腎細胞癌の予後不良リスクを検出することによって、腎細胞癌の予後不良リスクを検出できることを見出した。

日本語

ニチゴンノウソウノジョウガノキョウシンヘイジョウノアツマに対し、アツマメチル化レベルを検出した結果、腎細胞癌の予後不良リスクを検出できることを見出した。
明細書

発明の名称：腎細胞癌の予後予測方法

技術分野

[0001] 本発明は、DNAメチル化レベルを検出することを含む、腎細胞癌の予後不良リスクを検出するための方法に関する。また、本発明は、前記方法に用いられるオリゴヌクレオチドに関する。

背景技術

[0002] 腎細胞癌（RCC）は、労働人口に属する壮年期にしばしば発生し、腎摘除術で根治する症例群が大勢をなす反面、急速に遠隔転移を来す症例群も明らかに存在し、両者の臨床経過には大きな差異がある。さらに、転移しても免疫療法・分子標的治療薬等が奏効する症例が知られている。再発の可能性が高い症例は密に経過観察して再発を早期に診断し、後療法を追加すれば予後が改善できる可能性がある。しかし、病理組織学的に低異型度で最もあらわれた組織型である淡明細胞型RCCに属しながら急速に遠隔転移を来す症例が経験され、既存の臨床病理学的因子等による予後予測は困難である。

[0003] 淡明細胞型RCCは、VHL腫瘍抑制遺伝子の不活性化を特徴としている。また、RCCの体系的なリスククエンシング及びエクソン解析が、癌ゲノムアトラス計画、癌ゲノムプロジェクト及び他の国際的取り組みにおいて、実施されている。そして、このような取り組みによって、腎細胞癌発生には、ヒストンH3リジン36メチルトランスフェラーゼであるSETD2、ヒストンH3リジン4デメチラーゼであるJARID1C（KDM5C）、ヒストンH3リジン27デメチラーゼであるUTX（KDM6A）、SWI/SNFクロマチンリモデリング因子であるPBRM1等のヒストン修飾遺伝子の不活性化が寄与していることが明らかになっている（非特許文献1～3）。さらに、RCCにおいて、NF2遺伝子の非同義変異及びMLL2遺伝子の欠失型変異も報告されている（非特許文献1）。しかしながら、このような遺伝子変異は、前述のRCCにおける臨床経過の差
異等（臨床病理学的な多様性）を完全に説明できるものではない。

発生過程において、ジェネティックな事象のみならず、エピジェネティックな事象が認められており、これら双方の事象が、様々な組織において互いに関連しながら臨床病理学的な多様性を招いている。また、DNAメチル化の変化は、ヒト癌における主要なエピジェネティック変化の一つであると考えられている。

実際、RCCに関し、メチル化特異的PCR（MSP）、COBRA（パーサルフライトと制限酵素との併用による解析）及び細菌人工染色体（BAC）アレイに基づくメチル化CpGアイランド増幅法（BAMCA法）による解析によって、本発明者らは、RCC患者から得た非癌腎皮質組織は、DNAメチル化状態の変化に関連した前癌段階に既にあることを示している（特許文献1及び非特許文献4～7）。さらに、BAMCA法によるゲノムウインドー解析によって、前癌段階にある非癌腎皮質組織のDNAメチル化の変化は、同一患者の対応するRCCに受け継がれていることも明らかにし、RCC症例の予後を予測する方法を開発することに成功している（特許文献1及び非特許文献6）。

しかしながら、BAMCA法によるDNAメチル化状態の評価手技は煩雑であり、さらには、かかるBAMCA法によるRCC症例の予後予測においては、発明当時BACクローンでカバーできる染色体領域が極めて限られていたので、真に診断能力の高いメチル化CpGサイトが同定されていなかった。

また、癌におけるDNAメチル化に関し、大腸癌及び胃癌等において、症例の臨床病理学的因子と相関するCpGアイランドのDNAメチル化亢進が蓄積する癌の形質（CIMP）の存在が明らかになっている（非特許文献8～11）。

しかしながら、腫細胞癌においては、CIMP陽性形質と腫細胞癌との関連は未だ明らかになっていないと考えられている（非特許文献12）。実際、個々の腫瘍におけるメチル化CpGの数が、期待されるポアソン分布とは
異なる分布を示すという知見に基づき、腎細胞癌の一部はCIMPを示す可能性が推定されていたものの、腎臓において、CIMP陽性腎細胞がんの存在は確定しておらず、特徴となる明確なCpGサイトは同定されていない（非特許文献13）。

かかる状況から、腎細胞癌においても、RCCの臨床病理学的因子と強く相関しCpGアイランドにおけるDNAメチル化が蓄積する形質（CIMP）の存在を示し、CIMPのマーカーとなるCpG部位を同定して、簡便かつ極めて敏感及び特異性高くRCCの予後を予測することのできる方法が求されけてはいるものの、実用化されていないのが現状である。

先行技術文献

特許文献

[0010]特許文献1：特開2010－63413号公報

非特許文献

非特許文献2：van Haften, G. ら、Nat. Genet.、2009年、41巻、521～523ページ
非特許文献3：Varela, に ら、Nature、2011年、469巻、539～542ページ
非特許文献5：Arai, E. ら、Int. J. Cancer、2006年、119巻、288～296ページ
非特許文献6：Arai, E. ら、Carcinogenesis、2009年、30巻、214～221ページ
非特許文献7：Arai, E. ら、Pathobiology、2011年、78巻、1～9ページ
非特許文献8：Issa, J. P.、Nat. Rev. Cancer、20
発明の概要
発明が解決しようとする課題

[0012] 簡便かつ極めて感度及び特異性高く、腎細胞癌の予後不良リスクを決定するための方法を提供することを目指す。

課題を解決するための手段

[0013] 本発明者らは、前記目的を達成すべく、1 CpG解像度インフィニウムアレイを用い、29の正常腎皮質組織（C）サンプル、淡明細胞型腎細胞癌（clear cell RCC）の患者より得られた107の非癌腎皮質組織（N）サンプル及び109の癌組織（T）サンプルについて、メチローム解析を行った。その結果、NサンプルのDNAメチル化レベルは、Cサンプルと比較して、4830CpGサイトにおいて既に変化していることが明らかになった。さらに、NサンプルにおいてDNAメチル化の変化が生じており、それらの変化がTサンプルに引き続き発生しているサイト、801CpGサイトを同定し、この801CpGサイトにおけるDNAメチル化レベルに基づき、教師なし階層的クラスタリング解析を行った。その結果、腎細胞癌はクラスターA（n = 90）とクラスターB（n = 14）とに分けられたことを見出した。そして、このクラスターBには、臨床病理学的に悪性度
の高い腫瘍が集積しており、またこのクラスターBに属する患者の無癌生存率（無再発生存率）及び全体的な生存率（全生存率）は、クラスターAに属する患者のそれらよりも有意に低いことも見出した。すなわち、クラスターBに属する腫瘍は、CpGアイランドにおけるDNA高メチル化の蓄積によって特徴付けられ、CpGアイランドメチル化形成（CIMP）陽性癌であることを明らかにした。

さらに、FAM150A、GRM6、ZNFL540、ZFPP42、ZNFL54、RIMS4、PCDHAC1、KHDRBS2、ASCL2、KC
NQ1、PRAC、WNT3A、TRH、FAM78A、ZNFL671、SLC13A5及びNKX6-2遺伝子のCpGサイトにおけるDNA高メチル化は、腫瘍におけるCIMPの特徴であることも初めて見出した。

なお、特許文献1及び非特許文献6に示す、DNAメチル化の有無を調べることによって、腫瘍の予後予測に有効であると同定された腫瘍関連領域（70のBACクローン）には、今回同定された17遺伝子のCpGサイトは一つも含まれていなかった。

また、これら17遺伝子のCpGサイトにおける高メチル化状態は、インフィニウムアレイを用いた解析以外の方法（バイロシクエンシング法及び質量分析計を用いたDNAメチル化解析法）においても検出できることも確認し、本発明を完成するに至った。本発明は、より詳しくは、以下のものである。

<1>下記（a）～（c）の工程を含む、腫瘍の予後不良リスクを検出する方法

（a）被験体の腫瘍組織由来のゲノムDNAを調製する工程、

（b）工程（a）で調製したゲノムDNAについて、FAM150A、GR
M6、ZNFL540、ZFPP42、ZNFL54、RIMS4、PCDHAC
C1、KHDRBS2、ASCL2、KC
NQ1、PRAC、WNT3A、
TRH、FAM78A、ZNFL671、SLC13A5及びNKX6-2か
らなる遺伝子群から選択される遺伝子の少なくとも一つのCpGサイトのDN
A メチル化レベルを検出する工程、

(c) 工程 (b) で検出した DNA メチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定する工程、

を含む方法。

< 2 > 工程 (b) が、工程 (a) で調製したゲノム DNA をパイサルファイトリ処理し、前記 CpG サイトの DNA メチル化レベルを検出す工程である、< 1 > に記載の方法。

< 3 > < 1 > 又は< 2 > に記載の方法に用いるための、少なくとも 12 塩基の鎖長を有する、下記 (a) ～ (b) に記載のいずれかであるオリゴヌクレオチド

(a) 前記遺伝子群から選択される遺伝子の少なくとも－の CpG サイトを挟み込むように設計された－対のプライマーであるオリゴヌクレオチド

(b) 前記遺伝子群から選択される遺伝子の少なくとも－の CpG サイトを含むヌクレオチドにハイブリダイズするプライマー又はプローブであるオリゴヌクレオチド。

発明の効果

[0017] 腎細胞癌の予後不良リスクを、簡便かつ極めて感度及び特異性高く決定することができる。

図面の簡単な説明

[0018] [図1] 細胞型腎細胞癌患者に由来する、非癌腎皮質組織 (N) と腫瘍性組織 (T) との組織学的差異を示す顕微鏡写真である。すなわち、N は主に近位尿細管からなる。一方、T には胞状構造が認められ、また、腫瘍性細胞の細胞質は脂質及びグリコーゲンにて充満されており、はっきりとした細胞膜にて囲まれている。さらに、腫瘍細胞の核は、円形状をとる傾向にあり、細かい顆粒状の均一に分散されたクロマチンを伴っていることを示す顕微鏡写真である。

[図2] ZFP42 遺伝子の CpG サイトに関し、インフィニウムアツセイによって検出された DNA メチル化レベル (β 値) と、バイロジークエンシング
によって検出されたDNAメチル化レベルとの相関を示すグラフである。
[図3] ZFP154遺伝子のCpGサイトに関し、インフィニームアツセイによって検出されたDNAメチル化レベル（β値）と、バイロシークエンシングによって検出されたDNAメチル化レベルとの相関を示すグラフである。
[図4] ZFP540遺伝子のCpGサイトに関し、インフィニームアツセイによって検出されたDNAメチル化レベル（β値）と、バイロシークエンシングによって検出されたDNAメチル化レベルとの相関を示すグラフである。
[図5] 淡明細胞型腎細胞癌の患者104人の801プローブ（CpGサイト）における癌組織（T）と非癌組織（N）とのDNAメチル化レベルの差（ΔβT−N）を、教師なし階層的クラスタリングすることによって、クラスターA（n=90）及びクラスターB（n=14）にサブクラスター化できたことを示す図である。なお、前記801プローブにおけるDNAメチル化は、前癌段階にて変化が生じており、引き続き腎細胞の癌化に寄与していることが考えられる。
[図6] 淡明細胞型腎細胞癌の患者（クラスターAに属する患者及びクラスターBに属する患者）に関し、術後の無再発生存率の経時的変化を示すグラフである。
[図7] 淡明細胞型腎細胞癌の患者（クラスターAに属する患者及びクラスターBに属する患者）に関し、術後の全生存率の経時的変化を示すグラフである。
[図8] インフィニームアツセイの検出対象とした26454個の全てのプローブに対し、淡明細胞型腎細胞癌患者の非癌組織（Nサンプル）と該患者の癌組織（Tサンプル）とでDNAメチル化レベルの差（ΔβT−Nの絶対値）が0.1以上認められたプローブの割合を示すグラフである。図中、全て症例は解析した淡明細胞型腎細胞癌患者全ての結果を示し、「A」は解析した淡明細胞型腎細胞癌患者の内、クラスターAに属する淡明細胞型腎細胞癌患者を示し、 「B」は解析した淡明細胞型腎細胞癌患者の内、クラスターBに属する淡明細胞型腎細胞癌患者を示す。バーはSD（標準偏差）を示し、N
S」は有意差が認められないことを示す（図9～12において同じ）。
[図9]インフィニウムアツセイの検出対象とした26454個の全てのプローブに対し、NサンプルとTサンプルとでDNAメチル化レベルの差（Δβ_{T-N}の絶対値）が0.2以上認められたプローブの割合を示すグラフである。
[図10]インフィニウムアツセイの検出対象とした26454個の全てのプローブに対し、NサンプルとTサンプルとでDNAメチル化レベルの差（Δβ_{T-N}の絶対値）が0.3以上認められたプローブの割合を示すグラフである。
[図11]インフィニウムアツセイの検出対象とした26454個の全てのプローブに対し、NサンプルとTサンプルとでDNAメチル化レベルの差（Δβ_{T-N}の絶対値）が0.4以上認められたプローブの割合を示すグラフである。
[図12]インフィニウムアツセイの検出対象とした26454個の全てのプローブに対し、NサンプルとTサンプルとでDNAメチル化レベルの差（Δβ_{T-N}の絶対値）が0.5以上認められたプローブの割合を示すグラフである。
[図13]クラスターAに属する代表的な淡明細胞型腫細胞癌患者（ケース1～4）に関し、腫細胞癌組織（Tサンプル）におけるDNAメチル化レベル（β値）と、非腫腎組織（Nサンプル）のそれらとの対応付けを行った結果を示す、散布図である。図中の丸で囲んでいる部分は、DNAメチル化レベルがNサンプルにおいて低く、DNA高メチル化の程度が対応するNサンプルと比較してTサンプルの方が顕著であるプローブの分布を示す。
[図14]クラスターBに属する代表的な淡明細胞型腫細胞癌患者（ケース5～8）に関し、腫細胞癌組織（Tサンプル）におけるDNAメチル化レベル（β値）と、非腫腎組織（Nサンプル）のそれらとの対応付けを行った結果を示す、散布図である。図中の丸で囲んでいる部分は、DNAメチル化レベルがNサンプルにおいて低く、DNA高メチル化の程度が対応するNサンプルと比較してTサンプルの方が顕著であるプローブの分布を示す。
[図15]表14に示す、CpGアイランドメチル化形質（CIMP）の特徴となる16プローブ（16CpGサイト）のDNAメチル化レベルと、前記クラスターA又はクラスターBに属する淡明細胞型腫細胞癌患者との対応を示す図である。図中、黒く塗りつぶされた箇所は、Δβ_{T-N}が0.4を超えていることを示す。
図16] クラスターAとクラスターBとの間で顕著にDNΑメチル化レベル（Δ β_{T-N}）が異なっていた869プローブ（FDR[q = 0.01]）を用い、ランダムフォレスト解析を行った結果を示すグラフである。図中、折れ線は色から順に、スパム（3）、アウトオブバックス（OOB）、ノンスパム（1）を示す。横軸は木（tree）の数を示し、縦軸は推測誤差（Error）を示す。

図17] クラスターAとクラスターBとの間で顕著にDNΑメチル化レベル（Δ β_{T-N}）が異なっていた869プローブ（FDR[q = 0.01]）を用い、ランダムフォレスト解析を行った結果を示すプロット図である。図中、横軸はGini係数の平均値（MeanDecreaseGini）を示し、縦軸はインフィニュームアツセイに用いたプローブ（CpGサイト）を示す。

図18] クラスターA又はクラスターBに属する淡明細胞型腎細胞癌患者におけるSLC13A5遺伝子のCpGアイランドにおけるDNΑメチル化レベルを、MassARRAYによって解析した結果を示すグラフである。なお図中、SLC13A5_10_CpG_40は、インフィニュームアツセイによってもクラスターBにおいて高いDNΑメチル化レベルが検出されたCpGサイト（プローブID：cg22040627、NCBIデータベースGenomeBuild37上の位置：17番染色体6617030）である。

図19] クラスターA又はクラスターBに属する淡明細胞型腎細胞癌患者におけるRIMS4遺伝子のCpGアイランドにおけるDNΑメチル化レベルを、MassARRAYによって解析した結果を示すグラフである。

図20] クラスターA又はクラスターBに属する淡明細胞型腎細胞癌患者におけるPCDHAC1遺伝子のCpGアイランドにおけるDNΑメチル化レベルを、MassARRAYによって解析した結果を示すグラフである。

図21] クラスターA又はクラスターBに属する淡明細胞型腎細胞癌患者におけるZNFG40遺伝子のCpGアイランドにおけるDNΑメチル化レベルを、MassARRAYによって解析した結果を示すグラフである。
図22] クラスターA又はクラスターBに属する淡明細胞型腎細胞癌患者における Trident遺伝子のCpGアイランドにおけるDNAメチル化レベルを、MassARRAYによって解析した結果を示すグラフである。
[図23] クラスターA又はクラスターBに属する淡明細胞型腎細胞癌患者におけるPRC遺伝子のCpGアイランドにおけるDNAメチル化レベルを、MassARRAYによって解析した結果を示すグラフである。
[図24] カットオフ値（診断閾値）を満たすCpGサイトの数によって、クラスターA又はクラスターBに淡明細胞型腎細胞癌患者を分類した結果を示すグラフである。カットオフ値については表19～27を参照のこと。また、この分類において指標としたCpGサイトは、表19～27に記載のAUCが0.95より大きいCpGサイト23箇所（32のCpGサイト）である。

