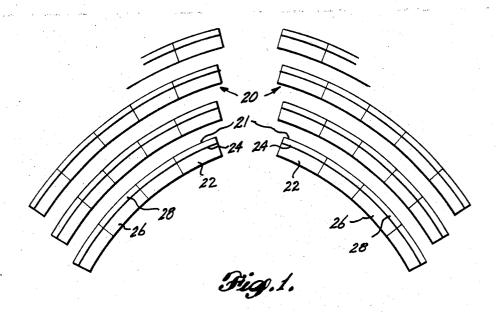
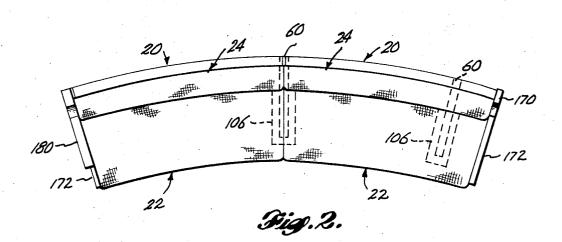
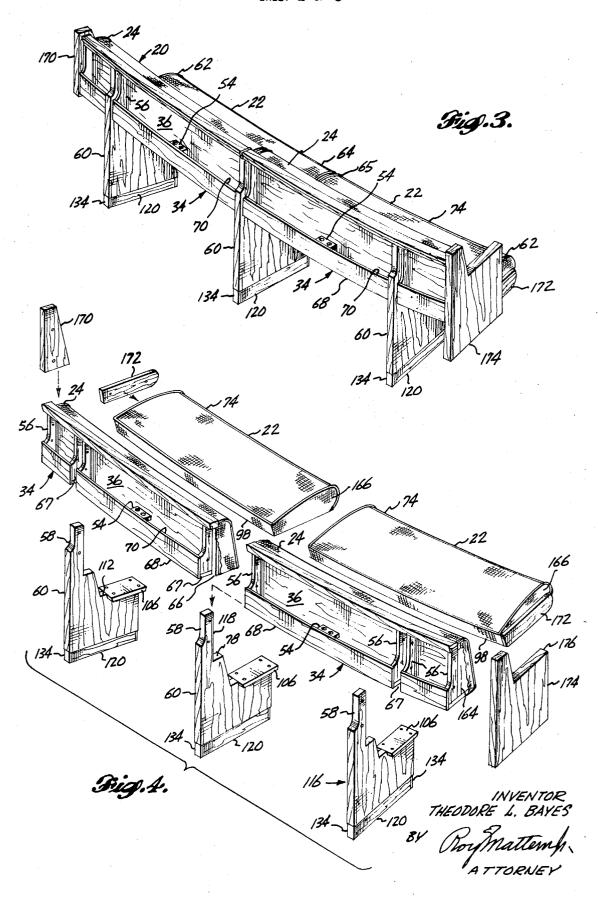

[7:	lnventor	Theodore L. Bayes	
		Tacoma, Wash.	
[2]] Appl. No.	774,630	
[22] Filed	Nov. 12, 1968	
[45	Patented	June 15, 1971	
[73] Assignee	Sydney C. Selden	
[54] RADIUS P	PEW MODULES	
	9 Claims, 1	7 Drawing Figs.	
152) IIS CI		205/22

