woO 20137108100 A1 I} 1] A0 0000 00O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

25 July 2013 (25.07.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/108100 A1

(51

eay)

(22)

(25)
(26)
(30)

1

1

(72

International Patent Classification:
GO6F 9/38 (2006.01) HO1L 21/82 (2006.01)
GO6F 17/50 (2006.01)

International Application Number:
PCT/IB2012/057453

International Filing Date:
19 December 2012 (19.12.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/352,907 18 January 2012 (18.01.2012) US
Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard

Road, Armonk, New York 10504 (US).

Applicants (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour, Ports-
mouth Hampshire PO6 3AU (GB). IBM JAPAN LIM-
ITED [JP/JP]; 19-21 Nihonbashi, Hakozaki-cho, Chuo-ku,
Tokyo 103-8510 (JP).

Inventors: MEJDRICH, Eric; IBM Corporation, ¢/o In-
tellectual Property Law, Dept 917, bldg 006-1, 3605 High-

(74

(8D

way 52 North, Rochester, Minnesota 55901-7829 (US).
SHEARER, Robert; IBM Corporation, c/o Intellectual
Property Law, Dept 917, bldg 006-1, 3605 Highway 52
North, Rochester, Minnesota 55901 (US). SCHARDT,
Paul; IBM Corporation, 3605 Highway 52 North,
Rochester, Minnesota 55901 (US). SWENSON, Corey,
Virgil; IBM Corporation, 3605 Highway 52 North,
Rochester, Minnesota 55901 (US).

Agent: WILLIAMS, Julian; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2JN (GB).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

[Continued on next page]

(54) Title: EXTERNAL AUXILIARY EXECUTION UNIT INTERFACE TO OFF-CHIP AUXILIARY EXECUTION UNIT

Processor 262 FPGA 282
Ext.
AXU AXU
I/F 284
Issue Unit 264 286
Fixed Point
Execution Unit ASIC 288
266 External Ext
AXU L N XL
Interface 280 AI;?:U g)é(L)J
278 ey
MMU 268 <fo 202
Cache(s) 270
Stacked Die 294
Network I/F 272 Ext.
AXU AXU
I/F 296
l 1 o
Memory 274 110 Devices 276 250 J \
FIG. 6

(57) Abstract: An external Auxiliary Execution Unit
(AXU) interface is provided between a processing core dis-
posed in a first programmable chip and an off-chip AXU
disposed in a second programmable chip to integrate the
AXU with an issue unit, a fixed point execution unit, and
optionally other functional units in the processing core.
The external AXU interface enables the issue unit to issue
instructions to the AXU in much the same manner as the
issue unit would be able to issue instructions to an AXU
that was disposed on the same chip. By doing so, the AXU
on the second programmable chip can be designed, tested
and verified independent of the processing core on the first
programmable chip, thereby enabling a common pro-
cessing core, which has been designed, tested, and verified,
to be used in connection with multiple different AXU
designs.

WO 2013/108100 A1 |IIWAIK 00TV AT 00 D0 AR

GW, ML, MR, NE, SN, TD, TG).

(84) Designated States (unless otherwise indicated, for every Published:
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2013/108100 PCT/IB2012/057453

EXTERNAL AUXILIARY EXECUTION UNIT INTERFACE TO OFF-CHIP
AUXILIARY EXECUTION UNIT

Field of the Invention

[0001] The invention is generally related to data processing, and in particular to

processor architectures and execution units incorporated therein.

Background of the Invention

[0002] Computers and other programmable electronic devices continue to be
integrated into every aspect of society. Whereas computers once occupied entire rooms,
computers and the integrated circuit devices, or chips, that power such computers have now
been miniaturized and commoditized to such an extent that they can be found in even the

most mundane of products and devices.

[0003] Programmable chips such as microprocessors, microcontrollers, Application
Specific Integrated Circuits (ASIC’s) and the like continue to increase in complexity and
power while costs, power consumption and feature sizes decrease. Whereas computers once
incorporate separate chips for processors, graphics controllers, coprocessors, memory
controllers, and other chipset logic, oftentimes all of these types of functional units are
integrated into a single programmable chip. Moreover, once a particular chip design has
been developed, tested and verified, manufacturing costs are often comparatively low on a

per unit basis.

[0004] A significant portion of the effort and expense associated with bringing a
programmable chip to market are therefore devoted to the initial design, testing and
verification of a programmable chip. For this reason, design reuse is employed whenever
possible so that portions of a programmable chip, such as particular processor core designs,
functional units, and other logic blocks, which have previously been designed, tested and

verified, do not need to be recreated from scratch.

WO 2013/108100 PCT/IB2012/057453

[0005] Even with design reuse, however, the integration of multiple design
components into a common design frequently requires some custom logic to be designed and
tested to ensure that the components will correctly operate with one another once integrated
onto the same programmable chip. For example, modern microprocessors typically include
functional units such as issue or instruction units, load/store units, execution units, memory
controllers, graphics controllers, cache and other on-board memories, etc., and development
of such microprocessors often requires substantial development, testing and verification

efforts to ensure that all of the functional units operate in an intended manner.

[0006] Furthermore, many microprocessor designs rely on a basic design that can be
extended through the use of different functional units to provide various designs that are
optimized for different applications. For example, it may be desirable to extend the
functionality of a microprocessor by integrating multiple processing cores together to
facilitate parallel processing, as well as integrating various execution units within a
processing core to optimize the core to handle certain types of workloads. For example,
while a basic microprocessor design often includes a processing core with an issue or
instruction unit that issues instructions to an execution unit referred to as a fixed point unit,
integer unit or arithmetic logic unit that handles integer operations, additional execution
units, ¢.g., floating point execution units, graphics engines, physics engines, encryption
engines, and the like may be incorporated into the basic design to provide an application

specific design that is optimized for certain applications.

[0007] With the ability to combine different types of execution units in various
processing cores and programmable chips, significant design flexibility is provided for
developing application-specific hardware. On the other hand, given the substantial up-front
efforts still required to design, test and verify multiple functional units integrated into
application-specific programmable chips, there are still substantial costs associated with

bringing application-specific programmable chips to market.

[0008] Another concern that has arisen with respect to the development of
programmable chips is the integration of functional units designed, developed or otherwise

the property of different entities. Customers often rely on other entities to design their

WO 2013/108100 PCT/IB2012/057453

programmable chips, and often designs that are proprictary to both the entities that design
the programmable chips and the customers are integrated together on the same
programmable chips, often leading to licensing issues as well as concerns about maintaining

the confidential nature of some designs.
[0009] Therefore, a significant need continues to exist in the art for a manner of
facilitating the development of application-specific programmable chips and electronic

devices incorporating the same.

Summary of the Invention

[0010] The invention addresses these and other problems associated with the prior art
by providing a method, apparatus, and program product that utilize an external Auxiliary
Execution Unit (AXU) interface between a processing core disposed in a first programmable
chip and an off-chip AXU disposed in a second programmable chip. The AXU interface
integrates an AXU with a processing core that includes at least an issue unit and a fixed
point execution unit, and enables the issue unit to issue instructions to the AXU in much the
same manner as the issue unit would be able to issue instructions to an AXU that was
disposed on the same chip. By doing so, the AXU on the second programmable chip can be
designed, tested and verified independent of the processing core on the first programmable
chip, thereby enabling a common processing core, which has been designed, tested, and

verified, to be used in connection with multiple different AXU designs.

[0011] Consistent with one aspect of the invention, an integrated circuit chip
includes a processing core with an issue unit and a fixed point execution unit, where the
issue unit is configured to issue instructions to the fixed point execution unit for execution
thereby. In addition, external auxiliary execution unit (AXU) interface logic, disposed on
the integrated circuit chip and coupled to the issue unit, is configured to receive instructions
issued by the issue unit and communicate the instructions over an external AXU interface to

an off-chip AXU for execution thereby.

[0012] Consistent with another aspect of the invention, an integrated circuit chip

includes an off-chip auxiliary execution unit (AXU) and external AXU interface logic

WO 2013/108100 PCT/IB2012/057453

configured to couple the off-chip AXU to a processing core disposed on a different chip and
including a fixed point execution unit and an issue unit configured to issue instructions to the
fixed point execution unit for execution thereby. The external AXU interface logic is
configured to receive instructions issued by the issue unit over an external AXU interface

and communicate the instructions to the off-chip AXU for execution thereby.