発明を実施するための形態

[0019] 本発明は、下記(a)～(c)の工程を含む、腎細胞癌の予後不良リスクを検出する方法を提供する。
(a) 被験体の腎臓組織由来のゲノムDNAを調製する工程、
(b) 工程(a)で調製したゲノムDNAについて、FAM150A、GRM6、ZNF540、ZFP42、ZNF154、RIMS4、PCDHA、C1、KHDRBS2、ASCL2、KCNQ1、PRC、WNT3A、TRH、FAM78A、ZNF671、SLC13A5及びNKX6_2からなる遺伝子群から選択される遺伝子の少なくとも一つのCpGサイトのDNAメチル化レベルを検出する工程、
(c) 工程(b)で検出したDNAメチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定する工程、
を含む方法。

[0020] 本発明において「腎細胞癌」とは、腎臓の尿細管上皮細胞が癌化したものであり、その病理学的特徴から、淡明細胞型、顆粒細胞型、色素嫌性型、紡錘型、囊胞随伴型、囊胞由来型、囊胞性型、乳頭状型に分類される癌である。
また、本発明にかかる「被験体」としては、例えば、腎摘出術等によって腎細胞癌の治療が施された患者が挙げられる。

【0021】本発明にかかる「腎細胞癌の予後不良リスク」とは、例えば、被験体の予後...を用いることが望ましい。

【0025】また、後述の実施例において示す通り、本発明者らは、インフィニウムアッセイにより、17遺伝子（FAM150A、GRM6、ZNF540、Z...
従って、本発明にかかる「CpGサイト」とは、他の遺伝子よりも、前記17遺伝子群の少なくとも1の遺伝子に近い位置に存在するCpGサイトを意味し、好ましくは、他の遺伝子よりも前記遺伝子に近い位置に存在するCpGアイランド中の少なくとも1のCpGサイトであり、より好ましくは、前記17遺伝子群のプロモーター領域に位置する少なくとも1のCpGサイトであり、特に好ましくは、基準ヒトゲノム配列である、NCBIデータベース Genome Build 37上の位置が、表1〜4に記載の染色体番号及び染色体上の位置である少なくとも1のCpGサイトである。
<table>
<thead>
<tr>
<th>8200</th>
<th>19</th>
<th>ZNF40</th>
</tr>
</thead>
<tbody>
<tr>
<td>38042816</td>
<td>38042800, 38042802, 38042716</td>
<td></td>
</tr>
<tr>
<td>38042255</td>
<td>38042255, 38042255</td>
<td></td>
</tr>
<tr>
<td>38042253</td>
<td>38042253, 38042218</td>
<td></td>
</tr>
<tr>
<td>38042496</td>
<td>38042496, 38042474</td>
<td></td>
</tr>
<tr>
<td>117442735, 117442730</td>
<td>117442724</td>
<td></td>
</tr>
<tr>
<td>117442724</td>
<td>117442724, 117442724</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CM16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>65478624, 65478626</td>
<td></td>
</tr>
<tr>
<td>65478365</td>
<td>65478366</td>
<td></td>
</tr>
<tr>
<td>65478611</td>
<td>65478604</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>FAM150A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>65478486, 65478499</td>
<td></td>
</tr>
<tr>
<td>65478477</td>
<td>65478477</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>65478464</td>
<td></td>
</tr>
<tr>
<td>85478426, 85478428</td>
<td>65478430</td>
<td></td>
</tr>
<tr>
<td>65478396, 65478393, 65478366</td>
<td>65478323</td>
<td></td>
</tr>
<tr>
<td>65478309</td>
<td>65478309</td>
<td></td>
</tr>
</tbody>
</table>
表2

<table>
<thead>
<tr>
<th>遺伝子シンボル</th>
<th>染色体番号</th>
<th>染色体上の位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFP42</td>
<td>4</td>
<td>188916867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188916875</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188916899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188916913</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188916982, 188916984</td>
</tr>
<tr>
<td>ZNF154</td>
<td>19</td>
<td>58220494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58220567</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58220627</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58220657, 58220662</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58220706</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58220766, 58220773</td>
</tr>
<tr>
<td>RIMS4</td>
<td>20</td>
<td>43438576</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43438621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43438865</td>
</tr>
<tr>
<td>PCDHAC1</td>
<td>5</td>
<td>140306458</td>
</tr>
<tr>
<td>KHDRBS2</td>
<td>6</td>
<td>62995963</td>
</tr>
<tr>
<td>ASCL2</td>
<td>11</td>
<td>2292004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2292542, 2292544</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>11</td>
<td>2466409</td>
</tr>
<tr>
<td>PRAC</td>
<td>17</td>
<td>46799640</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46799645, 46799648</td>
</tr>
<tr>
<td></td>
<td></td>
<td>467999654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46799745</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46799755</td>
</tr>
</tbody>
</table>
[表3]

<table>
<thead>
<tr>
<th>遺伝子シンボル</th>
<th>染色体番号</th>
<th>染色体上の位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNT3A</td>
<td>1</td>
<td>228194448</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228195688</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228195722</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228195779</td>
</tr>
<tr>
<td>TRH</td>
<td>3</td>
<td>129693360, 129693352, 129693355, 129693358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693406, 129693412</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693518, 129693521, 129693528</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693540, 129693543</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693570, 129693574</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693586</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693607</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693613</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129693672</td>
</tr>
<tr>
<td>FAM78A</td>
<td>9</td>
<td>134152531</td>
</tr>
<tr>
<td>ZNF671</td>
<td>19</td>
<td>58238740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58238780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58238810</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58238850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58238928</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58238954</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58238987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58239012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58239027</td>
</tr>
</tbody>
</table>
表4

<table>
<thead>
<tr>
<th>遺伝子シンボル</th>
<th>染色体番号</th>
<th>染色体上の位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC13A5</td>
<td>17</td>
<td>6616653, 6616655, 6616657</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616702, 6616705, 6616707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616733</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616751</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616763, 6616768</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616826, 6616828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616851, 6616854, 6616857</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616927, 6616929</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6616968, 6616973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617030, 6617038, 6617040, 6617044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617077</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617251, 6617255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617287, 6617291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617300, 6617305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617382</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617421, 6617423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617456</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617466, 6617470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617382</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617398, 6617402, 6617405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617421, 6617423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617466, 6617470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6617595, 6617597</td>
</tr>
<tr>
<td>NKX6-2</td>
<td>10</td>
<td>134599860</td>
</tr>
</tbody>
</table>

[0031] また、本発明において典型的には、FAM150AはRefSeq ID : NP_997296で特定されるタンパク質をコードする遺伝子であり、
GRM6はRefSeq ID : NP_000834で特定されるタンパク質をコードする遺伝子であり、ZNF540はRefSeq ID : NP_689819で特定されるタンパク質をコードする遺伝子であり、ZFP4
2 は RefSeq ID : NP_777560 で特定されるタンパク質をコードする遺伝子であり、ZNF154 は RefSeq ID : NP_001078853 で特定されるタンパク質をコードする遺伝子であり、RIMS4 は RefSeq ID : NP_892015 で特定されるタンパク質をコードする遺伝子であり、PCDHAC1 は RefSeq ID : NP_061721 で特定されるタンパク質をコードする遺伝子であり、KHDRBS2 は RefSeq ID : NP_689901 で特定されるタンパク質をコードする遺伝子であり、ASCL2 は RefSeq ID : NP_005161 で特定されるタンパク質をコードする遺伝子であり、KCNO1 は RefSeq ID : NP_000209 で特定されるタンパク質をコードする遺伝子であり、PRAC は RefSeq ID : NP_115767 で特定されるタンパク質をコードする遺伝子であり、WNT3A は RefSeq ID : NP_149122 で特定されるタンパク質をコードする遺伝子であり、TRH は RefSeq ID : NP_009048 で特定されるタンパク質をコードする遺伝子であり、FAM78A は RefSeq ID : NP_203745 で特定されるタンパク質をコードする遺伝子であり、ZNF671 は RefSeq ID : NP_079109 で特定されるタンパク質をコードする遺伝子であり、SLC13A5 は RefSeq ID : NP_808218 で特定されるタンパク質をコードする遺伝子であり、NKX6_2 は RefSeq ID : NP_796374 で特定されるタンパク質をコードする遺伝子である。

[0032] 本発明における、「DNAメチル化レベルを検出する方法」としては、特定の CpG サイトにおける DNA メチル化レベルを定量できる方法であればよく、公知の方法を適宜選択して行うことができる。かかる公知の方法としては、例えば以下に示す第一一第七の方法が挙げられる。

[0033] 第一の方法は、次の原理に基づく方法である。まず、前記ゲノム DNA に重亜硫酸塩 (バイサルフアイト) 处理を施す。なお、このバイサルフアイト処理によって、非メチル化シトシン残基はゥラシルに変換されるが、メチル
化シトシン残基は変換されない（Clark SJら、Nucleic Acids Res、1994年、22巻、2990～7ページ参照）。次いで、このようにバイサルファイト処理したゲノムDNAを録型として、全ゲノム増幅を行い、酵素による断片化（通常300～600bp程度の断片化）を行い、一本鎖に解離させる。

[0034] また第一の方法において、バイサルファイト処理によって変換されたゲノムDNAにハイプリダイズするブロープであって、該ブロープの3'末端の塩基は、前記CpGサイトのシトシンに相補的な塩基となっているブロープを調製する。すなわち、該CpGサイトがメチル化されている場合には、ブロープの3'末端の塩基はガニンとなり、該CpGサイトがメチル化されていない場合には、ブロープの3'末端の塩基はアデニンとなる。

[0035] そして、このような前記CpGサイトに相補的な3'末端の塩基のみ異なる2種類のブロープと、前記断片化ゲノムDNAとをハイプリダイズさせ、蛍光標識した塩基存在下、1塩基伸長反応を行う。その結果、前記CpGサイトがメチル化されている場合には、3'末端の塩基がガニンであるブロープ（メチル化検出用ブロープ）に蛍光標識した塩基が取り込まれることになり、一方、前記CpGサイトがメチル化されていない場合には、3'末端の塩基がアデニンであるブロープ（非メチル化検出用ブロープ）に蛍光標識した塩基が取り込まれることになるため、メチル化検出用ブロープ及び非メチル化検出用ブロープの蛍光の強度からDNAメチル化レベルを算出することができる。

[0036] また、かかる第一の方法においては別の態様として、前記メチル化検出用ブロープ及び非メチル化検出用ブロープの代わりに、バイサルファイト処理によって変換されたゲノムDNAにハイプリダイズするブロープであって、該ブロープの3'末端の塩基は前記CpGサイトのガニンに相補的な塩基となっているブロープを用いてもよい。そして、かかるブロープと、前記断片化ゲノムDNAとをハイプリダイズさせ、蛍光物質にて標識したガニン及び非メチル化物質は異なる蛍光色素にて標識したアデニンの存在下、
1塩基伸長反応を行う。その結果、前記CpGサイトがメチル化されている場合には、当該プローブに蛍光標識したグアニンが取り込まれることになり、一方、前記CpGサイトがメチル化されていない場合には、当該プローブに蛍光標識したアデニンが取り込まれることになるため、前記プローブに取り込まれた各蛍光物質が発する蛍光の強度からDNAメチル化レベルを算出することができる。

[0037]第一の方法としては、例えば、ピーズアレイ法（例えば、インフィニウム（登録商標）アツセイ）が挙げられる。

[0038]また、かかる第一の方法において、DNAメチル化レベルの検出対象とする前記CpGサイトとしては、好ましくは、基準ヒトゲノム配列であるNCBIデータベースGenome Build 37上の位置が、第8染色体53,478,454位、第5染色体178,422,244位、第19染色体38,042,472位、第4染色体188,916,867位、第19染色体58,220,662位、第20染色体43,438,865位、第5染色体140,306,458位、第6染色体62,995,963位、第11染色体2,292,004位、第11染色体2,466,409位、第17染色体46,799,640位、第19染色体58,220,494位、第1染色体228,194,448位、第3染色体129,693,613位、第9染色体134,152,531位、第19染色体58,238,928位、第17染色体6,617,030位及び第10染色体134,599,860位からなる群から選択される少なくとも1のCpGサイトである。また、本発明にかかる第一の方法においては、前記18CpGサイトのうち少なくとも1のサイトにおけるDNAメチル化レベルを検出することが好ましいが、予後不良リスクの検出における、感度又は特異性をより向上させることができるという観点から、複数のCpGサイト（例えば、2サイト、5サイト、10サイト、15サイト）をDNAメチル化レベルの検出対象とすることがより好ましく、前記18CpGサイト全てをDNAメチル化レベルの検出対象とすることが特に好ましい。
第二の方法は、次の原理に基づく方法である。前記ゲノムDNAにバイサルファインド処理を施す。次いで、バイサルファインド処理したゲノムDNAを錶型とし、前記CpGサイトを少なくとも一つ含むDNAを、T7プロモーターを付加したプライマーで増幅する。次いで、RNAに転写し、RNaseにより塩基特異的な切断反応を行う。そして、かかる切断反応産物を質量分析計にかけ、質量測定を行う。

そして、質量測定によって得られたメチル化シトシン残基由来の質量（シトシンの質量）と、非メチル化シトシン残基由来の質量（ウラシルの質量）とを比較し、前記CpGサイトにおけるDNAメチル化レベルを算出する。

第二の方法としては、例えば、質量分析計を用いたDNAメチル化解析法（例えば、MassARRAY（登録商標）、Jurinkeクラ、MutatRes.2005年、573巻、83～95ページ参照）が挙げられる。

また、かかる第二の方法において、DNAメチル化レベルの検出対象とする前記CpGサイトとして、好ましくは、配列番号:1～16に記載の塩基配列に含まれる少なくとも1のCpGサイトであり、予後不良リスクの検出における、感度又は特異性をより向上させることができるという観点から、より好ましくは、後述のROC曲線下面積（AUC）が0.90より大きい、下記表5 ～ 8に記載のCpGサイト群のうちの少なくとも1のCpGサイトであり、さらに好ましくは、下記表5 ～ 8に記載のAUCが0.95より大きいCpGサイト群のうちの少なくとも1のCpGサイトであり、当該AUCが0.95より大きいCpGサイト群全体をDNAメチル化レベルの検出対象とすることが特に好ましい。
<table>
<thead>
<tr>
<th>実施例</th>
<th>1-メチル-2-オクタノール</th>
<th>体当たり量</th>
<th>AUC積</th>
<th>特性値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>0.941</td>
<td>0.941</td>
<td>0.941</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0.936</td>
<td>0.936</td>
<td>0.936</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0.931</td>
<td>0.931</td>
<td>0.931</td>
</tr>
</tbody>
</table>

表5
<table>
<thead>
<tr>
<th>遺伝子シンボル</th>
<th>染色体番号</th>
<th>標的遺伝子名/プライマーセット名</th>
<th>染色体上の位置</th>
<th>AUC値</th>
<th>カットオフ値</th>
<th>特異度</th>
<th>感度</th>
<th>1-特異度</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF154</td>
<td>19</td>
<td>ZNF154, MA_5, Cpg_1</td>
<td>58910561</td>
<td>0.956</td>
<td>0.133</td>
<td>0.929</td>
<td>0.909</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZNF154, MA_5, Cpg_4</td>
<td>58220527</td>
<td>0.960</td>
<td>0.148</td>
<td>0.857</td>
<td>0.955</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZNF154, MA_5, Cpg_5, 6</td>
<td>5820657, 5820662</td>
<td>0.990</td>
<td>0.222</td>
<td>0.929</td>
<td>0.956</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZNF154, MA_5, Cpg_10</td>
<td>38070708</td>
<td>0.917</td>
<td>0.118</td>
<td>1</td>
<td>0.76</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZNF154, MA_5, Cpg_11, 12</td>
<td>38207113, 58207113</td>
<td>0.917</td>
<td>0.268</td>
<td>0.929</td>
<td>0.784</td>
<td>0.216</td>
</tr>
<tr>
<td>RIM64</td>
<td>20</td>
<td>RIM64, MA_9, Cpg_15</td>
<td>43438576</td>
<td>0.913</td>
<td>0.102</td>
<td>0.933</td>
<td>0.977</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIM64, MA_9, Cpg_17</td>
<td>43438571</td>
<td>0.914</td>
<td>0.135</td>
<td>0.833</td>
<td>0.964</td>
<td>0.136</td>
</tr>
<tr>
<td>PRAC</td>
<td>17</td>
<td>PRAC, MA_2, Cpg_3, 4</td>
<td>46799954</td>
<td>0.943</td>
<td>0.415</td>
<td>0.867</td>
<td>0.943</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRAC, MA_2, Cpg_7</td>
<td>46799974</td>
<td>0.944</td>
<td>0.35</td>
<td>0.929</td>
<td>0.864</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRAC, MA_2, Cpg_9</td>
<td>46799956</td>
<td>0.957</td>
<td>0.407</td>
<td>0.929</td>
<td>0.998</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_3, 4</td>
<td>129693360, 129693351, 129693355, 129693358</td>
<td>0.903</td>
<td>0.151</td>
<td>0.846</td>
<td>0.785</td>
<td>0.215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_11, 12, 13</td>
<td>129693406, 129693412, 129693425</td>
<td>0.917</td>
<td>0.172</td>
<td>0.846</td>
<td>0.841</td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_25</td>
<td>129693500</td>
<td>0.902</td>
<td>0.21</td>
<td>0.946</td>
<td>0.898</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_26</td>
<td>129693518, 129693521, 129693528</td>
<td>0.95</td>
<td>0.258</td>
<td>0.946</td>
<td>0.932</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_30, 31</td>
<td>129693540, 129693543</td>
<td>0.943</td>
<td>0.175</td>
<td>0.923</td>
<td>0.909</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_32</td>
<td>129693568</td>
<td>0.902</td>
<td>0.175</td>
<td>0.846</td>
<td>0.932</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_33, 34</td>
<td>129693570, 129693574</td>
<td>0.935</td>
<td>0.173</td>
<td>0.923</td>
<td>0.852</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_35</td>
<td>129693586</td>
<td>0.952</td>
<td>0.11</td>
<td>0.923</td>
<td>0.92</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_36</td>
<td>129693597</td>
<td>0.917</td>
<td>0.172</td>
<td>0.846</td>
<td>0.841</td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_37</td>
<td>129693613</td>
<td>0.921</td>
<td>0.055</td>
<td>1</td>
<td>0.761</td>
<td>0.239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_39</td>
<td>129693628</td>
<td>0.943</td>
<td>0.115</td>
<td>1</td>
<td>0.886</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_40</td>
<td>129693635</td>
<td>0.987</td>
<td>0.066</td>
<td>1</td>
<td>0.875</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRH, MA_8, Cpg_41</td>
<td>129693672</td>
<td>0.925</td>
<td>0.137</td>
<td>0.846</td>
<td>0.97</td>
<td>0.03</td>
</tr>
<tr>
<td>遺伝子</td>
<td>染色体</td>
<td>総合遺伝子名</td>
<td>フライマーゼセット名</td>
<td>染色体上の位置</td>
<td>AUC値</td>
<td>フライマーゼ</td>
<td>特異度</td>
<td>感度</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>SLC13A5</td>
<td>MA, 10</td>
<td>hCGA</td>
<td>66195</td>
<td>0.94</td>
<td>0.249</td>
<td>0.929</td>
<td>0.89</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 3</td>
<td>6618653, 6618655, 6618657</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 9</td>
<td>6618702, 6618705, 6618707</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 12</td>
<td>6618733</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 13</td>
<td>6618751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 14</td>
<td>661863, 661868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 21</td>
<td>6619077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 22</td>
<td>6618625, 6618628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 24</td>
<td>6618651, 6618654, 6618657</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 30</td>
<td>6618927, 6618929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 34</td>
<td>6618980, 6618973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 40</td>
<td>6617030, 6617038, 6617040, 6617044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 44</td>
<td>6617101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 5</td>
<td>6617077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 15</td>
<td>661724</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 15</td>
<td>6617251, 6617255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 17</td>
<td>6617287, 6617291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 19</td>
<td>6617300, 6617305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 26</td>
<td>6617382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 32</td>
<td>6617421, 6617423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 35</td>
<td>6617456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 38</td>
<td>661746, 6617470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 39</td>
<td>6617582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 5, 6</td>
<td>6617598, 6617402, 6617405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 8</td>
<td>6617415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 9</td>
<td>6617421, 6617423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 13</td>
<td>6617465, 6617470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpg 20</td>
<td>6617595, 6617597</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表8

