A 0 0 O O

0 02/099635 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 December 2002 (12.12.2002)

AT A0 00 A0

(10) International Publication Number

WO 02/099635 Al

(51) International Patent Classification”: GO6F 9/44

(21) International Application Number: PCT/US02/16838

(22) International Filing Date: 30 May 2002 (30.05.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/295,201 1 June 2001 (01.06.2001) US

(71) Applicant (for all designated States except US): THE
JOHNS HOPKINS UNIVERSITY [US/US]; 34th and
Charles Streets, Baltimore, MD 21218 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCHEIDT, David,
H. [US/US]; 2709 Thyme Drive, Edgewater, MD 21037
(US). WATSON, David, P. [US/US]; 17 Ridge Road, Sev-
erna Park, MD 21146 (US). ALGER, David, L. [US/US];
1410 Rio Grande Court, Severn, MD 21144 (US). MC-
CUBBIN, Christopher, B. [US/US]; 1205 Birch Avenue,

(74

(81)

(L))

Baltimore, MD 21227 (US). VICK, Shon, D. [US/US];
2805 Bartol Avenue, Baltimore, MD 21209 (US).

Agents: GRAF, Ernest, R. et al.; The Johns Hopkins Uni-
versity, Applied Physics Laboratory, 11100 Johns Hopkins
Road, Laurel, MD 20723-6099 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR AN OPEN AUTONOMY KERNEL (OAK)

(57) Abstract: The Open Autonomy Kernel (OAK) addresses critical infrastructure requirements for next generation autonomous
and semi-autonomous systems (24), including performance tracking, anomaly detection, diagnosis, fault recovery, and plant "safing".
OAK combines technologies in automated planning and scheduling, control agent-based systems (22), and model-based reasoning to
form a portable software architecture (26), knowledge-base, and open Application Programming Interface (API) to enable integrated

auxiliary subsystem autonomy.

w0 02/099635 A1 NI IO 00 OO 000 R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/099635 PCT/US02/16838

SYSTEM AND METHOD FOR AN OPEN AUTONOMY KERNEL (OAK)

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] " This application claims the benefit of U.S. provisional application no.
60/295,201, filed on June 1, 2001, which is hereby incorporated by reference in its

entirety.
STATEMENT OF GOVERNMENTAL INTEREST

[0002] This invention was made with U.S. Government support under the
Office of Naval Research, Arlington, Virginia under contract number N00014-00-C-
0050. The U.S. Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] Efforts to automate the control of complex connection-based systems
such as, for instance, engineering plants aboard naval vessels have emphasized
the infrastructure and diagnostic aspects of plant management, i.e., monitoring
subsystems via sensors and presentation of the sensor data to human operators.
Interpretation of and response to the data remain largely manual tasks. This
interpretation and response function, especially in damage control scenarios, is a
significant factor in determining manpower levels. If the incident assessment and
response loop can be closed with a reliable autonomous reasoning process,
significant relief in overall manpower levels can be realized. The best automation
efforts to date have been based on expert diagnostic knowledge in the form of
coded rules or procedures that are interpreted by the system at runtime to detect,
predict, or diagnose fault conditions. However, even the best automation efforts

require significant amounts of human diagnosis and input.

-1-

WO 02/099635 PCT/US02/16838

SUMMARY

[0004] The open autonomy kernel (OAK) architecture of the present invention
extends an automated reasoning paradigm in a number of important ways. First,
OAK is based upon the belief that the next evolutional step in complex system
automation involves goal-directed commanding at the system component level.
This shifts the control paradigm from one of sending commands to subsystems, to
sending goals and resources to intelligent subsystem management control agents
that require minimal, if any, direct operator interaction. Secondly, subsystem
management control agents are loosely coupled across a distributed, networked
infrastructure. This results in a dynamic and adaptable coordination capability,
leading to a more survivable overall system architecture. Finally, OAK uses
declarative model-based reasoning as an extension to current rule and procedure
based formalisms in the control agent control loop. Qualitative model-based
reasoning provides the unique potential for performing real-time detection,

identification, and diagnosis of unanticipated fault conditions.

[0005] OAK is based upon an open‘ control agent communication
infrastructure that includes a plurality of control agents coupled with respective
subsystems. Control agents communicate via a messaging protocol that permits
them to share their subsystem status and subsystem goals with other control
agents. Status and goal data allows control agents to collaborate in diagnosis,
prediction, or event response scenarios. The OAK infrastructure further supports
the notion of a command element that can control and establish goals for the control
agents. The command element may be a human operator, an outside control

agent, an external software system, or the control agent community.

WO 02/099635 PCT/US02/16838

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIGURE 1 illustrates one example of a logical OAK hierarchy.

[0007] FIGURE 2 illustrates a sample OAK communication network of control
agents.

[0008] FIGURE 3 illustrates the architecture of a control agent within OAK.

DETAILED DESCRIPTION

[0009] The open autonomy kernel (OAK) provides a goal-directed
coordinated intelligence approach with respect to complex connection-based
system architectures. Connection-based systems can be thought of as physical or
logical systems that are comprised of well defined components whose behavior is
influenced by other well defined components along one dimensional paths.
Examples of connection-based systems include, but are not limited to, electrical
systems, plumbing systems, and computer networks. In addition, connection-
based systems can be combinations of functionally distinct but interdependent
system components such as an electrical system, a plumbing system, and a
computer network that are components of, for instance, an overall engineering plant

management system.