[0013] These and other advantages and features, which characterize the invention,
are set forth in the claims annexed hereto and forming a further part hereof. However, for a
better understanding of the invention, and of the advantages and objectives attained through
its use, reference should be made to the Drawings, and to the accompanying descriptive

matter, in which there is described exemplary embodiments of the invention.

Brief Description of the Drawings
[0014] FIG. 1 is a block diagram of exemplary automated computing machinery

including an exemplary computer useful in data processing consistent with embodiments of
the present invention.

[0015] FIG. 2 is a block diagram of an exemplary NOC implemented in the
computer of FIG. 1.

[0016] FIG. 3 is a block diagram illustrating in greater detail an exemplary
implementation of a node from the NOC of FIG. 2.

[0017] FIG. 4 is a block diagram illustrating an exemplary implementation of an IP
block from the NOC of FIG. 2.
[0018] FIG. 5 is a block diagram of an IP block from the NOC of Fig. 2, and

incorporating an external auxiliary execution unit (AXU) interface with an off-chip AXU
consistent with the invention.

[0019] FIG. 6 is a block diagram of another exemplary data processing system
incorporating an external AXU interface consistent with the invention.

[0020] FIG. 7 is a block diagram of an exemplary implementation of the external
AXU interface referenced in Fig. 6.

[0021] FIG. 8 is a flowchart illustrating an exemplary sequence of operations
performed by the external AXU interface of Fig. 6 when communicating an instruction to an

off-chip AXU.

WO 2013/108100 PCT/IB2012/057453

Detailed Description

[0022] Embodiments consistent with the invention utilize an external Auxiliary
Execution Unit (AXU) interface between a processing core disposed in a first programmable
chip and an off-chip AXU disposed in a second programmable chip to integrate the AXU
with an issue unit, a fixed point execution unit, and optionally other functional units in the
processing core. The external AXU interface enables the issue unit to issue instructions to
the AXU in much the same manner as the issue unit would be able to issue instructions to an
AXU that was disposed on the same chip. By doing so, the AXU on the second
programmable chip can be designed, tested and verified independent of the processing core
on the first programmable chip, thereby enabling a common processing core, which has been

designed, tested, and verified, to be used in connection with multiple different AXU designs.

[0023] An AXU consistent with the invention may incorporate various types of
functionality that extends, accelerates or otherwise improves the performance of the
processing core for a desired application. For example, an AXU may be implemented as a
floating point unit (FPU), a compression engine, a graphics engine, an encryption engine, a
physics engine, a regular expression engine, a digital signal processor (DSP), a packet
processor, proprietary designs and/or a combination of the same. The AXU is disposed in a
separate chip from the processing core, and may be implemented using any of a number of
different hardware designs, including, for example, an Application Specific Integrated
Circuit (ASIC), Field Programmable Gate Array (FPGA), a chip stack, custom logic,

discrete components, sensor, etc.

[0024] An external AXU interface interconnects the off-chip AXU with the
processing core, allowing communication between the issue unit in the processing core, and
optionally, additional functional units within the processing core, e.g., a fixed point
execution unit, a memory management unit, cache units, on-chip accelerators, floating point
units, external I/0O (e.g., PCle, USB, SATA), etc., thereby enabling the AXU to utilize the
functional units in the processing core and to be tightly integrated with the processing core.
The AXU interface is configured to stream instructions from the instruction unit to the off-
chip AXU, as well as to communicate architectural state information between the processing

core and the off-chip AXU, thereby maintaining a consistent overall architectural state.

WO 2013/108100 PCT/IB2012/057453

However, an external AXU interface consistent with the invention may communicate
additional information between a processing core and an external AXU, including, for

example, load and store data, reset/flush commands, response/completion messages, etc.

[0025] An external AXU interface consistent with the invention may also, in some
embodiments, incorporate translation logic configured to interface between a high speed
domain as is typical in a processing core and a lower speed communications link between
the processing core and the off-chip AXU. For example, an external AXU interface may
incorporate a protocol that supports an infinite or indeterminate latency. An external AXU
interface may also include step down/step up logic to interface between a high frequency
domain in the processing core and a lower frequency domain on the chip-to-chip interface,
and may include serializer and/or packetizer logic to convert to a serial-based and/or packet-
based format over the chip-to-chip interface, and an external AXU interface may support a

variable bus width such that different widths may be used in different applications.
[0026] Other variations and modifications will be apparent to one of ordinary skill in
the art. Therefore, the invention is not limited to the specific implementations discussed

herein.

Hardware and Software Environment

[0027] Now turning to the drawings, wherein like numbers denote like parts
throughout the several views, Fig. 1 illustrates exemplary automated computing machinery
including an exemplary computer 10 useful in data processing consistent with embodiments
of the present invention. Computer 10 of Fig. 1 includes at least one computer processor 12
or ‘CPU’ as well as random access memory 14 (‘RAM”), which is connected through a high
speed memory bus 16 and bus adapter 18 to processor 12 and to other components of the

computer 10.

[0028] Stored in RAM 14 is an application program 20, a module of user-level
computer program instructions for carrying out particular data processing tasks such as, for
example, word processing, spreadsheets, database operations, video gaming, stock market

simulations, atomic quantum process simulations, or other user-level applications. Also

WO 2013/108100 PCT/IB2012/057453

stored in RAM 14 is an operating system 22. Operating systems useful in connection with
embodiments of the invention include UNIX™, Linux™, Microsoft Windows XP™,
AIX™ IBM’s i5/0S™, and others as will occur to those of skill in the art. Operating
system 22 and application 20 in the example of Fig. 1 are shown in RAM 14, but many
components of such software typically are stored in non-volatile memory also, e.g., on a disk

drive 24.

[0029] As will become more apparent below, embodiments consistent with the
invention may be implemented within Network On Chip (NOC) integrated circuit devices, or
chips, and as such, computer 10 is illustrated including two exemplary NOCs: a video
adapter 26 and a coprocessor 28. NOC video adapter 26, which may alternatively be
referred to as a graphics adapter, is an example of an 1/0 adapter specially designed for
graphic output to a display device 30 such as a display screen or computer monitor. NOC
video adapter 26 is connected to processor 12 through a high speed video bus 32, bus adapter
18, and the front side bus 34, which is also a high speed bus. NOC Coprocessor 28 is
connected to processor 12 through bus adapter 18, and front side buses 34 and 36, which is
also a high speed bus. The NOC coprocessor of Fig. 1 may be optimized, for example, to

accelerate particular data processing tasks at the behest of the main processor 12.

[0030] The exemplary NOC video adapter 26 and NOC coprocessor 28 of Fig. 1
each include a NOC, including integrated processor (‘IP”) blocks, routers, memory
communications controllers, and network interface controllers, the details of which will be
discussed in greater detail below in connection with Figs. 2-3. The NOC video adapter and
NOC coprocessor are each optimized for programs that use parallel processing and also
require fast random access to shared memory. It will be appreciated by one of ordinary skill
in the art having the benefit of the instant disclosure, however, that the invention may be
implemented in devices and device architectures other than NOC devices and device
architectures. The invention is therefore not limited to implementation within an NOC

device.

[0031] Computer 10 of Fig. 1 includes disk drive adapter 38 coupled through an

expansion bus 40 and bus adapter 18 to processor 12 and other components of the computer

WO 2013/108100 PCT/IB2012/057453

10. Disk drive adapter 38 connects non-volatile data storage to the computer 10 in the form
of disk drive 24, and may be implemented, for example, using Integrated Drive Electronics
(‘IDE’) adapters, Small Computer System Interface (‘SCSI’) adapters, and others as will
occur to those of skill in the art. Non-volatile computer memory also may be implemented
for as an optical disk drive, electrically erasable programmable read-only memory (so-called
‘EEPROM’ or ‘Flash” memory), RAM drives, and so on, as will occur to those of skill in the
art.