<table>
<thead>
<tr>
<th>染色体番号</th>
<th>染色体上の位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF671 MA 8 C4-G2</td>
<td>58628047</td>
</tr>
<tr>
<td>ASCL1 MA 9 C6-G9</td>
<td>2797544</td>
</tr>
</tbody>
</table>

なお、表5～8に記載の「染色体番号」及び「染色体上の位置」は、基盤
ヒトゲノム配列である、NCBIデータベース Genome Build 37上の位置を示す。「標的遺伝子名_プライマーセット名_CpGサイト」は、後述の質量分析計を用いたDNAメチル化解析（実施例5）にて、表17及び18に記載のプライマーセットを用いて増幅したPCR産物中のCpGサイトの順番を示す。「AUC値」、「カットオフ値」、「特異度」、「敏感度」及び「1-特異度」については、後述の実施例5参照のこと。

[0048] 第三の方法は、次の原理に基づく方法である。先ず、前記ゲノムDNAにバイサルファイト処理を施す。なお、このバイサルファイト処理によって、非メチル化シトシン残基はウラシルに変換されるが、下記伸長反応（シークエンス反応）においてはウラシルはチミンとして示される。次いで、このようにバイサルファイト処理したゲノムDNAを録型として、前記CpGサイトを少なくとも一つ含むDNAを増幅する。そして、増幅したDNAを一本鎖に解離させる。次いで、解離させた一本鎖DNAのうち、片鎖のみを分離する。そして、前記CpGサイトの塩基の近傍より1塩基ずつ伸長反応を行し、その際に生成されるピロリン酸を酵素的に発光させ、発光の強度を測定する。このようにして得られたメチル化シトシン残基由来の発光の強度（シトシンの発光強度）と、非メチル化シトシン残基由来の発光の強度（チミンの発光強度）とを比較し、例えば、下記式によって前記CpGサイトにおけるDNAメチル化レベル（%）を算出する。

DNAメチル化レベル（%） = シトシンの発光強度 × 100 /（シトシンの発光強度 + チミンの発光強度）。

[0050] 第四の方法は、次の原理に基づく方法である。先ず、前記ゲノムDNAにバイサルファイト処理を施す。次に、DNA二重鎖間に挿入されると蛍光を発するインターナーケーテーを含む反応系において、前記バイサルファイト処理したゲノムDNAを録型として、前記CpGサイトを少なくとも1つ含む
ヌクレオチドを増幅する。次いで、前記反応系の温度を変化させ、前記インタークレーターが発する蛍光の強度の変動を検出する。前記CpGサイトを少なくとも1つ含むヌクレオチドの融解曲線を、メチル化・非メチル化対照検体を錶型とする増幅産物の融解曲線と比較し、前記CpGサイトにおけるDNAメチル化レベルを算出する。

[0051]第四の方法としては、例えば、メチル化感受性高解像能融解曲線分析（methylation-sensitive high resolution melting: MS-HRM, Wojdacz TKら, Nat Protoc., 2008年, 3巻, 1903~8ページ 参照）が挙げられる。

[0052]第五の方法は、次の原理に基づく方法である。先ず、前記ゲノムDNAにバイサルファイト処理を施す。次に、前記CpGサイトがメチル化されている場合に増幅可能なプライマーセット、及び前記CpGサイトがメチル化されていない場合に増幅可能なプライマーセットを調製する。そして、前記バイサルファイト処理したゲノムDNAを錶型とし、前記CpGサイトを少なくとも1つ含むヌクレオチドを、これらのプライマーセットを用いて各々増幅する。そして、得られた増幅産物の量、すなわちメチル化CpGサイト特異的な増幅産物の量、及び非メチル化CpGサイト特異的な増幅産物の量を比較することにより、前記CpGサイトにおけるDNAメチル化レベルを算出する。

[0053]さらに、かかる第五の方法においては別の態様として、先ず、前記ゲノムDNAにバイサルファイト処理を施す。次に、前記CpGサイトがメチル化されている場合にハイブリダイズすることが可能なヌクレオチドを有し、レポーター蛍光色素及びクエンチャー蛍光色素が標識されたオリゴヌクレオチドプローブを調製する。また、前記CpGサイトがメチル化されていない場合にハイブリダイズすることが可能なヌクレオチドを有し、前記レポーター蛍光色素とは異なるレポーター蛍光色、及びクエンチャー蛍光色素が標識されたオリゴヌクレオチドプローブを調製する。そして、バイサルファイト処
理したゲノムDNAに前記オリゴヌクレオチドプローブをハイプリダイズさせ、さらに前記オリゴヌクレオチドプローブがハイプリダイズしたゲノムDNAを録型として前記CpGサイトを含むヌクレオチドを増幅する。そして、前記増幅に伴うオリゴヌクレオチドプローブの分解により、前記レポーター—蛍光色素が発する蛍光を検出する。このようにして検出されたメチル化シトシンCpGサイト特異的なレポーター蛍光色素が発する蛍光の強度と、非メチル化シトシンCpGサイト特異的なレポーター蛍光色素が発する蛍光の強度とを比較することによって、前記CpGサイトにおけるDNAメチル化レベルを算出する。

[0054]第六の方法としては、例えば、TaqManプローブ（登録商標）を用いたMethylation法等のメチル化特異的定量PCR法（methylat ionspecific polymerase chain reaction (MS-PCR) using real-time quantitative PCR）が挙げられる。

[0055]第六の方法は、次の原理に基づく方法である。先ず、前記ゲノムDNAにバイサルファイト処理を施す。次いで、バイサルファイト変換された前記CpGサイトを含むヌクレオチドを録型として、直接シークエンシング反応を行う。そして、決定された塩基配列に基づく蛍光強度、すなわちメチル化シトシン残基由来の蛍光強度（シトシンの蛍光強度）と、非メチル化シトシン残基由来の蛍光強度（チミンの蛍光強度）とを比較することによって、前記CpGサイトにおけるDNAメチル化レベルを算出する。

[0056]さらに、かかる第六の方法においては別の態様として、先ず、前記ゲノムDNAにバイサルファイト処理を施す。次いで、バイサルファイト変換された前記CpGサイトを含むヌクレオチドをPCR反応等によってクローニングする。そして、得られた複数のクローニング産物の塩基配列を各々決定し、メチル化シトシンCpGサイト特異的な塩基配列を有するクローニング産物の個数と、非メチル化シトシンCpGサイト特異的な塩基配列を有するクローニング産物の個数とを比較することによって、前記CpGサイトに
おけるDNAメチル化レベルを算出する。

[0057] 第六の方法としては、例えば、バイサルファイト直接シークエンシング（
bisulfite direct sequencing）、バイサルファイトクローニングシークエンシング（bisulfite cloning sequencing）が挙げられる（Kristensen LSら、Clin Chem, 2009年、55巻、1471~83ページ 参照）。

[0058] 第七の方法は、次の原理に基づく方法である。先ず、前記ゲノムDNAにバイサルファイト処理を施す。次いで、バイサルファイト変換された前記CpGサイトを含むヌクレオチドを録型として、前記CpGサイトを含む領域をPCRにて增幅する。次いで、增幅したDNA断片を、該CpGサイトがメチル化されている場合とされていない場合とで配列が異なる箇所を認識する制限酵素で処理する。そして、電気泳動することによって分画された、メチル化CpGサイトに由来する制限酵素断片と非メチル化CpGサイトに由来する制限酵素断片とのバンドの濃さを定量的に解析することにより、該CpGサイトのDNAメチル化レベルを算出することができる。

[0059] 第七の方法としては、例えば、COBRA（バイサルファイトと制限酵素との併用による解析）が挙げられる。

[0060] 以上、本発明の「DNAメチル化レベルを検出する方法」として好適に用いることのできる方法を例示したが、本発明はこれに限定されるものではない。また上述の通り、DNAメチル化レベルを検出するに際し、被験体から調製されたゲノムDNAは、さらにバイサルファイト処理に供される。従って、本発明の腎細胞癌の予後不良リスクを検出する方法としては、前記工程(b)が、前記工程(a)で調製したゲノムDNAをバイサルファイト処理し、前記CpGサイトのDNAメチル化レベルを検出する工程である方法もとり得る。

[0061] 本発明において、工程(b)で検出したDNAメチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定するための指標は、当業者で
あれば適宜 DNA メチル化レベルを検出する方法に合わせて設定することが
できる。例えば後述の実施例に示すような、各 CpG サイトに対し、受信者
操作特性（ROC）解析を行い、感度（陽性率）及び特異度を求め、さらに
感度及び特異度の和が最大となる DNA メチル化レベルを前記指標（カット
オフ値、診断閾値）として設定することができ、検出した DNA メチル化レ
ベルが該カットオフ値より高ければ、その被験体を予後不良群に分類するこ
とができる。

また本発明においては、腎細胞癌の予後不良リスクの検出における、感度
又は特異性をより向上させることができるという観点から、DNA メチル化
レベルのみならず、前記カットオフ値より高値を示すCpG サイトの数を、
前記被験体が予後不良群に分類されるか否かを決定するための指標としても
よい。例えば、後述の実施例において示すように、本発明にかかるCpG サ
イト2 3箇所において、前記カットオフ値を満たす箇所が15以上である場
合にその被験体を予後不良群に分類することができる（後述の図24 参照
）。

このように、本発明によれば、組織学的観察等の既存の分類基準では検知
し得ない、腎摘除後の腎細胞癌の予後不良リスクを判定することができる
。腎細胞癌の治療方法としては腎摘除術が第一選択であるが、転移・再発を
早期に発見できれば、それらに対して免疫療法や分子標的治療薬等の奏効が
期待できる。

従って、本発明は、本発明の方法により予後不良群に分類された被験体に
、分子標的治療薬を投与する工程及び/又は免疫療法を施す工程を含む、腎
細胞癌の治療方法を提供することもできる。

また、本発明により腎摘除術の対象となる大多数の腎細胞癌症例において
、予後不良群に分類された患者にはより精密な転移・再発スクリーニングを
行い、その場合には早期発見により治療成績を向上させ得ると期待され、一
方で、予後不良群には分類されなかった患者では転移・再発スクリーニング
の負担を軽減させることができる。
本発明は、腎細胞癌の予後不良リスクを検出する方法に用いるための、少なくとも1〜2塩基の鎖長を有する、下記(a)〜(b)に記載のいずれかであるオリゴヌクレオチドを提供する
(a) 前記CpGサイト群から選択される少なくとも1つのサイトを挟み込むように設計された一対のプライマーであるオリゴヌクレオチド
(b) 前記CpGサイト群から選択される少なくとも1つのサイトを含むヌクレオチドにハイプリダイズするプライマー又はプローブであるオリゴヌクレオチド。

かかる(a)前記CpGサイト群から選択される少なくとも1つのサイトを挟み込むように設計された一対のプライマーとしては、例えば、バイサルフアイト変換された前記CpGサイト群から選択される少なくとも1つのサイトを含むDNAを増幅することができるプライマー（ポリメラーゼ連鎖反応（PCR）プライマー（フォワードプライマー及びリバースプライマー））が挙げられる。当該プライマーは、前記CpGサイト群から選択される少なくとも1つのサイトの両側のバイサルフアイト変換された各ヌクレオチドにハイプリダイズするプライマーである。

また、(b)前記CpGサイト群から選択される少なくとも1つのサイトを含むヌクレオチドにハイプリダイズするプライマーとしては、例えばバイサルフアイト変換された前記CpGサイトの塩基の近傍より1塩基ずつ伸長反応を行うことができるプライマー（シークエンジンダプライマー）が挙げられる。さらに、(b)前記CpGサイト群から選択される少なくとも1つのサイトを含むヌクレオチドにハイプリダイズするプローブとしては、例えばバイサルフアイト変換された前記CpGサイトを含むヌクレオチドにハイプリダイズするプローブ（いわゆるTaqManプローブ）が挙げられる。

また、本発明のオリゴヌクレオチドの鎖長は少なくとも12塩基であるが、好ましくは少なくとも15塩基、より好ましくは少なくとも20塩基である。

特定のヌクレオチドにハイプリダイズするオリゴヌクレオチドは、当該特
定のヌクレオチドに相補的な塩基配列を有するが、ハイブリダイズする限り完全に相補的でなくともよい。これらのオリゴヌクレオチドの配列は、バイサルファイト変換された又はされていない前記CpGサイトを含む塩基配列に基づき、当業者であれば公知の手法により、例えば、後述の実施例に示すように、MassARRAY法プライマーデザインソフトウェアEpiDesigner（http://www.epidesigner.com、SEQUENOM社製）、パイロシークエンシングアツセイデザインソフトウェアver.1.0（QIAGEN社製）等を用いて、適宜設計することができる。また、本発明にかかるCpGサイトを含む」とは、CpGサイト全部、すなわちシトシン及びグアニン両方を含むことのみならず、その一部（シトシン、グアニン、又は非メチル化シトシンがバイサルファイト変換された後のウラシル若しくはチミン）を含むものであってもよい。
を用いることができる。

本発明のキットにおいては、前記オリゴヌクレオチドの標品以外の標品を含むことができる。このような標品としては、バイサルファイド変換に必要な試薬（例えば、亜硫酸水素ナトリウム溶液等）、PCR反応に必要な試薬（例えば、テオキシリポスルヌクレオチドや耐熱性DNAポリメラーゼ等）、インフィニウムアッセイに必要な試薬（例えば、蛍光物質にて標識されたヌクレオチド）、M A S S A R R A Yに必要な試薬（例えば、塩基特異的な切断反応を行うためのRNase）、バイロシクエンシングに必要な試薬（例えば、ピロリン酸の検出のためのATPスルフリラーゼ、アデニシン-5'—ホスホ硫酸、ルシフェラーゼ、及びルシフェリンや、一本鎖DNAを分解するためのストレプトアビシン等）、MS—HRM法に必要な試薬（例えば、DNA二重鎖間に挿入されると蛍光を発するインターカレーター等）が挙げられる。また、前記標識の検出に必要な試薬（例えば、基質や酵素、陽性対照や陰性対照、あるいは試料（被験体の臓器組織由来のゲノムDNA等）の希釈や洗浄に用いる緩衝液等）が挙げられる。また、キットには、その使用説明書を含めることができる。

実施例

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例において用いた試料及び方法は下記に示す通りである。

<患者及び組織サンプル>

T 0 9の癌組織（T）サンプル及び対応する107の非癌臓器組織（N）サンプルは、原発性の炎変細胞型腎明細胞を罹患している110人の患者から手術によって摘出された試料から得たものであり、Nサンプルには顕著な組織学的変化は認められていない。

なお、これら患者は、術前の治療は受けておらず、国立がん研究センター病院にて腎摘出術を受けた患者である。79名の男性と31名の女性とからなり、平均年齢は62.8±10.3歳（平均土標準偏差、36~85歳）
である。

また、サンプルの組織学的診断は、ＷＨＯの分類に従って行った（Ｅｂｌｅ、Ｊ．Ｎ．ら、腎細胞癌 臨床ＷＨＯ分類 病理学及び遺伝学 男性生殖器及び泌尿系の腫瘍、2004年、IARC出版、Lyon、10～43ページ、図１参照）。

