Title
Dental implant having a surface made of a ceramic material

International Patent Classification(s)
A61C 13/225 (2006.01)

Application No: 2008201124
Date of Filing: 2008.03.10

Priority Data

Number Date Country
07007950.4 2007.04.19 EP

Publication Date: 2008.11.06
Publication Journal Date: 2008.11.06
Accepted Journal Date: 2013.03.28

Applicant(s)
Straumann Holding AG

Inventor(s)
de Wild, Michael; Homann, Frank

Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, SYDNEY, NSW, 2000

Related Art
US 2005/0106534 A1 (GAHLERT) 19 May 2005
HONG et al., 'A STUDY ON OSTEOBLAST-LIKE CELL RESPONSES TO SURFACE-MODIFIED TITANIUM', J Korean Acad Prosthodont, 2003, Vol. 41, No. 3, Pages 300-318
US 6270347 B1 (WEBSTER et al.) 07 August 2001
Dental implant having a surface made of a ceramic material

Abstract

The present invention relates to a dental implant having a surface made of a ceramic material wherein the surface has a topography with Core Roughness Depth S_k of less than 1 μm.
Name and Address of Applicant: Straumann Holding AG, of Peter Merian-Weg 12, CH-4002, Basel, Switzerland

Actual Inventor(s): Michael de Wild, Frank Homann

Address for Service: Spruson & Ferguson
St Martins Tower Level 35
31 Market Street
Sydney NSW 2000
(CCN 3710000177)

Invention Title: Dental implant having a surface made of a ceramic material

The following statement is a full description of this invention, including the best method of performing it known to me/us:
Dental implant having a surface made of a ceramic material

The present invention relates to dental implants and in particular to dental implants made of a ceramic material. The invention has been developed primarily for use as a dental implant having a surface made from a ceramic material which is highly biointegrative, and will be described hereinafter with reference to this application. However, it will be appreciated that the invention is not limited to this particular field.

Dental implants which are inserted into jawbone, for example for the attachment of artificial teeth, have been successfully used since more than a decade. The major part of the dental implants currently used consist of titanium, since titanium is biocompatible, has a sufficiently low elastic modulus and a relatively high strength.

Apart from its biocompatibility and its mechanical properties, the osteointegrative properties of a dental implant are of major importance. A good osteointegration means that the implant, after reaching a primary stability by screwing it into the bone, safely ossifies within a short healing time so that a permanent bond between implant and bone is guaranteed.

When using titanium as the implant material, osteointegrative properties can be reached by suitable treatment of the implant’s surface. To this end, the titanium surface has conventionally been mechanically roughened by a subtractive removing process, e.g., sandblasting, grinding or etching. Alternatively, the surface has been subjected to additive processes, e.g., coating with a textured surface.

Any discussion of the background art throughout the specification should in no way be considered as an admission that such background art is prior art, nor that such background art is widely known or forms part of the common general knowledge in the field.

US-B-6,174,167 discloses implants having a surface for bone-tissue apposition, said surface being obtained by machining, application of a textured surface or blasting with particles. It also discloses acid etching, applying
growth factor, protein or other materials that promote, enhance and/or maintain bone-tissue growth and/or apposition. The implant is made from a biocompatible material, preferably from titanium or an alloy thereof.

DE-A-4012731 describes a process for producing an implant made of titanium employing spark erosive techniques in order to provide a desired roughness to the implant’s surface.

Osteointegration has been turned out to be particularly efficient if mechanical roughening of the implant’s surface is combined with subsequent etching of the roughened surface, as is for example described in Li et al., J. Biomed. Mater. Res. 2002, 60 (2), pages 325-332.

Similarly, EP-A-0388576 describes the treatment of a titanium implant by a blasting process and subsequent etching with a reducing acid, such as HF, HCl or HCl with H₂SO₄.

Conventional titanium implants which are subjected to such a combined treatment safely ossify within a healing time of about 3 to 4 months after insertion into the bone, thereby providing a permanent bond between the dental implant and the bone.

From an aesthetic point of view, titanium implants have, however, the disadvantage that they are dark in color and therefore mismatch with the natural tooth color.

In contrast, the color of ceramic materials can be closely matched to the natural tooth color. Efforts have thus been made to provide dental implants of which at least the parts that are visible after insertion are made of a
ceramic material.