[0032] Computer 10 also includes one or more input/output (‘I/O”) adapters 42,
which implement user-oriented input/output through, for example, software drivers and
computer hardware for controlling output to display devices such as computer display
screens, as well as user input from user input devices 44 such as keyboards and mice. In
addition, computer 10 includes a communications adapter 46 for data communications with
other computers 48 and for data communications with a data communications network 50.
Such data communications may be carried out serially through RS-232 connections, through
external buses such as a Universal Serial Bus (‘USB’), through data communications data
communications networks such as IP data communications networks, and in other ways as
will occur to those of skill in the art. Communications adapters implement the hardware
level of data communications through which one computer sends data communications to
another computer, directly or through a data communications network. Examples of
communications adapters suitable for use in computer 10 include modems for wired dial-up
communications, Ethernet (IEEE 802.3) adapters for wired data communications network
communications, and 802.11 adapters for wireless data communications network

communications.

[0033] For further explanation, Fig. 2 sets forth a functional block diagram of an
example NOC 102 according to embodiments of the present invention. The NOC in Fig. 2 is
implemented on a ‘chip’ 100, that is, on an integrated circuit. NOC 102 includes integrated
processor (‘IP”) blocks 104, routers 110, memory communications controllers 106, and
network interface controllers 108 grouped into interconnected nodes. Each IP block 104 is
adapted to a router 110 through a memory communications controller 106 and a network

interface controller 108. Each memory communications controller controls communications

WO 2013/108100 PCT/IB2012/057453

between an IP block and memory, and each network interface controller 108 controls inter-

IP block communications through routers 110.

[0034] In NOC 102, each IP block represents a reusable unit of synchronous or
asynchronous logic design used as a building block for data processing within the NOC.

The term ‘IP block’ is sometimes expanded as ‘intellectual property block,” effectively
designating an IP block as a design that is owned by a party, that is the intellectual property
of a party, to be licensed to other users or designers of semiconductor circuits. In the scope
of the present invention, however, there is no requirement that IP blocks be subject to any
particular ownership, so the term is always expanded in this specification as ‘integrated
processor block.” IP blocks, as specified here, are reusable units of logic, cell, or chip layout
design that may or may not be the subject of intellectual property. IP blocks are logic cores

that can be formed as ASIC chip designs or FPGA logic designs.

[0035] One way to describe IP blocks by analogy is that IP blocks are for NOC
design what a library is for computer programming or a discrete integrated circuit
component is for printed circuit board design. In NOCs consistent with embodiments of the
present invention, IP blocks may be implemented as generic gate netlists, as complete
special purpose or general purpose microprocessors, or in other ways as may occur to those
of skill in the art. A netlist is a Boolean-algebra representation (gates, standard cells) of an
IP block's logical-function, analogous to an assembly-code listing for a high-level program
application. NOCs also may be implemented, for example, in synthesizable form, described
in a hardware description language such as Verilog or VHDL. In addition to netlist and
synthesizable implementation, NOCs also may be delivered in lower-level, physical
descriptions. Analog IP block elements such as SERDES, PLL, DAC, ADC, and so on, may
be distributed in a transistor-layout format such as GDSII. Digital elements of IP blocks are
sometimes offered in layout format as well. It will also be appreciated that IP blocks, as well
as other logic circuitry implemented consistent with the invention may be distributed in the
form of computer data files, e.g., logic definition program code, that define at various levels
of detail the functionality and/or layout of the circuit arrangements implementing such logic.
Thus, while the invention has and hereinafter will be described in the context of circuit

arrangements implemented in fully functioning integrated circuit devices, data processing

WO 2013/108100 PCT/IB2012/057453
10

systems utilizing such devices, and other tangible, physical hardware circuits, those of
ordinary skill in the art having the benefit of the instant disclosure will appreciate that the
invention may also be implemented within a program product, and that the invention applies
equally regardless of the particular type of computer readable storage medium being used to
distribute the program product. Examples of computer readable storage media include, but
are not limited to, physical, recordable type media such as volatile and non-volatile memory

devices, floppy disks, hard disk drives, CD-ROMs, and DVDs (among others).

[0036] Each IP block 104 in the example of Fig. 2 is adapted to a router 110 through
a memory communications controller 106. Each memory communication controller is an
aggregation of synchronous and asynchronous logic circuitry adapted to provide data
communications between an IP block and memory. Examples of such communications
between IP blocks and memory include memory load instructions and memory store
instructions. The memory communications controllers 106 are described in more detail
below with reference to Fig. 3. Each IP block 104 is also adapted to a router 110 through a
network interface controller 108, which controls communications through routers 110
between IP blocks 104. Examples of communications between IP blocks include messages
carrying data and instructions for processing the data among IP blocks in parallel
applications and in pipelined applications. The network interface controllers 108 are also

described in more detail below with reference to Fig. 3.

[0037] Routers 110, and the corresponding links 118 therebetween, implement the
network operations of the NOC. The links 118 may be packet structures implemented on
physical, parallel wire buses connecting all the routers. That is, each link may be
implemented on a wire bus wide enough to accommodate simultaneously an entire data
switching packet, including all header information and payload data. If a packet structure
includes 64 bytes, for example, including an eight byte header and 56 bytes of payload data,
then the wire bus subtending each link is 64 bytes wide, 512 wires. In addition, each link
may be bi-directional, so that if the link packet structure includes 64 bytes, the wire bus
actually contains 1024 wires between each router and each of its neighbors in the network.
In such an implementation, a message could include more than one packet, but each packet

would fit precisely onto the width of the wire bus. In the alternative, a link may be

WO 2013/108100 PCT/IB2012/057453
11

implemented on a wire bus that is only wide enough to accommodate a portion of a packet,
such that a packet would be broken up into multiple beats, e.g., so that if a link is
implemented as 16 bytes in width, or 128 wires, a 64 byte packet could be broken into four
beats. It will be appreciated that different implementations may used different bus widths
based on practical physical limits as well as desired performance characteristics. If the
connection between the router and each section of wire bus is referred to as a port, then each
router includes five ports, one for each of four directions of data transmission on the network
and a fifth port for adapting the router to a particular IP block through a memory

communications controller and a network interface controller.

[0038] Each memory communications controller 106 controls communications
between an IP block and memory. Memory can include off-chip main RAM 112, memory
114 connected directly to an IP block through a memory communications controller 106, on-
chip memory enabled as an IP block 116, and on-chip caches. In NOC 102, either of the on-
chip memories 114, 116, for example, may be implemented as on-chip cache memory. All
these forms of memory can be disposed in the same address space, physical addresses or
virtual addresses, true even for the memory attached directly to an IP block. Memory
addressed messages therefore can be entirely bidirectional with respect to IP blocks, because
such memory can be addressed directly from any IP block anywhere on the network.
Memory 116 on an IP block can be addressed from that IP block or from any other IP block
in the NOC. Memory 114 attached directly to a memory communication controller can be
addressed by the IP block that is adapted to the network by that memory communication
controller — and can also be addressed from any other IP block anywhere in the NOC.

[0039] NOC 102 includes two memory management units (‘MMUSs’) 120, 122,
illustrating two alternative memory architectures for NOCs consistent with embodiments of
the present invention. MMU 120 is implemented within an IP block, allowing a processor
within the IP block to operate in virtual memory while allowing the entire remaining
architecture of the NOC to operate in a physical memory address space. MMU 122 is
implemented off-chip, connected to the NOC through a data communications port 124. The
port 124 includes the pins and other interconnections required to conduct signals between the

NOC and the MMU, as well as sufficient intelligence to convert message packets from the

WO 2013/108100 PCT/IB2012/057453
12

NOC packet format to the bus format required by the external MMU 122. The external
location of the MMU means that all processors in all IP blocks of the NOC can operate in
virtual memory address space, with all conversions to physical addresses of the off-chip

memory handled by the off-chip MMU 122.

[0040] In addition to the two memory architectures illustrated by use of the MMUs
120, 122, data communications port 126 illustrates a third memory architecture useful in
NOC:s capable of being utilized in embodiments of the present invention. Port 126 provides
a direct connection between an IP block 104 of the NOC 102 and off-chip memory 112.
With no MMU in the processing path, this architecture provides utilization of a physical
address space by all the IP blocks of the NOC. In sharing the address space bi-directionally,
all the IP blocks of the NOC can access memory in the address space by memory-addressed
messages, including loads and stores, directed through the IP block connected directly to the
port 126. The port 126 includes the pins and other interconnections required to conduct
signals between the NOC and the off-chip memory 112, as well as sufficient intelligence to
convert message packets from the NOC packet format to the bus format required by the off-
chip memory 112.

