(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

\
(19) World Intellectual Property ~
Organization ‘OO 0000 A OO
International Bureau —/) (10) International Publication Number
(43) International Publication Date = WO 2018/080814 A1
03 May 2018 (03.05.2018) WIPO I PCT
(51) International Patent Classification: Technology Licensing, LLC, One Microsoft Way, Red-
GO6F 21/53 (2013.01) mond, Washington 98052-6399 (US).
(21) International Application Number: (74) Agent: MINHAS, Sandip S. et al.; Microsoft Technology
PCT/US2017/056703 Licensing, LLC, One Microsoft Way, Redmond, Washing-
(22) International Filing Date: ton 98052-6399 (US).
16 October 2017 (16.10.2017) (81) Designated States (unless otherwise indicated, for every
.1e . . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA,CH,CL,CN,CO, CR,CU, CZ,DE, DJ, DK, DM, DO,
30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
30) lg/‘;’;‘}tysnata' 55 October 2016 (25.102016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KF, KG, KH, KN, KP,
; ctober 2016 (25.10.2016) KR,KW,KZ, LA,LC, LK, LR, LS, LU, LY, MA, MD, ME,
(71) Applicant: MICROSOFT TECHNOLOGY LI- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
CENSING, LLC [US/US]; One Microsoft Way, Redmond, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
Washington 98052-6399 (US). SC, SD, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
. TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Imventors: PEARSON, Malcolm E.; Microsoft Technolo-
gy Licensing, LLC, One Microsoft Way, Redmond, Wash- (84) Designated States (unless otherwise indicated, for every

ington 98052-6399 (US). ACAR, Tolga; Microsoft Tech-
nology Licensing, LLC, One Microsoft Way, Redmond,
Washington 98052-6399 (US). VERMA, Rahul; Microsoft

kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

wo 2018/080814 A1 | 0K 000 0 O

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(54) Title: SECURE SERVICE HOSTED IN A VIRTUAL SECURITY ENVIRONMENT

/ 100

114

102 L 112 104 106
BUILT CODE
SOURCE BUILD SIGNING
|DEVELOPER(S) /L>| (EXECUTABLE
CODE SYSTEM BINARIES) SYSTEM
108 110
116 o s
SIGNED VIRTUAL IMAGE
EXECUTABLE MACHINE IMAGE w MEASUREMENT
CODE GENERATOR SYSTEM —‘
VM IMAGE 121 123 122
MEASUREMENT(S)
Ny LOUD
120 Y CLOUD CAGE cLou
q TRUSTED CLOUD CAGE | /128
EXECUTION DEPLOYMENT
132 126 \ ENVIRONMENT SERVICE
NETWORK N TRUSTED 130

EXECUTION CLOUD CAGE

ENVIRONMENT KEY SERVICE
131 \ SECURE
SERVICE USER OTHER
SYSTEM FIG. 1

129

(57) Abstract: An execution environment has a deployed virtual machine image. The virtual machine image provides a service that is
identified by a role. The execution environment generates a measurement of the virtual machine image and provides it to a key service to
request role keys that enable operation of the virtual machine image in the execution environment. The key service determines whether
the virtual machine image is mapped to the role and, if so, returns the role keys to the requesting execution environment.

[Continued on next page]

WO 2018/080814 A1 { MDA 00T O

EE, ES, FL, FR, GB, GR, HR, HU, IF, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

SECURE SERVICE HOSTED IN A VIRTUAL SECURITY ENVIRONMENT

BACKGROUND
[0001] Computer systems are currently in wide use. Some such computer systems
are deployed in a remote server environment (such as in the cloud) where they host services.
[0002] The hosted services can be services where security is important. For
instance, some hosted services may be payment services, credit card processing services,
banking services, or a wide variety of other services that handle confidential information.
[0003] These types of systems have an infrastructure that is normally hosted on
discrete systems. By way of example, each hosted service may be hosted on a separate or
discrete physical machine. These machines may be deployed in physically caged
environments to provide physical security. Also, developers or other programmers who
write code for these types of systems are often made to enter a secured or caged physical
facility with a relatively isolated network, again to increase security with respect to the
developed code, that is deployed on such a service.
[0004] This can result in a number of drawbacks for such as service. By way of
example, since each service is often deployed on a dedicated physical machine (or server)
and there is no virtualization involved, scalability can be very difficult. In order to scale
such a service, additional physical machines must be added for additional services or service
instances. Further, because developers or programmers are required to generate code in a
physically secure and strictly controlled environment, this can lead to rigidity in that it can
be very difficult to make changes.
[0005] The discussion above is merely provided for general background information
and is not intended to be used as an aid in determining the scope of the claimed subject
matter.

SUMMARY

[0006] An execution environment has a deployed virtual machine image. The
virtual machine image provides a service that is identified by a role. The execution
environment generates a measure of the virtual machine image and provides it to a key
service to request role keys that enable operation of the virtual machine image in the
execution environment. The key service determines whether the virtual machine image is
mapped to the role and, if so, returns the role keys to the requesting execution environment.
[0007] This Summary is provided to introduce a selection of concepts in a simplified

form that are further described below in the Detailed Description. This Summary is not

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

intended to identify key features or essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the claimed subject matter. The
claimed subject matter is not limited to implementations that solve any or all disadvantages
noted in the background.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1 is a flow diagram illustrating one example of a development channel

for developing a service and generating a virtual machine image corresponding to the

service.
[0009] FIG. 2 is a block diagram of one example of a cloud cage architecture.
[0010] FIG. 3 is a flow diagram illustrating one example of the operation of a

deployment service.
[0011] FIG. 4 is a flow diagram illustrating one example of the operation of an
execution environment.
[0012] FIG. 5 is a flow diagram illustrating one example of the operation of a key
service in providing requested role keys to an execution environment.
[0013] FIG. 6 1s a block diagram showing one example of a computing environment
that can be used in the architecture illustrated in FIG. 1.

DETAILED DESCRIPTION
[0014] FIG. 1 is a flow diagram illustrating one example of the operation of a development
channel 100. Development channel 100 illustratively includes developers 102, build system
104, signing system 106, virtual machine image generator 108, and image measurement
system 110. FIG. 1 also shows that the development channel 100 can be coupled to a cloud
architecture 122 that includes a cloud cage 123 (which, itself, includes trusted execution
environments 124 and 126), cloud cage deployment service 128 and cloud cage key service
130, and can include other items 129. FIG. 1 also shows that one or more secure service
user systems 131 can access architecture 122 through network 132.
[0015] In the example illustrated in FIG. 1, developers 102 illustratively develop source
code 112 which is code that is to be run in a hosted, secure service, such as in the trusted
execution environments 124-126. Such a service may be a payment service, a banking
service, a credit card processing service, or any of a wide variety of other services.
[0016] Build system 104 receives the source code 112 and builds the code into executable
binaries (or other built code) 114. Code 114 is illustratively compiled, executable code that
may include scripts and a variety of data files. It is illustratively provided to signing system

106. Singing system 106 illustratively signs code 114 to generate signed, executable code

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

116. Because code 116 is signed, this can ensure that it is not modified after the signature
takes place. The signature may also indicate the code signer (or the identity of signing
system 106).