WO-A-0134056 refers to a dental implant consisting of an insertion component which can be fitted in the jawbone and a support component which after implantation protrudes beyond the jawbone. The document discloses that at least the support component is made of zirconia ceramic.

DE-A-19530981 refers to a prefabricated implant supra construction using a tooth-colored zirconia ceramic attached to titanium implants.

Despite their advantageous properties with regard to the color, the use of ceramic materials for dental implants have been limited by their low fatigue stability and thereby by their tendency to cracks.

WO-A-2005/027771 relates to a process for preparing a dental installation in which a dispersion is applied on a substrate having a first porosity, said dispersion forming upon sintering a ceramic layer with a second porosity.

EP-A-0870478 relates to a dental retention element having a core of a high-strength material such as zirconia, said core being coated with a ceramic material which can be chemically and/or mechanically processed.

The dental installation and the dental retention element described in WO-A-2005/027771 and EP-A-0870478, respectively, have the disadvantage that the ceramic coating is easily chipped off.

A ceramic material having a high mechanical strength is disclosed in US-B-6,165,925. US-B-6,165,925 relates to an yttrium-stabilized zirconium oxide (zirconia) in predominantly tetragonal form for the production of a
sintered semi-finished article as a starting material for the manufacture of a prosthesis.

In order to achieve a sufficient mechanical stability, the zirconia ceramic disclosed in US-B-6,165,925 must be highly dense. The surface of said highly dense zirconia ceramic is clean cut, extremely hard and has essentially no porosity. A dental implant made of such a zirconia ceramic is thus bio-inert and has only weak osteointegrative properties.

A further attempt to provide an osteointegrative ceramic dental implant is disclosed in EP-B-1450722 relating to a dental implant made of zirconia ceramic which after abrasive blasting is subjected to a treatment using phosphoric acid, sulphuric acid, hydrochloric acid or mixtures thereof.

However, the level of osteointegration of the zirconia implants according to EP-B-1450722 revealed by their removal torque values have been shown to be lower compared to the conventionally used titanium implants. Although after implantation an initial increase of the removal torque values of the zirconia implants could be measured, a decrease was observed after a certain period. Corresponding studies are discussed in Gudehus, H. T.; Untersuchung des Einwachsverhaltens von Zirkoniumdioxid-Implantaten in die Kieferknochenstruktur – Eine experimentelle Studie am Miniatschwein, Dissertation Ludwig-Maximilians-Universität München.
It is an object of the present invention to overcome or ameliorate one or more of the disadvantages of the background art disclosed above, or at least to provide a useful alternative.

According to the present invention, there is provided a dental implant having a surface made of a ceramic material which is highly biointegrative.

According to an arrangement of the first aspect, there is provided a dental implant having a surface made of a ceramic material, wherein the surface has a topography with Core Roughness Depth S_k of less than 1 μm and wherein the Skewness S_{sk} of the topography is less than 0. The Core Roughness Depth S_k is a 3D specific value.

Although there is no standard for the characterization of a topography with 3D specific values, these values can be derived by a simple development from the respective 2D specific values.

For two dimensions, an extra procedure for filtering with suppression of the depth of roughness leads to the roughness profile according to DIN 4776. The definitions therein can directly be transformed into three dimensions.

In particular, the Core Roughness Depth S_k can, as the 2D specific Core Roughness Depth R_k, be derived from the so-called Material Ratio Curve (also known as "Abbott curve").

The Abbott curve represents the height distribution of the surface’s material. It is a cumulative function of the material portion of the surface at a particular depth below the highest peak of the surface. In other words, the Abbott curve describes the increase of the material portion of the surface with increasing depth of the roughness profile. At the highest peak, the material
portion is 0%, while at the deepest recess (or "valley") the material portion is 100%. The minimal secant slope, i.e. a defined line of best fit, separates the Abbott curve into the three following ranges:

5 a) the Core Roughness Depth S_k [μm], i.e. the depth of the roughness core profile,
 b) the reduced Peak Height S_{pk} [μm], i.e. the averaged height of the peaks sticking out of the core range, and
 c) the reduced Groove Depth S_{vk} [μm], i.e. the averaged depth of the grooves sticking out of the core range.

The concept how these values are derived from the Abbott curve are well known to the person skilled in the art. It is further illustrated in Figure 1 showing an idealized Abbott curve from which the 2D specific Core Roughness Depth R_k, the reduced Peak Height R_{pk} and the reduced Groove Depth R_{vk} are derived. These parameters can directly be transformed to the 3D specific Core Roughness Depth S_k, reduced Peak Height S_{pk} and reduced Groove Depth S_{vk}.

