

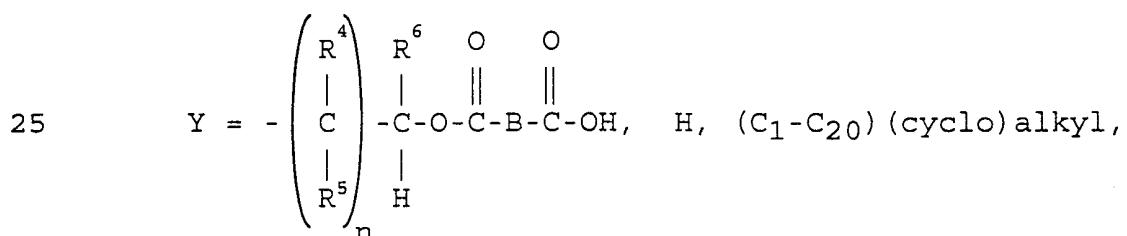
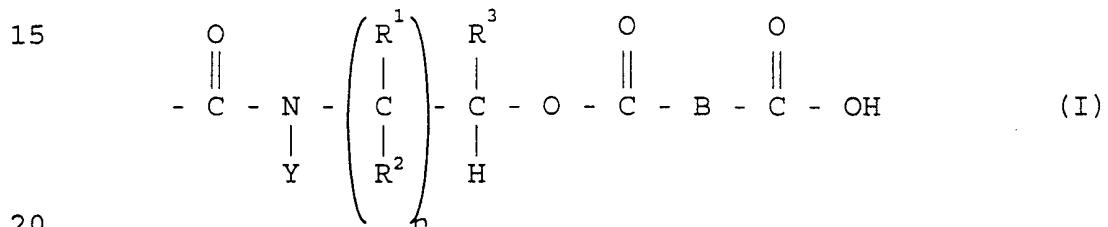
PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C08G 69/44, 63/685, C09D 177/12, 5/03		A1	(11) International Publication Number: WO 00/56804 (43) International Publication Date: 28 September 2000 (28.09.00)
(21) International Application Number: PCT/NL00/00179			(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 17 March 2000 (17.03.00)			
(30) Priority Data: 99200919.1 24 March 1999 (24.03.99) EP			
(71) Applicant (for all designated States except US): DSM N.V. [NL/NL]; Het Overloon 1, NL-6411 TE Heerlen (NL).			Published <i>With international search report.</i>
(72) Inventor; and			
(75) Inventor/Applicant (for US only): VAN BENTHEM, Rudolfus, Antonius, Theodorus, Maria [NL/NL]; Sportlaan 9, NL-6141 BR Sittard (NL).			
(74) Agent: SCHMEETZ, Marcel, Max, Hubertina, Johanna; DSM Patents & Trademarks, P.O. Box 9, NL-6160 MA Geleen (NL).			
(54) Title: CONDENSATION POLYMER CONTAINING ESTERALKYLAMIDE-ACID GROUPS			
(57) Abstract			
The invention relates to a condensation polymer having at least one carboxylic acid end group connected to an alkylamide group via an ester linkage. The polymer according to the invention may be obtained through reaction of an alkanolamine and a cyclic anhydride after which a polymer is obtained through polycondensation. The polymer can be applied in a powder paint composition.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.



AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

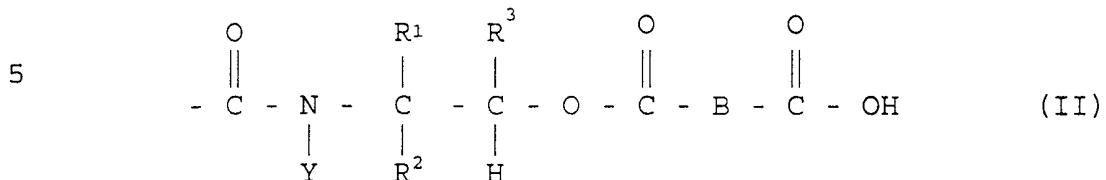
- 1 -

5 CONDENSATION POLYMER CONTAINING ESTERALKYLMIDE-ACID
GROUPS

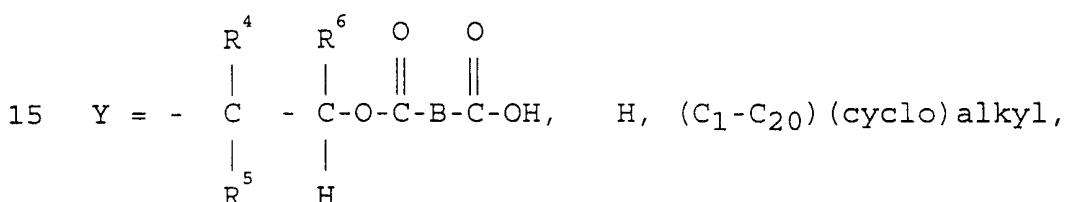
10 The invention relates to a condensation polymer having at least one carboxylic acid endgroup connected to an alkylamide group via an ester linkage.

Preferably, the polymer contains at least two groups according to formula (I):

30 or $(\text{C}_6 - \text{C}_{10})$ aryl,


$B = (\text{C}_2 - \text{C}_{24})$, optionally substituted, aryl or (cyclo)alkyl aliphatic diradical,

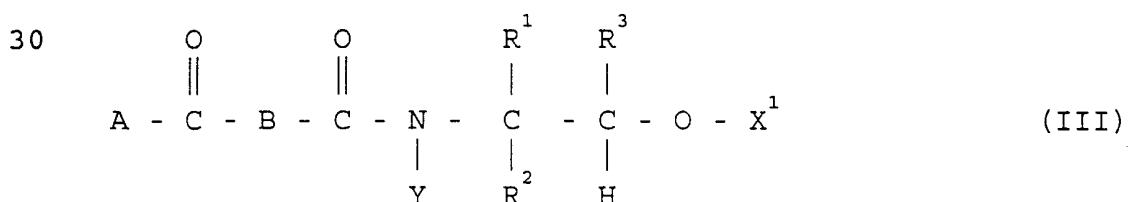
$\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5$ and R^6 may, independently of one another, be the same or different, H , $(\text{C}_6 - \text{C}_{10})$ aryl or


35 $(\text{C}_1 - \text{C}_8)$ (cyclo)alkyl radical and

$n = 1 - 4$.

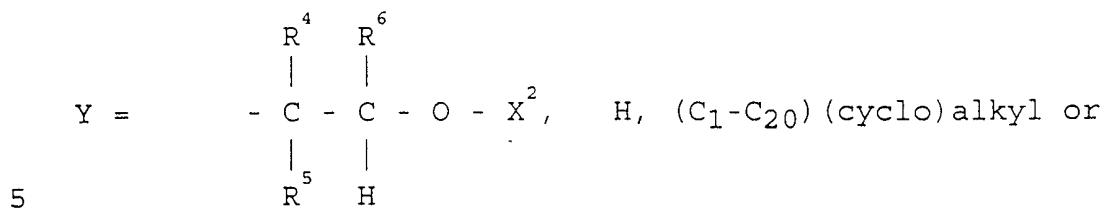
More preferably the polymer contains at least two groups according to formula (II):