また、腎細胞癌の肉眼分類の基準として、肝細胞癌（HCC）において確立された基準を採用した（非特許文献4～6参照）。なお、タイプ3（多結節発生型）HCCは、タイプ1（単結節型）及びタイプ2（単結節局域増殖型）のHCCよりも、組織学的分化度は低く、肝内転移の発生率は高い（Kanai, T. ら、Cancer、1987年、60巻、810～819ページ参照）。

血管侵襲の有無は、ヘマトキシリン－エオジン及びエラスチカ－ワン－ギーソン染色を施したスライドを顕微鏡にて観察することによって調べた。

腎静脈の本幹における腫瘍血栓の有無は肉眼的観察によって調べた。なお、腎細胞癌は通常線維性被膜に囲まれ、その境界が明瞭となっている。また、腎細胞癌の癌細胞間で線維性間質は殆ど含まれていない。そのため、非癌上皮細胞や間質細胞を混在させることなく、外科試料から癌細胞を得ることができた。

また、前記RCC患者と比較するため、原発性腎腫瘍を罹患していない患者29人から手術によって摘出された試料から、正常腎皮質組織（C1～C29）29サンプルを得た。サンプルを得た原発性腎腫瘍を罹患していない患者は、18名の男性と11名の女性からなり、平均年齢は61.4±1
0.8歳（平均±標準偏差、31~81歳）である。また、これら患者のうち22人は、腎盂における尿路上皮癌のため腎摘出術を受けた患者であり、6人は腎臓周囲の後腹膜内腫の切除と共に腎摘出術を受けた患者である。残り1名は、転移性胚細胞腫瘍のため大動脈周囲リンパ節摘出術を受けた患者であり、腎動脈を維持することが難しかったため、同時に腎摘出術も施された。

【0084】今回の研究対象である全ての患者からは、書面によるインフォームドコンセントを得ている。また、本研究は、国立がん研究センターの倫理委員会の承認を受けて実施されたものである。

【0085】＜インフィニウムアッセイ＞

前記患者から得た新鮮凍結組織サンプルを、フエノールクロロホルムにて処理し、次いで透析を施すことによって、高分子量DNAを抽出した（Sambrook, J.ら、モレキュラークローニング:実験マニュアル第3版、コールドスプリングハーバー出版、NY、6.14～6.15ページ参照）。

【0086】そして、DNA500ngを、EZDNAメチレーションコンドルド（TM）キット（ZymoResearch社製）を用い、バイサルファイド変換処理に供した。

【0087】次いで、27578CpG部位におけるDNAメチル化状態を、インフィニウムヒトメチレーション27ビーズアレイ（Illumina社製）を用い、1CpGサイトの解像度にて解析した。このアレイには、NCBIデータベースに登録されている14475遺伝子（コンセンサスコーディング配列）の転写開始部位における近位プロモーター領域内に位置するCpGサイトが含まれている。また、平均して、1遺伝子あたり2つのサイトが選択され、さらに200以上の発現関連遺伝子及びインプリンティング遺伝子については1遺伝子あたり3～20のCpGサイトが選択され、このアレイには搭載されている。また、各アレイには40のコントロールプローブが搭載されている。このコントロールプローブには、染色、ハイプリダイゼーション、
伸長及びバイサルファイト変換のコントロール並びにネガティブコントロールが含まれている。

なお、前記バイサルファイト変換したＤＮＡを自動的に処理するため、Ｅｖｏロボット（Ｔｅｃａｎ社製）を用いた。また、インフィニウムアツセイキット（Ｉｌｌｕｍｉｎａ社製）を用いて、全ゲノム増幅処理を行った（Ｂｉｂｉｋｏｖa、Ｍ．ら、Ｅｐｉｇｅｎｏｍｉｃｓ、２００９年、１巻、１７７〜２００ページ参照）。

そして、このようにして増幅したＤＮＡ断片と、前記アレイ上のプローブをハイブリダイズした後、特異的にハイブリダイズしたＤＮＡを１塩基伸長反応にて蛻光標識した。次いで、製造会社のプロトコールに従って、ビーズスキャンリーダー（Ｉｌｌｕｍｉｎａ社製）を用い、当該ＤＮＡを検出した。得られたデータは、ゲノムスタジオメチレーションソフトウエア（Ｉｌｌｕｍｉｎａ社製）を用いて、解析した。

なお、各ＣｐＧサイトにおいて、蛻光シグナルの比率は、メチル化プローブ及び非メチル化プローブの合計に対するメチル化プローブの相対比を用い測定した。すなわち、所謂β値（範囲：0.00〜1.00）はＣｐＧサイト個々におけるメチル化レベルを反映するものである。

＜統計解析＞

前記インフィニウムアツセイにおいて、解析した組織サンプル全てに対し、コール率（ｃａｌｌｐｒｏｐｏｒｔｉｏｎ、バックグラウンド以上のシグナルの検出におけるＰ値＜0.01）が90％以下であったプローブは32個あった。このような低いコール率はプローブのＣｐＧサイトにおける多型に起因しているかもしれないため、本アツセイにおいてはこれら32プローブを除外した。さらに、性特異的メチル化のバイアスを回避するために、X染色体及びY染色体における全てのＣｐＧサイトは除外した。その結果、常染色体上のＣｐＧサイト26454が最終的な解析対象として残った。

ロジスティックモデルにより、２９のＣサンプルと１０７のＮサンプルとの間で、ＤＮＡメチル化レベルの有意な差を示すインフィニウムプローブを
同定した。

累積ロジットモデルにより、29のCサンプル、107のNサンプル及び109のTサンプルにおいて、Cサンプル、Nサンプル、Tサンプルと、DNAメチル化レベルが段階的に変化する（Ordered difference）プローブを同定した。

1の患者由来の、Nサンプルと対応するTサンプルとの104のペアにおけるDNAメチル化状態の差を、ウィルコクソンの符号付順位和検定により調べた。

$q = 0.01$の誤検出率（FDR）を有意と見なした。

DNAメチル化レベル（$\Delta \beta_{T-N}$）に基づき、淡明細胞型腎細胞癌の患者について教師なし階層的クラスタリング（ユークリッド距離、ウォード法）を行った。

患者のクラスターと臨床病理学的因子との相関は、ウィルコクソンの順位和検定及びフィッシャーの直接確率検定により調べた。

各クラスターに属する患者の生存率曲線は、カプラン・マイヤー法により算出した。そして、ログランク検定により差を比較した。

各クラスターにおいてDNA高メチル化又はDNA低メチル化を示すインフィニムアツセイプローブの数と、各クラスターにおける平均DNAメチル化レベル（$\Delta \beta_{T-N}$）を、$P < 0.05$有意水準とするウィルコクソンの順位和検定によって調べた。

クラスターを識別できるCpGサイトを、フィッシャーの直接確率検定及びランダムフォレスト法により同定した（Breiman, L. ., Mach . L e a r n . , 2001年、45巻、5～32ページ 参照）。

（実施例1）

<腎細胞癌発生におけるDNAメチル化の変化>

先ず、前記インフィニムアツセイによって見出された代表的なCpGサイトについて、表9に示す条件にてバイロシーケンシング法を行うことにより確認した。その後、図2～4に示す通り、各CpGサイトのDNAメチル化レベルが段階的に変化する。
チル化レベルに関し、定量性の高いバイオシーケンシング法による解析結果（図2〜4の縦軸）と、インフィニウムアツセイによる解析結果（図2〜4の横軸）との間には強い相関があった。

[0102]
このように、今回のインフィニウムアツセイのデータは信頼性の高いもの
であることが確認された。

[01 04] 腎臓の前癌状態については、今まで殆ど論じられていなかった。しかしながら、本発明者らによって、非癌組織は、組織学的な顕著な変化は認められず、慢性炎症及びウイルスや病原性微生物の持続感染との関連も認められないものの、DNAメチル化が変化しているという観点から既に前癌段階にあるということが示唆されている（特許文献1及び非特許文献4～7）。

[01 05] この点に関し、今回のインフィニウムアリセイの結果を、ロジスティックモデルによって解析した結果、4830のプローブにおいて、NサンプルのDNAメチル化レベルは、Cサンプルのそれらと比較して既に変化していることが明らかになった（FDR q = 0.01、表10の(a)参照）。

[01 06] さらに、DNAメチル化の変化が腎細胞癌自体に受け継がれていることを明らかにするため、累積ロジットモデルにより、Cサンプル、Nサンプル、Tサンプルと、DNAメチル化レベルが段階的に変化するプローブを同定した。その結果、このようにDNAメチル化レベルが段階的に変化するプローブは11089個あった（FDR q = 0.01、表10の(b)参照）。

[01 07] また、癌化に強く寄与するDNAメチル化の変化を明らかにするため、NサンプルとTサンプルとの104のペアを、ウィルスコクソンの符号順位検定により調べた。その結果、Nサンプルと、対応する腎細胞癌との間に有意差が認められたプローブは10870個あった（FDR q = 0.01、表10の(c)参照）。

[01 08]
(a)	沙発性胃腸炎を罹患していない患者の正常胃粘膜組織(C)と比較して。	DNA高メチル化 (βN > βC)	4,589
	PCC患者の非癌胃粘膜組織におけるDNAメチル化レベルが変化しているプローブの数	DNA低メチル化 (βN < βC)	241
	(ロジスティックモデルによる解析、誤検出率 FDRα = 0.01)	計	4,830
(b)	Cサンプル、Nサンプル、Tサンプル(癌組織)と。	DNA高メチル化 (βC < βN < βT, または βC < βN < βT)	6,053
	DNAメチル化レベルが後期的に変化するプローブの数	DNA低メチル化 (βC < βN < βT, または βC < βN < βT)	4,436
	(多変量ロジットモデルによる解析、誤検出率 FDRα = 0.01)	計	11,089
(c)	Tサンプルを対応するNサンプルとの間で異なるDNAメチル化レベルを示すプローブの数	DNA高メチル化 (βT > 0)	5,408
	(ウィルコクソンの符号順位和検定による解析、誤検出率 FDRα = 0.01)	DNA低メチル化 (βT < 0)	5,462
	計	10,870	
生じていることが明らかになった。

また、表10の（a）、（b）及び（c）に記載の基準全てを満たす、すなわち、DNAメチル化が既に非癌段階にて明らかに変化しており、さらにそれらの変化が腎細胞癌に引き継がれ進展しているプロープを801個同定した。

（実施例2）

<腎細胞癌のエピジェネティッククラスタリング>

前記801プロープにおけるDNAメチル化レベル（Δβ_{T-N}）を用い、教師なし階層的クラスタリングをした結果、淡明細胞型腎細胞癌の患者104人を、クラスターA（n=90）及びクラスターB（n=14）にサブクラスター化できることが明らかになった（図5参照）。なお、前述の通り、前記801プロープにおけるDNAメチル化は、前癌段階にて変化が生じており、引き続き腎細胞の悪化に寄与していることが考えられる。

次に、これらクラスターA及びBに属する淡明細胞型腎細胞癌における臨床病理学的因子及びTNMステージについて調べた。得られた結果を表11に示す。
[表11]

<table>
<thead>
<tr>
<th>風床病学的因子</th>
<th>クラスターA (n=90)</th>
<th>クラスターB (n=14)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢</td>
<td>62.0±10.08</td>
<td>67.36±11.06</td>
<td>8.36×10^2 (b)</td>
</tr>
<tr>
<td>性別</td>
<td>男性 63</td>
<td>11</td>
<td>5.47×10^-1 (c)</td>
</tr>
<tr>
<td></td>
<td>女性 27</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>腫瘍径 (cm)</td>
<td>タイプ1 37</td>
<td>1</td>
<td>6.29×10^-4 (c)</td>
</tr>
<tr>
<td></td>
<td>タイプ2 29</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>タイプ3 24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>面積的に有意な</td>
<td>G1 47</td>
<td>1</td>
<td>8.33×10^-5 (c)</td>
</tr>
<tr>
<td>組織学的異形度</td>
<td>G2 35</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3 7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>悪性</td>
<td>G1 8</td>
<td>0</td>
<td>5.67×10^-4 (c)</td>
</tr>
<tr>
<td>組織学的異型度</td>
<td>G2 43</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3 24</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>血管侵襲</td>
<td>陰性 54</td>
<td>1</td>
<td>2.46×10^-4 (c)</td>
</tr>
<tr>
<td></td>
<td>陽性 35</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>臨床における</td>
<td>独立性 69</td>
<td>5</td>
<td>3.38×10^-2 (c)</td>
</tr>
<tr>
<td>抗体形成</td>
<td>他性 21</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>面積的に優勢な</td>
<td>底性 84</td>
<td>7</td>
<td>1.06×10^-4 (c)</td>
</tr>
<tr>
<td>発育様式 (a)</td>
<td>深層性 6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>嵐も高齢性</td>
<td>高張性 57</td>
<td>4</td>
<td>2.06×10^-7 (c)</td>
</tr>
<tr>
<td>深層性 33</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>肝癌標本</td>
<td>陰性 71</td>
<td>2</td>
<td>4.66×10^-5 (c)</td>
</tr>
<tr>
<td></td>
<td>陽性 19</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>臨床への前</td>
<td>陰性 83</td>
<td>10</td>
<td>3.98×10^-4 (c)</td>
</tr>
<tr>
<td>検</td>
<td>陽性 7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TNM 分類による</td>
<td>ステージ1 50</td>
<td>0</td>
<td>5.41×10^-7 (c)</td>
</tr>
<tr>
<td>病期</td>
<td>ステージ2 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ステージ3 23</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ステージ4 16</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

[0114] なお、11の「P値」において、下線が付けてあるものは「P<0.05」であり、(b)が付けてある数値は、ウィルコクソンの順位和検定によるものであり、(c)が付けてある数値は、フィッシャーの直接確率検定によるものである。また、(d)が付けてある臨床病学的因子については、腫瘍が不均一である場合に、面積的に優勢な領域における所見が示しており、(e)が付けてある臨床病学的因子については、腫瘍が不均一である場合に、腫瘍において最も優勢な高い特徴が示している。

[0115] また、これらクラスターA及びBに属する患者の生存率についても調べた。生存率を分析した期間は424024日間（平均1821日間）である。得られた結果（カプラン・マヤー生存率曲線）を図6及び7に示す。
表11に示した結果から明らかなように、淡明細胞型腎細胞癌の直径、前述の肉眼分類による、単結節周囲増殖型（タイプ2）又は多結節癒合型（タイプ3）の出現頻度、血管侵襲の頻度、腎静脈における腫瘍血栓形成の頻度、浸潤性増殖の頻度、腫瘍の大小及び腎盂も浸潤の頻度、組織学的異型度並びにTNM分類による病期、これらの点において、クラスターAはクラスターB—Aよりも大きかった（又は高かった）。なお表11に示す通り、腎細胞癌のエピジェネティッククラスタリングは、患者の性別、年齢によるものではないことは明白である。

また、図6及び7に示した結果から明らかなように、クラスターBに属する患者的無再発生存率（無癌生存率）及び全生存率（全体的な生存率）は、クラスターAに属する患者のそれらよりも有意に低かった（無癌生存率のP値は4.16×10^{-6}であり、全体的な生存率のP値は1.32×10^{-2}である）。

(実施例3)

＜腎細胞癌のDNAメチル化プロファイル＞

次に、26454個の全てのプローブに対し、対応するNサンプルよりもTサンプルにおいてDNA高メチル化が認められたプローブの割合を、そのDNA高メチル化の差の程度（Δβ_{T−N}>0.1,0.2,0.3,0.4又は0.5）毎に分析した。また、26454個の全てのプローブに対し、対応するTサンプルよりもNサンプルにおいてDNA低メチル化が認められたプローブの割合を、そのDNA低メチル化の差の程度（Δβ_{T−N}<−0.1,−0.2,−0.3,−0.4又は−0.5）毎に分析した。得られた結果を図8～12に示す。

図8～12に示した結果から明らかのように、際立ったDNA低メチル化（Δβ_{T−N}<−0.5）を示したプローブは、クラスターAよりもクラスターBの方が僅かに集積していた。しかしながら、クラスターA及びクラスターBにおいて、DNA低メチル化の発生頻度に統計的な有意な差は認められなかった（Δβ_{T−N}<−0.1,−0.2,−0.3又は−0.4）。一方、D
NA 高メチル化を示したプローブは、DNA 高メチル化の差の程度に関係なく、クラスター A よりもクラスター B の方に顕著に集積していた (Δ β_{T-N} > 0.1, 0.2, 0.3, 0.4 又は 0.5)。

[0120] 従って、クラスター B に属する腫瘍細胞株は DNA 高メチル化の蓄積によって特徴付けられることが明らかになった。

[0121] また、クラスター A 及びクラスター B に関し、これらの間で DNA メチル化レベルにおいて顕著な差があった上位 61 のプローブを表 12 及び 13 に示す。なお、表 12 及び 13 の「ターゲット ID」は、Illumina 社によって、インフィニウムヒトメチルレーション 27 ビーズアレイの全プローブに付与された番号を示し、「染色体番号」及び「染色体上の位置」は、基準ヒトゲノム配列である、NCBI データベース Genome Build 37 上の位置を示す（以下、プローブに関する表に関する標記において同じ）。CpG アイランドの「γ」はそのプローブが CpG アイランドに位置していることを示し、「N」はそのプローブが CpG アイランドに位置していないことを示す（表 14 及び 15 においても同じ）。さらに、遺伝子領域は、そのプローブがエクソン（Exon）、インソートン（Intron）又は転写開始部位の上流（TSS）に位置していることを示す。さらに、「P 値」はウィルコクソンの順位和検定により算出された値を示す。