As shown in Figure 1, the Core Roughness Depth R_k or, in three dimensions, S_k corresponds to the vertical distance between the left and right intercepts of the line through the ends of the minimal secant slope window of the Abbott curve. The location of the minimal secant slope window can be determined by shifting it along the Abbott curve until the slope between the two intersection points becomes minimal.

The topography can further be specified by the Skewness S_{sk}. The Skewness measures the symmetry of the variation of the surface about its mean plane. A Gaussian surface, having a symmetrical shape for the height distribution, has a Skewness of 0. A surface with a predominant plateau
and deep recesses will tend to have a negative Skewness, whereas a surface having a number of peaks above average will tend to have a positive Skewness.

For a profile in two dimensions, the 2D specific Skewness R_{sk} is according to DIN EN ISO 4287 defined by the following formula:

$$R_{sk} = \frac{1}{R_q^3} \cdot \frac{1}{N} \cdot \sum_{n=1}^{N} (z_n - \bar{z})^3$$

where z_n is the height or depth of the respective peak or valley, respectively, \bar{z} is the mean height and R_q is the root-mean-square deviation of the surface.

For determining the Skewness S_{sk} of the topography in three dimensions, the formula is transformed as follows:

$$S_{sk} = \frac{1}{S_q^3} \cdot \frac{1}{M \cdot N} \cdot \sum_{m=1}^{M} \sum_{n=1}^{N} (z_n - \bar{z})^3$$

where S_q is the root-mean-square deviation of the surface according to the following formula:

$$S_q = \sqrt{\frac{1}{M \cdot N} \cdot \sum_{m=1}^{M} \sum_{n=1}^{N} (z_n - \bar{z})^2}$$

A detailed description how the S_k and S_{sk} values are determined in practice is given below under item 2 of the Examples.
A graphical representation of different profiles defined by different S_k and S_{sk} values is given in the table shown in Figure 2. In this table, the profiles shown in the first line have a positive Skewness S_{sk}, the profiles shown in the second line have a Skewness S_{sk} of about 0 and the profiles shown in the third line have a negative Skewness S_{sk}. The profiles shown in the left column have a (low) Core Roughness Depth S_k of less than 1 μm and the profiles shown in the right column have a (high) Core Roughness Depth S_k of more than 1 μm.

According to the present invention, the topography has a Core Roughness Depth S_k of less than 1 μm. Preferably, the Core Roughness Depth S_k is between 0.3 μm and 1 μm, more preferably between 0.4 μm and 1 μm.

As can be seen from column 1 of Figure 2, the main portion of such a topography is in the range of the extreme values; either the high peaks or the deep scratches are dominating over the core level. A dental implant having such a surface topography has been found to be highly osteointegrative.

The Skewness S_{sk} of the topography of the present invention preferably falls within the following equation (I):

$$S_{sk} \leq -m \times S_k \ (I)$$

whereby m is from 0 to 1, preferably about 0.25, more preferably about 0.1.

More preferably, the Skewness S_{sk} is less than 0, meaning that deep grooves in the topography are dominating.

It has been found that asymmetric topographies with deep grooves are highly osteointegrative, and that thereby the
absolute roughness values \((S_a, R_{max}, \text{etc.}) \) for example referred to in EP-B-1450722 are irrelevant.

The \(S_k \) and \(S_{sk} \) values of the topography of the present invention strongly differs from the topographies of commercially available implants, the osteointegrative properties of which have been studied in detail. It is thus highly surprising that the completely different topography of the dental implant of the present invention is osteointegrative.

The dental implant of the present invention can be prepared by etching the surface made of a ceramic material by an etching solution comprising hydrofluoric acid at a temperature of at least 70°C, thereby removing discrete grains or agglomerates of grains from the ceramic material.

According to a preferred embodiment of the present invention, the ceramic material has an average grain size from about 0.1 µm to about 0.6 µm. Treatment of this material according to the etching described above leads to a surface topography with particularly high osteointegrative properties.

