(54) 发明名称

埋式无纺布避鼠滴灌带及生产方法

(57) 摘要

本发明提供一种埋式无纺布避鼠滴灌带，滴灌带主体为单面淋膜无纺布，设置过水通道和1～2条渗水边缝，所述的渗水边缝上设置间断粘结点，无纺纤维层相对粘结，边缝上粘结点的间隙构成渗水通道，创新点在于无纺布单面淋膜中含有避鼠剂煤焦油、柴油其中一种或几种组分。本发明避鼠滴灌带的加工方法与辣椒素相比对操作人员无刺激性，生产选择环境友好。对老鼠同样起到回避作用的前提下，煤焦油、柴油与聚乙烯塑料母粒的兼容性能好，应用成本比辣椒素低得多，可以大幅度降低制造成本，实现防鼠功能，为防鼠剂在节水灌溉领域的推广应用开新路。
1. 地埋式无纺布避鼠滴灌带，滴灌带主体为单面淋膜(5)的无纺布，设置过水通道(1)和 1～2 条渗水边缝(3)，所述的渗水边缝上设置间断粘结点(4)，无纺纤维层(2)相对粘结，边缝上粘结点的间隙构成渗水通道(6)，其特征在于：无纺布单面淋膜(5)中含有避鼠剂煤矿油、柴油中性一种或几种组分。

2. 根据权利要求1所述的地埋式无纺布避鼠滴灌带，其特征在于：无纺布单面淋膜中含有 0.01～1.0%的煤矿油、柴油中性一种或几种组分。

3. 根据权利要求1所述的地埋式无纺布避鼠滴灌带，其特征在于：所述渗水边缝(3)设置于过水通道的一侧，渗水边缝设置渗水短边(3-1)与渗水长边(3-2)。

4. 根据权利要求1所述的地埋式无纺布避鼠滴灌带，其特征在于：所述渗水边缝(3)设置于过水通道的两侧，渗水边缝设置渗水短边(3-1)与渗水长边(3-2)。

5. 根据权利要求1所述的地埋式无纺布避鼠滴灌带，其特征在于：所述渗水边缝(3)粘结点(4)为圆形、椭圆形、正方形、或多边形。

6. 根据权利要求1所述的地埋式无纺布避鼠滴灌带，其特征在于：所述渗水边缝(3)粘结点(4)为一排或多排，多排粘结点之间交错设置。

7. 根据权利要求1所述的地埋式无纺布避鼠滴灌带的生产方法，其步骤包括：

A. 配料：按比例将无纺布淋膜用母料或填充母料在搅拌下缓慢加入 0.01～1.0%的煤矿油或柴油中性一种或几种组分，使其在塑料母粒上均匀分布；

B. 在无纺布淋膜机上喷淋出单面淋膜无纺布基材；

C. 裁切预设宽度的基材条幅；

D. 粘合剂成型：将两层单面淋膜基材的无纺布纤维层相对设置超声波合成过水通道(1)和渗水边缝(3)。

8. 根据权利要求7所述的地埋式无纺布避鼠滴灌带的生产方法，其特征在于，步骤D所述的粘合剂成型包括单边缝渗水滴灌带加工，将一层单面淋膜的无纺布折叠，有膜面朝外，无膜面朝里，超声波合成相对粘接在一起，形成过水通道 1 和一条渗水边缝 3。

9. 根据权利要求7所述的地埋式无纺布避鼠滴灌带的生产方法，其特征在于，步骤D所述的粘合剂成型包括双侧缝渗水滴灌带成型加工，将两层单面淋膜的无纺布，有膜面朝外，无膜面朝里，超声波合成相对粘接在一起，形成过水通道 1 和两条渗水边缝 3。
地埋式无纺布防鼠滴灌带及生产方法