10 in which

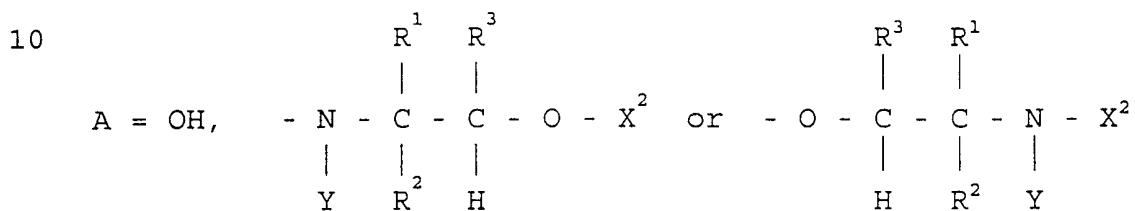

20 or $(\text{C}_6-\text{C}_{10})$ aryl,

$\text{B} = (\text{C}_2-\text{C}_{24})$, optionally substituted, aryl or (cyclo)alkyl aliphatic diradical, and

$\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5$ and R^6 may, independently of one another, be the same or different, H, $(\text{C}_6-\text{C}_{10})$ aryl or

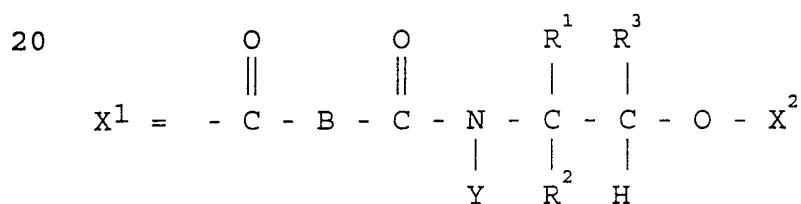

25 (C_1-C_8) (cyclo)alkyl radical.

According to another preferred embodiment, the polymer containing hydroxyalkylamide groups is a polymer according to formula (III):

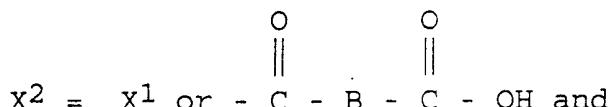


35

in which:



$(C_6-C_{10}) \text{ aryl}$

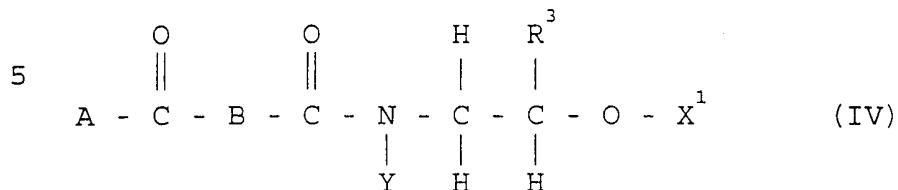


15

$B = (C_2-C_{24})$, optionally substituted, aryl or
(cyclo)alkyl aliphatic diradical,

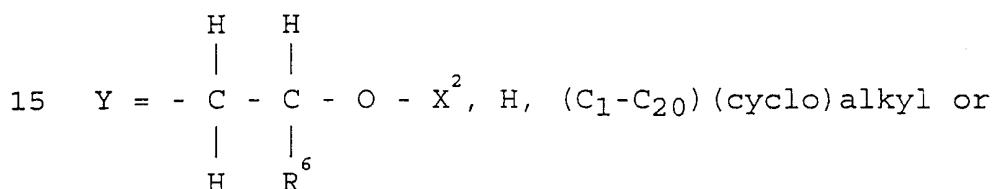
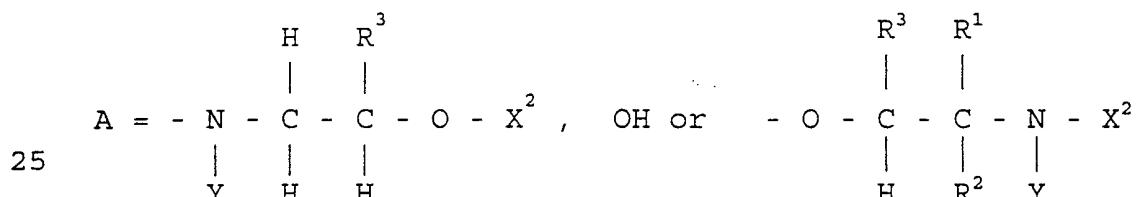
25

30

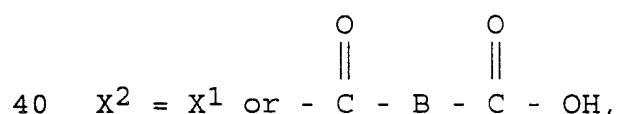
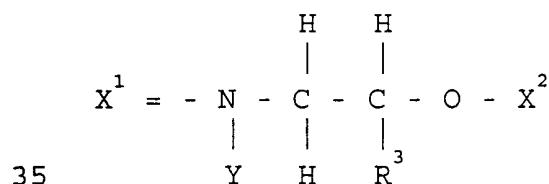

R^1, R^2, R^3, R^4, R^5 and R^6 may, independently of one another, be the same or different, $H, (C_6-C_{10}) \text{ aryl or}$
 $(C_1-C_8) \text{ (cyclo)alkyl radical or } CH_2-OX^2$.

35 In formulas (I), (II) and (III) R groups may together or with neighbouring carbon atoms form part of a cycloalkyl group.

According to another preferred embodiment of the invention, the polymer containing β -



- 4 -

esteralkylamide-acid groups is a polymer according to formula (IV) :



10

in which:

20 (C₆-C₁₀) aryl,

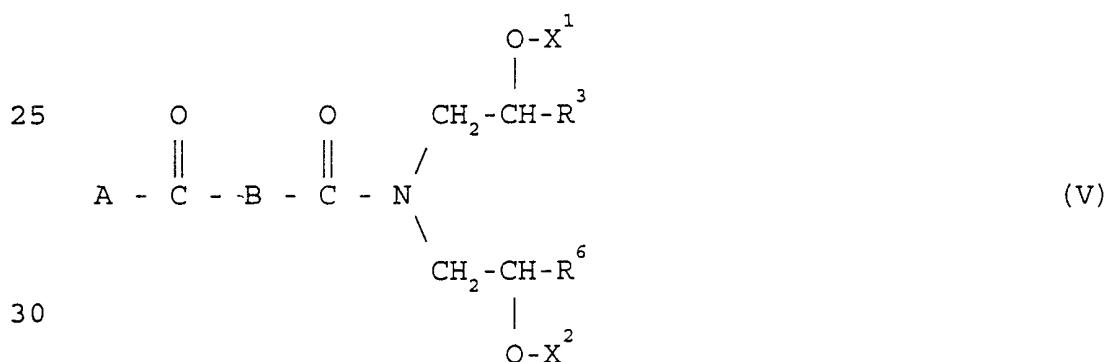
B = (C₂-C₂₄), optionally substituted, aryl or (cyclo)alkyl aliphatic diradical,

30

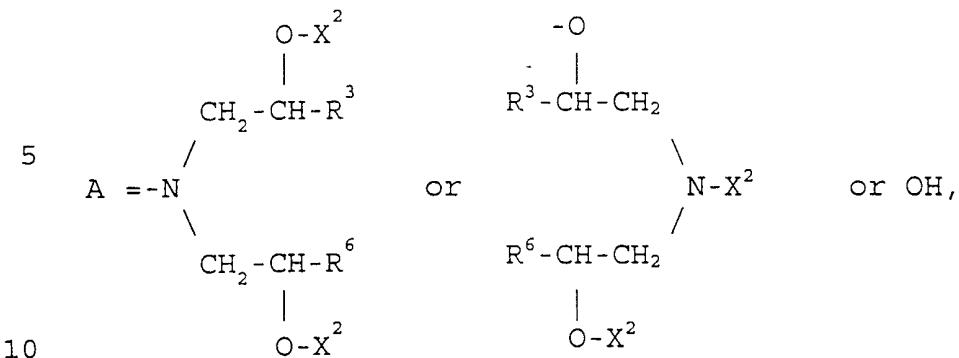
- 5 -

R^3 = H or (C_6-C_{10}) aryl or (C_1-C_8) alkyl radical and

R^6 = H or (C_6-C_{10}) aryl or (C_1-C_8) alkyl radical.