[0041] In the example of Fig. 2, one of the IP blocks is designated a host interface
processor 128. A host interface processor 128 provides an interface between the NOC and a
host computer 10 in which the NOC may be installed and also provides data processing
services to the other IP blocks on the NOC, including, for example, receiving and
dispatching among the IP blocks of the NOC data processing requests from the host
computer. A NOC may, for example, implement a video graphics adapter 26 or a
coprocessor 28 on a larger computer 10 as described above with reference to Figure 1. In
the example of Figure 2, the host interface processor 128 is connected to the larger host
computer through a data communications port 130. The port 130 includes the pins and other
interconnections required to conduct signals between the NOC and the host computer, as
well as sufficient intelligence to convert message packets from the NOC to the bus format
required by the host computer 10. In the example of the NOC coprocessor in the computer

of Fig. 1, such a port would provide data communications format translation between the

WO 2013/108100 PCT/IB2012/057453
13

link structure of the NOC coprocessor 28 and the protocol required for the front side bus 36
between the NOC coprocessor 28 and the bus adapter 18.

[0042] Fig. 3 next illustrates a functional block diagram illustrating in greater detail
the components implemented within an IP block 104, memory communications controller
106, network interface controller 108 and router 110 in NOC 102, collectively illustrated at
132. 1P block 104 includes a computer processor 134 and 1/O functionality 136. In this
example, computer memory is represented by a segment of random access memory (‘RAM’)
138 in IP block 104. The memory, as described above with reference to Fig. 2, can occupy
segments of a physical address space whose contents on each IP block are addressable and
accessible from any IP block in the NOC. The processors 134, I/O capabilities 136, and
memory 138 in each IP block effectively implement the IP blocks as generally
programmable microcomputers. As explained above, however, in the scope of the present
invention, IP blocks generally represent reusable units of synchronous or asynchronous logic
used as building blocks for data processing within a NOC. Implementing IP blocks as
generally programmable microcomputers, therefore, although a common embodiment useful

for purposes of explanation, is not a limitation of the present invention.

[0043] In NOC 102 of Fig. 3, each memory communications controller 106 includes
a plurality of memory communications execution engines 140. Each memory
communications execution engine 140 is enabled to execute memory communications
instructions from an IP block 104, including bidirectional memory communications
instruction flow 141, 142, 144 between the network and the IP block 104. The memory
communications instructions executed by the memory communications controller may
originate, not only from the IP block adapted to a router through a particular memory
communications controller, but also from any IP block 104 anywhere in NOC 102. That is,
any IP block in the NOC can generate a memory communications instruction and transmit
that memory communications instruction through the routers of the NOC to another memory
communications controller associated with another IP block for execution of that memory
communications instruction. Such memory communications instructions can include, for
example, translation lookaside buffer control instructions, cache control instructions, barrier

instructions, and memory load and store instructions.

WO 2013/108100 PCT/IB2012/057453
14

[0044] Each memory communications execution engine 140 is enabled to execute a
complete memory communications instruction separately and in parallel with other memory
communications execution engines. The memory communications execution engines
implement a scalable memory transaction processor optimized for concurrent throughput of
memory communications instructions. Memory communications controller 106 supports
multiple memory communications execution engines 140 all of which run concurrently for
simultaneous execution of multiple memory communications instructions. A new memory
communications instruction is allocated by the memory communications controller 106 to a
memory communications engine 140 and memory communications execution engines 140
can accept multiple response events simultancously. In this example, all of the memory
communications execution engines 140 are identical. Scaling the number of memory
communications instructions that can be handled simultaneously by a memory
communications controller 106, therefore, is implemented by scaling the number of memory

communications execution engines 140.

[0045] In NOC 102 of Fig. 3, each network interface controller 108 is enabled to
convert communications instructions from command format to network packet format for
transmission among the IP blocks 104 through routers 110. The communications
instructions may be formulated in command format by the IP block 104 or by memory
communications controller 106 and provided to the network interface controller 108 in
command format. The command format may be a native format that conforms to
architectural register files of IP block 104 and memory communications controller 106. The
network packet format is typically the format required for transmission through routers 110
of the network. Each such message is composed of one or more network packets. Examples
of such communications instructions that are converted from command format to packet
format in the network interface controller include memory load instructions and memory
store instructions between IP blocks and memory. Such communications instructions may
also include communications instructions that send messages among IP blocks carrying data
and instructions for processing the data among IP blocks in parallel applications and in

pipelined applications.

WO 2013/108100 PCT/IB2012/057453
15

[0046] In NOC 102 of Fig. 3, each IP block is enabled to send memory-address-
based communications to and from memory through the IP block’s memory communications
controller and then also through its network interface controller to the network. A memory-
address-based communications is a memory access instruction, such as a load instruction or
a store instruction, that is executed by a memory communication execution engine of a
memory communications controller of an IP block. Such memory-address-based
communications typically originate in an IP block, formulated in command format, and

handed off to a memory communications controller for execution.

[0047] Many memory-address-based communications are executed with message
traffic, because any memory to be accessed may be located anywhere in the physical
memory address space, on-chip or off-chip, directly attached to any memory
communications controller in the NOC, or ultimately accessed through any IP block of the
NOC — regardless of which IP block originated any particular memory-address-based
communication. Thus, in NOC 102, all memory-address-based communications that are
executed with message traffic are passed from the memory communications controller to an
associated network interface controller for conversion from command format to packet
format and transmission through the network in a message. In converting to packet format,
the network interface controller also identifies a network address for the packet in
dependence upon the memory address or addresses to be accessed by a memory-address-
based communication. Memory address based messages are addressed with memory
addresses. Each memory address is mapped by the network interface controllers to a
network address, typically the network location of a memory communications controller
responsible for some range of physical memory addresses. The network location of a
memory communication controller 106 is naturally also the network location of that memory
communication controller’s associated router 110, network interface controller 108, and IP
block 104. The instruction conversion logic 150 within each network interface controller is
capable of converting memory addresses to network addresses for purposes of transmitting

memory-address-based communications through routers of a NOC.

[0048] Upon receiving message traffic from routers 110 of the network, each

network interface controller 108 inspects each packet for memory instructions. Each packet

WO 2013/108100 PCT/IB2012/057453
16

containing a memory instruction is handed to the memory communications controller 106
associated with the receiving network interface controller, which executes the memory
instruction before sending the remaining payload of the packet to the IP block for further
processing. In this way, memory contents are always prepared to support data processing by
an IP block before the IP block begins execution of instructions from a message that depend

upon particular memory content.

[0049] In NOC 102 of Fig. 3, each IP block 104 is enabled to bypass its memory
communications controller 106 and send inter-IP block, network-addressed communications
146 directly to the network through the IP block’s network interface controller 108.
Network-addressed communications are messages directed by a network address to another
IP block. Such messages transmit working data in pipelined applications, multiple data for
single program processing among IP blocks in a SIMD application, and so on, as will occur
to those of skill in the art. Such messages are distinct from memory-address-based
communications in that they are network addressed from the start, by the originating IP
block which knows the network address to which the message is to be directed through
routers of the NOC. Such network-addressed communications are passed by the IP block
through I/0O functions 136 directly to the IP block’s network interface controller in command
format, then converted to packet format by the network interface controller and transmitted
through routers of the NOC to another IP block. Such network-addressed communications
146 are bi-directional, potentially proceeding to and from each IP block of the NOC,
depending on their use in any particular application. Each network interface controller,
however, is enabled to both send and receive such communications to and from an
associated router, and each network interface controller is enabled to both send and receive
such communications directly to and from an associated IP block, bypassing an associated

memory communications controller 106.