[0017] Virtual machine image generator 108 then generates a virtual machine image by
combining an appropriate operating system image and the signed executable code 116. The
resultant virtual machine (VM) image 118 may include one or more services and databases
that can be deployed to implement those services, in an execution environment. In one
example, virtual machine image generator 108 can use a virtual hard drive format as a hard
disk for a virtual machine. This can allow multiple operating systems to reside on a single
machine.

[0018] Image measurement system 110 then generates one or more virtual machine image
measurements 120 based on virtual machine images 118. Measurements 120 illustratively
include a re-computable, strong identity representing each image 118. In one example, each
measurement 120 may be a cryptographic hash value that is computed over the
corresponding VM image 118. The VM images 118 and their corresponding measurements
120 can then be provided to a cloud environment (or cloud architecture) 122 where they can
be executed by virtual machines in one or more trusted execution environments 124-126.
[0019] The VM images 118 may be provided to cloud cage deployment service 128, along
with a role-to-VM image mapping that maps the VM image 118 to the particular role
corresponding to the service that it will execute. The VM measurements 120 can be
provided to cloud cage key service 130, along with a measurement-to-role mapping that
maps the particular measurement of the VM image 118 to the role as well. In addition, a
particular trusted execution environment 124-126 that is being used to execute one of the
VM images 118 may send cloud cage key service 130 a trusted execution environment
identifier that identifies the particular trusted execution environment that will be deploying
the VM image 118 represented by the VM image measurement 120.

[0020] Briefly, in operation, cloud cage deployment service 128 can deploy a particular VM
image to a trusted execution environment 124-126. That environment 124-126 can then
request role keys from cloud cage key service 130. Cloud cage key service 130 identifies
whether the particular VM image is appropriate for the particular role, and requesting
execution environment, and, if so, returns encrypted role keys back to the requesting
execution environment so that it can operate to execute its service.

[0021] FIG. 1 also shows that once a service (such as a payment service or other secure

service) is deployed into a trusted execution environment 124-126, a payment (or other

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

secure service) user system 131 can access the service in one of the trusted execution
environments through network 132 and cloud 121. By way of example, if the secure service
is a credit card processing service, then user system 131 may be a system at a credit card
company where the credit card processing is needed. If it is a banking service, then system
131 may be deployed at a bank. These are examples only.

[0022] Network 132 can be any of a wide variety of networks, such as a wide area network,
a local area network, or any of a variety of other wired or wireless networks or combinations
of networks. Some are listed below for the sake of example.

[0023] FIG. 2 is a block diagram showing one example of the cloud cage architecture 122,
deployed in cloud 121, in more detail. Some of the items shown in FIG. 2 are similar to
those shown in FIG. 1, and they are similarly numbered.

[0024] Before describing the overall operation of the architecture 122 illustrated in FIG. 2,
a brief description of some of the items in FIG. 2, and their operation, will first be provided.
In the example shown in FIG. 2, cloud cage 123 can include one or more processors or
servers 136, trusted execution environments 124-126, and it can also include other items.
Trusted execution environment 124 can include a hypervisor 138 and one or more virtual
machines 140, along with a decryption system 141 and a measurement system 142. It can
include other items 144 as well. Trusted execution environment 126 can also include a
hypervisor 146, or the hypervisors 138 and 146 can be realized as a single hypervisor for
generating virtual machines 140-148. Execution environment 126 can also include
description system 149 and measurement system 150 and a variety of other items 152. The
trusted execution environments 124-126 can be similar or different. For the sake of the
present description, it will be assumed that they are similar and therefore only the operation
of trusted execution environment 124 will be provided herein.

[0025] Virtual machine 140 illustratively receives a virtual machine image form cloud cage
deployment service 128 (which is described in more detail below) and executes that image.
Measurement system 142 can measure the image deployed on virtual machine 140. The
measurement may be generated by applying a cryptographic hash function to the image.
For instance, where the image is represented by a virtual hard disk image, the measurement
may be generated by applying an SHA-256 hash to that image. This is only one example,
and a variety of other ways for generating a measurement of the virtual machine image can
be used as well. In executing the service represented by the VM-image, trusted execution
environment 124 may expose an application programming interface (API) 151 that user

system 131 can interact with to use the service.

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[0026] In order to deploy a virtual machine image to a trusted execution environment 124,
cloud cage deployment service 128 can be used. In one example, service 128 can include
one or more processors or servers 154, deployment engine 156, virtual machine image
repository 158, role-to-virtual machine image mappings 160, and it can include other items
162. A trusted execution environment 124 illustratively provides a role (which represents
the service that it is to execute) to deployment engine 156. Deployment engine 156 then
accesses role-to-VM image mappings 160 to identify a particular VM image corresponding
to that role and obtains that image from VM image repository 158. It then deploys that VM
image on the virtual machine 140 in the requesting trusted execution environment 124. This
is described in greater detail below with respect to FIG. 3.

[0027] Once the VM image is deployed on the virtual machine 140, the trusted execution
environment 124 illustratively still needs the role keys that it will use in order to execute the
particular service (or role) that has been deployed. That is, the deployed virtual machine
image may include code that represents one or more services and databases, but it does not
yet have the keys it needs to execute its operations. Therefore, trusted execution
environment 124 generates a measurement of the VM image deployed on virtual machine
140 and provides that, along with the role (corresponding to the service) to cloud cage key
service 130 in order to obtain the role keys it needs to operate.

[0028] Cloud cage key service 130 can include one or more processors or servers 164,
virtual trusted execution environment (VTEE) key service 166, policy engine 168, key
wrapping cryptographic engine 170, VM image measurement store 172, measurement-to-
role mappings 174, role key store/generator 176, key wrapper keys 178, and it can include
a variety of other items 180 as well. VTEE key service 166 provides the request (the virtual
machine image measurement and the corresponding role and an identity of the requesting
trusted execution environment 124) to policy engine 168. Policy engine 168 accesses VM
image measurements 172 to verify that the requesting trusted execution environment is an
appropriate environment for executing the particular role represented by the VM image.
Engine 168 also accesses measurement-to-role mappings 174 to identify whether the VM
image measurement provided by the trusted execution environment 124 is mapped to the
role identified by the trusted execution environment 124, in its request for keys. If policy
engine 168 evaluates positively, this indicates that the trusted execution environment that is
requesting the keys is an appropriate environment for executing the identified role. It also
indicates that the measurement of the code (e.g., operating system, code, databases, etc.) in

the VM image deployed in trusted execution environment 124 maps to the role that was

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

identified by the trusted execution environment 124. Therefore, this indicates that the
trusted execution environment 124 is appropriate, and that the code has not been changed
and maps to the identified role.

