PULVERIZER HAVING ULTRASONIC DRIVE MEANS

Alvin A. Snaper
Inventor.

By Allen E. Botney
Attorney
The present invention relates to pulverizing equipment in general and more particularly relates to ultrasonic pulverizing apparatus by means of which materials can be reduced to small particle size under accurately controlled conditions.

To pulverize is to reduce a material to a fine powder or dust, as by beating or grinding, and it goes without saying that such pulverization of materials plays a most important role in many industrial processes and in the preparation of many different kinds of commercial products, such as pigments, flour, powdered chemicals and medicines, and still others.

Probably the simplest kind of pulverizing apparatus, one with which we are all familiar, is the mortar and pestle. In another kind of pulverizer, usually found only in industry, large rotating spheres or cylinders are brought together, the material being crushed and ground between the contacting surfaces of the spheres or cylinders until they are reduced to the desired powdery state. However, although machines of the kind mentioned are perfectly satisfactory for many purposes, they are nevertheless limited in two important respects, namely, they are relatively slow-acting and the sizes of the particles produced by them cannot be controlled to the extent oftentimes desired.

It is, therefore, an object of the present invention to provide an ultrasonically-driven pulverizer and, therefore, one that is relatively fast-acting.

It is another object of the present invention to provide a pulverizer whose particle sizes can be accurately and easily controlled.

The present invention avoids the limitations of the pulverizing equipment encountered in the prior art, the basic concept of the invention residing in ultrasonically driving a pair of walls or plates, the initial spacing between the plates and their displacement due to their ultrasonic vibration determining the resulting particle sizes within accurately controlled limits.

As will be seen from the detailed description of the invention, by suitably shaping the walls, the materials to be pulverized may be gradually reduced in size and, in addition, may have shearing forces applied to them as well.

The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages thereof, will be better understood from the following description considered in connection with the accompanying drawing in which several embodiments of the invention are illustrated by way of example. It is to be expressly understood, however, that the drawing is for the purpose of illustration and description only and is not intended as a definition of the limits of the invention.

FIG. 1 schematically illustrates a preferred embodiment of a pulverizer according to the present invention; and FIG. 2 schematically illustrates another embodiment of the invention in which shearing as well as pulverizing forces are developed.

Referring now to the drawing, the embodiment in FIG. 1 therein is shown to include a pair of convex-shaped walls or plates 10a and 10b with the convex surfaces of these walls facing each other. Respectively mounted on
3

Upon turning on oscillator 12 and with the resulting vibration of walls 10a' and 10b', these pieces are broken up into smaller pieces which ultimately move or settle in the narrow space between sides 10f' and 10f''. Here the material is simultaneously pulverized and sheared, the still smaller pieces resulting therefrom again settling still lower between sides 10d' and 10d''. This process continues until the particles are sufficiently reduced in size to fit between sides 10e' and 10e'' where they are pulverized to their final fine particle size before becoming deposited in tank 14. As before, the final particle size is determined by the initial spacing "d" between sides 10e' and 10e'' and the vibrational displacement ∆x of the walls, either or both of which may be varied.

Although a couple of arrangements of the invention have been illustrated above by way of example, it is not intended that the invention be limited thereto. More specifically, it should be recognized that walls 10 may be given any one of a number of different shapes and sizes and that the spacings between them may also be varied. Again, by way of example, one wall may be kept stationary and the other wall moved against it. Accordingly, the invention should be considered to include any and all modifications, alterations or equivalent arrangements falling within the scope of the annexed claim.

4

Having thus described the invention, what is claimed is:

Pulverizer apparatus comprising: a pair of walls movably positioned in face-to-face relationship, each oppositely associated face being alternately vertical and inwardly and downwardly inclined at substantially the same angle on the same side relative to a vertical plane in order to provide both pulverizing and shearing forces to material fed between said walls; a pair of ultrasonic transducer elements respectively mounted on said pair of walls for vibrating said walls toward and away from each other in response to a single applied thereto at an ultrasonic frequency; and an oscillator for applying a signal at an ultrasonic frequency to said pair of transducers.

References Cited by the Examiner

UNITED STATES PATENTS

1,847,083 3/1932 Flint 241—264
2,468,537 4/1949 Benioff 241—1 X
2,751,158 6/1956 Fisher 241—262
3,075,711 1/1963 Kautz 241—266 X

LESTER M. SWINGLE, Primary Examiner.
J. SPENCER OVERHOLSER, Examiner.
DONALD G. KELLY, Assistant Examiner.