[0050] Each network interface controller 108 in the example of Fig. 3 is also enabled
to implement virtual channels on the network, characterizing network packets by type. Each
network interface controller 108 includes virtual channel implementation logic 148 that
classifies each communication instruction by type and records the type of instruction in a

field of the network packet format before handing off the instruction in packet form to a

WO 2013/108100 PCT/IB2012/057453
17

router 110 for transmission on the NOC. Examples of communication instruction types
include inter-IP block network-address-based messages, request messages, responses to
request messages, invalidate messages directed to caches; memory load and store messages;

and responses to memory load messages, etc.

[0051] Each router 110 in the example of Fig. 3 includes routing logic 152, virtual
channel control logic 154, and virtual channel buffers 156. The routing logic typically is
implemented as a network of synchronous and asynchronous logic that implements a data
communications protocol stack for data communication in the network formed by the routers
110, links 118, and bus wires among the routers. Routing logic 152 includes the
functionality that readers of skill in the art might associate in off-chip networks with routing
tables, routing tables in at least some embodiments being considered too slow and
cumbersome for use in a NOC. Routing logic implemented as a network of synchronous and
asynchronous logic can be configured to make routing decisions as fast as a single clock
cycle. The routing logic in this example routes packets by selecting a port for forwarding
cach packet received in a router. Each packet contains a network address to which the

packet is to be routed.

[0052] In describing memory-address-based communications above, each memory
address was described as mapped by network interface controllers to a network address, a
network location of a memory communications controller. The network location of a
memory communication controller 106 is naturally also the network location of that memory
communication controller’s associated router 110, network interface controller 108, and IP
block 104. In inter-IP block, or network-address-based communications, therefore, it is also
typical for application-level data processing to view network addresses as the location of an
IP block within the network formed by the routers, links, and bus wires of the NOC. Fig. 2
illustrates that one organization of such a network is a mesh of rows and columns in which
cach network address can be implemented, for example, as either a unique identifier for each
set of associated router, IP block, memory communications controller, and network interface

controller of the mesh or X, y coordinates of each such set in the mesh.

WO 2013/108100 PCT/IB2012/057453
18

[0053] In NOC 102 of Fig. 3, each router 110 implements two or more virtual
communications channels, where each virtual communications channel is characterized by a
communication type. Communication instruction types, and therefore virtual channel types,
include those mentioned above: inter-IP block network-address-based messages, request
messages, responses to request messages, invalidate messages directed to caches; memory
load and store messages; and responses to memory load messages, and so on. In support of
virtual channels, each router 110 in the example of Fig. 3 also includes virtual channel
control logic 154 and virtual channel buffers 156. The virtual channel control logic 154
examines each received packet for its assigned communications type and places each packet
in an outgoing virtual channel buffer for that communications type for transmission through

a port to a neighboring router on the NOC.

[0054] Each virtual channel buffer 156 has finite storage space. When many packets
are received in a short period of time, a virtual channel buffer can fill up — so that no more
packets can be put in the buffer. In other protocols, packets arriving on a virtual channel
whose buffer is full would be dropped. Each virtual channel buffer 156 in this example,
however, is enabled with control signals of the bus wires to advise surrounding routers
through the virtual channel control logic to suspend transmission in a virtual channel, that is,
suspend transmission of packets of a particular communications type. When one virtual
channel is so suspended, all other virtual channels are unaffected — and can continue to
operate at full capacity. The control signals are wired all the way back through each router
to each router’s associated network interface controller 108. Each network interface
controller is configured to, upon receipt of such a signal, refuse to accept, from its associated
memory communications controller 106 or from its associated IP block 104,
communications instructions for the suspended virtual channel. In this way, suspension of a
virtual channel affects all the hardware that implements the virtual channel, all the way back

up to the originating IP blocks.

[0055] One effect of suspending packet transmissions in a virtual channel is that no
packets are ever dropped. When a router encounters a situation in which a packet might be
dropped in some unreliable protocol such as, for example, the Internet Protocol, the routers

in the example of Fig. 3 may suspend by their virtual channel buffers 156 and their virtual

WO 2013/108100 PCT/IB2012/057453
19

channel control logic 154 all transmissions of packets in a virtual channel until buffer space
is again available, eliminating any need to drop packets. The NOC of Fig. 3, therefore, may
implement highly reliable network communications protocols with an extremely thin layer of

hardware.

[0056] The example NOC of Fig. 3 may also be configured to maintain cache
coherency between both on-chip and off-chip memory caches. Each NOC can support
multiple caches each of which operates against the same underlying memory address space.
For example, caches may be controlled by IP blocks, by memory communications
controllers, or by cache controllers external to the NOC. Either of the on-chip memories 114,
116 in the example of Fig. 2 may also be implemented as an on-chip cache, and, within the

scope of the present invention, cache memory can be implemented off-chip also.

[0057] Each router 110 illustrated in Fig. 3 includes five ports, four ports 158 A-D
connected through bus wires 118 to other routers and a fifth port 160 connecting each router
to its associated IP block 104 through a network interface controller 108 and a memory
communications controller 106. As can be seen from the illustrations in Figs. 2 and 3, the
routers 110 and the links 118 of the NOC 102 form a mesh network with vertical and
horizontal links connecting vertical and horizontal ports in each router. In the illustration of
Figure 3, for example, ports 158A, 158C and 160 are termed vertical ports, and ports 158B

and 158D are termed horizontal ports.

[0058] Fig. 4 next illustrates in another manner one exemplary implementation of an
IP block 104 consistent with the invention, implemented as a processing element partitioned
into an instruction unit (IU) 162, execution unit (XU) 164 and auxiliary execution unit
(AXU) 166. In the illustrated implementation, IU 162 includes a plurality of instruction
buffers 168 that receive instructions from an L1 instruction cache (iCACHE) 170. Each
instruction buffer 168 is dedicated to one of a plurality, e.g., four, symmetric multithreaded
(SMT) hardware threads. An effective-to-real translation unit (iIERAT) 172 is coupled to
1ICACHE 170, and is used to translate instruction fetch requests from a plurality of thread
fetch sequencers 174 into real addresses for retrieval of instructions from lower order

memory. Each thread fetch sequencer 174 is dedicated to a particular hardware thread, and

WO 2013/108100 PCT/IB2012/057453
20

is used to ensure that instructions to be executed by the associated thread is fetched into the
1CACHE for dispatch to the appropriate execution unit. As also shown in Fig. 4, instructions
fetched into instruction buffer 168 may also be monitored by branch prediction logic 176,
which provides hints to each thread fetch sequencer 174 to minimize instruction cache

misses resulting from branches in executing threads.

[0059] IU 162 also includes a dependency/issue logic block 178 dedicated to each
hardware thread, and configured to resolve dependencies and control the issue of instructions
from instruction buffer 168 to XU 164. In addition, in the illustrated embodiment, separate
dependency/issue logic 180 is provided in AXU 166, thus enabling separate instructions to
be concurrently issued by different threads to XU 164 and AXU 166. In an alternative
embodiment, logic 180 may be disposed in IU 162, or may be omitted in its entirety, such

that logic 178 issues instructions to AXU 166.

[0060] XU 164 is implemented as a fixed point execution unit, including a set of
general purpose registers (GPR’s) 182 coupled to fixed point logic 184, branch logic 186 and
load/store logic 188. Load/store logic 188 is coupled to an L1 data cache (dCACHE) 190,
with effective to real translation provided by dERAT logic 192. XU 164 may be configured
to implement practically any instruction set, ¢.g., all or a portion of a 32b or 64b PowerPC

instruction set.

[0061] AXU 166 operates as an auxiliary execution unit including dedicated
dependency/issue logic 180 along with one or more execution blocks 194. AXU 166 may
include any number of execution blocks, and may implement practically any type of
execution unit, e.g., a floating point unit, or one or more specialized execution units such as
encryption/decryption units, coprocessors, vector processing units, graphics processing units,
XML processing units, etc. In the illustrated embodiment, AXU 166 includes a high speed
auxiliary interface to XU 164, e.g., to support direct moves between AXU architected state

and XU architected state.

[0062] Communication with IP block 104 may be managed in the manner discussed

above in connection with Fig. 2, via network interface controller 108 coupled to NOC 102.