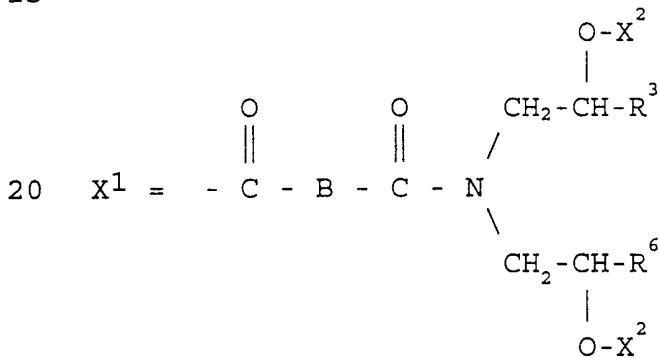

The weight average molecular mass of the polymer according to the invention generally ranges 5 between 500 and 50,000, and is preferably between 600 g/mol and 10,000 g/mol.

The number average molecular mass may range between 400 and 10,000 and is preferably between 500 and 2000.

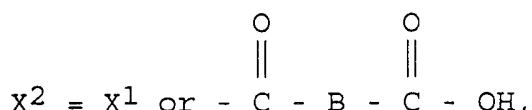

10 The esteralkylamide-acid functionality may range between 2 and 250 and is preferably between 3 and 50.

15 The functionality is the average number of reactive groups of the specific type per molecule in the polymer composition.

According to another preferred embodiment of the invention the polymer's carboxyl group functionality of the polymer is ≥ 3 and the polymer containing esteramide acid groups is a polymer 20 represented by formula (V):



in which:



B = (C₂-C₁₂), optionally substituted, aryl or (cyclo)alkyl aliphatic diradical,

15

25

X² = X¹ or - C - B - C - OH,

R³ = H or (C₆-C₁₀) aryl or (C₁-C₈) (cyclo)alkyl radical

30 and

R⁶ = H or (C₆-C₁₀) aryl or (C₁-C₈) (cyclo)alkyl radical

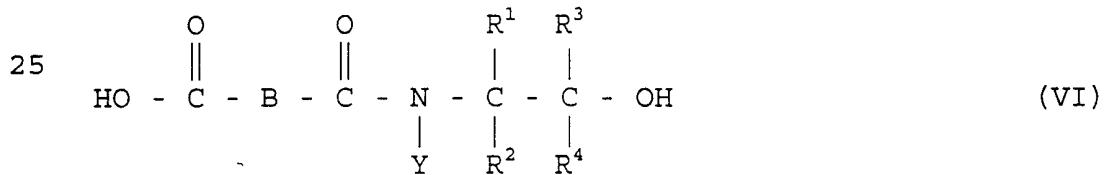
Preferably R³ and R⁶ are (C₁-C₄) alkyl.

According to another preferred embodiment of the invention R³ and R⁶ are methyl or ethyl.

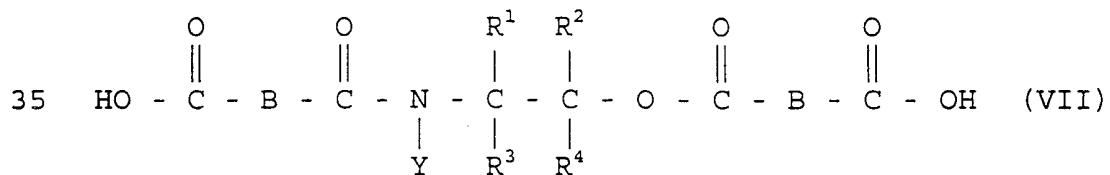
35 B may be saturated or unsaturated.

B may be substituted with, for example, a (C₁-C₂₆) alkyl group, which may be saturated or unsaturated; or with a carboxylic acid.

B may be for example a (methyl)-1,2-

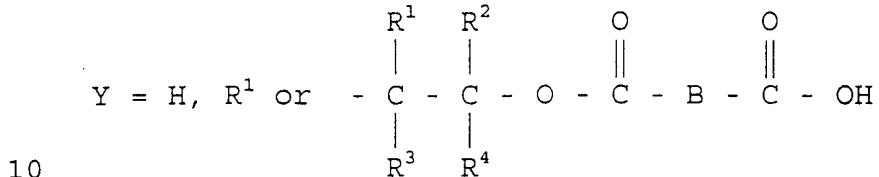

ethylene, octenyl- or dodecanyl-1,2-ethylene,
 (methyl-)1,2-ethylidene, 1,3-propylene, (methyl-)1,2-
 cyclohexyl, 4-carboxyl-1,2-phenylene, (methyl-)1,2-
 phenylene, 1,3-phenylene, 1,4-phenylene, 2,3-norbornyl,
 5 2,3-norbornen-5-yl and/or (methyl-)1,2 cyclohex-4-enyl
 radical.

Depending on the starting monomers chosen,
 the variables B, R¹, R², R³, R⁴, R⁵ and R⁶ in the
 molecule or mixture of molecules can be selected to be
 10 the same or different per variable.


The polymer composition according to the
 invention may be a composition comprising higher and
 lower oligomers, which usually contains less than 50
 wt.%, preferably less than 30 wt.%, of oligomers having
 15 a molecular weight smaller than 400.

The polymer according to the invention may,
 for example, be obtained through polycondensation of an
 hydroxyalkylamide-acid and an esteralkylamide diacid
 derived from an alkanolamine.

20 The hydroxyalkylamide-acid of an
 alkanolamine may have the formula (VI) :


30 and the esteralkylamidediacid of an alkanolamine
 generally can be represented by formula (VII) :

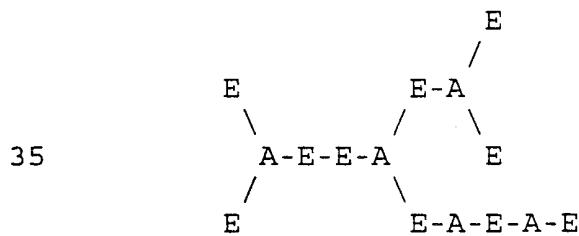
wherein

R¹, R², R³ and R⁴ may, independently of one another, be the same or different, H, (C₆-C₁₀) aryl or (C₁-C₈) (cyclo)alkyl radical and

5

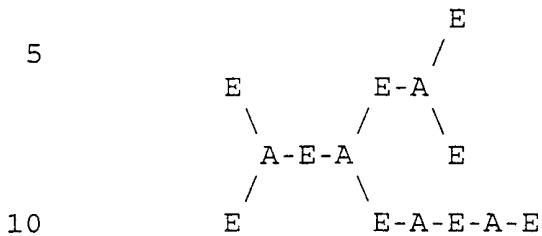
Consequently a lineair polymer according to the invention generally comprises the amide and the ester groups alternating along the chain as follows:

E-A-E-A-E-E-A-E-A-E


wherein one or more diesters are coupled with
20 alternating ester (E) - amide (A) groups or

E-A-E-A-E-A-E-A-E

wherein ester and amide groups are perfectly
25 alternating throughout the polymer.


A branched polymer according to the invention generally comprises the amide and the ester groups alternating along the main and side chains as follows:

30

40 wherein one or more diesters are coupled with

alternating ester (E) - amide (A) groups or

wherein ester and amide groups are perfectly alternating through the polymer.