The term "ceramic material" encompasses any type of ceramic such as ceramics based on zirconia, alumina, silica or mixtures thereof, optionally comprising further constituents. Preferably, the ceramic material is based on zirconia, more preferably yttria-stabilized zirconia. Apart from the desired osteointegrative properties obtained, this material has the further advantage of a high fracture toughness and bending strength.
An example of an yttria-stabilized zirconia ceramic is described by the international standards ASTM F 1873 and ISO 13356, specifying the characteristics of, and a corresponding test method for, a biocompatible and biostable ceramic bone-substitute material based on yttria-stabilized tetragonal zirconia (yttria tetragonal zirconia polycrystals, Y-TZP) for use as material for surgical implants.

Specific examples of an yttria-stabilized zirconia are ZrO$_2$-TZP/TZP-A Bio-HIP® (ZrO$_2$) Bioceramic available from Metoxit AG, Switzerland, and ZIOLOX® available from CeramTec AG, Plochingen, Germany. Both materials offer a particularly high mechanical stability and strength, in particular when prepared by hot isostatic pressing or by sintering with subsequent hot isostatic densification. A detailed description of the ZrO$_2$-TZP/TZP-A Bio-HIP® (ZrO$_2$) Bioceramic is given in US-B-6,165,925, the disclosure of which is incorporated herein by reference.

In particular, the composition of the yttria-stabilized zirconia comprises about 4.5 to about 5.5 weight-% of Y$_2$O$_3$ and less than about 5 weight-% of HfO$_2$, the total amount of ZrO$_2$, Y$_2$O$_3$ and HfO$_2$ being more than about 99.0 weight-%.

Coprecipitation is the most common method to distribute the yttria homogenously in the zirconia matrix. The stabilizing amount of yttria is added to the purified zirconium salt as an yttrium salt before the precipitation and calcination process is started, as described by Haberko K., Ciesla A., and Pron A., Ceramurgia Int.1 (1975) 111. Alternatively, the zirconia can be stabilized by yttria-coating. This initiates a radial gradient of yttria concentration in the powder, that is distributed in
It is further preferred that prior to the etching described above a macroscopic roughness is provided to the ceramic surface of the dental implant by sandblasting, milling and/or injection molding techniques. Thus, a dental implant having especially good osteointegrative properties is obtained.

Sandblasting is generally performed using a pressure of 1 to 12 bar, preferably 4 to 10 bar. A considerably improved macroscopic roughness is achieved when using a hard material such as boron carbide. In a further preferred embodiment, Al$_2$O$_3$ particles having an average diameter of 250 to 500 μm are used.

As an alternative to sandblasting, the macroscopic roughness can also be provided by injection molding techniques. Injection molding techniques are known to a skilled person and are for example described in US-A-2004/0029075, the content of which is incorporated herein by reference. According to these techniques, casting molds with cavities are used, said cavities corresponding to the peaks of the molded implant’s macroscopic roughness. The cavities of the casting mold are slightly greater in proportion than the peaks to be provided, taking into account the shrinking of the ceramic after injection molding. The casting molds themselves may be treated by sandblasting, anodization, laser and/or by erosion techniques in order to produce the cavities or the structured surface on the inner surface of the molds.
Injection molding techniques have the advantage that during this process no phase transformation occurs in the ceramic material which has therefore improved mechanical properties. Furthermore, the manufacture of the dental implant by injection molding circumvents the additional step of providing the macroscopic roughness and is thus quick. In addition, it has an excellent reproducibility and there is no contamination with particles from sandblasting.

It is also thinkable to provide a macroscopic roughness by milling or grinding. For this purpose, milling or grinding devices having a defined grain size are used in order to guarantee a desired macroscopic roughness of the surface.

For preparing the microstructure of the surface topography, it is further preferred that the etching solution described above comprises at least 50 vol.-%, more preferably at least 80 vol.-% of concentrated hydrofluoric acid. Etching with this etching solution leads after a relatively short etching time to a uniform topography over the whole surface treated.

The etching solution can further comprise at least one compound selected from the group consisting of phosphoric acid, nitric acid, ammonium fluoride, sulfuric acid, hydrogen peroxide and bromic acid. Preferably, the etching solution comprises sulfuric acid in an amount of 50 vol.-% at most.

The etching time depends highly on the etching solution used and typically ranges from about 10 seconds to about 120 minutes. The etching time is preferably about 1 minute to about 60 minutes, more preferably about 20 minutes to about 40 minutes and most preferably about 30 minutes.
Preferably, the etching is followed by washing the dental implant, the washing comprising the subsequent step or the subsequent steps of

c) rinsing the dental implant with a NaCl solution and/or

d) rinsing the dental implant with deionized water.

