振所需的最小值；HP EGR流速上限对应

于避免发生阻塞和压缩机过热的最大值，未冷曲 HP EGR流速的下限对应于足以提供稳定

燃烧的最小值；LP EGR流速的上限对应于避免发生进气过热和引擎外溢烟雾过量的最大

值。在本实施例和其他实施例中，冷却HP EGR流速的下限对应于可避免HP EGR冷却器出现

过量过热的最小值。由于稳定限值的这种定义方法，可以在稳定限值内调整LP EGR流速和

未冷却 HP EGR流速，使进气歧管中保持目标稀释水平、稀释率、和/或燃烧大气质量，如下

文将描述。然而应知，这种特定的方法不应当以限制性的眼光看待，而在另一实施例中，

LP EGR的上限和/或下限流速可以设置成不仅避免诸如阻塞和喘振之类的危害性效果，还

要保证涡轮增压器和/或引擎系统效率。因此，LPEGR流速下限可以设置为通过将压缩机

提前向最高效率的速度/压力比区域，相对于涡轮增压器压缩机的低效率操作保持一个

裕量。在另一个实施例中，限值可以设置为使整个引擎系统效率（即燃料经济性）最优化。在

又一个实施例中，限值可设置为使任一诊断的排放性能（例如NOx控制性能）最优化。在

[0039] 方法76始于82处，此时已经判定，引擎的当下的负荷或速度瞬态不够或不符合上述

稳定EGR流速限值。此方法构想了若干不同的瞬态情况，和稳定流速限值一样，每组瞬态

流速限值都包括LP EGR流速下限、LP EGR流速上限、未冷却 HP EGR流速下限和未冷却 HP

EGR流速上限。这些限值可彼此不同，也可以和本文所述的稳定限值不同。

[0040] 轻触（tip-in）是瞬态情况的例子之一。轻触期间，冷却和非冷却 HP EGR的流速

上限和下限相对应其限值有所下降。这些上限值的下降由于限制了通过HP EGR环路的废气

压力损失，而使压缩机的加速可以更快。同样，冷却和非冷却HP EGR的流速下限可相对其

其稳定值有所降低。对于轻触的短暂时刻，引擎可以容忍上述由于HP EGR流速降至低于稳

态流速下限而造成的不完美的状态。此外，由于HP EGR未冷却点稀进气歧管较近，故 HP EGR

的变化会迅速导致进气歧管组合物的变化。因此，在瞬变期间降低HP EGR将更迅速允许引

擎达到新的目标，后者可能在更高负荷情况期间表现更低。

[0041] 轻放（tip-out）是瞬态情况的另一例子。轻放期间，LP EGR流速下限可相对于其
稳态值有所上升。该限值的提高可允许保持更大的涡轮增压器惯性，尽管同时减小了引擎负荷。因此，当引擎负荷再增加时，压缩机则已经升到高旺有较慢流速限值所能容许的更高的水平。以此方式，在 LP EGR 下限以上的控制，将涡轮机惯性维持在一个提供足够迅速的水平。在另一个实例中，LP EGR 流速上限可提高到一个能有效抑制引擎吸气中的瞬态 NOX 尖峰的值。在上述和其他实例中，当 LP EGR 流速上限在轻放情况期间提高时，可增加引擎系统的燃烧稳定性。（参见下文）

[0042] 进气节流阀开启是另一种瞬态情况。在进气节流阀开启情况期间，冷却 HP EGR 的流速下限将相对其瞬态值有所上升。提高此限值可在瞬变高引擎负荷情况下，相对 LP EGR 增加冷却 HP EGR 的速率。相应地，当负荷再次下降且引擎将不能容忍高水平的进气空气稀释时，EGR 稀释剂将被更快抽出。与瞬态情况相比，其少部分将去填充较长的 LP EGR 路径，而大部分将去填充较短的 HP EGR 路径。以此方式，在未冷却 HP EGR 下限之上进行操作将可以提供对进气歧管更快速的清除（purge），这正是离开瞬态进气节流阀开启情况所需。

[0043] 催化剂升温（例如冷启动）是另一种瞬态情况。在催化剂升温期间，未冷却 HP EGR 和 LP EGR 的流速下限可相对其瞬态值有所上升。根据两个 EGR 流速水平都需要增加的传热模型来说，这些限值的上升有利于催化剂的迅速升温。应知，未冷却 HP EGR 可提供更高的废气温度，而 LP EGR 可提供更大的废气流量。催化剂升温的适当的传热模式会考虑到这两种效果，以便使催化剂点燃所需的时间最小化。