[0010] The term “components” includes both physical hardware components
such as, but not limited to, a valve, a circuit, or a switch, as well as a cohesive
collection of such hardware components, such as, but not limited to, a pumping
station, an electrical substation, or a power grid. Components may also refer to a
hardware/software combination that behaves as a distinct unit (e.g., a valve and its
controller). Components may also comprise other more detailed components. A

-3-

WO 02/099635 PCT/US02/16838

key distinction is that the behavior of an individual component is easily defined from

the perspective of peer components interacting with the individual component.

[0011] OAK provides intelligent support for three key features pertaining to
overall system confrol: estimation, communication, and control. The primary
building blocks of an OAK system architecture include control agents (CA), model-
based reasoning engines (MBRE), control agent communications brokers (ACB),
and control mediators (CM).

[0012] OAK utilizes two key technologies to perform the aforementioned
functions. First, control is distributed through the use of control agent-based
software. Secondly, OAK implements intelligent reasoning within each control agent
using a technology known as Model-Based Reasoning (MBR). A primer of control
agent based software and model-based reasoning as related to the present

invention is included to facilitate a better understanding of the present invention.
Control agent Based Software

[0013] A control agent is an independently executing controller that is
coupled to and responsible for an identifiable subsystem within a larger system, that
is, at least in part, controlled by other peer control agents. A control agent is
capable of perceiving changes in the subsystem, identifying the state of the
subsystem, planning actions in accordance with the current subsystem state and/or
desired subsystem goals, and executing planned actions.

[0014] OAK control agents are intrinsically permanent, stationary, exhibit both
reactive and deliberative behavior, and are declaratively constructed. Control
agents are reactive in their ability to reconfigure the subsystems within their control
in the context of an existing task plan. Control agents are deliberative in their ability
to create a task plan in response to observed states and defined goais. OAK

control agents’ extrinsic characteristics include proximity to the controlled

-4 -

WO 02/099635 PCT/US02/16838

subsystem, social independence, and both awareness of and cooperativeness with
goals and states of other control agents. OAK control agents are comprised of
nearly homogeneous control agents, and are independently executed yet contain
unique models of the subsystem for which the control agent is responsible. OAK
control agents are environmentally aware and behavior of the environment is

predictable through each control agent's model.

Model-based Reasoning

[0015] OAK control agents employ Model-based Reasoning (MBR) to deduce
the condition of their underlying subsystems. Model-based reasoning, as applied to
OAK, can be thought of as:

reasoning about a subsystem’s behavior from an explicit model of the
mechanisms underlying that behavior. Model-based techniques can very
succinctly represent knowledge more completely and at a greater level of
detail than techniques that encode experience, because they employ
models that are compact axiomatic systems from which large amounts of
information can be deduced.

[0016] In OAK, a particular flavor of MBR called “Qualitative Model-Based
Reasoning” is used. This branch of MBR focuses upon using symbolic (rather than
quantitative) representations of system behavior in order to simplify the modeling
process and enable reactive-level response times. First, Model-based
programming techniques are used to develop a set of qualitative, first-principles
component models for elements of the controlled system. Multiple instances of
these component models are combined to produce larger aggregate models of an
entire system. Then, these aggregate models are used at runtime by an MBR
kernel to produce system diagnoses. This kernel is able to resolve complex
system-level interactions between components to produce a best estimate of

system state. By placing the responsibility of resolving these complex interactions

-5-

WO 02/099635 PCT/US02/16838

upon the MBR kernel, the human modeler is freed from having to explicitly reason
through and encode all possible diagnoses a priori.

First Principles Modeling

[0017] First principles models are interconnected finite state automata (FSA)
in which interactions among connected FSA are explicitly enumerated by
associating attributes used to define states. Model-based reasoning (MBR) is state
estimation or planning of first principles models based upon resolving conflicts
between state definitions and the values of attributes used fo define states.

[0018] Discrete event system theory shows that systems may be modeled
using an automaton G = (X, E, /, I, Xo, Xp), in which X is the set of discrete states,
or state space; E is the finite set of events; f is the transition function; I'is the active
event function mapping X to E; X, is the initial state and Xn is the set of marked
states. Control of G is provided by a control policy that includes a set of control
actions. |

[0019] Automata that are memoryless are considered Markov Processes.
Association of control actions, costs and probabilities with state transitions allows us
to derive Markov Decision Processes (MDP). MDP are defined by the fuple (Xs, C,
Ec, /1, R) in which: Xs is the finite set of states of the system being tracked; C is the
set of possible commands of which ¢ is an element (c € C); Ec is a finite set of
commanded events described in the form (x;, ¢, xg) where x; is the initial state and
xr is the final state; /4 is a state transition model of the environment which is a
function mapping Xs x E¢ into discrete probability distributions over Xs, and R is the
cost function over Ec. The actions are non-deterministic, so we write /7 (x, e), in
which (x € Xs) and (e e Ec), for the probability that transition e will occur given the

current state x.

[0020] OAK is required to reason with the possibility of component failures,
so the commanded event set E¢ is replaced by the set of possible events Ep that

-6-

WO 02/099635 PCT/US02/16838

includes the commanded set and the failure events Er. (Ep = Ec U Ef) Note that
failure events may be commanded or spontaneous, and are assumed permanent
and non-recoverable. The state transition function fr is extended to Xs x Ep,

providing us with a failure sensitive MDP (Xs, C, Ep, fr, R).