15 Generally, the molar amount of amide bonds in the chain is lower than the amount of ester bonds.

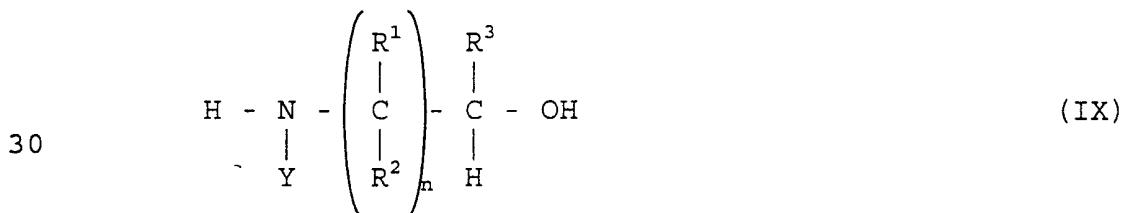
The polymer according to the invention comprises at least 60% by weight of the products represented by the formulas (III) - (V).

20 According to a preferred embodiment of the invention the polymer is obtained in a one-step procedure by reacting an alkanolamine and a molar excess of cyclic anhydride, at a temperature between, for example, about 20°C and about 100°C, to form a 25 hydroxyalkylamide, after which, at a temperature between, for example, 120°C and 250°C, a polyesteramide is obtained through polycondensation. Optionally water may be removed through distillation.

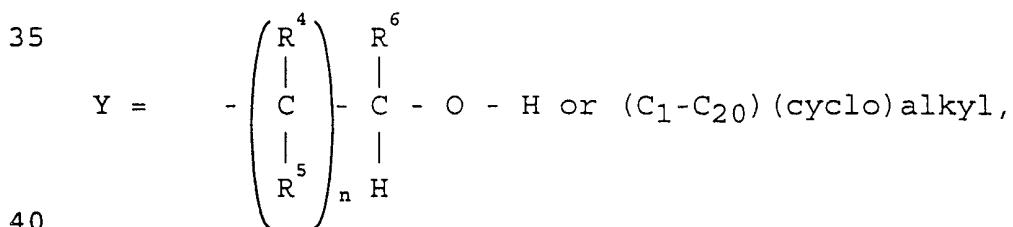
30 The removal of water through distillation may take place at a pressure higher than 1 bar, in a vacuum or azeotropically.

The reaction may take place without a solvent, but it is also possible that the reaction takes place in water or in an organic solvent.

35 Preferably, the cyclic anhydride is an anhydride according to formula (VIII):



10


in which B has the meaning specified above.

Examples of suitable cyclic anhydrides include phthalic anhydride, tetrahydropthalic anhydride, naphtalenic dicarboxylic anhydride, 15 hexahydropthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, norbornene-2,3-dicarboxylic anhydride, naphtalenic dicarboxylic anhydride, 2-dodecene-1-yl-succinic anhydride, maleic anhydride, trimellitic anhydride, (methyl, octyl or 20 dodecetyl)succinic anhydride, glutaric anhydride, 4-methylphthalic anhydride, 4-methylhexahydropthalic anhydride, 4-methyltetrahydropthalic anhydride and the maleinised alkylester of an unsaturated fatty acid.

Preferably the alkanol is an alkanolamine 25 according to formula (IX):

in which:

R¹, R², R³, R⁴, R⁵ and R⁶ may, independently of one another, be the same or different, H, (C₆-C₁₀) aryl or (C₁-C₈) (cyclo)alkyl radical or CH₂OH and n=1-4.

More preferably n=1.

5 The alkanolamine may be a monoalkanolamine, a dialkanolamine, a trialkanolamine or a mixture hereof.

10 If monoalkanolamines are used in one of the possible polymer syntheses, linear polymers with a functionality of 2 can be obtained. Depending on the application desired, a linear or an entirely or partly branched polymer can be selected, in which case the degree of branching can be set via the alkanolamines chosen.

15 If a highly branched structure with a high functionality is desired, di- or trialkanolamines can be used, also carboxylic acid substituted anhydrides in combination with monoalkanolamines can be used as a starting compound.

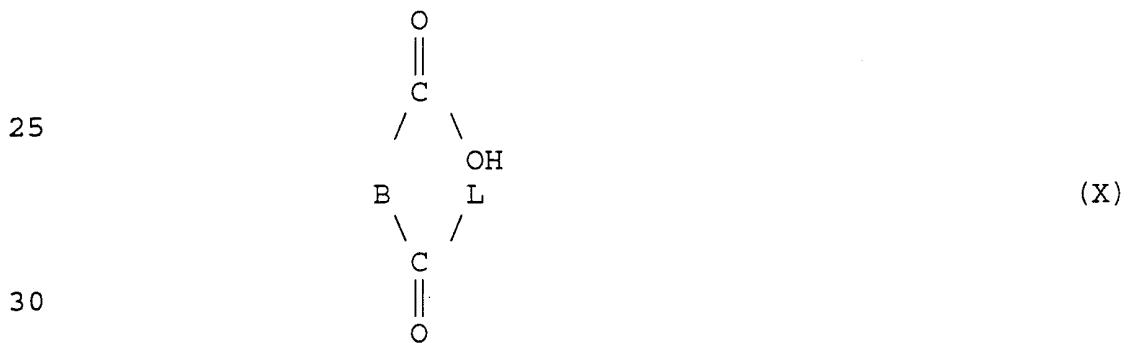
20 Examples of suitable mono- β -alkanolamines include ethanolamine, 1-(m)ethyl ethanolamine, n-butyl ethanolamine, 1-(m)ethyl isopropanolamine, isobutanolamine, β -cyclohexanolamine, n-butyl isopropanolamine and n-propanolamine.

25 Examples of suitable di- β -alkanolamines are 3-amino-1,2-propanediol, 2-amino-1,3-propanediol diisobutanolamine (bis-2-hydroxy-1-butyl)amine), di- β -cyclohexanolamine and diisopropanolamine (bis-2-hydroxy-1-propyl)amine).

30 A suitable trialkanolamine is, for example, tris(hydroxymethyl)aminomethane.

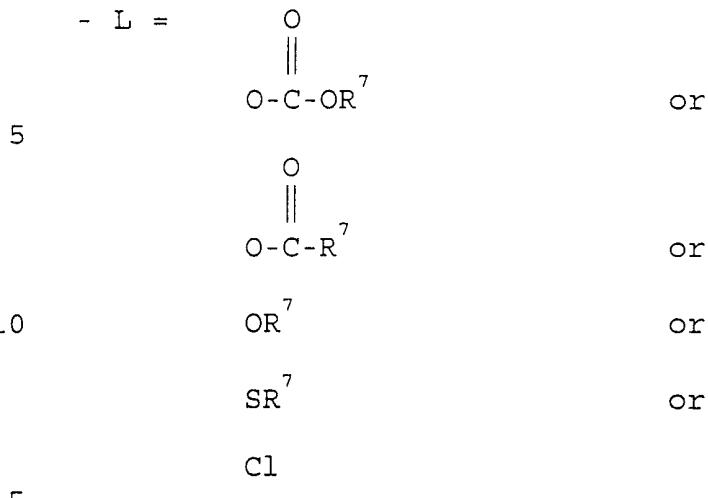
Preferably a β -alkyl-substituted β -hydroxyalkylamide is used. Suitable examples include (di)isopropanolamine, cyclohexyl isopropanolamine, 1-

(m)ethyl isopropanolamine, (di)isobutanolamine, di- β -cyclohexanolamine and/or n-butyl isopropanolamine.


These polymer compositions show an improved resistance to hydrolysis.