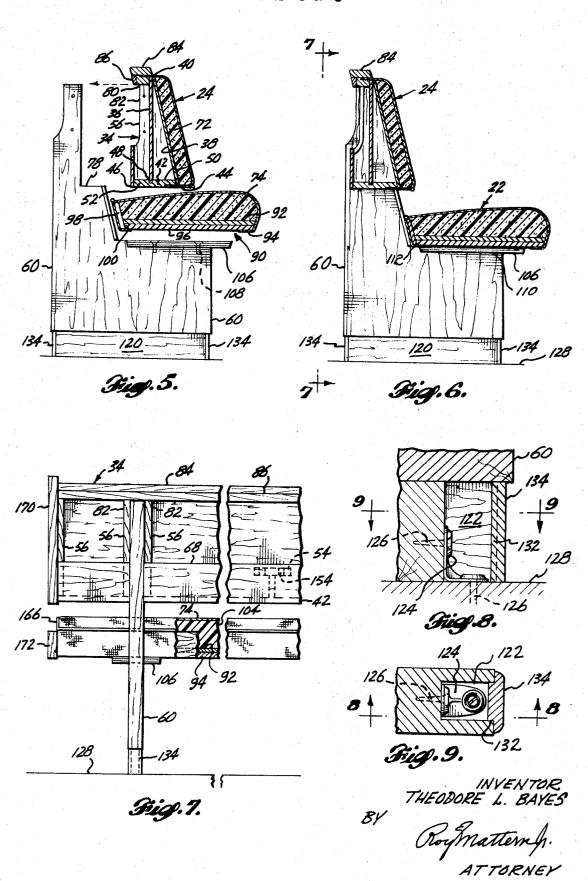
[52]	U.S. Cl. 297/232
	297/249, 297/440, 297/446, 297/450
[51]	Int. Cl
[50]	Field of Search
	248, 249, 191, 446, 450, 444, 443, 452, 440, 426;
	248/361, 188.8


[56]		References Cited					
UNITED STATES PATENTS							
326,571	9/1885	Lancaster	297/254 X				
345,710	7/1886	Mason	297/191 X				
1,722,226	7/1929	Kessler	297/232				
1,936,113	11/1933	Jelliffe	248/188.8				
2,518,532	8/1950	Edwards	297/191 X				
2,816,601	12/1957	Plummer	297/450				
3,027,190	3/1962	Schaefer	297/232				
3,041,107	6/1962	Schaefer	297/248				
3,170,729	2/1965	Grant	297/440				

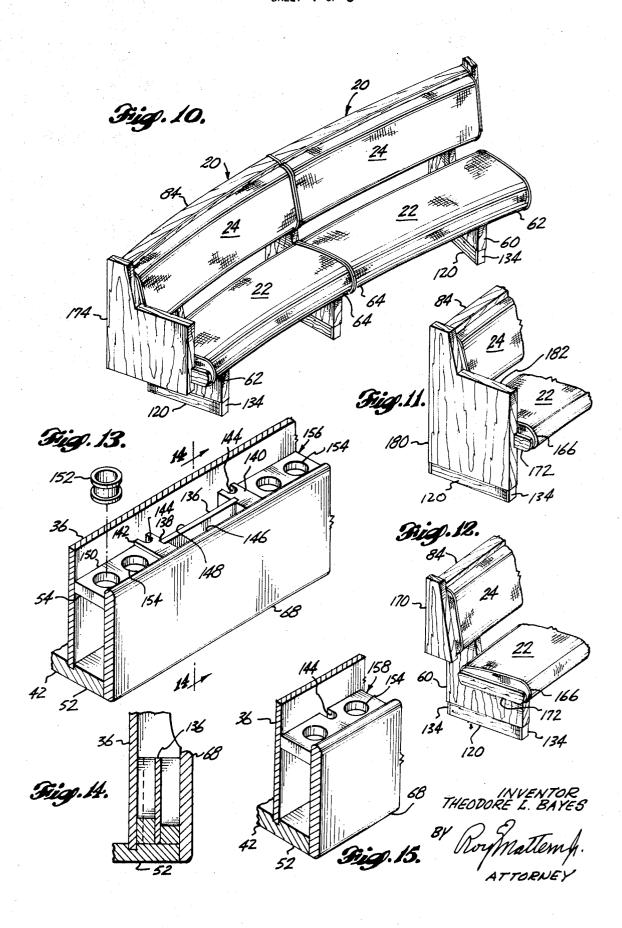

3,318,635	5/1967	Barecki	297/446					
3,329,465	7/1967	King	297/446					
Primary Examiner—Francis K. Zugel Attorney—Roy E. Mattern, Jr.								