[0021] By way of example, a failure sensitive model of a simple circuit

breaker may be described as follows:

M(breaker):
Xs: {open, shut, stuck-open, stuck-shut}
C: {open, shut, none}

Ep: {(open, shut, shut), (shut, open, open), (open, shut, stuck-
open), (open, none, stuck-shut), (shut, open, stuck-shut), (shut,
none, stuck-open)}

fri p(open, shut, shut), p(shut, open, open) =1,

p(open, shut, stuck-open), p(shut, open, stuck-shut), =
0.01;
p(*, *, stuck-open), p(*, *, stuck-shut), = 0.0001;

R: {ropen, I'shut = 1, Tnone = 0}

[0022] The behavior a system exhibits in state x, where x € Xjs, is defined by
attributes. Attributes are physical properties of the system. Propositional statements
containing these attributes are used to express system behavior in each state. The

behavior of our circuit breaker may be defined through the following propositions:

(breaker.state = (open v stuck-open)) - conduct

(breaker.state = (shut v stuck-shut)) - — conduct

WO 02/099635 PCT/US02/16838

[0023] Because internal sensors are subject to faults, and the measure of a
system is its effect on the systems it services, OAK is interested in the behavior of
our system as it relates to the outside world. External influences are modeled as a
special class of attributes known as interfaces. The circuit breaker has two such
attributes: current, and currento. Using these interfaces behavior definition

propositions are rewritten as:

(breaker.state = (open v stuck-open)) — (currenti, = currentoy)

(breaker.state = (shut v stuck-shut)) — (- currenti, A — currentout)

[0024] A system containing multiple related components may be modeled by
associating component quel interfaces in propositional statements declared in the
system model. A system model is represented by the tuple: Msystem = (Mcomp, A, P) in
which Mcomp is a set of failure sensitive component models, A is a set of attributes
defined by the system, and P is a set of propositions associating system defined
attributes A and Mcomp interfaces. A small system comprised of two circuit breakers

connected in series may be represented as follows:

M(system):

M(breakery), M(breakers): M(breaker); //defines breaker; and
breaker; to be “breakers”

breakers.currenty, = breakers.current,

[0025] Partially Observable Markov Decision Processes (POMDP) are MDP
that have been extended to include a finite set of observations. Failure sensitive
POMDP are represented by the tuple M = (Xs, C, Ep, O, fr, R). in which O is the
observation function that maps Xs to the finite set of observations. However, states

have been defined as abstractions represented in terms of atiributes. As

-8-

WO 02/099635 PCT/US02/16838

abstractions, states are not directly observable. The ability to observe a state is
associated with the ability to observe the attributes that define the state. A state is
observable if all of the attributes in any clause of a disjunctively formed state
behavior definition are observable. A state may be considered partially observable if
it is not observable and at least one attribute is observable. The observation
function O in traditional POMDP is replaced by an observation function O4 that
maps the attribute set A to the finite set of observations. The probability of making

an observation o from the attribute a is denoted as O(0,a).
Model Based Estimation

[0026] Estimation methods have been demonstrated for systems of
components modeled as failure sensitive POMDP. The first step in estimation is to
determine a belief state for the system. Assuming an initial state X; of the
components, and a set of commands ¢ — C applied to the system components
model-based estimation makes the naive assumption that the most probable
component transitions in Ec have occurred. The belief state X3 for all components is
easily derived. A single propositional statement that describes the believed values
of attributes within the system may be generated by conjoining the propositional
clauses associated with these belief states, general propositional clauses showing
component relationships and known attribute values for interfaces external to the

system. For example, consider the simple two circuit breakers in series model:

M(system): {
M(breaker;), M(breakerz): M(breaker);
breaker;.currenty,; = breakers.current,;
breakerq.current;, = external stimulus; }
breaker.initial_state = open;

breakerz.initial_state = closed;

-9-

WO 02/099635 PCT/US02/16838

Given the command breaker..command = open and an externally provided flow
(external stimulus = true) then the state set {breakers.state = open; breaker,.state =

open} is realized and the following propositional statement presents itself:

(external stimulus = ftrue) A (breakeriflowi, = external stimulus) A
(breakers.currentyy = breakerj.currentn) A (breakera.currente =
breakers.currenti,) A (breakers.currento,; = breakera.currenty,).

[0027] One can see how a value for an attribute, in this case our external
stimulus propagates through the system inferring values on the current, and

currenty attributes in breakers one and two.

[0028] Observed attribute values generate additional observed propositional
clauses (e.g., breakera.currenty,: = true). If the belief state is incorrect then a conflict
between the observed clause and one or more of the belief state clauses will be
generated. If no conflict is generated then the belief state is confirmed. A solution to
a conflict, or set of conflicts, is defined as a set of alternate transitions E that
generate propositional statements that do not conflict with observation clauses. For
example, in the breaker example if a single transition e: (shut, open, open) is
applied to the above initial state and breakerz.currentor = false is subsequently
observed a conflict will be generated. If the transition set is replaced by either of the

sets

E = {breakerz.transition(shut, open, stuck-shut)} or

E = {breakers.transition(shut, open, open), breakers.transition(open,
none, stuck-shut)}

-10 -

WO 02/099635 PCT/US02/16838

these transitions will generate a belief state that does not conflict with the
observation clause. Using the transitional probabilities found in the transition
function fr we can apply Bayes’ rule to the probabilities of our two candidate
solutions to determine their relative probabilities. The generation of possible solution
sets can be accomplished using Conflict-directed Best First Search (CBFS).

[0029] When multiple candidate solutions satisfy a set of conflicts, the most
likely solution is selected as a basis for reconfiguration and subsequent estimation.
To protect the estimation engine from permanently adopting an incorrect solution, a
Truth Maintenance System is used to track likely solutions. If future observations
generate clauses that provide support to alternative solutions, the TMS generates a
historical revision of the belief states.