WO 2013/108100 PCT/IB2012/057453
21

Address-based communication, e.g., to access L2 cache memory, may be provided, along
with message-based communication. For example, each IP block 104 may include a
dedicated in box and/or out box in order to handle inter-node communications between IP

blocks.

[0063] Embodiments of the present invention may be implemented within the
hardware and software environment described above in connection with Figs. 1-4. However,
it will be appreciated by one of ordinary skill in the art having the benefit of the instant
disclosure that the invention may be implemented in a multitude of different environments,
and that other modifications may be made to the aforementioned hardware and software
embodiment without departing from the spirit and scope of the invention. As such, the
invention is not limited to the particular hardware and software environment disclosed

herein.

External AXU Interface for Off-Chip AXU

[0064] Turning now to Fig. 5, this figure illustrates an exemplary data processing
system that implements an external auxiliary execution unit (AXU) interface consistent with
the invention. In particular, another exemplary implementation of an IP block 200
incorporates an on-chip processing element 202 coupled to an off-chip AXU 204 over an

external AXU interface 206.

[0065] Processing element 202, which is similar to the processing element in IP
block 104 of Fig. 4, includes an instruction unit (IU) 208, execution unit (XU) 210, and
Network Interface Controller (NIC) 212, and is coupled to a NOC 214.

[0066] In the illustrated implementation, IU 208 includes a plurality of instruction
buffers 216 that receive instructions from an L1 instruction cache (iCACHE) 218. Each
instruction buffer 216 is dedicated to one of a plurality, e.g., four, symmetric multithreaded
(SMT) hardware threads. An effective-to-real translation unit (iIERAT) 220 is coupled to
1ICACHE 218, and is used to translate instruction fetch requests from a plurality of thread
fetch sequencers 222 into real addresses for retrieval of instructions from lower order

memory. Each thread fetch sequencer 222 is dedicated to a particular hardware thread, and

WO 2013/108100 PCT/IB2012/057453
22

is used to ensure that instructions to be executed by the associated thread is fetched into the
1CACHE for dispatch to the appropriate execution unit. As also shown in Fig. 5, instructions
fetched into instruction buffer 216 may also be monitored by branch prediction logic 224,
which provides hints to each thread fetch sequencer 222 to minimize instruction cache
misses resulting from branches in executing threads. U 208 also includes a
dependency/issue logic block 228 dedicated to each hardware thread, and configured to
resolve dependencies and control the issue of instructions from instruction buffer 216 to XU

210.

[0067] XU 210 is implemented as a fixed point execution unit, including a set of
general purpose registers (GPR’s) 230 coupled to fixed point logic 232, branch logic 234 and
load/store logic 236. Load/store logic 236 is coupled to an L1 data cache (dCACHE) 238,
with effective to real translation provided by dERAT logic 240. XU 164 may be configured
to implement practically any instruction set, ¢.g., all or a portion of a 32b or 64b PowerPC

instruction set.

[0068] To provide access to an AXU over external AXU interface 206, an external
AXU interface controller 242 is disposed in IP block 200, and a complementary external
AXU interface controller 244 is disposed in external chip 204, and interfaced with an
external AXU 246. External AXU 246 operates as an auxiliary execution unit including one
or more execution blocks 248. AXU 246 may include any number of execution blocks, and
may implement practically any type of execution unit, ¢.g., a floating point unit, or one or
more specialized execution units such as encryption/decryption units, coprocessors, vector

processing units, graphics processing units, XML processing units, etc.

[0069] As with IP block 104 of Fig. 4, separate dependency/issue logic 250 may
optionally be provided for external AXU 246, whether within external AXU 246 (as shown)
or within issue unit 208. Alternatively, as illustrated in Fig. 5, dependency/issue logic 228
may handle the issuance of instructions to external AXU 246. An AXU-specific
dependency/issue logic 250 may be used, for example, to support dedicated microcode or

sequencer logic in an AXU.

WO 2013/108100 PCT/IB2012/057453
23

[0070] In the illustrated embodiment, external AXU interface 206 is implemented as
a high speed auxiliary interface to IU 208 and XU 210, e.g., to support both the issuance of
instructions to external AXU 246 by IU 208 and direct moves between AXU architected
state and XU architected state. In addition, as will become more apparent below, external
AXU 246 may leverage much of the functionality disposed in IP block 200 despite being

disposed on a separate integrated circuit device, or chip.

[0071] Fig. 6 illustrates another data processing system 260 incorporating a
processor chip 262 with an issue unit 264, fixed point execution unit 266, memory
management unit 268, one or more levels of cache 270, a network interface 272, and coupled
to an external memory 274 and one or more I/O devices 276, e.g., as connected over a
peripheral bus. Processor chip 262 also includes an external AXU interface controller 278
coupled to an external AXU interface 280 consistent with the invention, permitting the
processor chip to be interfaced with AXU implemented using a number of different
technologies, e.g., an FPGA 282 (with AXU 284 and external AXU interface 286), ASIC
288 (with AXU 290 and external AXU interface 292), or stacked die 294 (with AXU 296
and external AXU interface 298). It will be appreciated that an external AXU interface
consistent with the invention may be used to interface with AXU’s implemented in other
hardware technologies, and thus the invention is not limited to the particular hardware

technologies disclosed herein.

[0072] An external AXU interface may be implemented in a number of different
manners consistent with the invention. For example, as illustrated in Fig. 7, an external
AXU interface may include core external AXU interface logic 300 and AXU external AXU
interface logic 302 coupled to one another via a physical interface 304. Core logic 300
includes control logic, ¢.g., a controller 306, which coordinates the communication over the
interface from the perspective of the core. As noted above, an external AXU interface
consistent with the invention desirably supports infinite or indeterminate latency, and as
such, may require the use of a watchdog timer 308 or like logic to prevent the core from
hanging while waiting for a response from an off-chip AXU. In addition, the core logic
typically includes transmission/reception logic 310 to handle the physical layer

communication over the interface.

WO 2013/108100 PCT/IB2012/057453
24

[0073] As also noted above, an external AXU interface may be required to translate
communications to and from the processing core, and as such, may include logic that
facilitates such translation. For example, in embodiments where the external AXU interface
communicates at a lower frequency than the operating frequency of the core, step up/step
down logic 312 may be provided. Step down logic, for example, may be used to reduce a
communication frequency of the external AXU interface relative to that of the processing

core.

[0074] To support packetized interfaces, packetizer/depacketizer logic 314 may be
provided. Additional logic, each serializer/deserializer logic may be used to translate
between serial and parallel protocols. Furthermore, in some embodiments the interface may
support a variable width, and be configurable to utilize only a portion of the architected
communication links for an interface. For example, in one exemplary embodiment, an
external AXU interface may support up to 32 byte wide data path, with selected
implementations being programmable or configurable to use only a portion of the available

data path.

[0075] Likewise, the AXU external AXU interface logic 304 may include a
controller 316 with watchdog timer 318, transmission/reception logic 320, step up/step down
logic 322 and packetizer/depacketizer logic 324 complementary to the logic in core logic
302. In some embodiments, controller 316 may be a slave to a master controller 306, while
in other embodiments, controller 316 may be omitted. In addition, no watchdog timer 318

may be required in some embodiments.

[0076] As noted above, a primarily classification of data that is communicated over
an external AXU interface is an instruction stream including instructions for execution by an
off-chip AXU. Instruction blocking and dependencies are typically managed by
dependency/issue logic 228 (Fig. 5), and upon the issuance of an instruction to an off-chip
AXU by logic 228, a sequence of operations, ¢.g., as illustrated at 330 in Fig. 8, may be
used. In particular, in response to receiving an instruction, the core logic for the interface
may convert the instruction to an appropriate format for the interface (block 332), e.g., by

converting to a packet, serializing, stepping down to a lower clock frequency, etc. Next, the

WO 2013/108100 PCT/IB2012/057453
25

instruction is transmitted over the interface (block 334), and a watchdog timer is started
(block 336). The core logic then enters a loop to wait for a response, checking periodically
whether a response has been received (block 338) and whether the watchdog timer has
expired (block 340). If an appropriate response is received, block 338 passes control to
block 356 to update the architected state for the processing core. On the other hand, if the
watchdog timer expires prior to receiving a response, block 340 passes control to block 358

to perform any requisite error handling, e.g., by resetting the off-chip AXU.