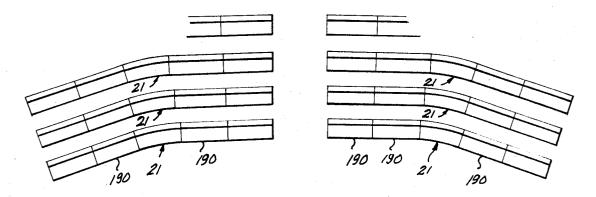
ABSTRACT: Basic radius pew modules and derivatives thereof have a frame constructed of essentially wood components none of which have compound curved surfaces. Eventually compound curve results are obtained by adding formed upholstered cushion materials to the frame. During final assembly, in a church for example, factory assembled curved back frame subassemblies are initially fitted with legs into free standing frames which initially are not secured to a floor. Subsequently, positioning fasteners are used to secure legs and curved back subassemblies permanently together. Then curved back cushions are added. Thereafter, curved seat frame and curved seat cushion subassemblies are secured across leg supports to complete a series of midrow modules. Each of these legs, with respect to its width is used only in part and is therefore ready to receive ends of adjacent subassemblies of both curved backs and seats. Adjacent aisles, end modules of various lengths complete rows of various total arcuate lengths. End modules are of the same modular construction until a row end is approached. Then one of a selected group of end style designs is installed and the end leg support fully supports such end. When an arcuate row of a radius is finally positioned and/or all arcuate rows are finally positioned, then all legs are preferably secured to the floor.

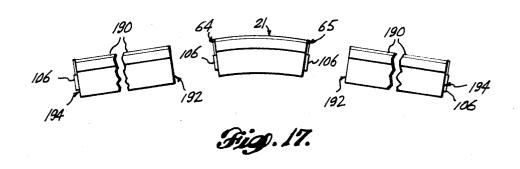

SHEET 1 OF 5



INVENTOR THEODORE I BAYES RoyMatterny


SHEET 2 OF 5


SHEET 3 OF 5


SHEET 4 OF 5

SHEET 5 OF 5

Fig. 16.

INVENTOR.
THEODORE I. BAYES
BY
RoyMatterny
ATTORNEY

RADIUS PEW MODULES

BACKGROUND OF INVENTION

In years past many men, having excellent woodworking skills, handcrafted church pews formed along a designated curve of a given radius. They cut and otherwise shaped such pews creating compound wood curved surfaces that formed the seats and backs of such pews. As time passed, men having 10 such skills, decreased in proportion to demands, and also the time required was reflected in higher manufacturing costs. As a result curved church pews were subsequently very infrequently specified, although they were wanted, if the costs could have been lowered, production rates could have been 15 each having a cantilevered end; increased and quality could have been maintained.

After many years, wherein these higher costs could not be overcome and of the resulting reluctant decisions specifying lower cost straight church pews and similar straight multiple a choice to those involved in planning, financing and constructing a church or another meeting place. They have the opportunity of again specifying competitively priced pews and other seating arrangements which will be manufactured and installed in accordance with specified varying radii. There are 25 many styles of these radius seating accommodations giving architects an even wider choice in designing a church or another meeting building to accommodate arcuate rows of seats. Also these arcuate seating modules may be combined with straight seating modules to acquire yet another distinc- 30 tive seating arrangement.

SUMMARY

Radius pews or similar seats of excellent quality and ap- 35 pearance are provided at reasonable cost, as underlying module construction of seat supporting members is undertaken utilizing particular principal structural members which are only curved in one direction. Eventually, resulting compound curves of seating surfaces are first obtained upon 40 addition of cushions and upholstery to some of the principal structural members of a radius seating module.

Wherever possible, modules of uniform length are factory made in presubassemblies. Thereafter at a meeting building, in their initial installation stage very few fasteners are im- 45 mediately necessary and a preliminary overall installation proceeds rapidly. Then repositioning adjustments are thereafter conveniently undertaken before final fasteners are used. The preliminary free standing installation occurs as vertical receiving slots, formed upon joining adjacent curved 50 back rest structural subassemblies are positioned down and over upstanding receiving supports of leg units. In this convenient initial assembly in the meeting room, individual leg units commonly serve to support adjacent back rest structural members and corresponding adjacent seat structural mem- 55 bers, thereby serving in joining together the adjacent basic radius pew modules.

When collective joining of several common length basic radius modules does not match a given arcuate length of an overall radius pew or other seating accommodation, supplemental seating lengths are made following the same construction and subassembly format of interfitting, back, leg and seat structural components. Also, radius and straight modules are joined to obtain other seating arrangements to efficiently fill 65 support adjacent module. the interior floor area of a designated meeting room. At all times, the entry of compound curved surfaces only occurs when cushion and upholstery materials are installed, optionally, during: subassembly operations; preliminary assembly periods; and/or final assembly of all structural frame 70 components in a meeting room.