Encapsulation and Abstraction
[0030] Large systems require models that, due to their complexity, are

difficult to process using CBFS and TMS. This complexity is mitigated through
encapsulation, decomposition and distribution. A system may be decomposed by
encapsulating portions of the system model into subsystems of modest size (<25
components). Subsystems inherit component and system semantics. The
components of the system, the subsystem attributes, and the propositional
statements used by the subsystem to associate components are represented by
(Mcomps A, P). Subsystem automata (Xs, C, Ep, Oa, /T, R) are associated with
subordinate component automata Mcomp by defining the subsystem states Xs using
propositional statements over subordinate component atiributes. The entire
subsystem is represented by the rather large tuple Msw = (Xs, C, Ep, Oa, /7, R,
Mcomps A, P, Aj) in which A, is the interface set for the subsystem. This structure
provides for subsystems to exhibit automaton-like behavior at an abstract level;
however, it is not necessary that they do so. Subsystems that contain null sets for

-11-

WO 02/099635 PCT/US02/16838

any or all of the abstract automata elements (Xs, C, Ep, Oa, fr, R) are acceptable

and often desirable.

[0031] If a subsystem is believed to be in a state, then the propositional
statement associated with its state is applicable. Likewise if a subsystem is believed
to be in a state, then the propositional statements that define the subordinate
component states are also applicable. The set of applicable statements may be
conjoined and reduced to create a single belief statement for the subsystem. Using
the combined belief statement, CBFS and TMS may be applied to perform
estimation and reconfiguration within the scope of the subsystem.

[0032] Because subsystems inherit the properties of component models, a
subsystem model may be used as a component of another subsystem. This parent-
child relationship permits building topologies of subsystems featuring numerous
models at varying levels of abstraction. Parent-child relationships are expressed by
associating the behavior, in terms of the child’s interfaces and goals, within

propositions internal to the parent.

[0033] Control with an independent CBFS and TMS for each subsystem is
complete if and only if the subsystem behavior represented by the subsystem'’s
proposition statement set is independent. Unfortunately this is not usually the case.
A subsystem’s interface attributes are, by definition, constrained to the world
outside of the subsystem. This problem is limited by enforcing design constraints
that remove some of the more difficult cross-subsystem dependencies. Design
constraints are focused on eliminating the possibility of conflicts being generated by
observations and propositional clauses that are difficult to resolve across
subsystems, and also eliminating the possibility of goals being directed to a
subsystem that cannot be directly addressed within the subsystem. While these

constraints are limiting, experience has shown that robust, useful models are still a

-12-

WO 02/099635 PCT/US02/16838

possibility. The design constraint is described in terms of conflicts generated during
the estimation process. Because our reconfiguration strategy is a mirror of our
estimation strategy, equivalent design criteria may be used to simplify
reconfiguration. Conflicts may be divided into two distinct types: independent
conflicts are identifiable by observation-proposition combinations that are contained
within a single subsystem; dependent conflicts are generated by behavior that is not

identifiable by observation-proposition combinations within a single subsystem.

[0034] Collaboration between independent subsystems is straightforward.
Observations are made by independent subsystems that resolve the conflict. After
the conflict is resolved the effects of the observation are propagated to the system

and other subsystems via interfaces.

[0035] As previously stated, OAK is a distributed, multicontrol agent system.
An OAK system can have a varying topology based on the overall system
application. OAK has two major use-cases that almost fully describe the operation
of the system: OAK's reaction to user-input goals; and OAK's reaction to system
state change. The primary intelligent components that enable OAK to accomplish
these use-cases are a model-based reasoning engine and a planner.

[0036] To perform the diagnostic phase of the control cycle, OAK control
agents continually update their states using the model-based reasoning engine, and
pass these state updates to other control agents that are interested so that these
control agents may update their states. In response to these states or to the
system's environment, an external actor or an OAK control agent will provide goals
to the OAK system, which are distributed for further processing.

[0037] FIGURE 1 illustrates one example of a logical OAK hierarchy. The
circles 10 represent control agents, and the diamonds 12 represent hardware. The

connecting lines represent parent-child control agent relationships 14 and

-13-

WO 02/099635 PCT/US02/16838

connections to hardware 16. User-defined goals flow down the hierarchy while

component states generally flow upwards in the hierarchy.

[0038] While a hierarchical topology is the topology that is presented herein,
the OAK architecture does not preclude other topologies. Other topological
possibilities include: peer-to-peer, where each control agent communicates facts
and goals to any other; multi-hierarchy, where there exist multiple loosely coupled
hierarchies; and a star topology, or one-level hierarchy. For the rest of this

discussion a hierarchical topology is assumed.

[0039] Each control agent has an associated Control agent Communication
Broker (ACB), which is responsible for handling all of the conirol agent's
communication with a control agent Communication Framework (ACF). The ACB
maintains a queue of messages coming into the control agent. Additionally, any
control agent that has direct communication with hardware has a control mediator
(CM) to handle the hardware level goals that are generated by these control agents
for the associated hardware, and to receive updates about this hardware. These
messages are not handled by the ACF. By using this layered approach, control
agents are decoupled from the ACF.

[0040] The Control Agent Communication Language (ACL) of OAK provides
several message templates, including messages for queries, state updates,
subscription requests, goals, exceptions, and control agent coordination. To protect
information, each control agent's ACB may optionally have an information access
matrix that determines which control agents are allowed to subscribe to that control
agent's events. The ACF allows any control agent to communicate directly with any
other control agent. Thus, communication between control agents is not restricted to

any logical hierarchical framework. The ACF also supports message logging.

-14 -

WO 02/099635 PCT/US02/16838

[0041] One of the major use-cases of OAK is to react to goals entered by an
external actor. These are system-level commands which have the potential of

transitioning the entire multicontrol agent system from one state to another.