[0122]
<table>
<thead>
<tr>
<th>ターゲットID</th>
<th>染色体番号</th>
<th>染色体上の位置</th>
<th>送受子シンボル</th>
<th>Cpg</th>
<th>送受子領域</th>
<th>クラスターA</th>
<th>クラスターB</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca1 87228241</td>
<td>11</td>
<td>71,954,982</td>
<td>P HO 2.A</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.034 ± 0.064</td>
<td>0.258 ± 0.002</td>
<td>3.23 ± 10^{-4}</td>
</tr>
<tr>
<td>ca03 75694</td>
<td>19</td>
<td>38,042,472</td>
<td>ZNF540</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.173 ± 0.112</td>
<td>0.456 ± 0.009</td>
<td>5.24 ± 10^{-6}</td>
</tr>
<tr>
<td>ca21 83706</td>
<td>11</td>
<td>14,939,318</td>
<td>CALCA</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.064 ± 0.073</td>
<td>0.356 ± 0.112</td>
<td>6.49 ± 10^{-4}</td>
</tr>
<tr>
<td>ca1 237421</td>
<td>17</td>
<td>46,799,640</td>
<td>PRCA</td>
<td>Y</td>
<td>5'UTR</td>
<td>0.096 ± 0.20</td>
<td>0.427 ± 0.006</td>
<td>7.32 ± 10^{-5}</td>
</tr>
<tr>
<td>ca 02659b 1</td>
<td>5</td>
<td>27,805,562</td>
<td>H1R H2 A K</td>
<td>Y</td>
<td>45-bp TSS</td>
<td>0.003 ± 0.063</td>
<td>0.145 ± 0.026</td>
<td>8.52 ± 10^{-6}</td>
</tr>
<tr>
<td>ca20 23331</td>
<td>16</td>
<td>22,825,282</td>
<td>H3S 7.2</td>
<td>Y</td>
<td>5'UTR</td>
<td>0.034 ± 0.008</td>
<td>0.113 ± 0.000</td>
<td>1.04 ± 10^{-7}</td>
</tr>
<tr>
<td>ca0868790</td>
<td>19</td>
<td>58,220,062</td>
<td>ZNF54</td>
<td>Y</td>
<td>83-bp TSS</td>
<td>0.007 ± 0.017</td>
<td>0.411 ± 0.040</td>
<td>1.09 ± 10^{-8}</td>
</tr>
<tr>
<td>ca1 49040</td>
<td>5</td>
<td>17,422,244</td>
<td>ORM6</td>
<td>Y</td>
<td>1.20-bp TSS</td>
<td>0.077 ± 0.10</td>
<td>0.434 ± 0.184</td>
<td>1.36 ± 10^{-8}</td>
</tr>
<tr>
<td>ca0 6274459</td>
<td>4</td>
<td>18e 91,867</td>
<td>ZPP4</td>
<td>Y</td>
<td>58-bp TSS</td>
<td>0.078 ± 0.12</td>
<td>0.426 ± 0.19</td>
<td>1.95 ± 10^{-9}</td>
</tr>
<tr>
<td>co6 391 404</td>
<td>12</td>
<td>46,987,077</td>
<td>COMA</td>
<td>Y</td>
<td>intron J</td>
<td>0.019 ± 0.043</td>
<td>0.01 ± 0.004</td>
<td>2.14 ± 10^{-7}</td>
</tr>
<tr>
<td>ca9 3112228</td>
<td>3</td>
<td>126,1 13,707</td>
<td>COCCCD7</td>
<td>Y</td>
<td>75-bp TSS</td>
<td>0.086 ± 0.007</td>
<td>0.330 ± 0.127</td>
<td>1.48 ± 10^{-4}</td>
</tr>
<tr>
<td>ca 57 884 7</td>
<td>19</td>
<td>30,766,338</td>
<td>P P P R 14A</td>
<td>Y</td>
<td>intron J</td>
<td>0.010 ± 0.050</td>
<td>0.163 ± 0.313</td>
<td>1.50 ± 10^{-10}</td>
</tr>
<tr>
<td>ca 0 007 720</td>
<td>1</td>
<td>58.7 601 8</td>
<td>DAB1</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.023 ± 0.043</td>
<td>0.199 ± 0.149</td>
<td>1.66 ± 10^{-7}</td>
</tr>
<tr>
<td>ca1 855440</td>
<td>11</td>
<td>17,74 1,667</td>
<td>MYO 1 D</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.061 ± 0.06</td>
<td>0.331 ± 0.004</td>
<td>1.75 ± 10^{-7}</td>
</tr>
<tr>
<td>ca2 290238</td>
<td>1</td>
<td>149,733,735</td>
<td>HIST2H3BF</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.052 ± 0.052</td>
<td>0.133 ± 0.009</td>
<td>1.75 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 54 453 326</td>
<td>3</td>
<td>196,065,699</td>
<td>TM4 8T</td>
<td>N</td>
<td>311-bp TSS</td>
<td>0.053 ± 0.129</td>
<td>-0.425 ± 0.096</td>
<td>1.85 ± 10^{-6}</td>
</tr>
<tr>
<td>ca 2 4784 10</td>
<td>16</td>
<td>26,200,146</td>
<td>HIST1G D</td>
<td>Y</td>
<td>583-bp TSS</td>
<td>0.034 ± 0.009</td>
<td>0.162 ± 0.068</td>
<td>2.04 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 0 4 6349 1</td>
<td>11</td>
<td>77,970,048</td>
<td>ASC L2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.111 ± 0.133</td>
<td>0.410 ± 0.144</td>
<td>2.24 ± 10^{-6}</td>
</tr>
<tr>
<td>ca 92 6 099</td>
<td>10</td>
<td>134,599,860</td>
<td>NKX 2-2</td>
<td>Y</td>
<td>323-bp TSS</td>
<td>0.078 ± 0.083</td>
<td>0.372 ± 0.50</td>
<td>2.26 ± 10^{-7}</td>
</tr>
<tr>
<td>ca1 6059563</td>
<td>17</td>
<td>66.1 6053</td>
<td>SLC1 3A4</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.101 ± 0.125</td>
<td>0.376 ± 0.260</td>
<td>2.41 ± 10^{-7}</td>
</tr>
<tr>
<td>ca2 2040627</td>
<td>8</td>
<td>55,370,544</td>
<td>SLC1 3A5</td>
<td>Y</td>
<td>290-bp TSS</td>
<td>0.045 ± 0.072</td>
<td>0.253 ± 0.103</td>
<td>2.54 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 0 4 4932</td>
<td>4</td>
<td>6,81,030</td>
<td>SLC3 3A4</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.26 ± 0.12</td>
<td>0.362 ± 0.7</td>
<td>2.97 ± 10^{-7}</td>
</tr>
<tr>
<td>ca7 11 032</td>
<td>6</td>
<td>53,486,454</td>
<td>FAM150A</td>
<td>Y</td>
<td>Exon 1</td>
<td>1.25 ± 0.102</td>
<td>0.499 ± 0.183</td>
<td>3.40 ± 10^{-4}</td>
</tr>
<tr>
<td>ca 2 5 71 134</td>
<td>16</td>
<td>66,544,339</td>
<td>FOXP1</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.020 ± 0.045</td>
<td>0.283 ± 0.061</td>
<td>3.57 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 1 1623212 8</td>
<td>2</td>
<td>10s 603,005</td>
<td>SLC5A7</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.18 ± 0.079</td>
<td>0.402 ± 0.148</td>
<td>3.76 ± 10^{-7}</td>
</tr>
<tr>
<td>ca2 63 913 4</td>
<td>19</td>
<td>56,870,917</td>
<td>ZNF542</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.027 ± 0.047</td>
<td>0.308 ± 0.397</td>
<td>3.76 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 0 8 05896</td>
<td>19</td>
<td>59,541</td>
<td>HCN2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.053 ± 0.062</td>
<td>0.238 ± 0.127</td>
<td>3.95 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 2 5 66 58</td>
<td>8</td>
<td>16,395,886</td>
<td>KDN7</td>
<td>Y</td>
<td>642-bp TSS</td>
<td>0.003 ± 0.056</td>
<td>0.161 ± 0.313</td>
<td>4.09 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 0 1 24 537 8</td>
<td>2</td>
<td>232,1 6,177</td>
<td>G OX 140</td>
<td>Y</td>
<td>169-bp TSS</td>
<td>0.066 ± 0.100</td>
<td>0.309 ± 0.149</td>
<td>4.31 ± 10^{-7}</td>
</tr>
<tr>
<td>ca 0 8 555 612</td>
<td>3</td>
<td>7,183,460</td>
<td>PROK2</td>
<td>Y</td>
<td>283-bp TSS</td>
<td>0.001 ± 0.073</td>
<td>0.277 ± 0.158</td>
<td>4.82 ± 10^{-7}</td>
</tr>
<tr>
<td>ターゲットID</td>
<td>染色体番号</td>
<td>染色体上の位置</td>
<td>遺伝子シンボル</td>
<td>Cpgメタ</td>
<td>遺伝子領域</td>
<td>ΔB_1-30 (mean±SD) (n=90)</td>
<td>ΔB_1-30 (mean±SD) (n=14)</td>
<td>P値</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>ca05521686</td>
<td>12</td>
<td>8,026,495</td>
<td>SLC2A14</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.106±0.102</td>
<td>0.332±0.127</td>
<td>5.32×10^{-7}</td>
</tr>
<tr>
<td>ca13808666</td>
<td>7</td>
<td>35,293,130</td>
<td>TDX20</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.092±0.101</td>
<td>0.312±0.115</td>
<td>5.59×10^{-7}</td>
</tr>
<tr>
<td>ca26705553</td>
<td>18</td>
<td>3,096,711</td>
<td>MMP25</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.015±0.030</td>
<td>0.154±0.121</td>
<td>5.59×10^{-7}</td>
</tr>
<tr>
<td>ca00489401</td>
<td>5</td>
<td>180,075,875</td>
<td>FLI4</td>
<td>Y</td>
<td>Intron 1</td>
<td>0.131±0.137</td>
<td>0.451±0.167</td>
<td>5.88×10^{-7}</td>
</tr>
<tr>
<td>ca12741420</td>
<td>6</td>
<td>392,131</td>
<td>IRF4</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.024±0.048</td>
<td>0.212±0.154</td>
<td>6.17×10^{-7}</td>
</tr>
<tr>
<td>ca12768805</td>
<td>19</td>
<td>44,324,951</td>
<td>LYPD6</td>
<td>Y</td>
<td>143-bp TSS</td>
<td>0.075±0.096</td>
<td>0.294±0.125</td>
<td>6.17×10^{-7}</td>
</tr>
<tr>
<td>ca19064258</td>
<td>16</td>
<td>22,826,117</td>
<td>INS3ST2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.081±0.086</td>
<td>0.297±0.151</td>
<td>6.17×10^{-7}</td>
</tr>
<tr>
<td>ca01580681</td>
<td>4</td>
<td>174,450,016</td>
<td>HAND2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.066±0.106</td>
<td>0.332±0.169</td>
<td>6.48×10^{-7}</td>
</tr>
<tr>
<td>ca08045570</td>
<td>6</td>
<td>1,390,502</td>
<td>FOXE2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.017±0.046</td>
<td>0.206±0.184</td>
<td>6.81×10^{-7}</td>
</tr>
<tr>
<td>ca13666729</td>
<td>1</td>
<td>32,330,437</td>
<td>ZBTB8</td>
<td>Y</td>
<td>105-bp TSS</td>
<td>0.025±0.053</td>
<td>0.170±0.152</td>
<td>6.81×10^{-7}</td>
</tr>
<tr>
<td>ca02126069</td>
<td>19</td>
<td>57,353,134</td>
<td>ZIM2</td>
<td>Y</td>
<td>37-bp TSS</td>
<td>0.021±0.061</td>
<td>0.148±0.069</td>
<td>7.15×10^{-7}</td>
</tr>
<tr>
<td>ca21245096</td>
<td>1</td>
<td>38,511,557</td>
<td>POLS1</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.047±0.071</td>
<td>0.199±0.083</td>
<td>7.15×10^{-7}</td>
</tr>
<tr>
<td>ca21790826</td>
<td>19</td>
<td>58,220,494</td>
<td>ZNH1B4</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.065±0.093</td>
<td>0.375±0.199</td>
<td>7.51×10^{-7}</td>
</tr>
<tr>
<td>ca04457979</td>
<td>11</td>
<td>2,899,641</td>
<td>KCNQ1DN</td>
<td>Y</td>
<td>615-bp TSS</td>
<td>0.021±0.009</td>
<td>0.274±0.162</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca05488832</td>
<td>19</td>
<td>15,343,174</td>
<td>EPHK3</td>
<td>Y</td>
<td>Intron 1</td>
<td>0.085±0.091</td>
<td>0.293±0.131</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca14312526</td>
<td>3</td>
<td>138,665,291</td>
<td>FOXL2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.034±0.098</td>
<td>0.224±0.150</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca01144286</td>
<td>20</td>
<td>9,495,596</td>
<td>C20orf10G</td>
<td>Y</td>
<td>Intron 1</td>
<td>0.002±0.019</td>
<td>0.097±0.103</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca01401316</td>
<td>6</td>
<td>133,563,342</td>
<td>EYA4</td>
<td>Y</td>
<td>Intron 1</td>
<td>0.012±0.021</td>
<td>0.140±0.129</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca27555955</td>
<td>2</td>
<td>42,720,326</td>
<td>KON3</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.084±0.096</td>
<td>0.248±0.080</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca03469054</td>
<td>12</td>
<td>130,387,601</td>
<td>TMEM312D</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.069±0.073</td>
<td>0.306±0.155</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca11935147</td>
<td>1</td>
<td>140,079,331</td>
<td>PDE4DIP</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.049±0.080</td>
<td>0.240±0.137</td>
<td>7.89×10^{-7}</td>
</tr>
<tr>
<td>ca01642851</td>
<td>3</td>
<td>137,483,479</td>
<td>SOX14</td>
<td>Y</td>
<td>100-bp TSS</td>
<td>0.080±0.090</td>
<td>0.294±0.143</td>
<td>8.70×10^{-7}</td>
</tr>
<tr>
<td>ca19576304</td>
<td>18</td>
<td>56,940,022</td>
<td>RAX</td>
<td>Y</td>
<td>Intron 1</td>
<td>0.077±0.098</td>
<td>0.281±0.124</td>
<td>8.70×10^{-7}</td>
</tr>
<tr>
<td>ca02344545</td>
<td>6</td>
<td>10,882,043</td>
<td>GCM2</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.079±0.104</td>
<td>0.281±0.134</td>
<td>8.70×10^{-7}</td>
</tr>
<tr>
<td>ca23130254</td>
<td>2</td>
<td>176,964,858</td>
<td>HQX122</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.062±0.091</td>
<td>0.294±0.171</td>
<td>9.13×10^{-7}</td>
</tr>
<tr>
<td>ca07398185</td>
<td>19</td>
<td>38,042,123</td>
<td>ZNF540</td>
<td>Y</td>
<td>185-bp TSS</td>
<td>0.139±0.106</td>
<td>0.321±0.082</td>
<td>9.13×10^{-7}</td>
</tr>
<tr>
<td>ca19817391</td>
<td>15</td>
<td>75,018,674</td>
<td>CYP1A1</td>
<td>Y</td>
<td>79-bp TSS</td>
<td>0.022±0.044</td>
<td>0.163±0.118</td>
<td>9.58×10^{-7}</td>
</tr>
<tr>
<td>ca06277657</td>
<td>7</td>
<td>137,532,374</td>
<td>DGKJ</td>
<td>Y</td>
<td>765-bp TSS</td>
<td>0.073±0.136</td>
<td>0.306±0.105</td>
<td>1.01×10^{-6}</td>
</tr>
<tr>
<td>ca16924616</td>
<td>7</td>
<td>96,653,617</td>
<td>DLX5</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.041±0.065</td>
<td>0.273±0.150</td>
<td>1.01×10^{-6}</td>
</tr>
<tr>
<td>ca00662555</td>
<td>18</td>
<td>74,963,364</td>
<td>GALR1</td>
<td>Y</td>
<td>Intron 1</td>
<td>0.151±0.128</td>
<td>0.377±0.124</td>
<td>1.06×10^{-6}</td>
</tr>
<tr>
<td>ca04473302</td>
<td>7</td>
<td>107,301,217</td>
<td>SLC26A4</td>
<td>Y</td>
<td>Exon 1</td>
<td>0.021±0.061</td>
<td>0.175±0.161</td>
<td>1.06×10^{-6}</td>
</tr>
</tbody>
</table>
プの内、クラスターBに属する腎細胞癌においてDNA高メチル化を示すCpGアイラン
ドに位置するプローブは60個、98.4%もあった（Δβ_{T/N} > 0.097、表12及び13）。なお、前記61個プローブの内、残り1
個のプローブは非CpGアイランドに位置し、DNA低メチル化を示すもの
であった（クラスターBにおいて、Δβ_{T/N} > 0.425±0.096）。

実施例2及び3に示した結果から、クラスターBは臨床病理学的形質とよ
く相関しており、CpGアイランドにおける高頻度のDNA高メチル化によ
って特徴付けられることが明らかになった。

なお、クラスターBに属する腎細胞癌のかかる特徴は、よく研究されてい
る他の臓器（例えば、大腸及び胃）のCpGアイランドメチル化形質（CIMP）陽性の癌のそれと似ている（非特許文献8～11）。すなわち、本1
CpG解像メチローム解析によって、CIMP陽性の腎細胞癌がクラスター
Bとして初めて同定された。

（実施例4）

< CIMP陽性腎細胞癌を特徴付けるCpGサイトの同定>

クラスターA及びBに各々属する代表的な腎細胞癌患者に関し、腎細胞癌
組織（Tサンプル）におけるDNAメチル化レベル（β値）と、非癌腎組織
（Nサンプル）のそれらとの対応付けを行った。得られた結果を散布図とし
て図13及び14に示す。なお、図13に示すCase:1～4はクラスター
Aに属する代表的な腎細胞癌患者の例であり、図14に示すCase:5
～8はクラスターBに属する代表的な腎細胞癌患者の例である。