5 Most preferable diisopropanolamine and/or diisobutanolamine are applied.

The anhydride : alkanolamine equivalent ratio is generally between 2.0:1.0 and 3.0:1.0. Preferably, this ratio is between 2,1:1.0 and 2,8:1.0.


10 The compound according to the invention may also be obtained via a reaction between an alkanolamine, as for example described above, and a molar excess of a compound containing one acid group and one activated acid group after which a 15 polyesteramide is obtained through polycondensation. The ratio may be between for example 2.0;1.0 and 3.0:1.0.

20 The compound containing an acid group and an activated acid group is preferably a compound according to formula (X) :

in which

- B has the meaning specified above and

in which R^7 is a (C_1 - C_{12}) branched or linear alkyl group.

Examples of suitable compounds containing one acid group and one activated acid group 20 are alkyl esters, such as, for example, mono(m)ethyl adipate and mono(m)ethyl sebacate, anhydrides and thioesters.

The compound according to the invention may also be obtained via a reaction between a cyclic 25 anhydride, as for example described above, and an alcohol, after which the obtained reaction product reacts in situ with an alkanolamine. A polyesteramide may be subsequently obtained through polycondensation.

Examples of suitable alcohols are (C_1 - C_{10}) 30 alcohols.

Preferably, methanol or ethanol is used.

In addition to carboxyl groups, the polymer may also contain hydroxyalkylamide groups, in amounts of between 0.01 and 2.0 mg equivalent/gram of polymer. 35 The number of hydroxyalkylamide present in the polymer can be controlled via the anhydride/alkanolamine ratio and via the degree of conversion. If an anhydride excess is used and the polycondensationreaction is

(almost) complete, less than 0.2 mg equivalent OH/gram of polymer is usually present. If hydroxyalkylamide groups are present, they may in a subsequent step react with compounds containing one or more groups that can 5 react with β -hydroxyalkylamide, such as for example anhydrides, carboxylic chlorides, activated esters or carboxylic acid groups. The amount of hydroxyalkylamide is preferably as low as possible, for example between 0.01 and 0.2 mg equivalent/gram of polymer.

10 The degree of branching and the functionality of the polymer are dependent on the starting materials and the molecular weight of the polymer. A molecular weight higher than 3000 and the use of di- and/or trialkanolamines generally lead to 15 highly branched structures with a functionality of ≥ 6 .

Due to the presence in amounts of less than 10% by weight (of the total amount of anhydrides) of bis- and dianhydrides instead of the anhydrides according to formula (VIII) it is possible that the 20 polymer does not comprise only products according to formulas (III) - (V).

The invention also relates to entirely or partly modified polymers.

The modification may, for example, take 25 place via a reaction between the polymer according to any one of formulas (III), (IV) or (V) with a monomer, oligomer or polymer containing reactive groups that can react with the carboxylic acid groups. Depending on the reaction components a catalyst can be selected.

30 Examples of suitable reactive groups include alcohol groups, oxazoline groups, alkyl halide groups, epoxy groups, strained ring olephinic groups, epoxychlorohydrine groups, amine groups, 1,2-diene groups, for example butadiene, and combinations hereof.

35 Preferably the monomer, oligomer or polymer

contains only one group that can react with hydroxylalkylamide, as a result of which no crosslinking takes place during the modification.

The polymer according to formula (III),
5 (IV) or (V) has preferably been modified with a compound containing an epoxy group, oxazolidine group, strained ring olephinic group or alcohol group. Synthesis of the modified polymer can take place in a two-step process or in a one step process.

10 The two-step process comprises in a first step the preparation of the condensation polymer having carboxylic acid end groups and in a second step the modification reaction.

15 In the one step process the starting materials are polycondensed and reacted simultaneously. Preferably, the one-step procedure is applied because the viscosity is lower in the overall process and hence the processability of the product is improved.

20 A modified polymer can for example be represented by one of the formulas (III), (IV) or (V) in which

25
$$X^2 = X^1 \text{ or } - \text{C} - \text{B} - \text{C} - \overset{\text{O}}{\underset{\parallel}{\text{C}}} - \overset{\text{O}}{\underset{\parallel}{\text{C}}} - \text{O} - \text{Z} \quad \text{and}$$

in which $- \text{O} - \text{Z}$ is derived from a monomeric, oligomeric or polymeric alcohol.

30 Suitable epoxides are, for example, saturated aliphatic (C_1-C_{26}) epoxides and esters or ethers derived from glycidol.

35 Examples of suitable aliphatic epoxides are ethylene oxide, propylene oxide, 1,2-epoxy butane, 1,2-epoxy octane, 1,2-epoxydodecane, 1,2-epoxy cyclohexane and 4-vinyl-1,2 epoxy cyclohexane.

Examples of suitable glycidic esters and ethers are allylglycidylether, benzyl glycidylether, glycidyl acrylate, glycidyl methacrylate and glycidyl versatate (Cardura E TM, Shell Chemicals).

5 Suitable oxazolines are, for example, saturated or unsaturated aliphatic (C₃-C₂₉) oxazolines derived from (C₁-C₂₆) aliphatic or (C₇-C₂₀) aromatic carboxylic acids, and ethanolamine or isopropanolamine, such as 2-(m)ethyloxazolidine, fatty acid (soy bean, 10 tall, palmitic sunflower) oxazolidines, 2-phenyloxazoline and 2-vinyloxazolidine.

Suitable alcohols are, for example, linear or branched (C₁-C₂₆) (cyclo)aliphatic alcohols.

15 Examples of suitable linear aliphatic alcohols include (m)ethanol, butanol, (do)decanol, octanol and fatty acid alcohols, 2-ethylhexanol, 2,5,7-octatrienol and 1-vinyl-hexa-3,5-dienol.

20 Examples of suitable strained ring olephinic group containing compounds are dicyclopentadiene (DCPD), dimethylcyclopentadiene, norbornene and pinene. Preferably DCPD is used.

Examples of suitable cycloaliphatic alcohols include cyclohexanol, DCPD-alcohol and cholesterol.

25 Z can be selected from, for example, a saturated or unsaturated (C₁-C₄₀) alkyl or aromatic group, a polymer or an oligomer. Examples of suitable polymers are polyesters, polyethers and poly(capro)lactones.

30 Z can be substituted with for example ester groups, ether groups, amide groups and alcohol groups.

The modified polymer may consist of the same or different Z groups.

35 The (modified) polymers according to the invention may be very widely used in technically

different fields, both in thermosetting and in thermoplastic applications. Examples are powder paint compositions, coating systems based on water or solvent, can- or coil-coating systems, radiation-curable coating compositions, alkyd resins for coatings, unsaturated resins for construction purposes (for example putties, sealants, castings, compounds and molding compounds), inks, toner compositions, film formers for glass fibre sizings, adhesives, hot melts and in rubber compositions.

Unmodified or partly modified polymers according to the invention can generally be used in powder paint systems, in can- or coil-coating systems and in solvent-based coating systems.

If the modification has been realized with the aid of for example fatty acid alcohols, the polymer obtained can be used as an airdrying system.

A modification with radically curable compounds offers possibilities in the technical fields of radiation-curable coatings and construction resins.

A modification of the polymer according to the invention with glycidyl methacrylate and/or dicyclopentadiene results in a suitable product to be applied in radiation curable coatings.

Considering the many possibilities of modification of the polymer according to the invention, modification can be directed at any of a wide range of technical applications.

According to a preferred embodiment of the invention the polymers according to the invention are applied in thermosetting powder paint compositions and in toner compositions.

Thermosetting powder paints have a better resistance to chemicals than thermoplastic powder paints. As a result of this, intensive efforts have for

a long time been made to develop crosslinkers and polymers for thermosetting powder coatings. Attempts are still being made to find binder compositions for thermosetting powder paints with a good flow behaviour, 5 good storage stability and a good reactivity. A thermosetting powder-paint binder composition generally contains more than 50 wt.% polymer and less than 50 wt.% crosslinker.