[0042] OAK communicates with external actors via a graphical interface,
which is also decoupled from the rest of the system. Goals that are entered from an
external actor, such as a human operator, through this interface are sent directly to
a root level control agent using a goal message. This control agent develops a plan
with goals that apply to the domains of its child control agents. Goals have a priority

associated with them, which is used for goal preemption.

[0043] After the root level control agent develops a plan and directs a goal to
one of its child control agents, the goal is received by the child control agent's ACB,
sorted into its queue, and eventually accepted by the control agent for processing.
This control agent develops a plan to implement the goal. Since this control agent is
a root of its own tree, the goals developed by its planner are passed to its children
control agents. This propagation continues until leaf control agents at the hardware

level receive goals for their specific domains.

[0044] Once goals are received at the leaf level, a similar process occurs in
that a plan is developed and goals are passed out of the control agent. The only
difference is that the goals are now passed to the control agent's control mediator
(CM), which translates the goal into commands that a hardware driver can
understand. The CM has a queue of such commands in case the control agent is
able to generate commands more quickly than the CM is able to deliver them. Since
the CM is the only component that has direct interaction with the hardware drivers, it
is the only component that has to be updated when hardware itself is changed or

when hardware drivers are updated.

-15-

WO 02/099635 PCT/US02/16838

[0045] Successful goal implementation implies a state change, so a control
agent does not have to set up callbacks with the hardware to confirm that a
command was successful. Leaf control agents are already required to monitor the
hardware they control for changes in order o accomplish the second major use-
case of OAK. Therefore, the leaf control agent waits for a reaction from the
hardware monitors to indicate that the command has been successful. The control
agent is then free to pass out goals that were temporally dependent on the goal just
implemented. Since state changes are propagated up the hierarchy (as well as to
unrelated control agents, potentially), control agents at higher levels are also
informed that their goals were implemented and they can then pass out goals that
had to be put in a wait state. To an implementer of OAK, this means that the
incoming goal use-case and the state change use-case, which comprise the two

major functions of OAK, are decoupled.

[0046] To appropriately handle changes in the state of the system, OAK uses
a model-based reasoning engine (MBRE). Recall that in OAK, any control agent
may subscribe to another control agent's events (which are triggered by state
changes) assuming that it has permission. The control agent most likely to be
interested, however, is the control agent's parent, because the state of its children
are reflected as variables in its model. For this reason, parents will subscribe to
most of their children's state change events. The external actor's control agent may
also subscribe to any control agent's state change events, so that the user can be

advised of a state change at any level in the hierarchy.

[0047] State change events are transmitted through the use of a fact
message. This message contains a representation of the knowledge contained in a
control agent. Once a fact message is received, the control agent, using the MBRE,
determines whether or not the change is important enough to warrant a state
change. If the state changes, all subscribed control agents are informed, and

-16 -

WO 02/099635 PCT/US02/16838

propagation of state changes begins as discussed above. Note that since many
control agents may subscribe to an event, state changes may be propagating in.

several subtrees at any given time.

[0048] One of OAK's strengths is realized in a control agent's ability to
determine the state of its model, compare that state to a knowledge base, and
reactively plan. Thus, a control agent can autonomously control its domain until a
control agent that is higher in the hierarchy (or in the case of the root control agent,
the external actor's control agent) preempts its control. The component of OAK that

controls reactive planning is called the reactive manager.

[0049] There are two types of information in the reactive manager: persistent
goals and emergency conditions. Persistent goals are simply goals that are
desired true for the duration of the control agent. An emergency condition is
defined as a state transition that cannot be reversed and requires OAK to act
immediately to protect the resident system. When OAK detects an emergency, it will
preempt the external actor's goal and go to a predetermined goal that will minimize
damage to the system being modeled. This goal will be implemented until the actor
enters a goal with 'preempt' priority. From this point on, goals from the user are

implemented as completely as possible based on the damage to the system.

[0050] As mentioned above, when a control agent receives a goal it must use
a planning mechanism to create a viable pian to achieve that goal. The planis in a
format of an ordered sequence of fragments. Each fragment is comprised of one or
more subgoals. The idea is that within a fragment each subgoal may be
accomplished in parallel, while subgoals in a fragment prior to a given fragment
must be completed before the current fragment may be attempted.

[0051] Several different planners may be appropriate for different control

agents depending on how complex they are, what domain they are planning for, etc.

-17 -

WO 02/099635 PCT/US02/16838

Therefore, the planner is instantiated at run-time differently for each control agent
from a group of developed planners. To date, two planners have been developed:
the Scripted Planner and the highly specialized Graph-Based Planner.

[0052] The scripted planner is extremely simple but usefu! for simple control
agents, such as so-called leaf control agents. The scripted planner originally
matched the incoming goal with a pre-defined list of incoming goals, and output a
pre-defined plan. A later extension to the scripted planner allowed matching on the
incoming goal and a propositional logic expression about the current world-state.
For example, Goal A along with (variablel = valuel) A (variable2 # value2) would
generate plan A. Many different propositional expressions, and therefore plans,
could be associated with each incoming goal. Also, since the scripts are checked in
a specific predefined order, a simple priority of outputted plans can be imposed.
Therefore, with these simple, essentially rule-based scripts, complex behavior could

be created.

[0053] The graph-based planner has been designed specifically for the test
domain described below. Test domain planning comprised determining how to
move flow from a source to several sinks through a dynamic pipe network, with
many operational constraints. This planner represented the target domain as a
loadable model. The model was represented internally as a digraph, with weights on
each edge set according to the operational constraints. The planner operated by
performing Prim's Minimum Spanning Tree algorithm on the graph to determine
how to get flow to as many of the desired sinks as possible. Along the way, the
software determined the actions the control agent would need to take to align the
system in the manner that Prim's algorithm output. Finally, the planner would
generate a plan based on the actions determined.