[0077] Turning to the AXU side of the interface, the instruction transmitted by the
core logic in block 334 is received by the AXU logic (block 342), and is converted to an
appropriate format for the AXU (block 344). The instruction is then forwarded to the AXU
for processing (block 346). Thereafter, completion data from the AXU, e.g., changes to the
architected state, e.g., updates to one or more registers, is received by the AXU interface
logic (block 348), as well as an appropriate response to be returned to the core (block 350),
e.g., success, failure, an error condition, debug or status data, etc. The response is then
converted to an appropriate format for the interface (block 352), and transmitted back to the

core logic (block 354).

[0078] It will be appreciated that other data may be communicated over an external
AXU interface. For example, register updates, register/memory transfers (loads/stores), state
updates, debug data, performance statistics, instructions, branch redirections, memory
management information, etc. may also be communicated over an external AXU interface
consistent with the invention. It will also be appreciated that implementation of such an
interface would be well within the abilities of one of ordinary skill in the art having the
benefit of the instant disclosure. For example, an external AXU interface consistent with the
invention may be implemented utilizing a similar protocol to that supported by the on-chip
AXU interfaces supported in the PowerPC A2 processors available from International

Business Machines.

[0079] An external AXU interface consistent with the invention provides a number
of benefits, particularly in the development of application specific hardware designs. By

providing an external AXU interface on a programmable chip incorporating a processing

WO 2013/108100 PCT/IB2012/057453
26

core, the processing core may be designed, verified and tested, and may operate at a typical
microprocessor clock frequency. The processing core may be configured for general
purpose computing, and provide standard functional units suitable for a wide variety of
applications. An off-chip AXU, providing specialized functionality, may be integrated with
the processing core over the external AXU interface, and thereby customize the processing

core for a particular application.

[0080] One benefit of such a configuration is that different parties can combine their
respective intellectual property without the need to disclose such intellectual property to one
another. A party wishing to incorporate their own proprictary accelerator functionality, for
example, could rely on another party’s processing core for the remainder of the required
functionality, and thereby limit their custom design, testing and verification to the AXU,
often saving considerable cost and effort associated with development of an application
specific hardware design. In addition, if one party needs to limit access to their confidential
intellectual property, e.g., due to its proprietary nature, or due to government confidential or
classified designs, that party may do so without having to disclose such confidential

information to the other party.

[0081] Furthermore, by providing an external AXU interface with an infinite latency
and/or step down logic, an off-chip AXU need not run at the same speed as the processing
core, and may be implemented, for example, using a slower technology such as with an
FPGA, thereby enabling, for example, an AXU to be developed and tested with a less
expensive technology, and then implemented in a high speed technology such as an ASIC
once the design has been verified with the FPGA. In addition, the design of an off-chip
AXU may be an intermediate step in the design of an application-specific processing core,
enabling the AXU design to be verified and refined prior to final integration into an

application-specific processing core design.

[0082] In addition, an external AXU interface as implemented herein avoids the need
to interface the AXU with the processing core through a memory or shared bus, where bus
and resource contention might otherwise result. Furthermore, in chip stack implementations,

an external AXU interface consistent with the invention may be used to interface an AXU

WO 2013/108100 PCT/IB2012/057453
27

disposed on one stacked die with a processor core disposed on another stacked die. By

doing so, one stacked die may be devoted to multiple processor cores, while another stacked
die may be devoted to multiple AXU’s, eliminating the need for the AXU’s to be fabricated
using the same design rules or technology, and enabling the same processor core layer to be

used with different AXU layers for different applications.

[0083] Various modifications may be made to the disclosed embodiments without
departing from the scope of the invention. Therefore, the invention lies in the claims

hereinafter appended.

WO 2013/108100 PCT/IB2012/057453
28

CLAIMS

1. A circuit arrangement, comprising;:

an integrated circuit chip;

a processing core disposed on the chip and including an issue unit and a fixed
point execution unit, wherein the issue unit is configured to issue instructions to the
fixed point execution unit for execution thereby; and

external auxiliary execution unit (AXU) interface logic disposed on the
integrated circuit chip and coupled to the issue unit, wherein the external AXU
interface logic is configured to receive instructions issued by the issue unit and
communicate the instructions over an external AXU interface to an off-chip AXU for

execution thereby.

2. The circuit arrangement of claim 1, wherein the integrated circuit chip is a first
chip, the circuit arrangement further comprising a second chip upon which is disposed the

off-chip AXU.

3. The circuit arrangement of claim 2, wherein the second chip is selected from the
group consisting of a Field Programmable Gate Array (FPGA), an Application Specific
Integrated Circuit (ASIC) and a stacked die.

4. The circuit arrangement of claim 1, wherein the external AXU interface logic
includes step down logic configured to reduce a communication frequency of an external

AXU interface relative to that of the processing core.

5. The circuit arrangement of claim 1, wherein the external AXU interface logic
includes packetizer logic configured to communicate instructions received from the issue

unit via packets.

6. The circuit arrangement of claim 1, wherein the external AXU interface has an

indeterminate latency, and wherein the external AXU interface logic is configured to wait

WO 2013/108100 PCT/IB2012/057453
29

for a response from the off-chip AXU in response to communicating an instruction to the

off-chip AXU, and to signal an error in response to not receiving the response.

7. A circuit arrangement, comprising:

an integrated circuit chip;

an auxiliary execution unit (AXU) disposed on the integrated circuit chip; and

external AXU interface logic disposed on the integrated circuit chip and
configured to couple the AXU to a circuit arrangement as claimed in claim 1,
wherein the external AXU interface logic is configured to receive instructions issued
by the issue unit over an external AXU interface and communicate the instructions to

the AXU for execution thereby.

8. The circuit arrangement of claim 8, wherein the integrated circuit is selected from
the group consisting of: a Field Programmable Gate Array (FPGA); an Application Specific
Integrated Circuit (ASIC); and, a stacked die.

9. The circuit arrangement of claim 1 or claim 8, wherein the external AXU interface
logic is configured to update an architected state of the processing core in response to

execution of an instruction by the off-chip AXU.

10. A method of executing instructions in a data processing system, the method
comprising:

in a processing core disposed on an integrated circuit chip, issuing first
instructions to a fixed point execution unit disposed in the processing core using an
issue unit disposed in the processing core and executing the first instructions with the
fixed point execution unit; and

issuing second instructions to an off-chip auxiliary execution unit (AXU)
with the issue unit, including communicating the second instructions to the off-chip
AXU over an external AXU interface using external AXU interface logic disposed

on the integrated circuit chip.

WO 2013/108100 PCT/IB2012/057453
30

11. The method of claim 10, wherein the integrated circuit chip is a first chip, and

wherein the off-chip AXU is disposed on a second chip.

12. The method of claim 11, wherein the second chip is selected from the group
consisting of a Field Programmable Gate Array (FPGA), an Application Specific Integrated
Circuit (ASIC) and a stacked die.

13. The method of claim 10, further comprising, with step down logic disposed in
the external AXU interface logic, reducing a communication frequency of the external AXU

interface relative to that of the processing core.

14. The method of claim 10, further comprising, with packetizer logic disposed in
the external AXU interface logic, communicating second instructions received from the

issue unit via packets.

15. The method of claim 10, wherein the external AXU interface has an
indeterminate latency, and wherein the method further comprises waiting for a response
from the off-chip AXU in response to communicating an instruction to the off-chip AXU,

and to signaling an error in response to not receiving the response.

16. The method of claim 10, further comprising updating an architected state of the
processing core in response to data received from the off-chip AXU over the external AXU

interface.

WO 2013/108100

1/8

PCT/IB2012/057453

.-‘;‘

\

Dispday
Device

.
2 ::;

3
Yo

—

R B

Bus Adapler

o ‘z £ N i, Py L3
NOU Vidso { 28 R
< ﬁ‘]
Adapter | 28
Proceggor R
- Application
P :
....... -9 Operating
X4
L Y
P ~— 15
{

.-.v._\

3

NGO
LRpronessor

&

o Adapter

ik Drive
Adapter

FIG. 1

Davies
44

Dala
Storage

e -
PRy

‘ o User ot N
Metwirk Other Somputers ¥ et I

WO 2013/108100 PCT/IB2012/057453

2/8

P » Host Computer 10

Port 130

,".