図13及び14に示した結果から明らかのように、DNAメチル化レベル
がNサンプルにおいて低く、DNA高メチル化の程度が対応するNサンプル
と比較してTサンプルの方が顕著であるプローブは、クラスターBのみには
つきりと存在しており、クラスターAにおいては認められなかった。

この結果に基づき、クラスターBに属する腎細胞癌とクラスターAに属す
るそれらを区別するため、全てのNサンプルにおける平均β値が0.2未
満であり、0.4を超えるΔβ_{T/N}の出現頻度がクラスターAと比してクラス
ターゲットの一方が顕著に高い（P < 1.98 x 10^{-6}、フィッシャーの直接確率検定）プローブに着目した。

そして、このようなプローブにおいて、16プローブ（15遺伝子：FAM150A、GRM6、ZN540、ZF42、ZN154、RIM54、PCDHAC1、KHDDBS2、ASC1、KCNQ1、PRA、WNT3A、TRH、FAM78A及びZN671）は、クラスターBに属する14の腎細胞癌の内6以上（42.8%以上）の腎細胞癌において、0.4を超えるΔβTNを示した。一方、クラスターAに属する90の腎細胞癌の内、前記16プローブが0.4を超えるΔβTNを示した腎細胞癌は2個以下（2.2%以下）であった（表14参照）。
<table>
<thead>
<tr>
<th>ターゲットID</th>
<th>標的体上</th>
<th>Cpg</th>
<th>アイランド</th>
<th>Cpg</th>
<th>ひずみ子</th>
<th>シンポール</th>
<th>ΔβT-N>0.4であらわれる転倒の数（%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sq17162024</td>
<td>8</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>GRN16</td>
<td>ZNF40</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq488994560</td>
<td>5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF42</td>
<td>ZNF45</td>
<td>0(0)</td>
<td>3.84×10^{-11}</td>
</tr>
<tr>
<td>sq489575694</td>
<td>19</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF46</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq60274159</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>1(1.1)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq480668790</td>
<td>20</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>1(1.1)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq12529325</td>
<td>5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq48239753</td>
<td>6</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq17975811</td>
<td>11</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq17975811</td>
<td>11</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq17975811</td>
<td>17</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq17975811</td>
<td>19</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq17975811</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
<tr>
<td>sq17975811</td>
<td>19</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>ZNF45</td>
<td>ZNF45</td>
<td>2(2.2)</td>
<td>3.64×10^{-4}</td>
</tr>
</tbody>
</table>

また、図15に示した結果から明らかように、クラスターAとクラスター...
— B との間で前記 1 6 C p G サイトにおける DNA メチル化レベル（Δ /3 τ
N）は完全に異なっていた。

[01 33] さらに、クラスター A とクラスター B との間で顕著に DNA メチル化 レベ
ル（Δ βτN）が異なっていた 8 6 9 プローブ（F DR [q = 0.0 1]）を
用い、ランダムフォレスト解析を行った（図 1 6 及び 1 7 参照）。その結
果、クラスター A とクラスター B とを識別することのできる上位 4 プローブ
をさらに同定した（表 1 5 参照）。
なお、前記15遺伝子と、ランダムフォレスト解析によって見出されたク

<table>
<thead>
<tr>
<th>ターゲットID</th>
<th>染色体上位置</th>
<th>CpGアイランド</th>
<th>アイランド</th>
<th>マンデルクローン</th>
<th>δβ-1.5遺伝子</th>
<th>クラスターA</th>
<th>クラスターB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg17162024</td>
<td>53,178,454</td>
<td>Y</td>
<td></td>
<td></td>
<td>0.126±0.120</td>
<td>0.099±0.184</td>
<td>0.283±0.103</td>
<td>3.40×10⁻²</td>
</tr>
<tr>
<td>sg22003027</td>
<td>6,671,030</td>
<td>Y</td>
<td></td>
<td></td>
<td>0.085±0.072</td>
<td>0.234±0.184</td>
<td>0.372±0.150</td>
<td>2.26×10⁻²</td>
</tr>
<tr>
<td>sg14859460</td>
<td>17,842,244</td>
<td>Y</td>
<td></td>
<td></td>
<td>0.077±0.105</td>
<td>0.076±0.083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sg09206089</td>
<td>134,490,860</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ラスターAとクラスターBとを識別することのできる上位4遺伝子とは、2
遺伝子（FAM150A及びGRM6）は重複していた。

従って、これら17遺伝子（FAM150A、GRM6、ZNF540、
ZFP42、ZNF154、RIM54、PCDHAC1、KHDRBS2
、ASC12、KCNQ1、PRAC、WNT3A、TRH、FAM78A
、ZNFG71、SLC13A5及びNKX6-2）におけるCpGサイト
は、CIMP陽性腎細胞癌、例えばクラスターBに属する腎細胞癌の特徴と
みなすことができるので、前記17遺伝子のCpGサイトにおけるDNAメチル化レベルを検出することによって、腎細胞癌患者の予後不良リスクを検出できることが明らかになった（表16参照）。

また、これら遺伝子の発現量を定量的RT-PCRによって解析した結果
、DNA高メチル化によりこれら遺伝子の発現が抑制されていることが明らかになった（表16参照）。
従って、前癌段階において生じているDNAメチル化の変化は、遺伝子発

<table>
<thead>
<tr>
<th>遺伝子</th>
<th>Nサンプル (n=28)</th>
<th>Tサンプル (n=28)</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF540</td>
<td>0.118±0.037</td>
<td>0.392±0.161</td>
<td>1.15×10^{-8}</td>
</tr>
<tr>
<td>ZFP42</td>
<td>1.085±1.166</td>
<td>0.337±0.443</td>
<td>1.70×10^{-4}</td>
</tr>
<tr>
<td>DNAメチル化レベル</td>
<td>0.077±0.039</td>
<td>0.239±0.228</td>
<td>4.59×10^{-2}</td>
</tr>
<tr>
<td>mRNA発現レベル</td>
<td>19.424±16.589</td>
<td>0.170±0.540</td>
<td>2.40×10^{-11}</td>
</tr>
<tr>
<td>DNAメチル化レベル</td>
<td>0.035±0.012</td>
<td>0.159±0.210</td>
<td>8.74×10^{-4}</td>
</tr>
<tr>
<td>mRNA発現レベル</td>
<td>1.574±1.107</td>
<td>0.550±0.386</td>
<td>2.59×10^{-6}</td>
</tr>
<tr>
<td>DNAメチル化レベル</td>
<td>0.068±0.020</td>
<td>0.142±0.153</td>
<td>7.87×10^{-3}</td>
</tr>
<tr>
<td>mRNA発現レベル</td>
<td>6.892±5.050</td>
<td>0.125±0.042</td>
<td>1.32×10^{-7}</td>
</tr>
<tr>
<td>DNAメチル化レベル</td>
<td>0.286±0.174</td>
<td>6.959±4.334</td>
<td>7.01×10^{-6}</td>
</tr>
<tr>
<td>mRNA発現レベル</td>
<td>4.879±4.372</td>
<td>4.03×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>
現レベルの変化を介して、腎細胞癌の悪性度及び患者の予後を決定していることが示された。

(実施例5)

質量分析計による、腎細胞癌におけるDNAメチル化レベルの検出

前記インフィニウムアッセイとは異なるメチル化DNA検出方法、マスアレイ法（MassARRAY法）にて、前記17遺伝子のCpGサイトについてのDNAメチル化レベル検出の有効性を確認した。

MassARRAY法は、バイサルファイト処理後のDNAを増幅し、RNAに転写し、さらにRNAaseにより塩基特異的に切断した後、質量分析計によって、メチル化DNA断片と非メチル化DNA断片との分子量の差を検出する方法である。

先ず、インフィニウムアレイのプローブ部位である前記CpGサイトを含むCpGアイランドに対し、EpiDesigner（SEQUENOM社製、MassARRAY用プライマー設計ソフト）を用いてMassARRAYのプライマー設計を行った。

なお、MassARRAYにおけるPCR標的配列は100~500bp程度とやや長いので、前記CpGサイト周辺の多数のCpG部位のDNAメチル化レベルを合わせて評価することができる。

また、PCRにおけるバイアスの影響を排除するため、1プライマーセッション当たり、DNAポリメラーゼ3種とアニール温度4段階程度の条件との組み合わせを平均して試行し、定量性の良好な至適PCR条件を決定した。

そして、PCR標的配列に含まれ解析対象となる全てのCpG部位について、採用したPCR条件で定量性が良好であることを確認し、CIMP陰性腎細胞癌88検体とCIMP陽性腎細胞癌14検体において、MassARRAY解析を実施した。

すなわち先ず、前述のインフィニウムアッセイ同様に、各サンプルからゲノムDNAを抽出し、バイサルファイト変換した後、PCRにて増幅して、インピトロ転写反応を行った。次いで、得られたRNAをRNAseAによ
リウラシルの部位で特異的に切断し、各サンプルのゲノムD N A のメチル化の有無に応じた長さの異なる断片を生成した。そして、得られたR N A 断片を、一塩基の質量の差異を検出できるM A L D I-T O F M A S (S E Q U E N O M 社製、 M a s s A R R A Y A n a l y z e r 4) にかけ、質量分析を行った。得られた質量分析結果を、解析ソフトウェア (E p i T Y P E R 、 S E Q U E N O M 社製) を用いて、リファレンス配列にアラインメントし、メチル化D N A に由来するR N A 断片と非メチル化D N A に由来するR N A 断片との質量の比から、メチル化レベルを算出した。

本解析に用いたプライマーの配列と該プライマーのセットを用いて增幅されたP C R 産物の配列を、表 1 7 及び 1 8 並びに配列表に示す。得られた結果の一部について図 1 8 ~ 2 3 に示す。

<table>
<thead>
<tr>
<th>種的遺伝子名</th>
<th>PCR産物のサイズ</th>
<th>フォワードプライマー</th>
<th>リバースプライマー</th>
<th>種的配列 (PCR産物の配列)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC13A5,MA,10</td>
<td>500</td>
<td>naggagagmcAGG AT TCAATAGGGA</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:1</td>
</tr>
<tr>
<td>SLC13A5,MA,12</td>
<td>463</td>
<td>naggagagmcCGGTIT GGAAGGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:2</td>
</tr>
<tr>
<td>SLC13A5,MA,15</td>
<td>384</td>
<td>naggagagmcCAGGT TGAAGGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:3</td>
</tr>
<tr>
<td>FAM150A,MA,14</td>
<td>425</td>
<td>naggagagmcCGGTIT GGAAGGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:4</td>
</tr>
<tr>
<td>GRM6,MA,8</td>
<td>188</td>
<td>naggagagmcCAGGT TGAAGGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:5</td>
</tr>
<tr>
<td>ZFP42,MA,2</td>
<td>196</td>
<td>naggagagmcCGCTTT GGAAGGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:6</td>
</tr>
<tr>
<td>ZNF154,MA,5</td>
<td>279</td>
<td>naggagagmcCGTGAAT TGGGTGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:7</td>
</tr>
<tr>
<td>RIMS4,MA,9</td>
<td>402</td>
<td>naggagagmcCGGTIT GGAAGGTTAGG</td>
<td>cctgactgactctcttagga gacctaaacaagcaca</td>
<td>配列番号:8</td>
</tr>
</tbody>
</table>

[0149]
表18

<table>
<thead>
<tr>
<th>様的遺伝子名</th>
<th>プライマーセット名</th>
<th>PCR産物のサイズ</th>
<th>フォワードプライマー</th>
<th>リバースプライマー</th>
<th>様的配列（PCR産物の配列）</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIM20</td>
<td>414</td>
<td>ATCAGTTTGAAGCTTGTTAGATTTAAAGAA</td>
<td>gctgtgtacactctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：9</td>
</tr>
<tr>
<td>ZNF540</td>
<td>453</td>
<td>AAAGGATACGATGGTGGGTTGTAAAGAAA</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：10</td>
</tr>
<tr>
<td>PCDH10</td>
<td>362</td>
<td>TTTGTTGTTATTTT</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：11</td>
</tr>
<tr>
<td>PRAD1</td>
<td>264</td>
<td>TAGGGTATTTT</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：12</td>
</tr>
<tr>
<td>ZNF871</td>
<td>428</td>
<td>AGATTTTTTTT</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：13</td>
</tr>
<tr>
<td>WNT3A</td>
<td>348</td>
<td>TGGATAGGATGTTGTTT</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：14</td>
</tr>
<tr>
<td>KHDRBS2</td>
<td>422</td>
<td>TTTTATAAATAGTTT</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：15</td>
</tr>
<tr>
<td>ASCL2</td>
<td>339</td>
<td>AATTGGGTGGTTT</td>
<td>gctgtgtacactctctctaggg</td>
<td>ggaagcctaaaaaaacgccctcttttcggc</td>
<td>配列番号：17</td>
</tr>
</tbody>
</table>

図18～23に示した結果から明らかのように、MassARRAYの解析対象とした全ての領域に関して、前記CpGサイトのDNAメチル化レベルを検査することによってクラスターBに属する予後不良の腎細胞癌（CIMP陽性群）と、クラスターAに属する予後が良好である腎細胞癌（CIMP陰性群）とを判別できることが確認された。さらに、MassARRAY解析によって、1CpGサイトのみならず、それを含むCpGアイランド全域（例えば、インフィニツムブ羅ープ部位であるCpGサイトの前後1500bpに亘る領域）においても、CIMP陽性群において高メチル化状態が続いていることが明らかになった。

従って、プロモーター全域の高メチル化状態により強固なサイレンシングの起こっている領域の1CpGサイトが、実施例4において同定されていた。
ことが明らかになった。すなわち、前記18CpGSサイトに限らず、前記17遺伝子のCpGアイランドに位置する少なくとも1のCpGサイトのDNAメチル化レベルを検出すれば、腎細胞癌の予後不良リスクを検出できることが明らかになった。