The performance of the washing step can be improved by using ultrasound. Thereby, grains, grain agglomerates or reaction products which loosely adhere to the surface are effectively removed.

In general, the dental implant of the present invention is a one-part or a two-part dental implant comprising an anchoring part for anchoring the implant within the jawbone and a mounting part for receiving a prosthetic build-up construction.

Two-part systems are known in the art. They can either be inserted subgingivally or transgingivally.

According to the (closed) subgingival system, the anchoring part of the dental implant is embedded until the bone ridge so that the mucoperiost cover can be seen above the implant. At the end of the primary healing phase, the mounting part and the desired bridge or crown is then applied in a second operation.

According to the (open) transgingival system, the anchoring part of the implant is sunk in up to about 3 mm of the bone ridge at mucosal level, thus avoiding a secondary operation. The wound edges can be directly adapted to the implant neck portion, thereby effecting a primary soft tissue closure to the implant. Then, the desired bridge or crown is screwed or cemented onto the
mounting part of the implant, generally using an intermediate abutment.

Transgingivally applied dental implants are preferred. When implanting such an implant, the soft tissue attachment during the healing process is not disturbed by a secondary operation such as occurring with systems that heal with covered mucous lining.

For example, the dental implant of the present invention can be a two-part, transgingivally applied implant analog to the titanium implant marketed by Institut Straumann AG, Basel/Switzerland, under the tradename "Straumann Dental Implant System".

The two-part dental implant preferably has an anchoring and a mounting part which are made of the same ceramic material. Thus, the anchoring part and the mounting part have the same thermal coefficient of expansion, allowing them to be closely fitted and avoiding the formation of gaps between them.

Alternatively, the dental implant of the present invention may also be a one-part dental implant. The mechanical stability of a one-part dental implant is generally higher than the one of a multi-part system. In combination with the high strength of the ceramic material used, the one-part dental implant of the present invention has thus a particularly high mechanical stability. The one-part dental implant has the additional advantage that there are no interstices and thus no starting points for the formation of bacteria which may cause periodontitis or gingivitis.

The dental implant of the present invention can be
directly ground, allowing it to be adapted to further elements to be mounted in a simple way.

The dental implant of the present invention can either be made fully of a ceramic material or can have a core made of another material, such as a metal, for example titanium or an alloy thereof, or another ceramic material.

The present invention encompasses dental implants of which the whole surface is made of a ceramic material and dental implants of which only a part of the surface is made of a ceramic material.

Likewise, the present invention encompasses dental implants of which only a part of the surface has the topography according to the present invention. For example, the dental implant of the present invention may be an implant of which only the bone tissue contacting region of the anchorage part’s surface has the topography according to the present invention. Likewise, only the region of the implant’s surface contacting the soft tissue may have the topography according to the present invention. It has been found that when using a dental implant which in the soft tissue contacting region has the topography according to the present invention, the blood coagulum is stabilized which further accelerates the healing process. In a further embodiment of the present invention, both the bone and the soft tissue contacting region may thus have the topography according to the present invention.

It is further preferred that the anchoring part comprises a threaded section. Thereby, the implant can be implanted with the necessary primary stability so that subsequently to the implantation directly a primary treatment is made
possible by applying a temporary measure. The surface of the threaded section preferably has the topography according to the present invention in order to increase osteointegration.

EXAMPLES

1. Etching of a surface made of yttria-stabilized zirconia ceramic

For Examples 1 to 11, densely sintered bodies made of yttria-stabilized zirconia ceramic as described by Burger, W. et al, New Y-TZP powders for medical grade zirconia. J Mater. Sci. Mater. Med. 1997, 8 (2), 113-118, and having the shape of a disc with a diameter of 15 mm and a thickness of 2 mm are prepared by low injection molding and subsequent hot isostatic pressing. The material falls within the definition of ASTM F 1873 and ISO 13356 and is further specified by an average grain size from about 0.1 μm to about 0.3 μm.