[0054] OAK is a system of collaborative model-based control agents used for
control. OAK’s greatest strength is realized in a control agent’s ability to determine

-18 -

WO 02/099635 PCT/US02/16838

the state of its model, compare that state to its current goal, and reactively pian.

Thus, a control agent autonomously controls its domain.

[0055] Referring again to FIGURE 1, each control agent performs reasoning
and planning at various levels of abstraction on its own virtual machine. This allows
for logical distribution of time-intensive operations like planning. A higher-level
control agent, A4 for example, will develop a relatively abstract plan for
accomplishing some goal without having to worry about its implementation. Instead,
each goal in that plan is passed to lower level control agents that further
decompose the details of that goal. This propagation continues with plans becoming
increasingly detailed until they reach control agents (A111, Aq12, A13) that can
translate the goals directly into hardware commands. It is important to note that
while this architecture implies a hierarchical planning structure, the planning at
individual levels is not restricted to the Hierarchical Task Planning approach. This
design also allows for a high degree of modularity, since control agents that have

the same interface can replace each other.

[0056] FIGURE 2 illustrates a sample OAK communication network of control
agents. Communication is not limited to the logical channels shown in FIGURE 1.
Rather, any control agent 22 may communicate to any other control agent 22 via its
Agent Communication Broker (ACB) 24, through the Agent Communication
Framework (ACF) 26. Thus, any control agent may subscribe to any other control
agent's notifications. Control agents are associated with subsystems or high level
models. Each type of control agent may operate with data and goals provided by
other control agents. Within OAK, each control agent associated with a subsystem
provides closed-loop subsystem management using sensed parameters to infer
system state. The control agents can adjust control commands to achieve a desired
operating profile and/or respond to external events or component failure. Each
control agent can communicate state information and goals to other control agents

using a “publish and subscribe” mechanism to [imit bandwidth usage.
-19 -

WO 02/099635 PCT/US02/16838

[0057] Each control agent in an OAK architecture continually performs a
cycle of mode estimation, planning, and execution that is influenced by observed
subsystem state and received goals. This cycle is implemented using various

manager components in each control agent.

[0058] The architecture of a control agent 22 is illustrated in FIGURE 3.
Control agent architecture includes managers for each major step in the functioning

of the control agent.

[0059] The executive manager 32 acts as a gateway (analogous to OS| level
6) for the control agent 22. It is responsible for decoding and executing incoming
messages, as well as encoding outgoing messages. As such, it is the only manager
that communicates directly with the ACB 24. The ACB 24 communicates through
the ACF 26 to other control agents 22.

[0060] OAK control agents attempt to handle large amounts of information in
an efficient manner. While the planner is planning for a goal, the control agent can
still accept facts and resolve queries. As this is happening, there may be a change
in state that may preempt a plan already in progress. Multi-tasking within control

agents is handled by making each OAK message object a separate thread.

[0061] One type of message object is the query object. Query objects are
created when the control agent receives a state query. It interfaces with an MBRE
manager, which stores the current state of the model. The query object causes
creation of a fact object addressed to the query originator if the queried state is

recognizable or an exception if it is not.

[0062] Fact objects are another type of message object. In addition to the
scenario above, a fact object is created when state updates from other control
agents or from associated hardware are received. State updates from other control

-20-

WO 02/099635 PCT/US02/16838

agents are received via the ACB, and state updates from associated hardware are

received via the Control Mediator (CM).

[0063] The third type of message object is the goal object. Goal objects are
sent from higher level control agents to communicate their desire for this control
agent's subsystem. Goal objects interface with the MBRE manager to get the
control agent'’s current state, the Planner to receive the proposed plan, and the plan

implementation manager to execute the plan.

[0064] The fourth type of message object is the subscription object. These
objects contain a reference to a control agent, and a particular state variable that
that control agent is interested in. After receiving a subscription object, the receiving
control agent will send fact messages to the subscribing control agent whenever the
information that it was interested in changes. To this end, the subscription object

interfaces with the control agent’s subscription manager.

[0065] A fifth type of message object is the administrative command object.
These objects contain commands that deal with the control agent software’s
behavior outside the scope of the intelligent control system: things like stopping a

control agent, printing debugging messages, or resetting the control agent.

[0066] In addition to message objects, there are also seven managers within
an OAK control agent. The executive manager 32 routes all of the incoming and
outgoing messages for a control agent. The MBRE manager 34 exists solely to
store the current state of the model and to interface the query, fact, and goal objects
with the model-based reasoning engine (MBRE) 36. The MBRE manager 34 is the
component that handles the mode estimation portion of the OAK control cycle. The
ACL manager 38 translates each incoming message from the ACL into an object

that the control agent can use.

-21-

WO 02/099635 PCT/US02/16838

[0067] Each incoming goal that results in a successful plan must also
communicate with the plan implementation manager (PIM) 40, which ensures that
no step of a plan is implemented before each of the previous steps is successful.
The PIM 40 corresponds to the execution phase of the OAK control cycle. This
manager will have access to a matrix that stores the average transition time for
each goal, a multiple of which is added to a constant time to determine the amount
of time that the control agent will wait for an action to be performed. This makes the
control agents adaptive and can help detect problems with the system early on.

[0068] The subscription manager 42 handles subscription requests from
other control agents. It stores lists of control agents that are interested in various
state changes, and automatically generates fact messages to each of the

subscribed control agents when a given state variable changes.

[0069] The planner 44 is responsible for deducing plans from the current
input goal and the current estimated state. The planner 44 corresponds to the

planning phase of the OAK control cycle.