DRAWINGS OF PREFERRED EMBODIMENTS

In the drawings, various figures illustrate how radius seating

equipped with optional end portions to serve many seating requirements, thereby also offering many styles of such versatile seating. Also accessories are arranged to receive items particularly used during church service.

FIG. 1 is a partial plan view of a meeting room having arcuate seating arrangements indicating how basic radius pew modules are utilized and occasionally supplemented to match aisle edges;

FIG 2 is a top view of two special radius pew modules indicating two different end constructions, on the left is a flush supported end, and on the right is a cantilevered supported

FIG. 3 is a rear perspective view of two radius pew modules

FIG. 4 is a rear perspective exploded view of radius pew modules, shown previously in FIG. 3, indicating preassembly of subassemblies in preparation for their final assembly;

FIG. 5 is an exploded transverse section view of a radius seating accommodations, this invention, has once again, given 20 pew module indicating preassembly of its subassemblies in preparation for final assembly;

FIG. 6 is a transverse section view of a radius pew module of FIG. 5 indicating final assembly of its subassemblies;

FIG. 7 is a partial rear view of a radius pew module with portions broken away or shown in dotted lines for illustrative purposes looking in a direction of line 7-7 of FIG. 6, and indicating a cantilevered end at an aisle;

FIG. 8 is a partial elevation section view, taken along line 8-8 of FIG. 9, of a fastening structure of legs of a radius pew module, to secure a leg to a floor after a module has been preliminarily erected and positioned;

FIG. 9 is a partial plan section view, taken along line 9-9 of FIG. 8, of fastening structure of legs of a radius pew module, to secure a leg to a floor after a module has been preliminarily erected and positioned;

FIG. 10 is a front perspective view of two radius pew modules, each having a cantilevered end as also shown in FIG.

FIG. 11, is a front end perspective view of a near aisle portion of a radius per module showing a flush end supporting leg;

FIG. 12, is a front end perspective view of a near aisle portion of a radius pew module showing a cantilevered end with both back and seat portions terminating in their respective separated end structures;

FIG. 13, is a partial rear perspective view of a back of a radius pew module to indicate how recessed back structure is utilized to provide receiving compartments for hymn and prayer books, wine glasses, cards, and pencils;

FIG. 14, is a partial section view, taken on line 14-14 of FIG. 13, to indicate respective depths of some receiving compartments in recessed back structure of a radius pew module; and

FIG. 15, is a partial rear perspective view of a back of a radius pew module to indicate how recessed back structure is utilized to provide a smaller receiving compartment structure accommodating wine glasses and a pencil;

FIG. 16, is a partial plan view of another meeting room having arcuate seating modules combined with straight seating modules to effectively use given floor space; and

FIG. 17, is a top view of a radius seating module about to be secured between two straight seating modules, for subsequent installation as shown in FIG. 16, and also indicating how legs

DESCRIPTION OF PREFERRED EMBODIMENTS

OVERALL ARCUATE SEATING ARRANGEMENT

As indicated in FIGS. 1 and 2, radius seating modules 20, in general, and basic modules 21, hereinafter also referred to as radius pew modules, because of their initial installations in churches, are joined together to match given overall specified seating capacities of meeting rooms. As indicated by like modules are arranged with like and straight modules and 75 lengths of both arcuate seat and back cushions, 22, 24,

throughout FIG. 1, a major percentage of such overall arcuate seating is comprised of such common or like lengths of cushions 22, 24.

Only where shorter lengths are indicated to create uniform aisle widths, is it necessary to provide cushions of special lengths, indicated generally by numerals 26, 28, regardless of their different lengths. The underlying structure of these special lengths is undertaken in like manner to the underlying construction of radius pew modules 20, in general, and basic radius pew module 21.

The principal purpose of this module construction is to provide this desirable radius seating at high quality yet at reasonable costs, once again giving a choice of seating arrangements to those planning a church or other building. The module construction provides the ease of the ultimate assembly, as illustrated in these FIGS. 1 and 2. However, there are very important underlying arrangements of the principal structural members, as shown in remaining figures, which are accomplished at substantial cost savings. A prime objective is to create curved back and seat structural assemblies wherein curved supporting structural components need only to be curved in one direction. No construction of difficult and costly compound curved components of supporting structural assemblies is undertaken. However, such overall compound curves of 25 back and seat surfaces are provided eventually by formation and placement of seat and back cushions 22, 24, 26 and 28 on supporting structural subassemblies.