[0029] In that case, VTEE key service 166 requests that key wrapping cryptographic engine
obtain the role keys for the identified role from role key store/generator 176 and wrap those
keys, or encrypt them, with one or more key wrapper keys 178. The wrapped keys are then
provided back to VTEE key service 166, which returns them to the requesting trusted
execution environment 124. There, they can be decrypted by decryption system 141 and
used to execute the service (or role) in that environment.

[0030] FIG. 3 is a flow diagram illustrating one example of the operation of cloud cage
deployment service 128, in more detail. Deployment engine 156 first receives a role
identifier identifying a role that is to be deployed into a trusted execution environment 124.
This is indicated by block 190 in FIG. 3. The role illustratively corresponds to a secure
service, such as a payment service, a credit card service, etc., that is to be hosted by the
trusted execution environment 124. This is indicated by block 192. The role identifier may
be an arbitrary string 194, or other representation 196.

[0031] Deployment engine 156 then accesses the role-to-VM image mappings 160 to
identify a particular VM image that corresponds to the role. Accessing the role-to-VM
image mappings is indicated by block 198, and identifying a VM image that the role is
mapped to, based upon those mappings, is indicated by block 200. In one example, the
mappings are represented as set out in Equation 1 below where “image” is represented in a

virtual image format and “H” is a cryptographic hash function.

®: Role > H(IMAGE) Eq. 1

[0032] The role mapping ® may be signed with a role mapping signature key Ko, and
deployment engine 156 may validate the signature to a public key certificate authority
installed on the deployment machine in trusted execution environment 124 (e.g., installed
on VM 140). Validating the role mapping signature is indicated by block 202. Again, the
VM image may be the signed code combined with an image of an appropriate operating
system as indicated by block 204. The VM image can represent one or more services and
databases as indicated by block 206, and the VM image may be identified in other ways as
well, as indicated by block 208.

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[0033] Deployment engine 156 then obtains the identified VM image from VM image
repository 158. This is indicated by block 210. It then deploys the identified VM image to
the cloud-based trusted execution environment 124. This is indicated by block 212.

[0034] FIG. 4 is a flow diagram illustrating one example of the operation of trusted
execution environment 124 in requesting role keys from cloud cage key service 130, and
receiving those keys, and using them to perform its work. It is first assumed that a VM
image representing the service to be executed in environment 124 has been deployed by
deployment service 128 in trusted execution environment 124. This is indicated by block
218. Trusted execution environment 124 then determines that role keys, for the role which
represents the service it is to execute, are needed to perform operations. This is indicated
by block 220 in the flow diagram of FIG. 4.

[0035] Measurement system 142 then generates a VM image measurement for the deployed
VM image, deployed on virtual machine 140. This is indicated by block 222. Again, as
briefly described above, the VM image measurement may be obtained by applying a hash
function to the VM image. This is indicated by block 224. It can be obtained in other ways
as well, as indicated by block 226.

[0036] Trusted execution environment 124 then sends the VM image measurement and a
role identifier identifying the role, to cloud cage key service 130 to obtain the role keys for
the role, so that trusted execution environment 124 can execute its operations. This is
indicated by block 228.

[0037] Cloud cage key service 130 then operates to verify that the role is appropriate to the
requesting trusted execution environment and that the keys are appropriate to the role. If
so, service 130 returns wrapped (or encrypted) role keys to the requesting trusted execution
environment 124 in cloud cage 123. The operation of cloud cage key service 130 is
described in greater detail below with respect FIG. 5, and obtaining the wrapped or
encrypted role keys at trusted execution environment 124 is indicated by block 230 in the
flow diagram of FIG. 4.

[0038] Decryption system 141 in trusted execution environment 124 then unwraps (or
decrypts) the received role keys and uses them to perform work in the role (or the service)
that it is executing. This is indicated by blocks 232 and 234 in the flow diagram of FIG. 3.
The particular work to be performed in the trusted execution environment will vary widely,
depending on the particular service that it is hosting or executing. For instance, the role

keys may be used to decrypt credit card information as indicated by block 236. They may

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

be used to perform payment processing as indicated by block 238. They may of course be
used in a wide variety of other ways as well, and this is indicated by block 240.
[0039] FIG. 5 is a flow diagram illustrating one example of the operation of cloud cage key
service 130 in more detail. VTEE key service 166 first receives a quote from an execution
environment (such as trusted execution environment 124) requesting role keys. This is
indicated by block 250 in the flow diagram of FIG. 5. As briefly discussed above, the quote
may include role identifier 252 that identifies the particular role be executed by the
requesting execution environment. It also illustratively includes a VM measurement
generated by that environment. This is indicated by block 254. It can include a trusted
execution environment identifier 256 that identifies the particular trusted execution
environment that is making the request. The request can include other items 258 as well.
[0040] The request is then provided to policy engine 168, where it is evaluated to determine
whether the quote (or request) came from an appropriate trusted execution environment and
whether it has the correct operating system, code, etc., for the identified role. This is
indicated by block 260 in the flow diagram of FIG. 5. In one example, policy engine 168
accesses the VM image measurement store 172 to identify whether the requesting trusted
execution environment corresponds to the VM image measurement that was received in the
request. For instance, it can determine whether that VM image has properly been deployed
on an appropriate trusted execution environment. This is indicated by block 262.
[0041] Policy engine 168 can also access measurement-to-role mappings 174 to determine
whether the VM image deployed on the requesting trusted execution environment (and
represented by the VM image measurement) is mapped to the identified role. This is
indicated by block 264. Thus, given the VM image measurement, the policy engine 168
produces a set of roles by accessing mappings 174 which map a VM image to a set of roles
as follows:
0:h - Sy
Sz = {Role|®(Role) = h}
Where
h = H(IMAGE)

Eq.2
[0042] From Equation 2 above, it can be seen that the mapping ® maps an image h (which

equals H(Image) as set out in Equation 1 above) to a set of roles Sk . The set of roles Sr are