[0070] Finally, the reactive manager 46 continually compares the control
agent’s states to a vector of emergency states and a persistent goal to determine
whether or not the control agent’s model has entered a state that the developer has
identified as abnormal or hazardous. In the event that the reactive manager 46
identifies that the control agent has entered such a state, it pushes out a new goal

for the control agent to implement in order to prevent serious damage to the system.

[0071] The reactive manager 46 works by having a list of configurations of
the system in which the reaction will occur. Each configuration is a propositional
expression of facts, and can use the AND, OR, and NOT operators as well as
arbitrarily nested parenthesized clauses. Associated with each proposition is a goal.

When the control agent's model is in a state that is consistent with one of the

-22.

WO 02/099635 PCT/US02/16838

configurations, the reactive manager 46 will fire and give the control agent the goal

associated with that configuration.

[0072] To determine whether or not the system is consistent with one of the
listed configurations, the reactive manager 46 will compare the system state to each
of the propositions in the list each time the system’s state changes. The
configurations in the list will have a strict ordering, so some propositions are
guaranteed to be checked before others later in the list. If a proposition is consistent
with the system state, the associated goal is sent to the executive. This goal will be
treated the same as any incoming goal, including preempting the current goal if the
precedence of the current goal is sufficiently low. Upon receiving a reactive goal,
the executive may send an exception-type message into the ACF.

[0073] In addition to emergency states, the reactive manager 46 also stores a
persistent goal. This goal will be given by the developer at startup, but may be
changed by the system user via special configuration messages during run time.
Consistency with the persistent goal is checked before the reactive manager 46
checks for emergency conditions, and if the state is found to be inconsistent, the
control agent reacts as described above. The user should not, however, consider
leaving the persistent goal’s state to be catastrophic, as it is assumed to be in the

emergency case.

[0074] Mode Estimation (ME) is the process of deducing system states based
upon partial or incomplete information. Within the context of OAK, Mode Estimation
involves inferring the states of various system components using: first-principles
logic-based models, observations gathered from the hardware, and knowledge of
past commands issued to the hardware. Internal to a control agent, this capability is
provided by the REManager (Reasoning Engine Manager), which uses a single
underlying reasoning engine to produce diagnostic estimates or “candidates”.

These candidates are then converted into fact objects, which are the atomic units of

-23-

WO 02/099635 PCT/US02/16838

knowledge representation in OAK. Fact objects are passed between control

agents, and consequently, between reasoning engines.

[0075] Each time a command set is issued to the hardware, or new
observations arrive from the hardware in the absence of an explicit command, a
state transition occurs and the reasoning engine attempts to determine the most
likely candidates (resultant system states). The process of generating candidates
comprises a number of steps. First, the reasoning engine generates an expected
next state for each component based upon any command information that may be
available. Next, the reasoning engine considers all recent observations from the
system. A consistency-checking algorithm is then run against the plant model given
the new observations. The output from this algorithm is a set of ranked candidates,
or state estimates. It is then the responsibility of the external actor who is using the

reasoning engine to decide which candidate it wishes to select or “believe”.

[0076] The reasoning engine supports a number of parameters that are set
when the engine is first initialized. These parameters are used to configure the
estimation process, and different settings can potentially result in different
diagnoses being reached. Table 1 illustrates an example of reasoning engine

settings to be used with OAK control agents.

=24 -

WO 02/099635 PCT/US02/16838

TABLE 1

Parameter Setting

Search engine type CBFS (Conflict-directed Best First Search)
Number of candidates 3

Maximum number of candidates to search over | 10000

History length 10

Maximum number of trajectories 10

Progress style Full

Trajectory tracker type Extend

[0077] OAK receives high level goals from an external actor and creates an

implementation plan for these goals. The implementation is carried out by a
plurality of control agents in a distributed manner utilizing model-based reasoning
techniques. Moreover, OAK reacts autonomously to changes in the system. The
distributed nature of OAK permits the aforementioned functions to be realized in a
time efficient manner. In addition, OAK can respond to catastrophic changes in the
system environment including damage to the OAK system itself. All subsystems of
an OAK system, including the intelligent components, are decoupled from one
another wherever possible allowing for many different such subsystems to be
utilized. Ultimately, OAK controlled systems reduce manpower requirements which

is especially significant in repetitive or dangerous domains.

[0078] In the following claims, any means-plus-function clauses are intended
to cover the structures described herein as performing the recited function and not
only structural equivalents but also equivalent structures. Therefore, it is to be

understood that the foregoing is illustrative of the present invention and is not o be

- 95 -

WO 02/099635 PCT/US02/16838

construed as limited to the specific embodiments disclosed, and that modifications
to the disclosed embodiments, as well as other embodiments, are intended to be
included within the scope of the appended claims. The invention is defined by the
following claims, with equivalents of the claims to be included therein.

- 26 -

WO 02/099635 PCT/US02/16838

CLAIMS

1. A system for controlling a connection-based system in which a plurality of
independently executing control agents are distributed across an agent communication
framework, each control agent being associated with a subsystem of the connection-based
system wherein each control agent is responsive to other control agents such that
connection-based system goals and connection-based system states can be propagated
throughout the distributed network of control agents and acted upon to autonomously

control the connection-based system, said system comprising:

an agent communication framework that serves as a communication network for the

plurality of control agents, wherein
each control agent is comprised of:

an agent communication broker that provides a communication

interface between a control agent and the agent communication framework;

a model based reasoning engine communicable with the agent

~ communication broker that uses a first principles modeling technique to
estimate subsystem states based on data gathered from subsystem
hardware components and knowledge of past commands issued to said

hardware components; and

a planner communicable with the agent communication broker and the
model based reasoning engine that generates a plan for the implementation
of a specific goal based input including the specific goal and the current

subsystem state as determined by the model based reasoning engine.