For preparing the bodies, casting molds are used which optionally have been treated by erosion techniques to obtain a macroscopic roughness (or “macroroughness”) on the inner surface of the mold. Depending on the erosion parameters used, a pronounced or a non-pronounced macroroughness is, thus, provided to the surface of the body. Alternatively, a pronounced macroroughness can also be obtained by sandblasting the bodies with Al₂O₃ at a pressure of 6 bar and an average working distance of 2 cm. Both the erosion and sandblasting techniques for providing a macroroughness to the surface are known to a person skilled in the art.
The bodies according to Examples 1 to 7 and 10 to 11 are then added to an etching solution in a Teflon container at a defined etching temperature and for a defined etching time. They are then instantly rinsed with deionized water and/or NaCl solution (200mM) for five minutes in an ultrasonic device and subsequently dried under nitrogen or hot air.

Comparative Examples 8 and 9 are not added to the etching solution.

The particulars for Examples 1 to 11 are given in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Example</th>
<th>etching solution</th>
<th>etching temperature</th>
<th>etching time</th>
<th>macroroughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mixture of 80 vol.-% HF and 20 vol.-% H₂SO₄</td>
<td>104°C</td>
<td>10 minutes</td>
<td>pronounced (erosion)</td>
</tr>
<tr>
<td>2</td>
<td>Concentrated HF</td>
<td>104°C</td>
<td>10 minutes</td>
<td>pronounced (erosion)</td>
</tr>
<tr>
<td>3</td>
<td>Mixture of 85 vol.-% HF and 15 vol.-% H₂SO₄</td>
<td>102 - 104°C</td>
<td>5 minutes</td>
<td>non-pronounced</td>
</tr>
<tr>
<td>4</td>
<td>Mixture of 50 vol.-% HF and 50 vol.-% H₂O</td>
<td>102 - 104°C</td>
<td>5 minutes</td>
<td>non-pronounced</td>
</tr>
<tr>
<td>5</td>
<td>Concentrated HF</td>
<td>102 - 104°C</td>
<td>10 minutes</td>
<td>non-pronounced</td>
</tr>
<tr>
<td>6</td>
<td>Mixture of 50 vol.-% HF and 50</td>
<td>102 - 104°C</td>
<td>5 minutes</td>
<td>pronounced (erosion)</td>
</tr>
<tr>
<td>Mixture of 50 vol.-% HF and 50 vol.-% H₂O</td>
<td>102 - 104°C</td>
<td>10 minutes</td>
<td>non-pronounced</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>No etching (erosion only)</td>
<td></td>
<td></td>
<td>pronounced (erosion)</td>
<td></td>
</tr>
<tr>
<td>No etching (sandblasted only)</td>
<td></td>
<td></td>
<td>pronounced (sandblasted)</td>
<td></td>
</tr>
<tr>
<td>Concentrated HF</td>
<td>102 - 104°C</td>
<td>5 minutes</td>
<td>non-pronounced</td>
<td></td>
</tr>
<tr>
<td>Concentrated HF</td>
<td>102 - 104°C</td>
<td>5 minutes</td>
<td>pronounced (sandblasted)</td>
<td></td>
</tr>
</tbody>
</table>

For Examples 1 to 9, the surface structure obtained by the above treatment is shown in Figures 3 to 11 of which

Figure 3 is an SEM picture of the surface resulting from the treatment according to Example 1 in two different magnification levels, the scale given in the SEM picture corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 4 is an SEM picture of the surface resulting from the treatment according to Example 2 in two different magnification levels, the scale given in the SEM picture corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 5 is an SEM picture of the surface resulting from the treatment according to Example 3 in two different magnification levels, the scale given in the SEM picture...
corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 6 is an SEM picture of the surface resulting from the treatment according to Example 4 in two different magnification levels, the scale given in the SEM picture corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 7 is an SEM picture of the surface resulting from the treatment according to Example 5 in two different magnification levels, the scale given in the SEM picture corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 8 is an SEM picture of the surface resulting from the treatment according to Example 6 in two different magnification levels, the scale given in the SEM picture corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 9 is an SEM picture of the surface resulting from the treatment according to Example 7 in two different magnification levels, the scale given in the SEM picture corresponding to 20 μm (above) and 5 μm (below), respectively;

Figure 10 is an SEM picture of the surface according to Example 8 in two different magnification levels, the scale given in the SEM picture corresponding to 50 μm (above) and 20 μm (below), respectively; and

Figure 11 is an SEM picture of the surface according to Example 9 in two different magnification levels, the scale given in the SEM picture corresponding to 50 μm (above)
and 20 μm (below), respectively.