[0044] 现在返回图 4，在 86 处，使用选择的瞬态 EGR 流速限值控制 EGR。相应地，可在为了保持进气歧管内目标稀释水平而选取的瞬变限值内，调整 LP EGR 流速和未冷却 HP EGR 流速（如下文所述）。该方法从 86 或 84 处返回。

[0045] 图 5 举例说明了向一实施例的引擎系统进气歧管供气的另一方法 88。方法 88 可以在启用了 LP EGR 和未冷却 HP EGR 的引擎系统中执行。换言之，引擎系统可以是缺少 HP EGR 冷却器的引擎系统。

[0046] 在 78 处，预测引擎速度和引擎负荷。在 90 处，计算一个或一个以上的 EGR 目标水平，以及 EGR 流速上、下限。在一个实施例中，计算出的 EGR 目标水平包括一个目标 FMAN。FMAN 与进气歧管中的氧气相对量（例如部分压力）反向有关。因此，FMAN 随着进气歧管中循环废气与新鲜空气的比例而变化，但仍然会考虑循环废气中氧气的相对含量。目标 FMAN 可以根据进气歧管中所测得的氧气的相对含量、或 EGR 流速和废气氧气水平计算出来。反之，又可用引擎转速、质量空气流和歧管空气压力及温度，由速度密度判定 EGR 速率。在方法 88 中，于 90 处可计算 EGR 流速限值，基本上如上文方法 76 所述的内容。

[0047] 继续图 5，在 92 处，判定处于各自流速下限的 LP EGR 和未冷却 HP EGR 是否会超过其目标 FMAN，即允许 EGR 处于这些最低速率是否将导致进气歧管中提供的氧气太少。若处于其各自流速下限的 LP EGR 和未冷却 HP EGR 不会超过目标 FMAN，则方法进行到 94。否则，方法进行到 96。在 96 处，设置 LP EGR 流速至其下限。在 98 处，设置未冷却 HP EGR 流速至一如下水平：其与处于下限的 LP EGR 流速相结合可导致进气歧管稀释水平接近目标 FMAN。然后，在 100 处，提高引擎系统中的燃烧稳定性。在本文构想的各种实施例中，燃烧稳定性的提高可以通过例如调整喷射启动 (SOI)、减少 EGR 的总量、增加引燃剂数量、或附加其他引燃剂。

[0048] 在 94 处，判定处于各自流速上限的 LP EGR 和未冷却 HP EGR 是否能提供达到目标
FMAN 的足够的 EGR。若不能，则方法进行到 102，此时重设目标 FMAN 为上限总和。此动作为是为了保护引擎免受不良影响；压缩机阻塞，引擎过热，进气歧管过热及烟雾外溢过量。但是，若处于各自速流上限的 LP EGR 和未冷却 HP EGR 可提供达到目标 FMAN 的足够 EGR，则方法进行到 104。在 104 处，计算与处于下限的未冷却 HP EGR 流速相结合可导致进气歧管稀释水平会聚于目标 FMAN 的 LPEGR 流速。在 106 处，判定计算所得 LP EGR 流速是否超过 LP EGR 的流速上限。若否，则方法进行到 108，此时设置未冷却 HP EGR 流速为其下限，再回到 110，此时设置 LP EGR 为计算值。但是，若计算值不超过流速上限，则方法进行到 112，此时设置 LP EGR 流速为其上限，再回到 114，此时设置未冷却 HP EGR 流速至一如下值；其与处于上限的 LP EGR 流速相结合导致进气歧管稀释水平会聚于目标 FMAN。因此，所述方法展示了两个特例，其中未冷却 HP EGR 流速最小化且受制于流速上限，从而与受制于流速上限的 LP EGR 流速相结合达到目标稀释水平。该方法从 100、102、110 或 114 返回。

[0049] 图 6 举例说明了向一实施例的引擎系统进气歧管供气的另一方法 116。方法 116 可以在全部启用了 LP EGR、未冷却 HP EGR 和冷却 HP EGR 的引擎系统中执行。换句话说，引擎系统可以有一个 HP EGR 冷却器能够全部或部分被绕行。