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

those roles that are mapped to the VM image measurement by the mapping ®. The set of
roles is made up of a role given its mapping to the image measurement h.
[0043] If policy engine 168 either determines that the requesting trusted execution
environment is not an appropriate environment to run the VM image identified by the VM
image measurement, or if it determines that the VM image measurement does not map to
the role of the requesting trusted execution environment, then VTEE key service 166
determines that policy engine 168 has not evaluated the quote positively. This is indicated
by block 270 in FIG. 5. Thus, VTEE key service 166 denies the request for role keys as
indicated by block 272. It can send a notification or alert or other message or perform other
operations in response to that negative evaluation. This is indicated by block 274.
[0044] However, assuming that policy engine 168 determines that the requesting trusted
execution environment 124 is an appropriate environment to execute the role, and assuming
that the VM image measurement provided by the requesting trusted execution environment
maps to the identified role, then VTEE key service 166 determines at block 270 that the
policy engine evaluation is positive, or favorable. In that case, VTEE key service 166
interacts with key wrapping cryptographic engine to obtain the role keys so that it can
provide them to the requesting trusted execution environment 124.
[0045] To do so, VTEE key service 166 provides the role identifier to key wrapping
cryptographic engine 170. Engine 170 accesses role key store/generator 176 to obtain or
generate the role keys for the identified role. This is indicated by block 276 in the flow
diagram of FIG. 5. Engine 170 then accesses key wrapper keys 178 and wraps (or encrypts)
the set of role keys with one or more key wrapper keys 178. This is indicated by block 278
in the flow diagram of FIG. 5. The role keys can be wrapped individually or as a set. The
key wrapper keys can be public keys as indicated by block 280, and wrapping the role keys
can be performed in other ways as well, and this is indicated by block 282.
[0046] The role keys can be arbitrary cryptographic key types, and the wrapping keys are
illustratively public keys for that particular role. In obtaining the wrapper keys, engine 170
can access a map ¥ that maps a given role to a wrapping public key Pur, as set out in
Equation 3 below:

WY:Role > Py, Eq.3
[0047] Skr is a set of wrapped role keys E Pug (Kr) encrypted with the role key wrapping

public key Pur as follows:

Skr={Epyg (KR)[W(Role) = Kpy, } Eq. 4

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[0048] Once key wrapping cryptographic engine 170 obtains the role keys and wraps them
with the appropriate key wrapper keys 178, it returns the wrapped role keys to VTEE key
service 166, which returns them to the requesting trusted execution environment 124. This
is indicated by block 284 in the flow diagram of FIG. 5.

[0049] It will thus be appreciated that the cloud cage treats multiple payment services as
roles, and maps those roles to VM images as defined above. Some examples of roles or
services running in the cloud cage trusted execution environment can be a virtual hardware
security module (or cryptography service), a money transfer agent service, a money transfer
agent database, among many others.

[0050] In the architectures described above, in one example, each piece of server hardware
illustratively has a high assurance cryptographic processor, a relatively small amount of key
storage, a key pair, and the ability to measure the binary image loaded by the trusted
hardware in cloud cage deployment service 128. The high assurance cryptographic
processor may have a public key with a verifiable certificate. It may also include attestation
capability in the hardware for keys generated by that hardware. This binds the key integrity
to the particular key certificate. In addition, as discussed above, the role-to-VM image
mapping can be signed. The signature key secrecy and its public key integrity can be
verified by a separate system, or those systems can be part of the cloud cage architecture.
The role keys and the wrapping keys rely on the mappings ® and ¥ discussed above. The
role definition code and data can be signed and verified up to a certificate authority, which
may be an external authority.

[0051] It can thus be seen that the present system ensures security, even without physical
cage security around the development and deployment resources. It ensures that the virtual
machine image deployed on a trusted execution environment has not been changed. It also
ensures that, prior to obtaining role keys, the virtual machine image is the appropriate virtual
machine image to obtain those keys, and that the trusted execution environment is the
appropriate environment to run that virtual machine image. The role keys are wrapped or
encrypted when they are returned to the trusted execution environment, so that it can execute
its operation.

[0052] It will be noted that the above discussion has described a variety of different systems,
components and/or logic. It will be appreciated that such systems, components and/or logic
can be comprised of hardware items (such as processors and associated memory, or other
processing components, some of which are described below) that perform the functions

associated with those systems, components and/or logic. In addition, the systems,

10

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

components and/or logic can be comprised of software that is loaded into a memory and is
subsequently executed by a processor or server, or other computing component, as described
below. The systems, components and/or logic can also be comprised of different
combinations of hardware, software, firmware, etc., some examples of which are described
below. These are only some examples of different structures that can be used to form the
systems, components and/or logic described above. Other structures can be used as well.
[0053] The present discussion has mentioned processors and servers. In one embodiment,
the processors and servers include computer processors with associated memory and timing
circuitry, not separately shown. They are functional parts of the systems or devices to which
they belong and are activated by, and facilitate the functionality of the other components or
items in those systems.

[0054] Also, anumber of user interface displays have been discussed. They can take a wide
variety of different forms and can have a wide variety of different user actuatable input
mechanisms disposed thereon. For instance, the user actuatable input mechanisms can be
text boxes, check boxes, icons, links, drop-down menus, search boxes, etc. They can also
be actuated in a wide variety of different ways. For instance, they can be actuated using a
point and click device (such as a track ball or mouse). They can be actuated using hardware
buttons, switches, a joystick or keyboard, thumb switches or thumb pads, etc. They can also
be actuated using a virtual keyboard or other virtual actuators. In addition, where the screen
on which they are displayed is a touch sensitive screen, they can be actuated using touch
gestures. Also, where the device that displays them has speech recognition components,
they can be actuated using speech commands.

[0055] A number of data stores have also been discussed. It will be noted they can each be
broken into multiple data stores. All can be local to the systems accessing them, all can be
remote, or some can be local while others are remote. All of these configurations are
contemplated herein.

[0056] Also, the figures show a number of blocks with functionality ascribed to each block.
It will be noted that fewer blocks can be used so the functionality is performed by fewer
components. Also, more blocks can be used with the functionality distributed among more
components.

[0057] Architecture 122 is described herein as a cloud computing architecture. Cloud
computing provides computation, software, data access, and storage services that do not
require end-user knowledge of the physical location or configuration of the system that

delivers the services. In various embodiments, cloud computing delivers the services over

11

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

a wide area network, such as the internet, using appropriate protocols. For instance, cloud
computing providers deliver applications over a wide area network and they can be accessed
through a web browser or any other computing component. Software or components of
architecture 122 as well as the corresponding data, can be stored on servers at a remote
location. The computing resources in a cloud computing environment can be consolidated
at a remote data center location or they can be dispersed. Cloud computing infrastructures
can deliver services through shared data centers, even though they appear as a single point
of access for the user. Thus, the components and functions described herein can be provided
from a service provider at a remote location using a cloud computing architecture.
Alternatively, they can be provided from a conventional server, or they can be installed on
client devices directly, or in other ways.