-

| P |1 12 Blonk P Black I Block
8] 18 a0 14 wel 104 L Lge | 14

Router | 108 | Router | 108 Router | 108 Router | 108

e i T8 i« w318 of IO e

i n
* ry Y A& I B 2

o

e

o

ki
E N
5

-

P Block | P Black P Bloak | Slock
108 184 ldes] 1 ' Jodes 1

w| Senas L
Router | 108 Router | 108 Router | 108 Souter | 108

L P— SN Ph— S I Pu— S J 1 PR—

IF Blogk 104

P Block 1P Block P Block On-chip
R , Memory 118

| S] e ¥ D= § e k.4
Router | 108 Router | 108 Rower | 108 Routar | 108
LA 10 o ue g

27 SRR oY

R Blook Cn-chig
104 Memory 114

ML 18 Block PRiock | 4| IP Block
108 |8 T I S e e L s

s

Routey | 108 | Router | 188 Router | 108 Router | 108
0 .

.
o
3
F
sl
)
joncs
A
ey
ccin
[
F 3
4
st
st
L

WML 122 Off-chip Memory 112 -«

»
&
s
k4

WO 2013/108100

PCT/IB2012/057453

i Progessory 1 RAM
134 T 138
> Vo 138

)

Mamaory
Communications
Coonrolier

w

§

Memory
Comvimunications
Exesution Engine 148

rJ

IVIINIIIIIIIIIIIIIIIIIIIIY.

+
1184
| N

]
\7\

—%
N

141 -
Nt

Mebvork Inferface Controller 108

instruction
Conversion
Login 154G

Yirusd Channe
implameniation
Logis 148

TEEA

?‘Eg N
. i

188D

LI

o)

S
108 1 3

%y

=

!

i
i
)
%

z
i

3ok |

180 Router 110
| virtsal | videal Th
Rﬁiliﬁﬁg Charnmsl Channel §§
| Lagic Contrul Bufer 111 B

158G

Router | 108
¥ ¥ iigi
"%\ X

FIG. 3

IF Block

HIETE

Rowter

v

P Bioo
Router | 188

118

WO 2013/108100 PCT/IB2012/057453

4/8

162

104
Thrsad {1 -
Faich Branch
Seguenger Prediction
174 18

B

| ERAT LR HicacHe

374

DQapd
issue P »
178

i
s . N £

ot

% R
lereererererrerrerees,

ry

e Loagy 184 P
. Branch e : (; 4
Point . Storg w1 AXT FIG.

we | R qes || 194

F 3

¥

HoAOHE 190

Nehwork Interface Controfler 108

NOC 108

WO 2013/108100
[l - . Branch
Thread Fetch | [Prediction
Sequencer 222 |- 224
Y
| IERAT iCache
] 220 218
| Y
|
| Buffer J .
216 o
o
I=
@)
! O
[¥ °
Q
Dependency/ 8
Issue > %
228 B =
D
Issue Unit 208 é
‘©
Y E
()
GPR 230 5
Fixed Load/
Point Br2agzh Store |« >
232 | & 236
o]
3| &
| W
» - =
0 O
g3
© ©
xe 1 242
y
Network Interface Controller 212
NOC 214

200 —J

202 —J

FIG. 5

PCT/IB2012/057453

Aux Dep/

Issue
250

AX1
248

AX2
248

AX3
248

AX4
248

AX5
248

External AXU Interface Controller

N
N

AXU 2

N
(6]

204 —J

PCT/IB2012/057453

WO 2013/108100
6/8
Processor 262 FPGA 282
Ext.
AXU AXU
. I/F 284
Issue Unit 264 286
Fixed Point
Execution Unit ASIC 288
266 External
. AXU Ext.
Interface < 280 AXU AXU
278 U 290
MMU 268 £flo 202
Cache(s) 270
Stacked Die 294
Network I/F 272 Ext
AXU AXU
I/F 296
298
Y A
Memory 274 /0 Devices 276 260 _J

FIG. 6

WO 2013/108100

718

PCT/IB2012/057453

Core Ext. AXU I/F 300

306
Controller

Watchdog
Timer
308

Step Up/
Step Down
312

Packetizer/
Depacketizer
314

O

TX/RX 31

AN
(@3]
(@]
=

]

NS
TX/RX 32

FIG. 7

AXU Ext. AXU I/F 302

O

316
Controller

Watchdog
Timer
318

Step Up/
Step Down
322

Packetizer/
Depacketizer
324

WO 2013/108100

330

8/8

Core

\-[Instruction]

332

y

k Convert Instruction

To Appropriate
Format For I/F

334

A 4

Transmit Instruction

PCT/IB2012/057453

AXU

342

Y

Receive Instruction

344 v

336

A 4

\

Timer
Expired?

358 Yes
\ 4

Start Watchdog
Timer
g 338
Y
Response
Received?
Yes 356

_[Error]
Handling

A 4
Update J

Architected State

Y

=

FIG. 8

346

348 y

352

354

k Convert Instruction
To Appropriate
Format For AXU

A 4

k Forward to AXU For
Processing

k‘ Receive Completion
Data from AXU

350 !

_ Receive Response
from AXU

Y

k Convert Response
To Appropriate
Format For I/F

1 !

Transmit Response

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB2012/057453

A
Int.Cl. GO6F9/38(2006.01) 1,

CLASSIFICATION OF SUBJECT MATTER

GO6F17/50(2006.01)1i, HO1L21/82(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. GO6F9/38, GO6F17/50, HO1L21/82

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1971-2013
Registered utility model specifications of Japan 1996-2013
Published registered utility model applications of Japan 1994-2013

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X GB 2385691 A (NEC ELECTRONICS CORPORATION) 1-3,7,8,
2003.08.27, page 6 1ine 9 - page 8 line 15, FIG.6 |10-12
& JP 2003-196333 A
Y 4-6,9,13-16
Y WO 1993/016433 Al (SEIKO EPSON CORPORATION) 4,06,13,15
1993.08.19, page 19 line 18 -line 24,
FIG.4, FIG.5 & JP 7-506685 A
Y EP 646876 Al (NIPPON TELEGRAPH AND TELEPHONE 5,14
CORPORATION) 1995.04.05,
page 7 line 13 - line 20 & JP 8-63442 A
{¢ Further documents are listed in the continuation of Box C. {™ See patent family annex.
* Special categorie.s of cited documents: S “T» later document published after the international filing date or
“A” document defining the general state of the art which is not priority date and not in conflict with the application but cited to
considered to be of particular relevance understand the principle or theory underlying the invention
E ea?ler la gll).hcazllotn or patent but published on or after the inter- “X” document of particular relevance; the claimed invention cannot
“L” gzéﬁﬁeni I\Ixilglice}ll tinay throw doubts on priority claim(s) or which be cor_lsidered novel or cannot t_)e considered to involve an
is cited to establish the publication date of another citation or other inventive step when the document is taken alone
special reason (as specified) *Y” document of particular relevance; the claimed invention cannot
“0” document referring to an oral disclosure, use, exhibition or other be considered to involve an inventive step when the document is
means combined with one or more other such documents, such
“P” document published prior to the international filing date but later combination being obvious to a person skilled in the art
than the priority date claimed “&” document member of the same patent family

Date of the actual completion of the international search

30.04.2013

Date of mailing of the international search report

14.05.2013

Name and mailing address of the ISA/JP

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Japan Patent Office

Authorized officer

Toshio MISAKA

5B|4178

Telephone No. +81-3-3581-1101 Ext. 3545

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB2012/057453

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

1995.11.23, page 7 1line 27 - page 12 1ine 29, FIG.1
- FIG.4 & JP 10-507013 A

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y Us 2006/0010305 Al (MATSUSHITA ELECTRIC 9,16
INDUSTRIAL CO., LTD) 2006.01.12,
paragraph 60 - 67, FIG.1 - FIG.3
& JP 2006-48661 A
A WO 1995/031778 A1 (COMMQUEST TECHNOLOGIES, INC.) 1-16

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