As can be seen from Figures 3 to 9, etching according to the present invention of a surface made of an yttria-stabilized zirconia ceramic leads to a surface having crater-like structures. This surface is highly osteointegrative.

Similar structures are obtained by etching other yttria-stabilized zirconia ceramics. In a further example, a disc made of ZrO_2-TZP/TZP-A Bio-HIP® (ZrO_2) Bioceramic available from Metoxit AG, Switzerland, is etched with a mixture of 50 vol.-% concentrated hydrofluoric acid (HF) and 50 vol.-% of concentrated phosphoric acid as etching solution, the etching time being from about 20 to about 60 seconds and the etching temperature being about 106°C. An SEM picture of the surface obtained is given in Figure 12, the scale given in the SEM picture corresponding to 5 μm.

2. Parameters characterizing the surface topography

For Examples 1 to 11, the topography of the surface is quantitatively examined using a confocal 3D white light microscope (μSurf, NanoFocus AG, Oberhausen, Germany) over an area of 770 μm x 770 μm to calculate the three-dimensional topography parameters S_k and S_{3k}. The lateral resolution of the microscope is 1.5 μm (512 x 512 pixels).

The specific measurement parameters are as follows:

- Measuring range: 770 μm x 770 μm
- Aperture: 50%
- Illumination: Maximal intensity Xe-Lamp
- Objective: 20x
Drive: Piezo
Stepsize: 0.6 µm
Algorithm: mean/fast

The ceramic samples are coated with a Au/Pd layer having a thickness of about 20 nm. To this end, a sputter coater (SCD 050; BAL-TEC AG, Liechtenstein) was used. The settings are as follows:

Coating distance: 50mm
Evacuation: to 4x10^{-1} mbar
Rinsing: with Argon
Current: 65 mA
Time: 55s

By these settings, an Au/Pd layer having a thickness of about 20nm is obtained.

The 3D specific Skewness S_{sk} and Core Roughness Depth S_k are calculated using a Gaussian filter with a cut-off wavelength of 10 µm. The Gaussian filter used to analyze the Core Roughness Depth and its associated parameters is a specific filter described in ISO 13 565 Part 1 (DIN 4776). The cut-off wavelength λ_c is defined, according to DIN 4768, as the wavelength of the sinus wave which is separated by the filter into 50% roughness and 50% waviness.

The calculation of the roughness parameter S_k and S_{sk} is carried out by the WinSAM software (University of Erlangen, Germany).

Details to the WinSAM software:
Windows Surface Analysis Module; Version 2.6, University of Erlangen, Germany; "Polynom 3. Grades, MA-Gauss-Filter
7 Punkte = cut-off (10×10μm²); KFL-Analyse Amplitudendichte 10nm™.

The filter creates a separation into waviness and roughness. This derivation and therefore also the determined value for the roughness parameter is dependent on the selected cut-off wavelength λc. For determining the Sk and Ssk values, the cut-off wavelength λc is set to 10 μm as given above.

The results are given in the diagram of Figure 13 in which the Ssk values and the Sk values of Examples 1 to 11 are represented pointwise.

Comparatively, the Sk and Ssk values of the commercially available implants z-zit® (Example 12) of Ziterion GmbH, Germany, Z-Lock® (Example 13) of Z-Systems AG, Germany, White Sky® (Example 14) of Bredent medical GmbH, Germany, and Ti-SLActive® (Example 15) of Straumann, Switzerland, have also been determined according to the method described above.

As can be seen from Figure 13, the surface topography of Examples 1 to 7 and 10 to 11 obtained according to the process of the present invention has a Core Roughness Depth Sk between about 0.4 μm and about 1 μm. In these Examples, the Skewness Ssk is less than 0. Figure 13 also clearly illustrates that the surface topography obtained according to the present invention is completely different from the surface topography of commercially available implants, in particular SLActive®, which have a Core Roughness Depth Sk significantly higher than 1 μm.
3. In vitro cell tests

In vitro cell tests are carried out using the human osteosarcoma cell line MG-63 because of its ability to differentiate into mature osteoblasts.

The cell line is cultured in a mixture of Dulbecco’s modified Eagles’s Medium (DMEM; available from Sigma, Switzerland), Penicillin-Streptomycin Solution (100X; available from Sigma, Switzerland) and FBS.

On each of the discs according to Examples 1, 2, 7, 9 and 15, approximately 9000 cells are plated.