[0058] The description is intended to include both public cloud computing and
private cloud computing. Cloud computing (both public and private) provides substantially
seamless pooling of resources, as well as a reduced need to manage and configure
underlying hardware infrastructure.

[0059] A public cloud is managed by a vendor and typically supports multiple
consumers using the same infrastructure. Also, a public cloud, as opposed to a private cloud,
can free up the end users from managing the hardware. A private cloud may be managed
by the organization itself and the infrastructure is typically not shared with other
organizations. The organization still maintains the hardware to some extent, such as
installations and repairs, etc.

[0060] FIG. 6 is one example of a computing environment in which architecture
100, or parts of it, (for example) can be deployed. With reference to FIG. 6, an example
system for implementing some embodiments includes a general-purpose computing device
in the form of a computer 810. Components of computer 810 may include, but are not
limited to, a processing unit 820 (which can comprise processors or servers 136, 154 or
164), a system memory 830, and a system bus 821 that couples various system components
including the system memory to the processing unit 820. The system bus 821 may be any
of several types of bus structures including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also

12

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

known as Mezzanine bus. Memory and programs described with respect to FIG. 1 can be
deployed in corresponding portions of FIG. 6.

[0061] Computer 810 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 810
and includes both volatile and nonvolatile media, removable and non-removable media. By
way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media is different from, and
does not include, a modulated data signal or carrier wave. It includes hardware storage
media including both volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of information such as computer
readable instructions, data structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired information and which can be
accessed by computer 810. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a transport mechanism and
includes any information delivery media. The term “modulated data signal” means a signal
that has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared and other wireless media. Combinations of any of the
above should also be included within the scope of computer readable media.

[0062] The system memory 830 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 831 and random
access memory (RAM) 832. A basic input/output system 833 (BIOS), containing the basic
routines that help to transfer information between elements within computer 810, such as
during start-up, is typically stored in ROM 831. RAM 832 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 820. By way of example, and not limitation, FIG. 6 illustrates operating
system 834, application programs 835, other program modules 836, and program data 837.
[0063] The computer 810 may also include other removable/non-removable
volatile/nonvolatile computer storage media. By way of example only, FIG. 6 illustrates a

hard disk drive 841 that reads from or writes to non-removable, nonvolatile magnetic media,

13

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

and an optical disk drive 855 that reads from or writes to a removable, nonvolatile optical
disk 856 such as a CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like.
The hard disk drive 841 is typically connected to the system bus 821 through a non-
removable memory interface such as interface 840, and optical disk drive 855 are typically
connected to the system bus 821 by a removable memory interface, such as interface 850.
[0064] Alternatively, or in addition, the functionality described herein can be
performed, at least in part, by one or more hardware logic components. For example, and
without limitation, illustrative types of hardware logic components that can be used include
Field-programmable Gate Arrays (FPGAs), Program-specific Integrated Circuits (ASICs),
Program-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs), Complex
Programmable Logic Devices (CPLDs), etc.

[0065] The drives and their associated computer storage media discussed above and
illustrated in FIG. 6, provide storage of computer readable instructions, data structures,
program modules and other data for the computer 810. In FIG. 6, for example, hard disk
drive 841 is illustrated as storing operating system 844, application programs 845, other
program modules 846, and program data 847. Note that these components can either be the
same as or different from operating system 834, application programs 835, other program
modules 836, and program data 837. Operating system 844, application programs 845, other
program modules 846, and program data 847 are given different numbers here to illustrate
that, at a minimum, they are different copies.

[0066] A user may enter commands and information into the computer 810 through
input devices such as a keyboard 862, a microphone 863, and a pointing device 861, such
as a mouse, trackball or touch pad. Other input devices (not shown) may include a joystick,
game pad, satellite dish, scanner, or the like. These and other input devices are often
connected to the processing unit 820 through a user input interface 860 that is coupled to
the system bus, but may be connected by other interface and bus structures, such as a parallel
port, game port or a universal serial bus (USB). A visual display 891 or other type of display
device is also connected to the system bus 821 via an interface, such as a video interface
890. In addition to the monitor, computers may also include other peripheral output devices
such as speakers 897 and printer 896, which may be connected through an output peripheral

interface 895.

14

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[0067] The computer 810 is operated in a networked environment using logical
connections to one or more remote computers, such as a remote computer 880. The remote
computer 880 may be a personal computer, a hand-held device, a server, a router, a network
PC, a peer device or other common network node, and typically includes many or all of the
elements described above relative to the computer 810. The logical connections depicted in
FIG. 6 include a local area network (LAN) 871 and a wide area network (WAN) 873, but
may also include other networks. Such networking environments are commonplace in
offices, enterprise-wide computer networks, intranets and the Internet.

[0068] When used in a LAN networking environment, the computer 810 is
connected to the LAN 871 through a network interface or adapter 870. When used in a
WAN networking environment, the computer 810 typically includes a modem 872 or other
means for establishing communications over the WAN 873, such as the Internet. The
modem 872, which may be internal or external, may be connected to the system bus 821 via
the user input interface 860, or other appropriate mechanism. In a networked environment,
program modules depicted relative to the computer 810, or portions thereof, may be stored
in the remote memory storage device. By way of example, and not limitation, FIG. 6
illustrates remote application programs 885 as residing on remote computer 880. It will be
appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers may be used.

[0069] It should also be noted that the different embodiments described herein can
be combined in different ways. That is, parts of one or more embodiments can be combined
with parts of one or more other embodiments. All of this is contemplated herein.

[0070] Example 1 is a computing system, comprising:

[0071] a policy engine that receives a role, identifying a service, and a virtual machine (VM)
image measurement, indicative of a virtual machine image deployed in an execution
environment, and determines whether the VM image measurement is mapped to the role,
and generates an evaluation signal indicative of the determination;

[0072] a key wrapping cryptographic engine that, based on the evaluation signal indicating
that the VM image measurement is mapped to the role, obtains and wraps a set of role keys,
the role keys corresponding to the role and enabling the execution environment to execute
the service; and

[0073] a key service that provides the execution environment with the set of wrapped role

keys.

15

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[0074] Example 2 is the computing system of any or all previous examples wherein the
policy engine is configured to receive the role, the VM image measurement and an execution
environment identifier from a requesting execution environment, the execution environment
identifier identifying the requesting execution environment.

[0075] Example 3 is the computing system of any or all previous examples wherein the
policy engine is configured to determine whether the requesting execution environment is
mapped to the VM image measurement based on the execution environment identifier and
to generate the evaluation signal based on the determination.