2. The system of claim 1 wherein at least one control agent is communicable with an

external actor that provides a system level goal to initiate connection-based system-wide

control.
-27 -

WO 02/099635 PCT/US02/16838

3. The system of claim 2 wherein a control agent is communicable with at least one
hardware component within the control agent's subsystem via a control mediator that
provides an interface between the control agent and the hardware’s device controller.

4, The system of claim 3 wherein said control agent is further comprised of:

an executive manager communicable with the agent communication broker that

routes incoming and outgoing messages for the control agent;

an ACL manager communicable with the executive manager for translating
incoming messages into message objects, wherein message objects include a query
object having data pertaining to subsystem status queries, a fact object having data
pertaining to subsystem state updates, a goal object having data pertaining to the goal of a
control agent, and a subscription object having data pertaining to another control agent

that is interested in the status of the present control agent;

a model-based reasoning engine manager communicable with the executive
manager, said model-based reasoning engine manager for storing the current state of a
subsystem model; and communicating query, fact, and goal objects between the model-

based reasoning engine and executive manager,

a plan implementation manager communicable with the executive manager for

implementing a plan generated by the planner;

a subscription manager communicable with the executive manager for maintaining
a list of other control agents authorized fo receive messages from the present control
agent handling requests from other control agents and generating fact message objects

pertaining to subsystem state changes to said other control agents.

5. The system of claim 4 wherein said control agent is further comprised of a reactive
manager communicable with the executive manager for monitoring and comparing the
current control agent’s state against a set of emergency states and a persistent goal to
determine whether the current control agent’'s model has entered an abnormal or
hazardous state, wherein when the reactive manager determines that a control agent’s

model has entered an abnormal or hazardous state, said reactive manager generates a

-28 -

WO 02/099635 PCT/US02/16838

new pre-emptive goal for the control agent to implement in order to prevent damage to the

connection-based system.

6. A system for autonomously controlling a connection-based system in which a
plurality of independently executing control agents are distributed across an agent
communication framework, each control agent being associated with a subsystem of the
connection-based system wherein each control agent is responsive to other control

agents, said system comprising:

means for developing a strategy for the propagation of goals across the distributed

network of control agents;
means for propagating said goals across the distributed network of control agents;

means for developing a strategy for the propagation of inferred beliefs pertaining to
subsystem states across the distributed network of control agents; and

means for propagating said inferred beliefs pertaining to subsystem states across

the distributed network of control agents; and

model-based reasoning means using a first principles modeling technique to
perform subsystem state estimation to determine inferred beliefs pertaining to subsystem

states.

7. A method of autonomously controlling a connection-based system in which a
plurality of independently executing control agents are distributed across an agent
communication framework, each control agent being associated with a subsystem of the
connection-based system wherein each control agent is responsive to other control

agents, said method comprising:
(a) assigning, via an external actor, a goal to a control agent;

(b) in the control agent assigned a goal by the external actor, developing a goal

oriented plan comprised of subgoals;

(c) propagating the current subgoals to child control agents based on the

~ subsystems within the child control agents’ domains wherein the child control agents

-29-

WO 02/099635 PCT/US02/16838

further decompose the original goal oriented plan by developing a new goal oriented plan

of subgoals;

(d) repeating step (c) until the original goal oriented plan has been fully
decomposed to the point where the subgoals can be translated into instructions for

hardware that is within a control agent’s domain;

(e) causing a hardware component to execute an instruction set in accordance with

a control agent’s plan;

(f) determining the state of a control agent's subsystem using a model-based

reasoning means; and

(9) propagating the state of a subsystem to any interested control agents that
require certain subsystem state information to develop their goal oriented plan.

-30-

WO 02/099635

GOALS

12

10

10

1/3

16

12 12

FIGURE 1

PCT/US02/16838

STATES

WO 02/099635

2/3

PCT/US02/16838

FIGURE 2

PCT/US02/16838

WO 02/099635

3/3

jusby Josuon uan
44
, b=} 1epo 1N
9t~
A
1epoN
b A YANNY1d Jobeuel IHAN
H b : A Vm U\ A
h
labeuely
labeuey lafbeuspy uone 1abeuely 19b6eupy labeuepy
uondussans oAdESY ~Jusiue]duwy jeos ano e
ueld
o~ o~ or~] 1
e ﬁ
f Bt
19beUBRY
ot A 1% laBeUB 9AINDEXT
. A
Wo a0ov
vz -
40V BlA 4OV el
FAN zl swueby Joyio sjusby 18I0
0] SUOEAIBSq0 W01 S|BoY

€ 34NSId

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/16838

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOGF 9/44
Us CL 709/317

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 709/317, 223, 225

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the iniernational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 6,049,819 A (BUCKLE et al) 11 April 2000 (11.04.2000), the whole document. 1-5
A US 5,958,010 A (AGARWAL et al) 28 September 1999 (28.09.1999), the whole document. 1-5
A US 5,822,585 A (NOBLE et al) 13 October 1998 (13.10.1998), the whole document. 1-5
A US 5,655,081 A (BONNELL et al) 05 August 1997 (05.08.1997), the whole document. 6-7
A US 5,963,447 A (KOHN et al) 05 October 1999 (05.10.1999), the whole document. 6-7

|:| Further documents are listed in the continuation of Box C.

[]

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“Q" document referring to an oral disclosure, use, exhibition or other means

“p* document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

23 August 2002 (23.08.2002)

Date of mailing of the international Geﬁih report

16 SEP?

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer

LARRY DONAC?I;—;‘;MQ AZ M d:éﬁéﬂ')

Telephone No. 7¢8 305-3665

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