After culturing each of the respective discs in a medium containing vitamin D3, they are removed and washed with 1 ml PBS (RT). 350 µl of RLT-buffer (plus β-mercaptoethanol) is added to each disc and incubated for 2 to 3 minutes.

The RLT buffer is removed by simultaneously scratching with a pipette tip over the surface of the discs (to remove all cells) and frozen at -25°C until RNA extraction.

RNA is isolated using the QIAGEN - Kit RNeasy Micro Kit®. Then, cDNA is produced and the expression of osteocalcin, osteonectin and TGFbeta, which are known to be involved in the bone formation process, is analysed by “Real time PCR”. As reference gene, 18S rRNA is used. Osteocalcin, osteonectin and TGFbeta are known to be suitable biochemical markers for the bone formation process.

For the calculation of the relative fold expression of the respective marker, the Livak method or $2^{-\Delta\Delta Ct}$ method is used. This method is based on the assumption that target and reference genes are amplified with efficiencies close
to 100% (corresponding to an amplification rate of 2). The Livak method puts the $E_{\text{target}}=E_{\text{reference}}=2$, wherein E is the efficiency of the reaction.

The threshold cycle (Ct) of the target gene is normalized to the reference gene for the test sample and the calibrator sample. As a reference gene, 18S tRNA is used, and as a calibrator sample, cells cultured on the disc of Example 9 is used.

The ΔCt of the test sample is defined as follows:

$$\Delta\text{Ct}_{\text{test sample}} = \text{Ct}_{\text{test sample}} - \text{Ct}_{\text{reference gene}}$$

wherein the ΔCt of the calibrator is defined as follows:

$$\Delta\text{Ct}_{\text{calibrator}} = \text{Ct}_{\text{test calibrator}} - \text{Ct}_{\text{reference calibrator}}$$

The ΔCt of the test sample is normalized to the ΔCt of the calibrator, resulting in the $\Delta\Delta$Ct:

$$\Delta\Delta\text{Ct} = \Delta\text{Ct}_{\text{test sample}} - \Delta\text{Ct}_{\text{calibrator}}$$

and the normalized expression ratio was calculated by the following formula:

$$\text{Normalized expression ratio} = 2^{-\Delta\Delta\text{Ct}}$$

The fold expressions of osteocalcin and TGFbeta on Examples 1, 2, 7 and 15 relative to Example 9 are shown in Figure 14. As can be seen from Figure 14, all examples treated according to the present invention exhibit a higher expression of osteocalcin and TGFbeta than comparative Example 9. This substantiates the finding that the examples treated according to the present invention have improved osteointegrative properties. A higher expression of osteocalcin and TGFbeta is also found for
Example 15 relating to Ti-SLActive® which is well known for its high osteointegrative properties.

Example 2 has further been analysed for its expression of osteonectin. As shown in Figure 15, Example 2 shows an expression of osteonectin superior over both comparative Example 9 and Example 15 (Ti-SLActive®).
The claims defining the invention are as follows:

1. Dental implant having a surface made of a ceramic material, wherein the surface has a topography with Core Roughness Depth S_k of less than 1 μm, and wherein the Skewness S_{sk} of the topography is less than 0.

2. Dental implant according to claim 1, wherein the Core Roughness Depth S_k is in the range of about 0.4 μm to about 1 μm.

3. Dental implant according to any of the preceding claims, wherein the ceramic material has an average grain size from about 0.1 μm to about 0.6 μm.

4. Dental implant according to any of the preceding claims, wherein the ceramic material is based on zirconia.

5. Dental implant according to any of the preceding claims, wherein the ceramic material is yttria-stabilized zirconia.

6. Dental implant according to claim 5, wherein the composition of the yttria-stabilized zirconia comprises 4.5 to 5.5 weight-% of Y_2O_3 and less than 5 weight-% of HfO_2, the total amount of ZrO_2, Y_2O_3 and HfO_2 being more than 99 weight-%.

7. Dental implant according to any of the preceding claims, wherein the dental implant is a one-part dental implant.

8. A dental implant having a surface made of a ceramic material substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.

Dated 6 February 2013

Straumann Holding AG

Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON
<table>
<thead>
<tr>
<th>S_{sk}</th>
<th>$S_k < 1 , \mu m$</th>
<th>$S_k > 1 , \mu m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{sk} > 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{sk} \approx 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{sk} < 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 12
Fig. 14
Fig. 15