技术领域
[0001] 本发明涉及一种地埋式无纺布防鼠滴灌带及生产方法，尤其涉及一种适合大田作物应用的地埋式滴灌带防鼠方法，属于节水灌溉设备技术领域。

背景技术
[0002] 由于滴灌管/带铺设在地面上时，灌水蒸发损失大、影响耕作、每年需要回收，滴灌管/带受日照易老化、滴灌带容易被大风刮跑等问题。所以现代农业大力推广地埋滴灌技术，即地将滴灌管、滴灌带埋设在地下使用。但将滴灌管、滴灌带埋设在地下时，除了自然老化之外，鼠咬是造成滴灌元件损坏的主要原因之一。相关行业防鼠技术有采用在电缆护套橡塑材料中加入含有合成辣椒素 N-(4-羟基-3-甲氧基苯基) 千配胺的防鼠剂功能母粒，利用其对呼吸道有强烈的刺激作用，可使鼠类的口腔粘膜和味觉神经受到强烈刺激而厌弃对电线、电缆的啃切，可有效防止鼠类的破坏作用，达到防鼠的目的。其缺点是防鼠剂价格昂贵，合成辣椒素对人体呼吸道有强烈的刺激性，生产现场和产品存放现场对操作人员造成危害。

发明内容
[0003] 本发明的目的在于提供一种地埋式无纺布防鼠滴灌带及生产方法，利用老鼠的味觉与嗅觉比人敏感的特点，使老鼠远离它们不喜欢的东西。
[0004] 本发明的技术方案是：这种地埋式无纺布防鼠滴灌带，滴灌带主体为单面淋膜无纺布，设置过水通道和 1～2 条渗水边缝，所述的渗水边缝上设置断点粘结点，无纺纤维层相对粘结，边缝上粘结点之间由间隔构成渗水通道，创新点在于无纺布单面淋膜中含有防鼠剂煤焦油、柴油其中一种或几种组分。
[0005] 所述的地埋式无纺布防鼠滴灌带，无纺布单面淋膜中含有 0.01%～1.0% 的煤焦油和柴油。
[0006] 所述的地埋式无纺布防鼠滴灌带，所述渗水边缝设置于过水通道的一侧，渗水边缝设置于渗水短边与渗水长边。
[0007] 所述地埋式无纺布防鼠滴灌带渗水边缝设置于过水通道的两侧，渗水边缝设置于渗水短边与渗水长边。
[0008] 所述的渗水边缝滴灌带，所述渗水边缝粘结点为圆形、椭圆形、矩形、或多种边形。
[0009] 所述的渗水边缝渗水滴灌带，所述渗水边缝粘结点为一排或多排，多排粘结点之间交错设置。
[0010] 所述的渗水边缝滴灌带的生产方法，其步骤包括：
[0011] A. 配料：按比例将无纺布淋膜用母料或填充母料在搅拌下缓慢加入 0.01%～1.0% 的煤焦油和柴油，使其在塑料母粒上均匀分布；
[0012] B. 在无纺布淋膜机上喷淋出淋膜无纺布基材；
[0013] C. 裁成预设宽度的基材条幅；
D、滴灌带成型：将两层单面淋膜基材的无纺布纤维层相对设置，超声压合形成渗水边缝。

所述的地理式无纺布避鼠滴灌带的生产方法，步骤 D 所述的滴灌带成型包括单边缝渗水滴灌带加工：将一层单面淋膜的无纺布折叠，有膜面朝外，无膜面朝里，超声压合相对粘接在一起，形成过水通道 1 和一条渗水边缝 3。

所述的地理式无纺布避鼠滴灌带的生产方法，步骤 D 所述的滴灌带成型包括双边缝渗水滴灌带成型加工：将两层单面淋膜的无纺布，有膜面朝外，无膜面朝里，超声压合相对粘接在一起，形成过水通道 1 和两条渗水边缝 3。

本发明避鼠滴灌带的加工方法与辣椒素相比对操作人员无刺激性，生产选择环境友好。对老鼠同样起到回避作用的前提下，煤焦油、柴油与聚乙烯塑料母粒的兼容性能好，应用成本比辣椒素低得多，可以大幅度降低制造成本，实现防鼠功能，为防鼠剂在节水灌溉领域的推广应用开拓新路。本发明的地理避鼠滴灌带设计，解决了灌溉水蒸发损失大、影响耕作、每年需要回收、滴灌带受日晒易老化、容易被大风刮跑等问题。淋膜无纺布可根据要求控制厚度，无纺布纤维层的渗水边缝空隙极小，作物须根无法扎进微孔造成堵塞，提高滴灌带的防堵性能，简化滴灌系统过滤设备，减少过滤设备投资，降低滴灌系统运行能耗。