As indicated in FIGS. 16 and 17, basic radius seating modules and derivatives thereof may also be selectively combined with straight modules of similar construction giving still another choice of seating arrangements to those planning a church or other building.

SUB ASSEMBLIES IN GENERAL

The module construction of these radius pews is designed so subassemblies are made in a factory and then shipped to a church for final assembly. Various subassemblies are illustrated in FIGS. 4 and 5 before final assembly. Their ultimate assembly is shown in FIGS. 3, 6, 7 and 10.

SUBASSEMBLY BACKS

Each back subassembly 34 has a curved member 36 that is vertical and a curved member 38 that is slanted which 45 together define a triangular cross-sectional shape of longitudinal back rest 40. They are secured in such triangular position by using a horizontal bottom board 42 that has its respective front 44 and rear 46 edges curved in accordance with specified radii of radius pew modules 20 of a given row. Curved slanted member 38 is fastened to front edge 44 of board 42. Curved vertical member 36 is fitted into curved groove 48 made in top surface 50 of horizontal bottom board 42, which extends to the rear beyond vertical member 36. Such rearward horizontal extending portion 52 of board 42, serves to support structures 54 used to receive books, pencils, cards, glasses as indicated in FIGS. 3, 4, 13, 14 and 15.

Also extending portion 52 supports spaced vertical transverse braces which are arranged in pairs along modules 20, 21 to position back subassemblies 34 about upper portions 58 of supporting legs 60. In addition, like formed single transverse vertical braces 56 are used at each end terminus of modules 20, where no leg is to be positioned, such as at a cantilevered end 62. Also at an abutting end 64 of a module 20, where it is 65 to be joined to a like but opposite hand end 65 of an adjacent module 20, each end 64 or 65 includes a single vertical transverse brace 56. It is set inwardly at 66, slightly more than half the distance necessary to clear upper portion 58 of a common supporting leg 60. All vertical transverse braces 56 are further 70 positioned by vertical longitudinal braces 68 of various lengths but always long enough to extend between pairs of vertical transverse braces 56. At all leg 60 locations, portions 67 of extending portion 52 of board 42 are cut away to accommodate upper leg portions 58.

The resulting placement of vertical transverse braces 56, vertical longitudinal braces 68, and rearward horizontal extending portion 52 of bottom board 42, in conjunction with vertical curved back member 36, forms a receiving ledge compartment 70. FIGS. 13, 14 and 15 show how this receiving ledge compartment 70 is specifically designed in selected places to receive particular objects such as pencils, books and glasses.

A cushion padding 72, such as a foamed rubber or plastic padding, is shaped to receive upholstery material 74 and then be secured as a back cushion module 24 to slanted curved member 38 of back subassembly 34. During such securement, upholstery 74 is wrapped underneath to bottom board 42 where it rests on the horizontal ledge 78 of upper portion 58 of supporting leg 60. Also upholstery 74 is wrapped over top longitudinal cross braces 80 that extend across tops 82 of vertical transverse braces 56. A top horizontal finishing board 84 is placed over upholstery ends and secured to cross braces 80. Also a top vertical finishing board 86 is secured just below finishing board 84 to adjacent rear vertical edge of longitudinal cross braces 80 to complete covering of horizontal upholstery ends and finish the top of back subassembly 34.

SUB ASSEMBLY SEATS

Each seat subassembly 90 has preferably two pieces of structural material 92, 94 secured adjacent one another, serving as longitudinal and horizontal seat frame structural member 96, having their fiber orientations supplementing one another to provide adult seating support without sagging. Added strength is provided by securing a slanted rear cross brace 98 along curved rear edge 100.