[0076] Example 4 is the computing system of any or all previous examples and further
comprising:

[0077] a set of measurement-to-role mappings that map each of a plurality of different sets
of roles to a different VM image measurement, the policy engine determining whether the
VM image measurement is mapped to the role by accessing the measurement-to-role
mappings.

[0078] Example 5 is the computing system of any or all previous examples and further
comprising:

[0079] a role key store/generator configured to provide the set of role keys to the key
wrapping cryptographic engine; and a set of key wrapper keys, each key wrapper key being
mapped to a given role, the key wrapping cryptographic engine identifying one or more key
wrapper keys mapped to the role and encrypting the role keys with the identified one or
more key wrapper keys.

[0080] Example 6 is the computing system of any or all previous examples and further
comprising:

[0081] a deployment engine configured to receive the role and obtain the VM image, based
on the role, and deploy the VM image to the execution environment.

[0082] Example 7 is the computing system of any or all previous examples and further
comprising:

[0083] a set of role-to-image mappings that map the role to the VM image, the deployment
engine accessing the set of role-to-image mappings to identify the VM image.

[0084] Example 8 is the computing system of any or all previous examples and further
comprising:

[0085] a VM image repository that stores the VM image, the deployment engine obtaining
the VM image, for deployment, from the VM image repository.

16

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[0086] Example 9 is the computing system of any or all previous examples wherein the
execution environment comprises:

[0087] a measurement system configured to generate the VM image measurement and
provide the VM image measurement to the key service.

[0088] Example 10 is the computing system of any or all previous examples wherein the
measurement system executes a hash function over the VM image to obtain a hash value
which comprises the VM image measurement.

[0089] Example 11 is a computer-implemented method, comprising:

[0090] Identifying, at a key service, an execution environment service, and a virtual
machine (VM) image measurement, indicative of a virtual machine image deployed in an
execution environment;

[0091] determining whether the VM image measurement is mapped to the execution
environment service;

[0092] generating an evaluation signal indicative of the determination;

[0093] obtaining, in response to the evaluation signal indicating that the VM image
measurement is mapped to the execution environment service, a set of role keys, the role
keys corresponding to the execution environment service and enabling the execution
environment to execute the execution environment service;

[0094] encrypting the role keys in the set of role keys; and

[0095] providing the execution environment with the set of encrypted role keys.

[0096] Example 12 is the computer-implemented method of any or all previous examples
and further comprising:

[0097] receive a role that identifies the execution environment service;

[0098] receiving the VM image measurement; and

[0099] receiving an execution environment identifier from a requesting execution
environment, the execution environment identifier identifying the requesting execution
environment, and wherein determining whether the VM image measurement is mapped top
the execution environment service comprises determining whether the requesting execution
environment is mapped to the VM image measurement based on the execution environment
identifier and generating the evaluation signal comprises generating the evaluation signal
based on the determination.

[00100] Example 13 is the computer-implemented method of any or all previous
examples wherein determining whether the VM image measurement is mapped to the

execution environment service comprises:

17

10

15

20

25

30

WO 2018/080814 PCT/US2017/056703

[00101] determining whether the VM image measurement is mapped to the role by
accessing asset of measurement-to-role mappings that map each of a plurality of different
sets of roles to a different VM image measurement.

[00102] Example 14 is the computer-implemented method of any or all previous

examples wherein encrypting the role keys comprises:

[00103] identifying one or more key wrapper keys mapped to the role; and
[00104] encrypting the role keys with the identified one or more key wrapper keys.
[00105] Example 15 is the computer-implemented method of any or all previous

examples and further comprising:

[00106] receiving the role at a deployment system;

[00107] obtaining the VM image, based on the role, at the deployment system by
accessing a set of role-to-image mappings that map the role to the VM image; and

[00108] deploying the VM image to the execution environment.

[00109] Example 16 is the computer-implemented method of any or all previous

examples and further comprising:

[00110] generating the VM image measurement with a measurement system in the
execution environment; and

[00111] providing the VM image measurement to the key service.

[00112] Example 17 is the computer-implemented method of any or all previous
examples wherein generating the VM image measurement comprises:

[00113] executing, with the measurement system, a hash function over the VM image
to obtain a hash value which comprises the VM image measurement.

[00114] Example 18 is a computing system, comprising:

[00115] an execution environment that executes a service represented by a deployed
virtual machine (VM) image, and identified by a role;

[00116] a measurement system configured to apply a hash function to the VM image
to generate a VM image measurement and provide the VM image measurement to a key
service, the execution environment providing the role and the VM image measurement to a
key service to request a set of role keys; and

[00117] a decryption system that receives a set of wrapped role keys from the key
service and decrypts the set of wrapped role keys to obtain the requested set of role keys,
the execution environment executing the service using the requested role keys.

[00118] Example 19 is the computing system of any or all previous examples wherein

the key service comprises:

18

10

15

20

WO 2018/080814 PCT/US2017/056703

[00119] a policy engine that receives the role from the execution environment,
identifying the service, and the VM image measurement, indicative of the virtual machine
image deployed in the execution environment, and determines whether the VM image
measurement is mapped to the role, and generates an evaluation signal indicative of the
determination; and

[00120] a key wrapping cryptographic engine that, based on the evaluation signal
indicating that the VM image measurement is mapped to the role, obtains and wraps the set
of role keys, the key service providing the execution environment with the set of wrapped
role keys.

[00121] Example 20 is the computing system of any or all previous examples and
further comprising:

[00122] a deployment system that includes a set of role-to-image mappings that map
the role to the VM image, and a VM image repository that stores the VM image, and the
deployment engine configured to obtain the VM image, for deployment, from the VM image
repository, by accessing the role-to-image mappings based on the role, and configured to
deploy the VM image to the execution environment.

[00123] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

19

WO 2018/080814 PCT/US2017/056703

2.

CLAIMS

A computing system, comprising:

a policy engine that receives a role, identifying a service, and a virtual machine
(VM) image measurement, indicative of a virtual machine image deployed
in an execution environment, and determines whether the VM image
measurement is mapped to the role, and generates an evaluation signal
indicative of the determination;

a key wrapping cryptographic engine that, based on the evaluation signal
indicating that the VM image measurement is mapped to the role, obtains
and wraps a set of role keys, the role keys corresponding to the role and
enabling the execution environment to execute the service; and

a key service that provides the execution environment with the set of wrapped role
keys.

The computing system of claim 1 wherein the policy engine is configured to

receive the role, the VM image measurement and an execution environment identifier

from a requesting execution environment, the execution environment identifier identifying

the requesting execution environment.

3.

The computing system of claim 2 wherein the policy engine is configured to

determine whether the requesting execution environment is mapped to the VM image

measurement based on the execution environment identifier and to generate the evaluation

signal based on the determination.