0152 また、かかるMassARRAY法により、前述のインフィニウムアッセイにて既にCIMP陽性群に分類されている14症例とCIMP陰性群88症例において、14遺伝子の312CpGSサイトにおけるDNAメチル化レベルを定量した。そして、その結果に基づき、受信者操作特性（ROC）解析を行い、各CpGSサイト単独でCIMP陽性群をCIMP陰性群から見分けるときの感度（陽性率）、特異度及び"1－特異度（為陽性率）"を求めた。さらに、得られたこれらの値からROC曲線を作製し、AUC（area under the curve、ROC曲線下面積）を算出した。また、各CpGSサイトに対しては、感度+特異度が最大となるようにカットオフ値（診断閾値）を設定した。前記MassARRAY解析において定量的に解析を行うことができたCpGSサイトについて得られた結果を表19～27に示す。なお、表19～27において、近接しており且つMassARRAY法の特性によりまとめてDNAメチル化レベルが測定される複数のCpGSサイトについては1箇所としてまとめて記載している。また、これら表の「標的遺伝子名_プライマーセット名_CpGサイト」は、表17及び18に記載のプライマーセットを用いて増幅したPCR産物中のCpGSサイトの順番を示す。なお、表23の記載において、SLC13A5_10_CpG_44とSLC13A5_13_CpG_1とは、異なるプライマーセットによって増幅された領域における44番目のCpGSサイトと1番目のCpGSサイトとを含む。ゲノム上の位置（NCBIデータベースGenome Build 37上の位置）は17番染色体の6617077とすると、同一のCpGSサイトである。
<table>
<thead>
<tr>
<th>標的遺伝子名/プライマーセット名</th>
<th>CpGサイト</th>
<th>AUC値</th>
<th>カットオフ値</th>
<th>感度</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM150A_MA_14</td>
<td>CpG_8</td>
<td>0.936</td>
<td>0.108</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG_9.10</td>
<td>0.947</td>
<td>0.074</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_13.14.15</td>
<td>0.912</td>
<td>0.108</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG_16</td>
<td>0.898</td>
<td>0.098</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG_18.19</td>
<td>0.945</td>
<td>0.183</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG_20</td>
<td>0.667</td>
<td>0.508</td>
<td>0.667</td>
</tr>
<tr>
<td></td>
<td>CpG_21.22</td>
<td>0.934</td>
<td>0.338</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_26</td>
<td>0.968</td>
<td>0.307</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_27.28</td>
<td>0.939</td>
<td>0.265</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_29</td>
<td>0.911</td>
<td>0.055</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_30</td>
<td>0.968</td>
<td>0.307</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG_31</td>
<td>0.925</td>
<td>0.072</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_32</td>
<td>0.895</td>
<td>0.223</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG_37.38.39</td>
<td>0.912</td>
<td>0.227</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>CpG_40</td>
<td>0.892</td>
<td>0.265</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_41.42</td>
<td>0.939</td>
<td>0.255</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>CpG_43</td>
<td>0.881</td>
<td>0.195</td>
<td>0.667</td>
</tr>
<tr>
<td>GRM6_MA_8</td>
<td>CpG_1.2</td>
<td>0.903</td>
<td>0.232</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>CpG_4.5</td>
<td>0.931</td>
<td>0.115</td>
<td>0.929</td>
</tr>
<tr>
<td>ZFP42_MA_2</td>
<td>CpG_1.2</td>
<td>0.871</td>
<td>0.295</td>
<td>0.714</td>
</tr>
<tr>
<td></td>
<td>CpG_3</td>
<td>0.917</td>
<td>0.202</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>CpG_4</td>
<td>0.933</td>
<td>0.135</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG_5</td>
<td>0.928</td>
<td>0.133</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG_6</td>
<td>0.888</td>
<td>0.408</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>CpG_7.8</td>
<td>0.932</td>
<td>0.345</td>
<td>0.857</td>
</tr>
<tr>
<td>樣的遺伝子名 プライマーセット名</td>
<td>CpGサイト</td>
<td>AUC値</td>
<td>カットオフ値</td>
<td>感度</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>ZNF540_M.A.17</td>
<td>CpG.1</td>
<td>0.875</td>
<td>0.415</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.2</td>
<td>0.892</td>
<td>0.509</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.3.4</td>
<td>0.928</td>
<td>0.222</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.5</td>
<td>0.882</td>
<td>0.415</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.6</td>
<td>0.983</td>
<td>0.410</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.7.8</td>
<td>0.897</td>
<td>0.304</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.9</td>
<td>0.960</td>
<td>0.357</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.10.11</td>
<td>0.991</td>
<td>0.364</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.12.13</td>
<td>0.927</td>
<td>0.477</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.14</td>
<td>0.848</td>
<td>0.344</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.15</td>
<td>0.920</td>
<td>0.282</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.16.17</td>
<td>0.733</td>
<td>0.452</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.18</td>
<td>0.797</td>
<td>0.342</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.20.21</td>
<td>0.878</td>
<td>0.384</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.22.23</td>
<td>0.859</td>
<td>0.325</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.24.25</td>
<td>0.941</td>
<td>0.502</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG.26</td>
<td>0.928</td>
<td>0.378</td>
<td>0.833</td>
</tr>
<tr>
<td>ZNF154_M.A.5</td>
<td>CpG.1</td>
<td>0.956</td>
<td>0.133</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG.4</td>
<td>0.966</td>
<td>0.148</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>CpG.5.6</td>
<td>0.959</td>
<td>0.222</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG.8</td>
<td>0.912</td>
<td>0.118</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG.9</td>
<td>0.825</td>
<td>0.162</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG.11.12</td>
<td>0.917</td>
<td>0.368</td>
<td>0.829</td>
</tr>
<tr>
<td>標的遺伝子名 プライマーセット名</td>
<td>CpGサイト</td>
<td>AUC値</td>
<td>カットオフ値</td>
<td>感度</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>RIMS4,MA.9</td>
<td>CpG1</td>
<td>0.779</td>
<td>0.102</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG2</td>
<td>0.800</td>
<td>0.150</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG4.5</td>
<td>0.866</td>
<td>0.465</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>CpG6.7.8.9</td>
<td>0.846</td>
<td>0.307</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG10</td>
<td>0.826</td>
<td>0.202</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG11</td>
<td>0.860</td>
<td>0.102</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG13.14</td>
<td>0.820</td>
<td>0.132</td>
<td>0.667</td>
</tr>
<tr>
<td></td>
<td>CpG15</td>
<td>0.913</td>
<td>0.102</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG16</td>
<td>0.860</td>
<td>0.173</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG17</td>
<td>0.914</td>
<td>0.135</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CpG18</td>
<td>0.737</td>
<td>0.248</td>
<td>0.750</td>
</tr>
<tr>
<td>PCDHAC1,MA.5</td>
<td>CpG1</td>
<td>0.821</td>
<td>0.195</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>CpG2.3</td>
<td>0.718</td>
<td>0.225</td>
<td>0.643</td>
</tr>
<tr>
<td></td>
<td>CpG4.5</td>
<td>0.718</td>
<td>0.225</td>
<td>0.643</td>
</tr>
<tr>
<td></td>
<td>CpG6</td>
<td>0.899</td>
<td>0.135</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG8</td>
<td>0.862</td>
<td>0.109</td>
<td>0.857</td>
</tr>
<tr>
<td></td>
<td>CpG9</td>
<td>0.821</td>
<td>0.195</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>CpG16</td>
<td>0.821</td>
<td>0.079</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG17.18.19</td>
<td>0.818</td>
<td>0.265</td>
<td>0.714</td>
</tr>
<tr>
<td></td>
<td>CpG20.21</td>
<td>0.806</td>
<td>0.199</td>
<td>0.643</td>
</tr>
<tr>
<td></td>
<td>CpG22.23</td>
<td>0.781</td>
<td>0.142</td>
<td>0.714</td>
</tr>
<tr>
<td></td>
<td>CpG24</td>
<td>0.797</td>
<td>0.106</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG25.26.27</td>
<td>0.821</td>
<td>0.227</td>
<td>0.643</td>
</tr>
<tr>
<td></td>
<td>CpG28</td>
<td>0.760</td>
<td>0.214</td>
<td>0.714</td>
</tr>
<tr>
<td></td>
<td>CpG29</td>
<td>0.845</td>
<td>0.165</td>
<td>1.000</td>
</tr>
<tr>
<td>特記遺伝子名 プライマーセット名</td>
<td>CpGサイト</td>
<td>AUC値</td>
<td>カットオフ値</td>
<td>感度</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>PRAC_MA.2</td>
<td>CpG 2.3</td>
<td>0.943</td>
<td>0.415</td>
<td>0.857</td>
</tr>
<tr>
<td></td>
<td>CpG 4</td>
<td>0.915</td>
<td>0.393</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>CpG 6</td>
<td>0.888</td>
<td>0.233</td>
<td>0.857</td>
</tr>
<tr>
<td></td>
<td>CpG 7</td>
<td>0.944</td>
<td>0.350</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG 8</td>
<td>0.957</td>
<td>0.407</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>CpG 2.3 4.5</td>
<td>0.903</td>
<td>0.158</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 6</td>
<td>0.857</td>
<td>0.278</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 11.12</td>
<td>0.973</td>
<td>0.308</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG 13</td>
<td>0.917</td>
<td>0.172</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 25</td>
<td>0.902</td>
<td>0.210</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 26</td>
<td>0.810</td>
<td>0.107</td>
<td>0.692</td>
</tr>
<tr>
<td></td>
<td>CpG 27.28.29</td>
<td>0.950</td>
<td>0.258</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 30.31</td>
<td>0.943</td>
<td>0.175</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>CpG 32</td>
<td>0.902</td>
<td>0.175</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 33.34</td>
<td>0.936</td>
<td>0.173</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>CpG 35</td>
<td>0.952</td>
<td>0.110</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>CpG 36</td>
<td>0.917</td>
<td>0.172</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 37</td>
<td>0.921</td>
<td>0.065</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG 38</td>
<td>0.872</td>
<td>0.232</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 39</td>
<td>0.943</td>
<td>0.115</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG 40</td>
<td>0.967</td>
<td>0.066</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CpG 41</td>
<td>0.925</td>
<td>0.187</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CpG 42</td>
<td>0.858</td>
<td>0.402</td>
<td>0.769</td>
</tr>
<tr>
<td>TRH_MA.8</td>
<td>CpG 43.44</td>
<td>0.867</td>
<td>0.110</td>
<td>0.769</td>
</tr>
<tr>
<td>検体遺伝子名_プライマーセット名</td>
<td>CpGサイト</td>
<td>AUC値</td>
<td>カットオフ値</td>
<td>感度</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>SLC13A5_MA_10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CpG_1.2</td>
<td>0.877</td>
<td>0.147</td>
<td>0.786</td>
<td>0.898</td>
</tr>
<tr>
<td>CpG_3.45</td>
<td>0.940</td>
<td>0.243</td>
<td>0.929</td>
<td>0.830</td>
</tr>
<tr>
<td>CpG_6.7</td>
<td>0.791</td>
<td>0.222</td>
<td>0.786</td>
<td>0.795</td>
</tr>
<tr>
<td>CpG_9 10 11</td>
<td>0.906</td>
<td>0.145</td>
<td>0.857</td>
<td>0.875</td>
</tr>
<tr>
<td>CpG_12</td>
<td>0.983</td>
<td>0.075</td>
<td>0.929</td>
<td>0.966</td>
</tr>
<tr>
<td>CpG_13</td>
<td>0.928</td>
<td>0.040</td>
<td>0.929</td>
<td>0.875</td>
</tr>
<tr>
<td>CpG_14.15</td>
<td>0.946</td>
<td>0.205</td>
<td>0.857</td>
<td>0.898</td>
</tr>
<tr>
<td>CpG_21</td>
<td>0.983</td>
<td>0.185</td>
<td>1.000</td>
<td>0.943</td>
</tr>
<tr>
<td>CpG_22 23</td>
<td>0.951</td>
<td>0.233</td>
<td>1.000</td>
<td>0.886</td>
</tr>
<tr>
<td>CpG_24 25 26</td>
<td>0.954</td>
<td>0.148</td>
<td>1.000</td>
<td>0.875</td>
</tr>
<tr>
<td>CpG_27</td>
<td>0.896</td>
<td>0.087</td>
<td>0.857</td>
<td>0.807</td>
</tr>
<tr>
<td>CpG_28 29</td>
<td>0.900</td>
<td>0.178</td>
<td>0.929</td>
<td>0.864</td>
</tr>
<tr>
<td>CpG_30 31</td>
<td>0.951</td>
<td>0.233</td>
<td>1.000</td>
<td>0.886</td>
</tr>
<tr>
<td>CpG_32 33</td>
<td>0.834</td>
<td>0.312</td>
<td>0.857</td>
<td>0.761</td>
</tr>
<tr>
<td>CpG_34 35</td>
<td>0.927</td>
<td>0.144</td>
<td>0.929</td>
<td>0.818</td>
</tr>
<tr>
<td>CpG_36 37</td>
<td>0.841</td>
<td>0.275</td>
<td>0.857</td>
<td>0.830</td>
</tr>
<tr>
<td>CpG_40 41 42 43</td>
<td>0.942</td>
<td>0.258</td>
<td>1.000</td>
<td>0.830</td>
</tr>
<tr>
<td>CpG_44</td>
<td>0.949</td>
<td>0.138</td>
<td>0.857</td>
<td>0.955</td>
</tr>
<tr>
<td>SLC13A5_MA_13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CpG_1</td>
<td>0.927</td>
<td>0.155</td>
<td>0.800</td>
<td>0.977</td>
</tr>
<tr>
<td>CpG_2</td>
<td>0.930</td>
<td>0.318</td>
<td>1.000</td>
<td>0.864</td>
</tr>
<tr>
<td>CpG_6 7 8 9</td>
<td>0.864</td>
<td>0.343</td>
<td>0.900</td>
<td>0.761</td>
</tr>
<tr>
<td>CpG_15 16</td>
<td>0.916</td>
<td>0.278</td>
<td>0.800</td>
<td>0.898</td>
</tr>
<tr>
<td>CpG_17 18</td>
<td>0.931</td>
<td>0.267</td>
<td>1.000</td>
<td>0.795</td>
</tr>
<tr>
<td>様的の道伝子名</td>
<td>プライマーセット名</td>
<td>CpG サイト</td>
<td>AUCig</td>
<td>カットオフ値</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>SLC1 3A5.MA.1</td>
<td>3</td>
<td>CpG—19.20</td>
<td>0.930</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG2</td>
<td>0.886</td>
<td>0.312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—2</td>
<td>0.780</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—24.25</td>
<td>0.869</td>
<td>1.185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG .26</td>
<td>0.944</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—2.7</td>
<td>0.893</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—28.29.30</td>
<td>0.877</td>
<td>0.295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—31</td>
<td>0.893</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG.32 39</td>
<td>0.14</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG.35 30</td>
<td>0.913</td>
<td>0.392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG 36.37</td>
<td>0.934</td>
<td>0.238</td>
</tr>
<tr>
<td>SLC1 3A5—MA—15</td>
<td></td>
<td>CpG—12</td>
<td>0.879</td>
<td>0.243</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—3</td>
<td>0.942</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG.4</td>
<td>0.875</td>
<td>0.278</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG.5 6.7</td>
<td>0.936</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—8</td>
<td>0.908</td>
<td>0.388</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—9.1 0</td>
<td>0.927</td>
<td>0.377</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG 12</td>
<td>0.885</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—13.14</td>
<td>0.935</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—16</td>
<td>0.680</td>
<td>0.820</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—17</td>
<td>0.681</td>
<td>0.463</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG 18</td>
<td>0.681</td>
<td>0.463</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG—19</td>
<td>0.774</td>
<td>0.543</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpG.20 21</td>
<td>0.942</td>
<td>0.685</td>
</tr>
<tr>
<td>蛋白名</td>
<td>AUC価</td>
<td>カットオフ値</td>
<td>精度</td>
<td>特異度</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>CxG 2</td>
<td>0.982</td>
<td>0.157</td>
<td>0.843</td>
<td>0.989</td>
</tr>
<tr>
<td>CxG 3</td>
<td>0.871</td>
<td>0.128</td>
<td>0.867</td>
<td>0.724</td>
</tr>
<tr>
<td>CxG 4</td>
<td>0.906</td>
<td>0.048</td>
<td>0.829</td>
<td>0.713</td>
</tr>
<tr>
<td>CxG 6</td>
<td>0.864</td>
<td>0.152</td>
<td>0.857</td>
<td>0.736</td>
</tr>
<tr>
<td>CxG 7</td>
<td>0.888</td>
<td>0.152</td>
<td>0.857</td>
<td>0.890</td>
</tr>
<tr>
<td>CxG 10</td>
<td>0.954</td>
<td>0.058</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 11</td>
<td>0.836</td>
<td>0.062</td>
<td>0.829</td>
<td>0.747</td>
</tr>
<tr>
<td>CxG 12</td>
<td>0.926</td>
<td>0.128</td>
<td>0.987</td>
<td>0.874</td>
</tr>
<tr>
<td>CxG 13</td>
<td>0.917</td>
<td>0.063</td>
<td>0.988</td>
<td>0.917</td>
</tr>
<tr>
<td>CxG 14</td>
<td>0.928</td>
<td>0.152</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 15</td>
<td>0.893</td>
<td>0.058</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 16</td>
<td>0.895</td>
<td>0.062</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 17</td>
<td>0.892</td>
<td>0.062</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 18</td>
<td>0.927</td>
<td>0.062</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 19</td>
<td>0.812</td>
<td>0.152</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 20</td>
<td>0.998</td>
<td>0.152</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 21</td>
<td>0.905</td>
<td>0.152</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 22</td>
<td>0.882</td>
<td>0.152</td>
<td>0.957</td>
<td>0.897</td>
</tr>
<tr>
<td>CxG 23</td>
<td>0.951</td>
<td>0.152</td>
<td>0.957</td>
<td>0.897</td>
</tr>
</tbody>
</table>

[0160]
<table>
<thead>
<tr>
<th>標的遺伝子名/プライマーセット名</th>
<th>CpGサイト</th>
<th>AUC値</th>
<th>カットオフ値</th>
<th>感度</th>
<th>特異度</th>
<th>1-特異度</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNT3A MA.9</td>
<td>CpG 1</td>
<td>0.767</td>
<td>0.857</td>
<td>0.571</td>
<td>0.943</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>CpG 23</td>
<td>0.938</td>
<td>0.836</td>
<td>0.786</td>
<td>0.864</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>CpG 4.5.6</td>
<td>0.703</td>
<td>0.786</td>
<td>0.636</td>
<td>0.364</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>CpG 7</td>
<td>0.943</td>
<td>0.225</td>
<td>0.857</td>
<td>0.886</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>CpG 8</td>
<td>0.943</td>
<td>0.225</td>
<td>0.857</td>
<td>0.886</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>CpG 9</td>
<td>0.943</td>
<td>0.225</td>
<td>0.857</td>
<td>0.886</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>CpG 10</td>
<td>0.859</td>
<td>0.225</td>
<td>0.857</td>
<td>0.800</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td>CpG 11</td>
<td>0.831</td>
<td>0.128</td>
<td>0.929</td>
<td>0.784</td>
<td>0.216</td>
</tr>
<tr>
<td></td>
<td>CpG 12</td>
<td>0.849</td>
<td>0.127</td>
<td>0.857</td>
<td>0.818</td>
<td>0.182</td>
</tr>
<tr>
<td>KHDRBS2 MA.19(rev)</td>
<td>CpG 1</td>
<td>0.824</td>
<td>0.786</td>
<td>0.810</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 5</td>
<td>0.767</td>
<td>0.857</td>
<td>0.655</td>
<td>0.345</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 6.7.8</td>
<td>0.799</td>
<td>0.714</td>
<td>0.738</td>
<td>0.262</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 12</td>
<td>0.797</td>
<td>0.786</td>
<td>0.750</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 13.14</td>
<td>0.721</td>
<td>0.857</td>
<td>0.619</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 16</td>
<td>0.762</td>
<td>0.714</td>
<td>0.786</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 17.18</td>
<td>0.824</td>
<td>0.857</td>
<td>0.786</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 19</td>
<td>0.762</td>
<td>0.714</td>
<td>0.786</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 21 22.23.24</td>
<td>0.654</td>
<td>0.571</td>
<td>0.702</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 25 26</td>
<td>0.824</td>
<td>0.857</td>
<td>0.786</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 27</td>
<td>0.836</td>
<td>0.714</td>
<td>0.750</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 28 29</td>
<td>0.759</td>
<td>0.786</td>
<td>0.643</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 32 33 34.35</td>
<td>0.701</td>
<td>0.929</td>
<td>0.643</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpG 36</td>
<td>0.668</td>
<td>0.195</td>
<td>0.929</td>
<td>0.583</td>
<td>0.417</td>
</tr>
<tr>
<td></td>
<td>CpG 37 38</td>
<td>0.773</td>
<td>0.195</td>
<td>0.857</td>
<td>0.488</td>
<td>0.512</td>
</tr>
<tr>
<td></td>
<td>CpG 39 40.41</td>
<td>0.673</td>
<td>0.195</td>
<td>0.857</td>
<td>0.488</td>
<td>0.512</td>
</tr>
</tbody>
</table>
表27の結果から明らかなように、診断能力の大きなCpGサイト