A seat cushion module 22 consisting of a formed rubber or plastic padding 104, such as foamed rubber padding, is shaped to receive upholstery material 74 and then be secured to longitudinal and horizontal seat frame member 96. During such securement, upholstery 74 is wrapped underneath lower structural seat member 94 to be subsequently well entrapped between member 94 and a seat receiving board 106, as shown in FIG. 6. Latter board 106 is secured with fasteners 108 to a horizontal cutout 110 on horizontal ledge 112 of each supporting leg 60. Also upholstery 74 is secured by wrapping it well over slanted rear cross brace 98 and then back under rear portion of lower structural seat member 94 by horizontal ledge 112 of each supporting leg 60, as shown in FIG. 6.

SUBASSEMBLY LEGS

Portions of leg subassemblies 116 have been indicated previously. Legs 60 are all wide enough so when it is necessary, they receive respective ends 64 of adjacent back subassemblies 34. Respective vertical transverse braces 56 of back assemblies 34 are positioned on each side of upper leg portions 58. These upper leg portions 88 each have a complementary vertical to horizontal-shaped cutout 118 to receive portions of vertical curved member 36 and bottom board 42 of back assemblies 34. Such leg cutout 118 also serves in a like receiving way, where a back subassembly 34 is supported inwardly of its ends which are cantilevered at aisles.

Except at flush aisle ends, indicated in FIGS. 11 and 12, each leg 60 is equipped with a seat receiving board 106, secured with fasteners 108. Each board 106 provides a wider support used in securing adjacent seat subassemblies 90 in place with fasteners not shown.

As indicated in FIGS. 4, 5, 6, 7, 8 and 9, at the bottom of each leg 60, a horizontal foot 120 is secured. Foot 120 is formed at each end with a vertical groove 122. When a preassembled accurate row of radius pew modules 20 are finally positioned, then right angle braces 124 are secured in place with fasteners 126 in each foot groove 122. Installation of these angle braces 124 with fasteners 126, thereafter secures each leg 60 firmly to a floor 128 and consequently an entire radius pew is firmly held in place. Following such permanent radius pew placement, angle braces 124 and fasteners 126 are

concealed by fitting into the entry of vertical groove 122, a tongue 132 of a cover 134 which in turn matches the contour of foot 120.

SUBASSEMBLIES HOLDERS FOR BOOKS, PENCILS, GLASSES, CARDS

The overall bracing structure of back subassemblies 34 provides a series of receiving ledge compartments 70 which extend between upper leg portions 58, as shown in FIGS. 3 and 4. At selected spaced intervals in ledge compartments 70, holders are made as shown in dotted lines in FIG. 7 and as shown in FIGS. 13, 14 and 15.

In FIG. 14, two vertical receiving spaces are formed by securing a dividing vertical partition 136, which is positioned parallel to vertical curved member 36. It is held in vertical grooves 138 of posts 140, 142, which in turn fit closely within ledge compartment 70. Each post 140, 142 has a hole 144 to receive a pencil not shown, and vertical spaces 146, 148 on each side of partition 136 hold small books, pamphlets and/or cards, not shown. Beyond each post 140, 142 horizontal trays 150 are secured across ledge compartment 70 near its top and equipped with round opening cushioned inserts 152 fitted to holes 154 to receive wine glasses, not shown. A cross section of this multiple holder 156 is shown in FIG. 14 in reference to vertical spaces 146, 148. A smaller dual use holder 158 is illustrated in FIG. 15 to receive wine glasses and a pencil in respective openings 144 and 154 in tray 160.

SUBASSEMBLIES BASIC MODULE

Radius pew modules, shown in FIGS. 2, 3, 4, for illustrative purposes, have all been shown with various end structures on them. However, as indicated in FIGS. I and 16, until an aisle is reached there often will be several basic modules 21 and/or 190 used, which have both of their ends 64, 65 designed for 35 common support by one leg 60. Such modules 21 appear very similar to the general module 20 shown on the left side of FIG. 2. The end on the right side of this illustrated module is duplicated on the left side of any basic module 21 used throughout an arcuate rown until row end modules are 40 reached. As indicated in FIG. 2 whether a basic radius module is made, a flush row end radius module is made, or a cantilevered row end radius module is made, the back and seat upholstered cushion modules 22, 24 used throughout are essential identical in length. Only when fill-in or length compensating modules are needed is there a great change made in the otherwise similar length of the respective cushion modules. There will always remain the minor adjustments to compensate for the increasing radii of successive arcuate rows.