4.

The computing system of claim 2 and further comprising:

a set of measurement-to-role mappings that map each of a plurality of different sets
of roles to a different VM image measurement, the policy engine
determining whether the VM image measurement is mapped to the role by
accessing the measurement-to-role mappings.

The computing system of claim 4 and further comprising:

a role key store/generator configured to provide the set of role keys to the key
wrapping cryptographic engine; and

a set of key wrapper keys, each key wrapper key being mapped to a given role, the
key wrapping cryptographic engine identifying one or more key wrapper
keys mapped to the role and encrypting the role keys with the identified one

or more key wrapper keys.

20

WO 2018/080814 PCT/US2017/056703

10.

The computing system of claim 1 and further comprising:

a deployment engine configured to receive the role and obtain the VM image,
based on the role, and deploy the VM image to the execution environment.

The computing system of claim 6 and further comprising:

a set of role-to-image mappings that map the role to the VM image, the
deployment engine accessing the set of role-to-image mappings to identify
the VM image.

The computing system of claim 7 and further comprising:

a VM image repository that stores the VM image, the deployment engine obtaining
the VM image, for deployment, from the VM image repository.

The computing system of claim 6 wherein the execution environment comprises:

a measurement system configured to generate the VM image measurement and
provide the VM image measurement to the key service.

The computing system of claim 9 wherein the measurement system executes a

hash function over the VM image to obtain a hash value which comprises the VM image

measurement.

11.

12.

A computer-implemented method, comprising:

identifying, at a key service, an execution environment service, and a virtual
machine (VM) image measurement, indicative of a virtual machine image
deployed in an execution environment;

determining whether the VM image measurement is mapped to the execution
environment service;

generating an evaluation signal indicative of the determination;

obtaining, in response to the evaluation signal indicating that the VM image
measurement is mapped to the execution environment service, a set of role
keys, the role keys corresponding to the execution environment service and
enabling the execution environment to execute the execution environment
service;

encrypting the role keys in the set of role keys; and

providing the execution environment with the set of encrypted role keys.

The computer-implemented method of claim 11 and further comprising:

receive a role that identifies the execution environment service;

receiving the VM image measurement; and

21

WO 2018/080814 PCT/US2017/056703

receiving an execution environment identifier from a requesting execution
environment, the execution environment identifier identifying the
requesting execution environment, and wherein determining whether the
VM image measurement is mapped to the execution environment service
comprises determining whether the requesting execution environment is
mapped to the VM image measurement based on the execution
environment identifier and generating the evaluation signal comprises
generating the evaluation signal based on the determination.

13. The computer-implemented method of claim 12 wherein determining whether the
VM image measurement is mapped to the execution environment service comprises:
determining whether the VM image measurement is mapped to the role by
accessing asset of measurement-to-role mappings that map each of a
plurality of different sets of roles to a different VM image measurement.
14. The computer-implemented method of claim 13 wherein encrypting the role keys
comprises:
identifying one or more key wrapper keys mapped to the role; and
encrypting the role keys with the identified one or more key wrapper keys.
15. A computing system, comprising:

an execution environment that executes a service represented by a deployed virtual
machine (VM) image, and identified by a role;

a measurement system configured to apply a hash function to the VM image to
generate a VM image measurement and provide the VM image
measurement to a key service, the execution environment providing the role
and the VM image measurement to the key service to request a set of role
keys; and

a decryption system that receives a set of wrapped role keys from the key service
and decrypts the set of wrapped role keys to obtain the requested set of role
keys, the execution environment executing the service using the requested

role keys.

22

PCT/US2017/056703

WO 2018/080814

1/6

001 \

[OId

671
INHLSAS
ALLO FASN ADIAYAS
HINDHS / €1
HOIAYEAS AdX INTNNOIIANT
. \ 9VI N0 NoLLnoaXa |\
AdISNYL N\
HOIAYHS LNANNOIIANAT 9¢l 43
\ INTWAOTdAA NOILNDAXE |k
gzr /| dOVO dNOIO AILSMIL - ozl
Q0D FOV) dNOTO /e d
(S)INANTINS VAN
el €zl 1zl IOVIAL INA
INILSAS SO AOLVIANAD 4a00
INTNTINS VAN A \bl IOVINT ANTHOVIN J19VLNDIXT
IOVINI TVNLEIA AANDIS

/o:

/w:

N 801

/0:

WHLSAS
ONINDIS

(SHIYIVNIA

AT19V.LNDAXHA)

WHLSAS
aund

wa

4d0O
d¥N0S

(S MAdOTAAAA

4d0D L'1N4d

/02

/vz

/i:

/N:

/NS

PCT/US2017/056703

WO 2018/080814

2/6

/

¢ DI

WAHLO \ PLIN
SATA 08l @ozﬂ%«z (S)LNTNTINSVAN
HAddVIM AT / 1040l ADVIAT INA
g/1 | -INaWmansvaw FOLISOd MEHIO [N oo
0 w1 AOVINL NA
ANIONA IOLVIANID gCT pd (S)DNIddVIN
JIHAVIDOLdAMD [/mi0Ls HOVINI NA-OL-T10d [N
DNIAAVIM AT AT 4109 / ANIONd ™ 091
AJI'T0d +
]/ OL1
OLT * N\ 397
rv HOIAYES | g ANIONE | o SUAAYES
AHNHALA ———— oc1 ~T|amrotaaa [(SNIOSSAIONd. [N\
991 (SMOSSEIOUd N pSl
/ \ HIOIAYAS INHNAOTdHd 4DVD dNOTD
HIOIAYAS A dOVD dNOT1D 124! 8¢l 0
gz1
_ YFHLO _ _ YHHLO _//
(21 INALSAS INALSAS ald!
01 drlinanwaansvan INTNENNSVAN[N
IES INALSAS vl
(SINALSAS ol 1T |NoLLdA¥MDad NOWLANEA [T~ {p1
UASN ADIAYAS % 4V | | WA WA N ot
JUNJHS o/ B | || ¥OSIA¥EAH dosIA¥AdAH [N
e/ cel ol T{ Fardnomo TAL ANO'DD 8l
[® ® T
S)MAANEAS/(SMOSSAI0Ud |\ oo N ¢
4DVD dNOT1D