附图说明

图 1 是本发明地理式无纺布避鼠滴灌带双边缝渗水结构示意图
图 2 是本发明地理式无纺布避鼠滴灌带单边缝渗水结构示意图
图 3 树脂淋膜无纺布工艺参数
图中：1、过水通道 2、无纺纤维层
3、渗水边缝 3-1、渗水短边 3-2、渗水长边
4、边缝粘合点 5、淋膜层 6、渗水通道示意

具体实施方式

下面结合附图和具体实施方式对本发明作进一步详细的说明。

本发明的核心创新点是在淋膜前将避鼠剂与淋膜树脂母料混合，以达到地理式无纺布滴灌带避鼠的目的。

本发明的具体技术方案步骤如下：

A、配料：按比例将无纺布淋膜用树脂母料或填充母料在搅拌下缓慢加入 0.01-1.0% 的煤焦油或/和柴油，使其在塑料母粒上均匀分布；

B、在无纺布淋膜机上喷淋出单面淋膜无纺布基材，具体淋膜工艺参数选择参照图 3 的一览表；

C、裁成预设宽度的基材条幅；

D、滴灌带成型：将两层单面淋膜基材的无纺布纤维层相对设置，超声压合形成过水通道 1 和渗水边缝 3。

实施例 1

①避鼠剂成分：煤焦油 1 重量份、柴油 9 重量份混匀；
[0033] [2] 将避鼠剂与细胞膜树脂母料在搅拌条件下按照细胞膜树脂 0.5% 的重量比例加入，
混匀，填入上料斗，在无纺布淋膜机上喷淋出淋膜无纺布基材；

[0034] [3] 双边缝渗水滴灌带成型加工：是将两层单面淋膜的无纺布，有膜面朝外，无膜面
朝里，如图 1 所示超声压合相对粘接在一起，形成过水通道 1 和两条渗水边缝 3。通道内的
有压水流，会绕过粘接点 4，通过边缝 3 上面无纺布纤维间的空隙，也就是图中示意的渗水
通道 6，渗透至滴灌带外。为了减少灌溉水向下流失，在实施例 1 的基础上设置不等宽渗水
边缝，下面的渗水边缝 3-2 比上面的渗水边缝 3-1 宽，以使水势等压面上移。

[0035] 实施例 2

[0036] [1] 避鼠剂成分：煤焦油 2 重量份，柴油 8 重量份混匀；

[0037] [2] 将避鼠剂与细胞膜树脂母料在搅拌条件下按照细胞膜树脂 0.3% 的重量比例加入，
其他同实施例 1 在无纺布淋膜机上喷淋出淋膜无纺布基材；

[0038] [3] 单边渗水滴灌带：是将一层单面淋膜的无纺布折叠，有膜面朝外，无膜面朝
里，如图 2 所示超声压合相对粘接在一起，形成过水通道 1 和一条渗水边缝 3。为了减少灌
溉水向下流失，在实施例 2 的基础上设置不等宽渗水边缝，下面的边缝 3-2 比上面的渗水边
缝 3-1 宽，以使水势等压面上移，侧向使用。如图 2 所示。