As shown in FIGS. 16 and 17, radius pew modules 21 are combined with straight modules 190 following the same structural approach to factory made subassemblies and their convenient final assembly within a church or other building. Legs 60 again are wide and strong enough to receive respective end portions 64, 65 of modules 21 and respective end portions 192, 194 of modules 190. Seat receiving boards 106 are also again relied upon to distribute seating loads while aiding convenient placement of fasteners 108 and others not shown.

SUB ASSEMBLIES VARIOUS AISLE END DESIGNS OF RADIUS PEWS

As discussed in conjunction with FIG. 1 and basic radius pew module 21, such a module is repeated throughout an arcuate row until an end or near end module must be varied in 65 arcuate length to complement other overall row lengths in creating uniform aisle spacing. Only then is there a need for creating a shorter module which optionally may or may not be an aisle module. In FIG. 16, straight module 190 is repeated.

Regardless, however, whether an adjacent aisle module is 70 special in regard to length, it is generally special with respect to a particular seating installation in a building, in regard to end structure and appearance, giving all potential purchasers an initial choice in end styling. Various aisle end structures and designs are indicated in FIGS. 2, 3, 4, 7, 10, 11, and 12.

On the right of FIGS. 2 and 10 and on the left of FIGS. 3, 4, 7, and 12, aisle pew modules are illustrated as having a cantilevered leg 62 position. Also respective cushion modules 22, 24, 26, 28 of back sub assemblies 34, and seat subassemblies 90, have their respective regular module back end boards 164 and seat end boards 166, supplemented by respective aisle terminus finishing back board 170 and finishing back board 172.

On the right sides of FIG. 3 and FIG. 4 and the left side of FIG. 10, aisle pew modules are illustrated as having a cantillevered leg 60 position. The regular edge boards 164, 166 are supplemented by using both a finishing seat board 172 and a larger finishing board 174 which overlays both the regular back end board 164 and the finishing seat board 172, and in addition provides an arm rest 176.

On the left sides of FIG. 2 and FIG. 11, the aisle pew module is shown having a flush leg position. The regular edge boards 164, 166 and finishing seat board 122, are supplemented by the full slush leg 180 which in addition provides an arm rest 182

Preferably, where the larger finishing board 174 and full flush leg 180 are utilized they are grooved 184 to accommodate finishing seat board 172 as illustrated in FIGS. 2, 10 and 11.

Edge boards 164, 166 may optionally be exposed and finished or covered with upholstery material 74. Generally, when finishing boards 170, 172 are used, upholstery material 74 will cover back end boards 164 and seat end boards 166.

PRINCIPAL MATERIALS USED

The frames of both back and seat subassemblies, preferable, consist of plywood with respect to vertical curved member 36, slanted curved member 38, horizontal bottom board 42, and two pieces 92, 94 of seat frame 96. Other portions are essentially optionally made from boards or from plywood.

The padding is preferably preshaped foamed rubber and the covering upholstery is a strong durable, and cleanable material such as nylon thread woven fabrics and/or leatherlike appearing plastic coverings.

Additional metal and plastic parts could be substituted if economics could be realized. However, wood parts are presently considered the most desirable.

SUMMARY OF ADVANTAGES & REFERENCES TO OTHER EMBODIMENTS NOT SHOWN

The acquisition of compound curves by using preshaped foamed rubber or other materials easily molded, to various radii, also makes it possible to derive other cross-sectional shapes of an assembly of two or more principal back members, such as back longitudinal members 36 and 38. For example, slanted curved member 38 might be spaced away at its top edge from the top of vertical curved member 36 by a spacer bar, not shown, to change the angular position of back cushion module 24. Whatever be the resulting cross-sectional positions and shapes of back and seat subassemblies, there is always the recognized avoidance of any need for compound curvatures in structural members of these subassemblies.

Moreover, an overall construction of radius pew modules, or modules of other seating arrangements, with other radius or straight modules, as illustrated and described and those suggested and indicated, lends itself to factory preconstruction and preassembly followed by convenient packaging and shipping to an installation site. Within a building final assembly is then undertaken conveniently, as modules are easily erected, when back subassemblies and leg subassemblies at the outset become self-supporting, without any connections being necessarily made to floors. Then, after preliminary placement of seating or pew rows, floor attachments are made. The balance of the fitting, if not undertaken sooner, conveniently follows with installation of cushions and accessories.