WO 2018/080814

3/6

PCT/US2017/056703

/ 192

/ 194

/ 196

/ 202

/ 204

/ 206
/ 208

ROLE MAY
CORRESPOND TO
A PAYMENT
/ SERVICE OR
190 Y DEPLOYMENT ENGINE OTHER SECURE
RECEIVES A ROLE FOR SERVICE
DEPLOYMENT \ ARBITRARY
* \ STRING
OTHER
198 (| ACCESS ROLE-TO-vM
IMAGE MAPPINGS
VALIDATE ROLE
l MAPPING
_w»{ SIGNATURE TO
200 . IDENTIFY A VM IMAGE PUBLIC KEY
THAT THE ROLE IS AUTHORITY
MAPPED TO SIGNED CODE
COMBINED WITH
|__OSIMAGE _|
10 ONE OR MORE
AN OBTAIN THE SERVICES AND
IDENTIFIED VM IMAGE DATA BASES
l OTHER
212 . DEPLOY THE IDENTIFIED
VM IMAGE TO A CLOUD-
BASED TEE

FIG. 3

WO 2018/080814

4/6

START

VM IMAGE
DEPLOYMENT FOR THE
ROLE IS COMPLETE

v

DETERMINE THAT ROLE
KEYS FOR A ROLE ARE

NEEDED

v

GENERATE A VM IMAGE
MEASUREMENT FOR THE
DEPLOYED VM IMAGE

|_—P”
~—a

Y

SEND THE VM IMAGE

MEASUREMENT AND ROLE
IDENTIFIER TO THE KEY SERVICE
TO OBTAIN KEYS FOR THE ROLE

Y

230
AN

OBTAIN WRAPPED
(ENCRYPTED) ROLE
KEYS

!

232
N

UNWRAP (DECRYPT)
ROLE KEYS

'

234
AN

USE ROLE KEYS TO
PERFORM WORK IN THE
ROLE (E.G,, TO EXECUTE

THE SERVICE)

PCT/US2017/056703

HASH OF THE
VM IMAGE

/

OTHER

N

INFORMATION

DECRYPT
CREDIT CARD

PERFORM
PAYMENT
PROCESSING

FIG. 4

VRN

OTHER

224

226

/ 236

/ 238
/ 240

WO 2018/080814

5/6

PCT/US2017/056703

[\
Al
[\®)

[\
wn
I

[\
w
o0

o
3
(@)

START ROLE IDENTIFIER
VM IMAGE
550 | RECEIVE A QUOTE FROM / L MEASUREMENT |
\ AN EXECUTION | _»| TEE IDENTIFIER
ENVIRONMENT,
REQUESTING ROLE KEYS | ™ OTHER
¢ IDENTIFY
POLICY ENGINE WHETHER THE
260 DETERMINES WHETHER REQUESTING TEE
\| THE QUOTE CAME FROM > RSN
THE CORRECT TEE AND IMAGE
HAS THE CORRECT OS, MEASUREMENT
CODE FOR THE ROLE M acciss]
MEASUREMENT-
TO-ROLE

272 MAPPINGS TO
\ SEE WHETHER
DENY ROLE THIS VM IMAGE
KEYS IS MAPPED TO

* THIS ROLE
SEND
NOTIFICATION
276
OR ALERT OBTAIN/GENERATE ROLE |/
KEYS FOR THE ROLE

!

s78+| WRAP (ENCRYPT) ROLE WITH A
\ KEYS TO OBTAIN —» WRAPPING
WRAPPED (ENCRYPTED) \ PUBLIC KEY
ROLE KEYS OTHER
284 \| RETURN THE WRAPPED
ROLE KEYS TO THE
REQUESTING TEE

FIG. 5

/ 262

/ 264

268

/ 280

282

PCT/US2017/056703

WO 2018/080814

6/6

33 €98 .
SNVMDOUd | [INOHIO¥DIN 9 DIA
NOILVOI'lddV 198 ovS STTNAON [S7] —
HLONTY ADIAAA H\wﬂmmw%m NYED0Ud SINVIDO¥d wﬁﬁmmwww
o ONLINIO ¥IHIO NOLLVOI'TddV
YALNdNOD 98
ALOWNTY AAVOdATA
T £LY 75
WAQOW
SOM LAN @ ccg
vy aam 111D Ay
_
_ _”__ Ie8 VIvVA "
s | em— o) £ RN ANVEDOdd ||
Sl HOVAYHLNI AJONHIN 9¢8 SHTNdonN | |I!
HOV AYALNI LN AMOWAN R OANON _
MORIAN 17 SROMIAN S0 TOA-NON WVIDOAd 1
TTIVAONTA HTdVAONHYA MNAHLO |
VIV ﬁdoq_ qv “NON |
|aT™ w 7 w T 17 SE8 SINVUDOUd
| oAMw 098 0S8 %Nw || Norrvortdav "
L68 | [PESIWALSAS | I
SUIIVAS] | == Naw == == 0c8 | [_ONILV¥AdO | |!
963 AIVAIALNI] AOVANALNI mn 6| ___ 78 (ava) |
MALNRId :Hm%ﬁmwwmm 0638 OHAAIA DONISSHOO¥ =58 SOIE |
Tes 2 1€8 _(NOY) |1
s68 T | __ 1 UNOY)|
AVIdSIa 0£8 S 1 AMOWAN WALSAS]!
TVASIA f————————————— e — — — — —————— —————— — — —]

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/056703

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/53
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

13 June 2013 (2013-06-13)
abstract

paragraph [0104]
paragraph [0208]
paragraph [0246]

paragraph [0319]
claim 1

table 1

figures 1, 2

Y US 2013/152047 Al (MOORTHI JAY [US] ET AL)

paragraph [0042] - paragraph [0060]

paragraph [0261] - paragraph [0263]

1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 November 2017

Date of mailing of the international search report

08/12/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bae, Jun-Young

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/056703

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

AL) 26 March 2015 (2015-03-26)
the whole document

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2007/230706 Al (YOUN PAUL [US]) 1-15
4 October 2007 (2007-10-04)
abstract
paragraph [0050] - paragraph [0059]
claim 1
figures 4-6
A US 20137185812 Al (LIE DAVID [CA] ET AL) 1-15
18 July 2013 (2013-07-18)
the whole document
A US 2015/089497 Al (BORZYCKI ANDREW [AU] ET 1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/056703
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013152047 Al 13-06-2013 AU 2012340684 Al 17-07-2014
CA 2889387 Al 30-05-2013
EP 2783284 Al 01-10-2014
US 2013152047 Al 13-06-2013
WO 2013078269 Al 30-05-2013
US 2007230706 Al 04-10-2007 NONE
US 2013185812 Al 18-07-2013 CN 102947795 A 27-02-2013
EP 2550621 Al 30-01-2013
US 2013185812 Al 18-07-2013
US 2015271152 Al 24-09-2015
US 2017279781 Al 28-09-2017
WO 2011116459 Al 29-09-2011
US 2015089497 Al 26-03-2015 EP 3049985 Al 03-08-2016
US 2015089497 Al 26-03-2015
WO 2015047474 Al 02-04-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