10 The polymer according to the invention can be used in a powder-paint composition as a polymer and as a crosslinker.

15 The glass transition temperature (Tg) of the polymer according to the invention lies between 0°C and 150°C, preferably between 50°C and 110°C, depending on the selected starting materials and the molecular weight.

20 Preferably a compound according to any one of formulas (I), (II), (III), (IV) or (V) is used in powder-paint compositions. It is also possible to use a polymer in which up to for example 50 wt.%, preferably less than 30 wt.%, of the acid groups are modified.

25 A coating that is ultimately obtained with a powder paint must meet many varying requirements. Various systems are known. Some systems release volatile components during the curing. These systems present the drawback that they form coatings with bubbles and/or that undesirable emissions are released. As far as the latter is concerned, the volatile component, if organic in origin, may cause undesirable 30 environmental or health problems. It has moreover been found that all the desired properties of the powder paint or powder coating are not always realized.

35 In other systems use is made of polyesters and the usual crosslinkers containing an epoxy group, for example a bisphenol-A-epoxy resin. No volatile

components are generally released from these systems.

It has been found that use of the polymer according to the invention in binder compositions in combination with bisphenol-A-epoxy-resin for powder 5 paints results in a combination of highly desirable properties such as for instance good resistance to chemicals, desired gloss or matt appearance without bubble formation at the surface up to and including layer thicknesses of at least 120 µm, a high resistance 10 to boiling water and salt spray, a high resistance to scratching, good mechanical properties, good powder stability and good colour stability of the powder coating.

It is surprising that use of the highly 15 functional crosslinkers according to the invention results in a good cure behaviour in combination with epoxide group containing polymers without use of trimellitic acid(anhydride) as one of the raw materials. Generally a polyester having carboxyl 20 endgroups has a reduced reactivity towards epoxy groups in the absence of trimellitic acid(anhydride) as one of the raw materials.

The preparation of thermosetting powder 25 coatings in general and the chemical reactions for curing powder paints to form cured coatings are described by Misev in Powder Coatings, Chemistry and Technology (1991, John Wiley) on pp. 42-54, pp. 148 and 224-226. A thermosetting binder composition is generally defined as the resinous part of the powder 30 paint consisting of polymer and crosslinker.

If so desired, the usual additives can be used in the binder composition and in the powder-paint system according to the invention, such as for example 35 pigments, fillers, degassing agents, flow agents and stabilizers. Suitable pigments are for example

inorganic pigments, such as for example titanium dioxide, zinc sulphide, iron oxide and chromium oxide, and also organic pigments such as for example azo compounds. Suitable fillers are for example metal 5 oxides, silicates, carbonates and sulphates.

Primary and/or secondary antioxidants, UV stabilizers such as quinones, (sterically hindered) phenolic compounds, phosphonites, phosphites, thioethers and HALS compounds (hindered amine light 10 stabilizers) can for example be used as stabilizers.

Examples of degassing agents are benzoin and cyclohexane dimethanol bisbenzoate. The flow agents include for example polyalkylacrylates, fluorohydrocarbons and silicone fluids. Other suitable 15 additives are for example additives for improving tribocharging, such as sterically hindered tertiary amines that are described in EP-B-371528.

Powder paints according to the invention can be applied in the usual manner, for example by 20 electrostatically spraying the powder onto an earthed substrate and curing the coating by exposing it to heat at a suitable temperature for a sufficient length of time. The applied powder can for example be heated in a gas oven, an electric oven or with the aid of infrared 25 radiation.

Thermosetting coatings of powder-paint (coating) compositions intended for industrial applications are described further in a general sense in Powder Coatings, Chemistry and Technology, Misev, 30 pages 141-173 (1991).

Compositions according to the present invention can be used in powder paints for use on, for example, metal, wooden and plastic substrates. Examples are industrial coatings, coatings for machines and 35 tools, household applications and parts of buildings.

The coatings are also suitable for use in the automotive industry for coating parts and accessories.

The invention will be elucidated with reference to the following non-limiting examples.

5

Example I

Preparation of a condensation polymer

115g of molten diisopropanolamine (40°C) were added to a double-walled glass reactor, which 10 could be heated by means of thermal oil, fitted with a mechanical stirrer, a distillation head and nitrogen and vacuum connections. Next 439 g of hexahydrophthalic anhydride (70°C) were added. The reaction mixture was heated 180°C . After three hours at this temperature the 15 pressure in the reactor was lowered to 2,5 mPA. After a reaction time of 2 hours, the polymer was cooled and obtained as a glassy mass. The acid value was 222 mg KOH/g resin.

20

Example II

A powder-paint composition comprising a polymer according to Example I

A powder-paint composition according to Table 1 was prepared by mixing and extrusion (PRISM 25 extruder, 120°C). The composition was in the usual manner ground, sieved and electrostatically sprayed (Corona) onto aluminium and steel test panels. After a cure cycle of 10 minutes at 200°C in a circulation oven.

TABLE 1: COMPOSITION AND COATING PROPERTIES

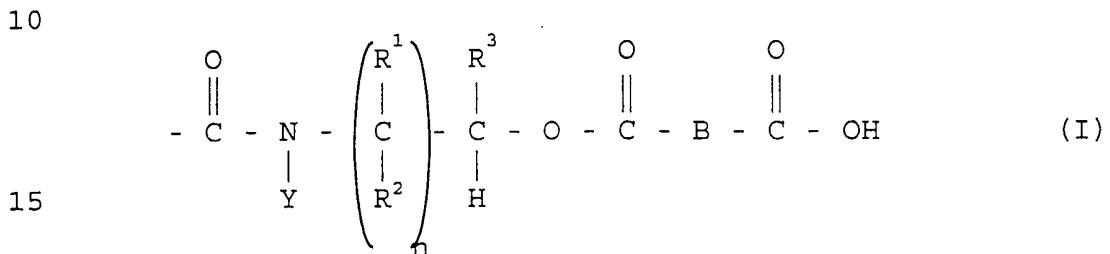
Composition:	
Araldite GT 7004 TM ¹⁾	147.34 g
Crosslinker according to Example I	52.66 g
Additives:	
TiO ₂ 2160	100 g
Benzoin	3.0 g
Resiflow PV5 TM	1.5 g
Cure cycle	10' 200°C
ESP ²⁾	> 8 mm
Gel time ³⁾	159 sec
Acetone resistance ⁴⁾	100x
Tg	55°C
Dr.Lange Colour b* ⁵⁾	0.4

5 ¹⁾ epoxy resin based on bisphenol A-diglycidylether (Ciba)

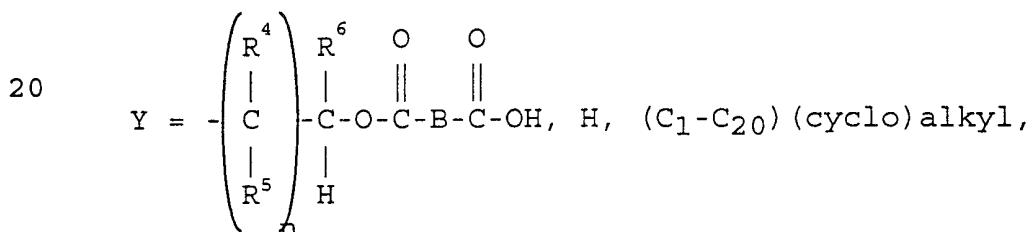
2) Erichsen Slow Penetration; ISO 1520/DIN 53156

3) DIN 55990:part B

4) Acetone double rubs


10 ⁵⁾ in the overbake test the test plate is heated at 200°C for one hour and the yellowing (b) is measured.