I claim:

A seating module for factory premanufacture and preassembly and for final manufacture and assembly at its place of installation, comprising:

- a. a back subassembly having: leg receiving means at spaced locations; a vertical longitudinal member; a slanted longitudinal member arranged in front of the vertical longitudinal member and having its top edge positioned along the top edge of the vertical longitudinal member; a 5 cushion covering the front of the slanted longitudinal member; a bottom longitudinal member to receive both the vertical longitudinal member and, at a spaced distance, the slanted longitudinal member and extending rearwardly beyond the vertical longitudinal member; ver- 10 tical transverse braces secured at spaced locations perpendicular to the back of the vertical longitudinal member and the top of the rearward extending portion of the longitudinal bottom; and vertical longitudinal braces secured to the vertical transverse braces and to the top of the rearward extending portion of the longitudinal bottom, thereby forming a receiving ledge compartment, and the rearwardly extending longitudinal bottom member being cut away at the vertical transverse braces to clear the leg receiving means and to accommodate upper portions of legs;
- b. a leg interfitting with the back subassembly at its leg receiving means; and
- c. a seat subassembly supported by the leg.
- 2. A seating module, as claimed in claim 1, wherein the receiving ledge compartment is further subdivided by structures that accommodate padded wine glass holders, spaces for cards, small books and pencils.
- 3. A seating module, as claimed in claim 1, wherein the seat 30 subassembly comprises:
 - a. a horizontal longitudinal member;
 - b. a vertical longitudinal member joined to the horizontal longitudinal member throughout its length; and
 - c. a cushion covering the top of the horizontal longitudinal 35 member.
 - 4. A seating module, as claimed in claim 1, wherein:
 - a. the back subassembly is complementary formed in an overall arc; and
 - b. the seat subassembly is complementary formed in an 40 overall arc.
 - 5. A seating module, as claimed in claim 3, wherein:
 - a. the back subassembly components, comprising, the vertical longitudinal member, slanted longitudinal member and bottom longitudinal member are complementary 45 formed in an overall arc; and
 - b. the seat subassembly components, comprising, the horizontal longitudinal member and vertical longitudinal

- member are complementary formed in an overall arc creating with the back subassembly and with a leg, a radius seating module.
- 6. A seating module, comprising:
- a. a back subassembly having leg receiving means at spaced locations:
- b. a leg interfitting with the back subassembly at its leg receiving means, and having, at floor level and slightly above, a portion of the leg partially grooved to form a recess:
- c. a right angle fastening means secured to the leg in its recess and adapted to be secured to a floor;
- d. a cap removably fitted over the recess in the leg to conceal the right angle fastening means, and
- e. a seat subassembly supported by the leg.
- 7. A radius seating module for factory premanufacture and preassembly and for final manufacture and assembly at its place of installation, comprising:
 - a. a curved back subassembly having: leg receiving means at spaced locations; a vertical curved longitudinal member; a slanted curved longitudinal member arranged in front of the vertical curved longitudinal member and having its top edge positioned along the top edge of the vertical curved longitudinal member; a cushion covering the front of the slanted curved longitudinal member; a bottom curved longitudinal member to receive both the vertical curved longitudinal member and, at a spaced distance, the slanted curved longitudinal member; vertical transverse braces secured at spaced locations connecting with the vertical curved longitudinal member, the slanted curved longitudinal member, and the bottom curved longitudinal member;
 - b. a leg interfitting with the back subassembly at its leg receiving means, and
 - c. a curved seat subassembly supported by the leg having: a horizontal curved longitudinal member; a vertical curved longitudinal member joined to the horizontal curved longitudinal member throughout its length; and a curved cushion covering the top of the horizontal curved longitudinal member.
- 8. A radius seating module, as claimed in claim 7, wherein the leg receiving means are formed by the vertical transverse braces being closely spaced to fit the leg and table secured to the leg adjacent the vertical longitudinal member.
- 9. A radius seating module, as claimed in claim 8, wherein the leg receiving means is open to the rear to conveniently receive the legs at their upper ends.

50

55

60

65