<table>
<thead>
<tr>
<th>CpGサイト</th>
<th>AUC値</th>
<th>カットオフ値</th>
<th>感度</th>
<th>特異度</th>
<th>1-特異度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CpG 7</td>
<td>0.724</td>
<td>0.210</td>
<td>0.929</td>
<td>0.821</td>
<td>0.117</td>
</tr>
<tr>
<td>CpG 9,10</td>
<td>0.866</td>
<td>0.230</td>
<td>0.907</td>
<td>0.857</td>
<td>0.163</td>
</tr>
<tr>
<td>CpG 11</td>
<td>0.849</td>
<td>0.236</td>
<td>0.857</td>
<td>0.821</td>
<td>0.143</td>
</tr>
<tr>
<td>CpG 12</td>
<td>0.811</td>
<td>0.325</td>
<td>0.857</td>
<td>0.821</td>
<td>0.163</td>
</tr>
<tr>
<td>CpG 13</td>
<td>0.857</td>
<td>0.245</td>
<td>0.857</td>
<td>0.821</td>
<td>0.143</td>
</tr>
<tr>
<td>CpG 14</td>
<td>0.759</td>
<td>0.046</td>
<td>0.805</td>
<td>0.881</td>
<td>0.119</td>
</tr>
<tr>
<td>CpG 15</td>
<td>0.827</td>
<td>0.255</td>
<td>0.857</td>
<td>0.845</td>
<td>0.131</td>
</tr>
<tr>
<td>CpG 16,17</td>
<td>0.866</td>
<td>0.435</td>
<td>0.866</td>
<td>0.690</td>
<td>0.310</td>
</tr>
<tr>
<td>CpG 21,22</td>
<td>0.888</td>
<td>0.495</td>
<td>0.866</td>
<td>0.690</td>
<td>0.310</td>
</tr>
<tr>
<td>CpG 26</td>
<td>0.897</td>
<td>0.255</td>
<td>0.857</td>
<td>0.845</td>
<td>0.131</td>
</tr>
</tbody>
</table>

[0162] 表19～27に示した結果から明らかのように、診断能力の大きなCpG
サイトが、インフィニウムプローブ部位である前記 C p G サイトに加えて、各 C p G アイランドに多数存在することがわかった。すなわち、A U C > 0.9 である C p G サイト数は 141 サイトあり、A U C > 0.95 である C p G サイト数は 32 サイトあった。

また、MassARRAY 法においては、例えば 「FAM150A_14 C p G_13.14.15」のような C G C G C G と連続する C p G サイトでは全体で 1 個の計測値が与えられるので、前記 A U C > 0.9 である 141 サイトは、A U C 算出の根拠になる計測値としては 90 個に相当する。また同様に、前記 A U C > 0.95 である 32 サイトは、A U C 算出の根拠になる計測値としては 23 計測値に相当する。

産業上の利用可能性

以上説明したように、本発明によれば、前記 17 遺伝子 (FAM150A 、G RM6 、Z NF540 、Z FP42 、Z NF154 、R IMS4 、PC DHAC1 、K HDR B S2 、AS CL2 、KC NQ1 、PR AC 、WNT3A 、TR H 、FAM78A 、Z NF671 、SL C13A5 及び NK X6 -2) の少なくとも一つの C p G サイトにおける DNA メチル化レベルを検出すことによって、予後不良の腎細胞癌 (CIMP陽性腎細胞癌) と比較的良好な腎細胞癌とを明確に分類することが可能となる。

かかる DNA メチル化レベルの、予後不良群と良好群との差違は大きいので、病院の検査室等ですでに普及している P C R 法等（例えば、メチル化特異的定量 P C R 法、COBRA 法）でも容易に検出できる。また、腎細胞癌手術検体から、患者に余分な侵襲を加えることなく、予後診断用のゲノム DNA を豊富に抽出できる。従って、本発明の腎細胞癌の予後不良リスクを検出す方法は、治療成績の向上を目指した方法として、臨床分野において有用である。
配列表 フリーテキスト

配列番号 : 17

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたSLC13A5_1MA_10フワードプライマー)

配列番号 : 18

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたSLC13A5_1MA_10リバースプライマー)

配列番号 : 19

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたSLC13A5_1MA_13フワードプライマー)

配列番号 : 20

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたSLC13A5_1MA_13リバースプライマー)

配列番号 : 21

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたSLC13A5_1MA_15フワードプライマー)

配列番号 : 22

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたSLC13A5_1MA_15リバースプライマー)

配列番号 : 23

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたFAM15OA_1MA_14フワードプライマー)

配列番号 : 24

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたFAM15OA_1MA_14リバースプライマー)

配列番号 : 25

<223> 人工的に合成されたプライマーの配列 (MassARRAYアッセイに用いたGRM6_1MA_8フワードプライマー)
配列番号：2 6

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたG R M 6 _ M A _ 8 リバースプライマー)

配列番号：2 7

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたF P 4 _ M A _ 2 フォワードプライマー)

配列番号：2 8

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたF P 4 _ M A _ 2 リバースプライマー)

配列番号：2 9

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたF P 4 _ M A _ 5 フォワードプライマー)

配列番号：3 0

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたF P 4 _ M A _ 5 リバースプライマー)

配列番号：3 1

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたR I M S 4 _ M A _ 9 フォワードプライマー)

配列番号：3 2

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたR I M S 4 _ M A _ 9 リバースプライマー)

配列番号：3 3

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたT R H _ M A _ 8 フォワードプライマー)

配列番号：3 4

< 2 2 3 > 人工的に合成されたプライマーの配列 (M a s s A R R A Y アッセイに用いたT R H _ M A _ 8 リバースプライマー)

配列番号：3 5
人工的に合成されたプライマーの配列（MassARRAYアッセイに用いたZNF540_M17 フォワードプライマー）
配列番号: 36

人工的に合成されたプライマーの配列（MassARRAYアッセイに用いたZNT3A_M19 フォワードプライマー）
配列番号: 44
ュセイに用いたWN T 3 A__ M A__ 9 リバースプライマー）
配列番号：4 5
< 2 2 3 > 人工的に合成されたプライマーの配列（M a s s A R R A Y アュセイに用いたK H D R B S 2__ M A__ 1 9（r e v）フォワードプライマー）
配列番号：4 6
< 2 2 3 > 人工的に合成されたプライマーの配列（M a s s A R R A Y アュセイに用いたA S C L 2__ M A__ 8 フォワードプライマー）
配列番号：4 8
< 2 2 3 > 人工的に合成されたプライマーの配列（M a s s A R R A Y アュセイに用いたA S C L 2__ M A__ 8 リバースプライマー）
配列番号：4 9
< 2 2 3 > 人工的に合成されたプライマーの配列（バイロシークエンシング用Z F P 4 2 フォワードプライマー）
配列番号：5 0
< 2 2 3 > 人工的に合成されたプライマーの配列（バイロシークエンシング用いたZ F P 4 2 リバースプライマー）
配列番号：5 1
< 2 2 3 > 人工的に合成されたプライマーの配列（バイロシークエンシング用いたZ F P 4 2 シークエンシングプライマー）
配列番号：5 2
< 2 2 3 > 人工的に合成されたプライマーの配列（バイロシークエンシング用Z F P 1 5 4 フォワードプライマー）
配列番号：5 3
人工的に合成されたプライマーの配列（ハイローシーケンシング用いたZFP154リバースプライマー）
配列番号：54

人工的に合成されたプライマーの配列（ハイローシーケンシング用いたZFP154シークエンシンダプライマー）
配列番号：55

人工的に合成されたプライマーの配列（ハイローシーケンシング用ZFP540フオワードプライマー）
配列番号：56

人工的に合成されたプライマーの配列（ハイローシーケンシング用ZFP540リバースプライマー）
配列番号：57
請求の範囲

[請求項1] 下記 (a) 〜 (c) の工程を含む、腎細胞癌の予後不良リスクを検出す方法
(a) 被験体の腎臓組織由来のゲノムD N Aを調製する工程、
(b) 工程 (a) で調製したゲノムD N Aについて、F A M 1 5 O A 、G R M 6 、Z N F 5 4 O 、Z F P 4 2 、Z N F 1 5 4 、R I M S 4 、P C D H A C 1 、K H D R B S 2 、A S C L 2 、K C N Q 1 、P R A C 、W N T 3 A 、T R H 、F A M 7 8 A 、Z N F 6 7 1 、S L C 1 3 A 5 及びN K X 6 ー 2 からなる遺伝子群から選択される遺伝子の少なくとも一つのC p GサイトのD N Aメチル化レベルを検出す工程、
(c) 工程 (b) で検出したD N Aメチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定する工程、を含む方法。

[請求項2] 工程 (b) が、工程 (a) で調製したゲノムD N Aをバイサルファイントリッジし、前記C p GサイトのD N Aメチル化レベルを検出す工程である、請求項1に記載の方法。

[請求項3] 請求項1又は2に記載の方法に用いるための、少なくとも1 2塩基の鎖長を有する、下記 (a) 〜 (b) に記載のいずれかであるオリゴヌクレオチド
(a) 前記遺伝子群から選択される遺伝子の少なくとも一つのC p Gサイトを挟み込むように設計された一対のプライマーであるオリゴヌクレオチド
(b) 前記遺伝子群から選択される遺伝子の少なくとも一つのC p Gサイトを含むヌクレオチドにハイブリダイズするプライマー又はプローブであるオリゴヌクレオチド。
[図4]

ZNF540

バイオシージェンジングによるDNAメチル化レベル

β値

$r=0.896$

$
ho=2.25 	imes 10^{-3}$
サンプル

B (n=14) クラスターA (n=90)

プローブ

DNAメチル化
減弱 亢進

カウント
-0.5 0 0.5
[図6]

クラスターA
(n=90)

クラスターB
(n=14)

\[P = 4.16 \times 10^{-6} \]

無再発生存率

術後経過時間 (日)
クラスターA
(n=90)

クラスターB
(n=14)

$P = 1.32 \times 10^{-2}$

全体生存率

術後經過時間 (日)
[図8]

\[|\Delta \beta| \geq 0.1 \]

DNAメチル化亢進 DNAメチル化減弱
6.489 \times 10^{-8}

全プロープに対する比率

A B 全症例 A B 全症例

NS

[図9]

\[|\Delta \beta| \geq 0.2 \]

DNAメチル化亢進 DNAメチル化減弱
1.198 \times 10^{-8}

全プロープに対する比率

A B 全症例 A B 全症例

NS
図12

$|\Delta \beta| \geq 0.5$

DNAメチル化亢進 DNAメチル化減弱

2.304x10^{-8} NS

0.03838
[図13]

Case 4

Case 3

Case 2

Case 1
図17

[データ点の図]

Mean Decrease Gini
[図19]

RMSA-9 GpG-18
RMSA-9 GpG-17
RMSA-9 GpG-15
RMSA-9 GpG-13.14
RMSA-9 GpG-11
RMSA-9 GpG-10
RMSA-9 GpG-6.78
RMSA-9 GpG-4.5
RMSA-9 GpG-2.3
RMSA-9 GpG-1

DNA 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
図21

ZNF540

DNA hydrogel

シークレット A → シークレット B

ゲート A1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
[図23]

PRAC

DNA+31 nélu

クラスター-A → クラスター-B
CIMP陰性群
CIMP陽性群

診断閾値(カットオフ値)を満たすCpGサイトの箇所の数
INTERNATIONAL SEARCH REPORT

International application No.
PCT / JP2 013 / 062650

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

P, X

Further documents are listed in the continuation of Box C.

See patent family annex.

"A" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
04 July, 2013 (04.07.13)

Date of mailing of the international search report
16 July, 2013 (16.07.13)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Kawai, Y. et al., "Methylation on level of the RASSF1A promoter is an independent prognostic factor for clear-cell renal cell carcinoma.", ANNALS OF ONCOLOGY, 2010.08, Vol. 21, No. 8, P. 1612-1617</td>
<td>1-3</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2010-063413 A (Japan Health Science Foundation), 25 March 2010 (25.03.2010), entire text (Family: none)</td>
<td>1-3</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.:**
 - because they relate to subject matter not required to be searched by this Authority, namely:

2. **Claims Nos.:**
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.:**
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 64(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

There is found no common structure among the genes described in claim 1.

Further, a method for detecting the risk of poor prognosis renal cell carcinoma, which comprises determining whether or not a subject is classified into a poor prognosis group on the basis of the level of DNA methylation of a CpG site in a gene, is already known before the priority date of the present application, as disclosed in KAWAI, Y. et al. (ANNALS OF ONCOLOGY, 2010, Vol. 21, P. 1612-1617), VAN VLODROP, G. J. H. et al. (THE AMERICAN JOURNAL OF PATHOLOGY, 2010, Vol. 176, P. 575-584), and so on.

(Continued on extra sheet)

1. **X** All required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. **X** All searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. **X** All only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. **X** No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.
Consequently, a common technical feature in the invention of claim 1 does not make a contribution over the prior art, and therefore, the said technical feature cannot be considered to be a special technical feature.

Furthermore, there is no other same or corresponding technical feature between these inventions.

Thus, it is considered that the claims include 17 groups of inventions respectively relating to the structures of the genes.
A. 発明の属する分野の分類 (国際特許分類 (I P C))

Int.Cl. C12Q1/68 (2006. 01) i, C12N15/09 (2006. 01) i

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (I P C))

Int.Cl. C12Q1/68, C12N15/09

| 最小限資料以外の資料で調査を行った分野に含まれるもの |
日本国実用新案公報	1922—1996年
日本国公開実用新案公報	1971—2013年
日本国実用新案登録公報	1994—2013年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CA/MEDLINE/BIOSIS (STN), JSTPlus/JMEDPlus/JST7580 (JDream), PubMed, CINi

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>ARA, E. et al., "single— G resolution methylome analysis "</td>
</tr>
<tr>
<td></td>
<td>dentines clinicopathologically aggressive G island</td>
</tr>
<tr>
<td></td>
<td>hyalator phenotype clear cell renal cell carcinomas.</td>
</tr>
<tr>
<td></td>
<td>CARCINOGENESIS, 2012. 08, Vol. 33, No. 8, P. 1487—1493</td>
</tr>
<tr>
<td></td>
<td>E—Pub, May—18—2012</td>
</tr>
</tbody>
</table>

![C欄の続きにも文献が列挙されている。](url)

この文献は、同一パテントファミリーに関する別紙を参照。

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>「A」</td>
<td>特に関連のある文献ではなく、一般的な指標を示すもの</td>
</tr>
<tr>
<td>「B」</td>
<td>国際実願日の出願または特許であるが、国際出願日以後に出願されたもの</td>
</tr>
<tr>
<td>「C」</td>
<td>優先権主張に基づく文献又は他の文献の発行日若しくは他の特別な理由を考慮するために引用する文献 (理由を付す）</td>
</tr>
<tr>
<td>「D」</td>
<td>出願の口頭による開示、使用、展示等に言及する文献</td>
</tr>
<tr>
<td>「E」</td>
<td>国際出願日前、かつ優先権の主張の基礎となる出願</td>
</tr>
</tbody>
</table>

国際調査報告の送付日

04. 07. 2013

国際調査報告の発送日

16. 07. 2013

特許庁審査官（権限のある職員）

野中][雄][

<table>
<thead>
<tr>
<th>郵便番号</th>
<th>電話番号</th>
<th>内線</th>
</tr>
</thead>
<tbody>
<tr>
<td>100—8915</td>
<td>03—3581—1101</td>
<td>3448</td>
</tr>
</tbody>
</table>

役務 PCT / I SA / 210 (第 2 ページ) (2009年7月)
| 引用文献の
<table>
<thead>
<tr>
<th>カテゴリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (続き)</td>
</tr>
<tr>
<td>言語</td>
</tr>
<tr>
<td>関連する</td>
</tr>
<tr>
<td>請求項の番号</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210（第2ページの続き）（2009年7月）
国際調査報告
国際出願番号 PCT/JP2013/062650

第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条2) (a) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. 請求項__________は、この国際調査機関が調査をする必要がない対象に係るものである。つまり、

2. 請求項__________は、有意味な国際調査をすることができた程度まで所定の要件を満たしてい
ない国際出願の部分に係るものである。つまり、

3. 請求項__________は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定により
従って記載されていない。

第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に2以上の発明があるとこの国際調査機関は認めた。

請求項1に記載された各遺伝子の関に、共通する新規の構造が認められなかった。また、ある
遺伝子のCpGSiteのDNAメチル化レベルに基づいて、被験体が予後不良群に分類される
が否かを決定する、腎細胞癌の予後不良リスクを検出する方法は、例えばKAWAI、Y. et
al. (ANNALS OF ONCOLOGY, 2010, Vol. 21, P. 1612-1617) やVAN VL03R0P, I.J.H. et al. (THE
AMERICAN JOURNAL OF PATHOLOGY, 2010, Vol. 176, P. 575-584) 等にも記載されているようにに,
本願優先日前に既に知られている。よって、請求項1に係る発明で共通する技術的特徴は、先行
技術に対する貢献をもたらすものではないから、当該技術的特徴は特別な技術的特徴である
とはいえない。また、これらの発明の関には、ほかに同一の又は対応する技術的特徴は認めら
れない。

そうすると、請求の範囲には各遺伝子の構造每に、17の発明群が含まれると認められる。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
項について作成した。

2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求項について調査ことができたので、追加調
査手数料の納付を求めてなかった。

3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
付のあった次の請求項のみについて作成した。

4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
されている発明に係る次の請求項について作成した。

追加調査手数料の異議の申立てに関する注意

□ 追加調査手数料及び、該当する場合には、異議申立手数料の納付と共に、出願人から異議申立てがあった。

□ 追加調査手数料の納付と共に出願人から異議申立てがあったが、異議申立手数料が納付命令書に示した期間
内に支払われなかった。

□ 追加調査手数料の納付はあったが、異議申立てはなかった。

様式PCT/S/ISA/210（第1ページの続き2）（2009年7月）