[0039] 实施例 3

[0040] [1] 避鼠剂成分：煤焦油 3 重量份，柴油 7 重量份混匀；

[0041] [2] 将避鼠剂与细胞膜树脂母料在搅拌条件下按照细胞膜树脂 0.1% 的重量比例加入，
其他同实施例 1 在无纺布淋膜机上喷淋出淋膜无纺布基材；

[0042] [3] 同实施例 2。

[0043] 实施例 4

[0044] [1] 避鼠剂成分：煤焦油；

[0045] [2] 将避鼠剂与细胞膜树脂母料在搅拌条件下按照细胞膜树脂 0.1% 的重量比例加入，
其他同实施例 1 在无纺布淋膜机上喷淋出淋膜无纺布基材；

[0046] [3] 同实施例 1。

[0047] 上述实施例中无纺布选择包括丙纶(PP)、涤纶(PET)、还有锦纶(PA)、粘胶纤维、
腈纶、乙烯(PE)、氯纶(PVC) 等等市售的产品。

[0048] 无纺布淋膜用树脂选择 PE(聚乙烯)，PP(聚丙烯) 或 EVA 由线性低密度聚乙烯
和醋酸共聚，这几种淋膜无纺布都是市场上比较成熟的产品。

[0049] 上述实施例中：煤焦油与柴油混合可以改善煤焦油的黏稠度，使在塑料母粒中最
易于分布，同时柴油也能对老鼠起到有效的驱避作用。

[0050] 对照试验结果：

[0051] 1）普通 PE 料，严重啃咬，啃咬面积超过 60%；

[0052] 2）添加煤焦油的 PE 料，轻微啃咬痕迹；

[0053] 3）添加煤焦油和柴油混合物的 PE 料，试样上都只有少许几个浅微的牙印，无明显的
啃咬现象。

[0054] 上述描述仅作为本发明地址式无纺布避鼠滴灌带及生产方法几种可实施的技术
方案提出，不作为对其技术方案本身的单一限制条件。
<table>
<thead>
<tr>
<th>参数</th>
<th>LDPE（低密度聚乙烯）</th>
<th>LLDPE（线性聚乙烯）</th>
<th>PP（聚丙烯）</th>
<th>EVA（乙烯-醋酸乙烯）</th>
<th>Sutlyn（粘合剂）</th>
</tr>
</thead>
<tbody>
<tr>
<td>树脂型号</td>
<td>IC7A, IC8A</td>
<td>EX XL101</td>
<td>TPC FC-8411</td>
<td>TOYO UE633</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPC L705</td>
<td>LL1002, HY3224</td>
<td>FL-6313, HN</td>
<td>L-3388</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LL711, HY 960</td>
<td></td>
<td>L-670T FC160</td>
<td>DP 3166,</td>
<td></td>
</tr>
<tr>
<td>拉伸</td>
<td>C1</td>
<td>200</td>
<td>190</td>
<td>200</td>
<td>135</td>
</tr>
<tr>
<td>出机</td>
<td>C2</td>
<td>250</td>
<td>265</td>
<td>230</td>
<td>180</td>
</tr>
<tr>
<td>温度(℃)</td>
<td>C3</td>
<td>290</td>
<td>280</td>
<td>250</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>310</td>
<td>300</td>
<td>260</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>340</td>
<td>320</td>
<td>270</td>
<td>240</td>
</tr>
<tr>
<td>A(℃)</td>
<td></td>
<td>330</td>
<td>310</td>
<td>280</td>
<td>220</td>
</tr>
<tr>
<td>J(℃)</td>
<td></td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td>模头</td>
<td>D1</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td>温度(℃)</td>
<td>D2</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>D4</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>D5</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>D6</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>D7</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>D8</td>
<td>340</td>
<td>320</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td>熔体温度(℃)</td>
<td>320-340</td>
<td>310-320</td>
<td>270-280</td>
<td>220-240</td>
<td>300-320</td>
</tr>
<tr>
<td>冷却水温度(℃)</td>
<td>10-20</td>
<td>10-20</td>
<td>10-20</td>
<td>10-20</td>
<td>10-20</td>
</tr>
<tr>
<td>树脂比重(g/cm³)</td>
<td>0.917</td>
<td>0.921</td>
<td>0.905</td>
<td>0.953</td>
<td>0.94</td>
</tr>
<tr>
<td>气隙（mm）</td>
<td>100-120</td>
<td>80-130</td>
<td>90-120</td>
<td>90-150</td>
<td>90-130</td>
</tr>
</tbody>
</table>

图3