[0050] 方法 116 起始方式与上述方法 88 相同。但在方法 116 中，在 94 处，若判定处于各自速流上限的 LP EGR 和未冷却 HP EGR 不能提供目标 FMAN，则方法进行到 118，此时启动 HP EGR 冷却。可以通过例如关闭 HP EGR 冷却器旁通阀，来启用 HP EGR 冷却。该方法接着进行到 120，此时判定处于流速上限的 LP EGR 和冷却 HP EGR 是否能提供目标 FMAN。若否，则方法继而进行到 122，此时将目标 FMAN 减至对应于流速上限之和，以避免例如压缩机阻塞，压缩机温度过高和烟雾外溢过量。然而，若处于流速上限的 LP EGR 和冷却 HP EGR 能提供目标 FMAN，则方法进行到 124。在 124 处，判定处于流速下限的冷却 HP EGR 和处于流速上限的 LP EGR 相结合的效果是否将超过目标 FMAN。若是，则方法进行到 126，此时设置冷却 HP EGR 流速至其流速下限，再回到 128，此时设置 LP EGR 流速至一个如下值；其与处于下限的冷却 HP EGR 流速相结合将导致进气歧管稀释水平会聚于目标 FMAN。然而，若处于流速下限的冷却 HP EGR 和处于流速上限的 LP EGR 相结合的效果不会超过目标 FMAN，则方法进行到 130，此时设置 LP EGR 流速至其上限。该方法接着进行到 132，此时设置 HP EGR 流速至一个如下值；其与处于上限的 LP EGR 流速相结合将导致进气歧管稀释水平会聚于目标 FMAN。因此，所述方法展示了两个特例，其中冷却 HP EGR 流速最小化且受制于流速下限，从而达到与受制于流速上限的 LP EGR 流速相结合时的目标稀释水平。该 116 方法从 100、122、128 或 132 返回。

[0051] 图 7 举例说明了向一实施例的引擎系统进气歧管供气的另一方法 134。方法 134 可以在如方法 88 所述的引擎系统中执行。因此，方法 134 起始方式与方法 88 相同。但在方法 134 中，90 处计算 EGR 目标包括计算目标 LP EGR 流速。在另一实施例中，可以根据效率计算目标 LP EGR 流速；其可以是例如最优化涡轮增压器效率和 / 或引擎系统效率的流速。

[0052] 在方法 134 的 94 处，判定处于各自速流上限的 LP EGR 和未冷却 HP EGR 可以提供目标 FMAN，接着方法进行到 136。在 136 处，判定总 EGR 流速（即对应于目标 FMAN 的流速）减去计算所得目标 LPEGR 流速是否小于未冷却 HP EGR 的流速下限。若是，则方法进行到 104（参照上文）。否则，方法进行到 138。在 138 处，判定总 EGR 流速减去目标 LP EGR 流速是否大于冷却 HP EGR 的流速上限。若是，则方法进行到 140；否则，方法进行到 142。
在140处，设置未冷却HP EGR流速至其流速上限，在144处，设置LP EGR流速至一个如下水平，其与处于上限值的未冷却HP EGR相结合将导致进气歧管稀释水平会聚于目标FMAN。
在142处，设置LP EGR流速至其目标水平，在146处，设置未冷却HP EGR流速至一个如下水平，其与处于目标水平的LP EGR流速相结合将导致进气歧管稀释水平会聚于目标FMAN。
该方法从102.144或146返回。

[0053] 图8举例说明了向一实施例的引擎系统进气歧管供气的另一方法148。方法148可以在如方法134所述的引擎系统中执行。

[0054] 因此，方法148起始方式与方法134相同。但在方法148中，在94处，若判定处于各自流速上限的LP EGR和未冷却HP EGR不能提供目标FMAN，则方法进程进行到118；此时启动HP EGR冷却。方法接着进行到150，此时判定总EGR流速（即对应于目标FMAN的流速）减去目标LP EGR流速是否小于冷却HP EGR流速下限。若是，则方法进行到126；否则，方法进行到152。在126处，设置冷却HP EGR流速至其下限，在154处，设置冷却HP EGR流速至一个如下水平，其与设至流速下限值的冷却HP EGR相结合将导致进气歧管稀释水平会聚于目标FMAN。在152处，设置LP EGR流速至其目标值，在128处，设置LP EGR至一个如下值，其与设至指定水平的前述EGR相结合将导致进气歧管稀释水平会聚于目标FMAN。该方法从100、154或128返回。

[0055] 应知，本发明揭露的实例控制和评估路径可用于不同的系统构设。这些路径可用在一种或多种不同的处理方法中，例如事件驱动、中断驱动、多任务、多线程等方法中。由此，本发明揭露的程序步骤（操作、功能和/或动作）可以编为程序码存入电子控制系统的计算机可读存储媒介中。

[0056] 应知，在一些实施例中，可以省略此处某些实施例中描述和/或图示的某些处理步骤而不至脱离本发明范围。同样，所列示的步骤顺序并非达到预期结果之必需，而只是为了图示和描述之便。根据所采用的特定方法，可以重复执行一个或多个图示的动作、功能或操作。

[0057] 最后应知，本发明中描述的系统和方法实为举例之意，这些特定的实施例或实例不应当以限制性的眼光来对待，因为本发明构想了各种变形形式。因此，本发明包括了本文揭露的各系统和方法的所有新颖和非显而易见的组合和组合。
图 3
图4
图 5
图 7