15 The polymer according to the invention results in a coating having good chemical, mechanical and optical properties and also a high blister limit (visually).

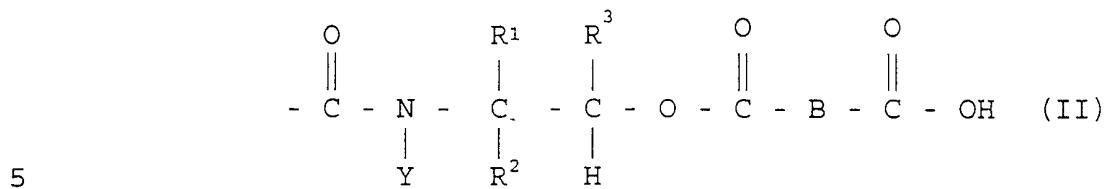

C L A I M S

5 1. A condensation polymer having at least one carboxylic acid end group connected to an alkylamide group via an ester linkage.

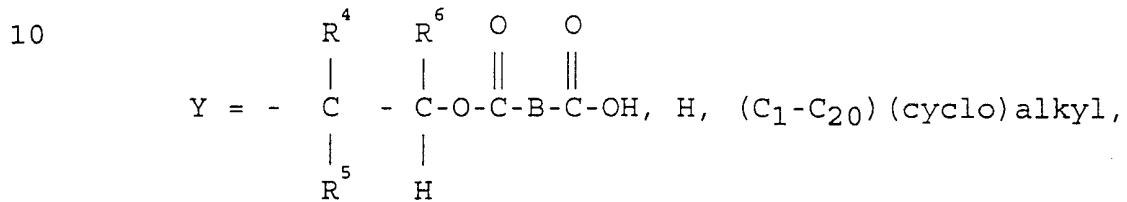
2. A polymer according to Claim 1, characterized in that the polymer contains at least two groups according to formula (I):

in which

25


or (C_6-C_{10}) aryl,

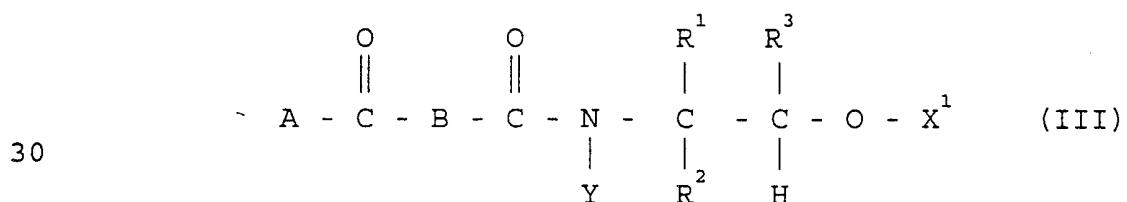
B = (C₂-C₂₄), optionally substituted, aryl or (cyclo)alkyl aliphatic diradical,


30 R¹, R², R³, R⁴, R⁵ and R⁶ may, independently of one another, be the same or different, H, (C₆-C₁₀) aryl or (C₁-C₈) (cyclo)alkyl radical and n= 1-4.

3. A polymer according to any one of Claims 1-2,
35 characterized in that the polymer comprises at least two groups according to formula (II):

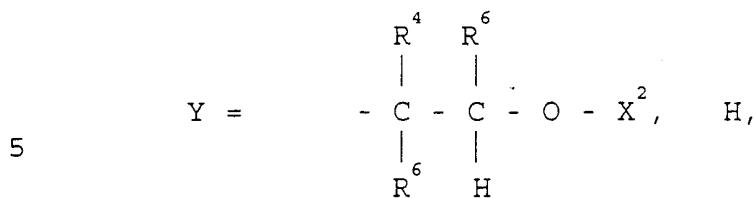
- 24 -

in which

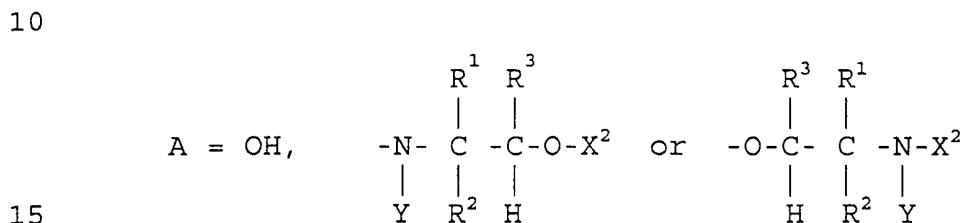

15

or ($\text{C}_6\text{-C}_{10}$) aryl,

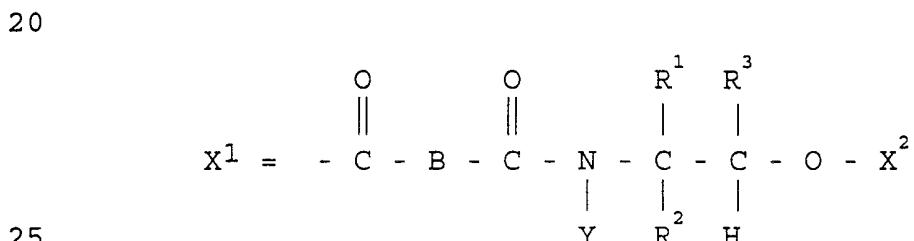
20 B = ($\text{C}_2\text{-C}_{24}$), optionally substituted, aryl or (cyclo)alkyl aliphatic diradical, and


25 R^1 , R^2 , R^3 , R^4 , R^5 and R^6 may, independently of one another, be the same or different, H, ($\text{C}_6\text{-C}_{10}$) aryl or ($\text{C}_1\text{-C}_8$) (cyclo)alkyl radical.

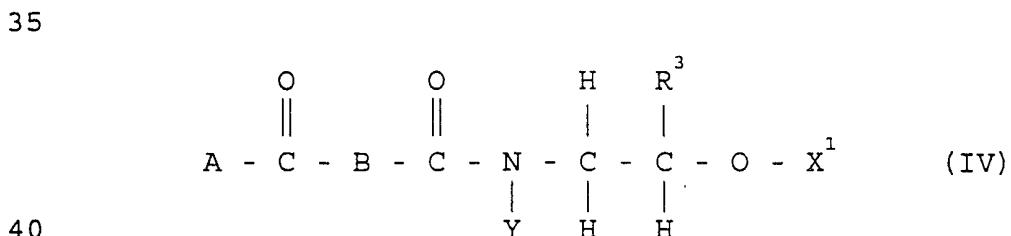
4. A condensation polymer according to any one of Claims 1-3, characterized in that the polymer is 25 a polymer according to formula (III):

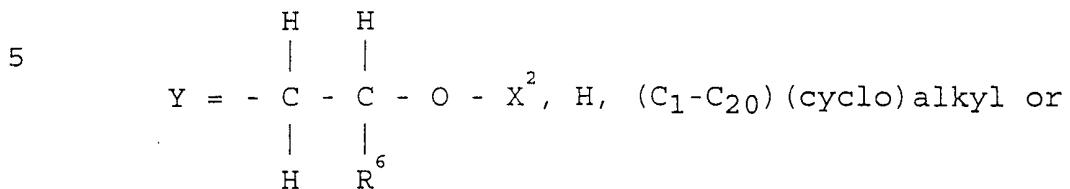


in which:


- 25 -

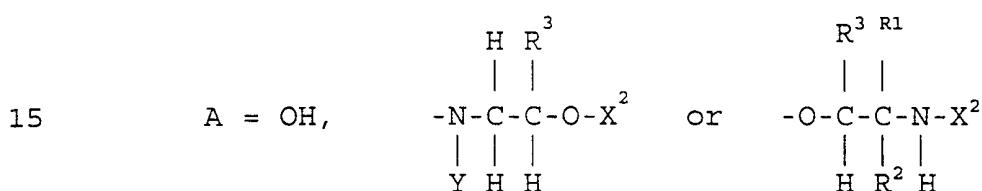
10 (C₁-C₂₀) (cyclo)alkyl or (C₆-C₁₀)aryl,


20 B = (C₂-C₂₄), optionally substituted, aryl or (cyclo)alkyl aliphatic diradical,

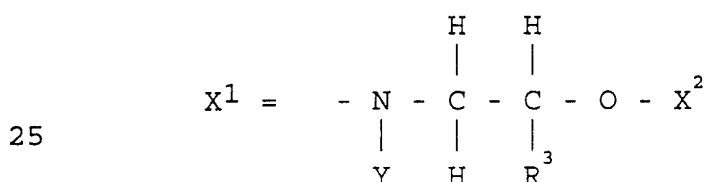

30

$$X^2 = X^1 \text{ or } - \begin{array}{c} O & O \\ || & || \\ C - B - C - OH \end{array} \text{ and } R^1, R^2, R^3, R^4, R^5 \text{ and } R^6 \text{ may be H, (C}_6\text{-C}_{10}\text{) aryl or (C}_1\text{-C}_8\text{) (cyclo)alkyl radical or CH}_2\text{-OX}^2\text{.}$$

5. A condensation polymer according to any one of Claims 1-4, characterized in that the polymer is a polymer according to formula (IV) :



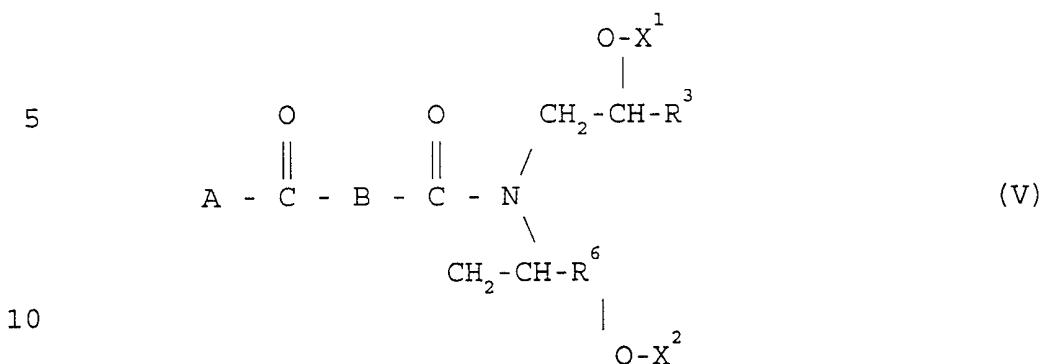
in which:


10

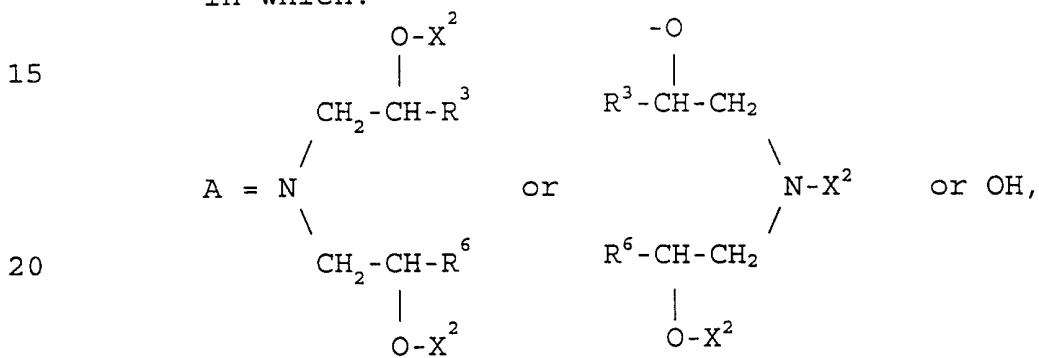
$(C_6-C_{10}) \text{ aryl.}$

20

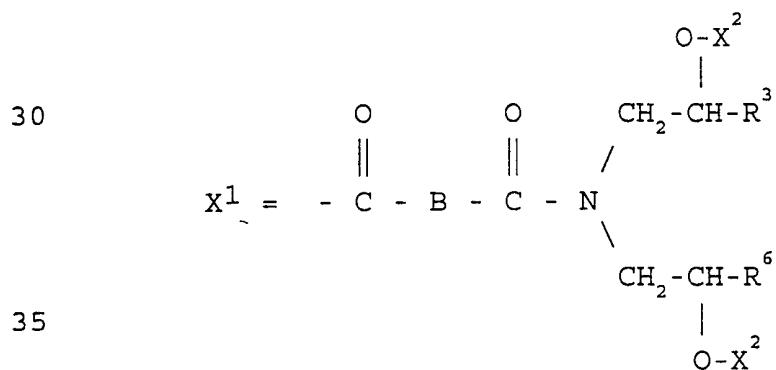
$B = (C_2-C_{24})$, optionally substituted, aryl or
 $(cyclo)alkyl$ aliphatic diradical,


30

$X^2 = X^1$ or $- \begin{array}{c} O & O \\ || & || \\ C & - B - C - OH \end{array}$,


$R^3 = H$ or (C_6-C_{10}) aryl or (C_1-C_8) alkyl radical,
 and

$R^6 = H$ or (C_6-C_{10}) aryl or (C_1-C_8) alkyl radical.


35 6. A condensation polymer according to any one of
 Claims 1-5, characterized in that the polymer is
 a polymer according to formula (V):

in which:

25 B = (C₂-C₁₂), optionally substituted, aryl or
 (cyclo)alkyl aliphatic diradical,

R^6 = H or (C_6-C_{10}) aryl or (C_1-C_8)

(cyclo)alkyl radical.

7. A process for the preparation of a polymer according to any one of Claims 1-6 by reacting an alkanolamine and a cyclic anhydride after which the polymer is obtained through polycondensation.
- 5 8. A process according to Claim 7 characterised in that the alkanolamine is diisopropanolamine and/or diisobutanolamine.
- 10 9. A modified polymer that can be obtained through a reaction between a polymer according to any one of formulas (III), (IV) or (V) with a monomer, oligomer or polymer containing reactive groups that can react with the carboxylic acid groups.
- 15 10. A coating composition comprising a polymer or a modified polymer according to any one of Claims 1-6 or 9 or a polymer obtained to any one of Claims 7-8.
11. A powder paint binder composition containing a 20 polymer according to any one of Claims 1-6 or 9 or a polymer obtained according to any one of Claims 7-8.
12. A powder paint composition comprising a binder composition according to Claim 11.
- 25 13. A powder coating obtained by curing of a powder paint according to Claim 12.
14. An entirely or partly coated substrate, characterized in that a powder coating according to Claim 13 is used as the coating.

INTERNATIONAL SEARCH REPORT

Int	National Application No
-----	-------------------------

PCT/NL 00/00179

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C08G69/44 C08G63/685 C09D177/12 C09D5/03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08G C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>US 3 709 858 A (BLOOD A ET AL) 9 January 1973 (1973-01-09) -----</p>	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

16 May 2000

Date of mailing of the international search report

24/05/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Leroy, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/NL 00/00179

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 3709858 A	09-01-1973	US 3833529 A US 3817932 A	03-09-1974 18-06-1974