DEVICE FOR MAKING PIPE BENDS OF THERMOPLASTIC MATERIAL

Filed Nov. 13, 1968

FIG. 1

FIG. 2

FIG. 3

INVENTORS
EMIL ROTTNER
FRANZ BOCK
WILLI MUTH
GUNTER WENZEL

BY Curtin, McIner & Safford
ATTORNEYS
DEVICE FOR MAKING PIPE BENDS OF THERMOPLASTIC MATERIAL

Emil Rottner and Franz Bock, Hofheim, Taunus, Willi Muth, Frankfurt am Main, and Günter Wenzel, Kalk-heim, Taunus, Germany (25) (Carlswerke Hoechst AG, Frankfurt am Main, Germany)

Filed Nov. 13, 1968, Ser. No. 775,443

Claims priority, application Germany, Nov. 29, 1967, P 17 84 661.6

Int. Cl. B29c 17/00

U.S. Cl. 18—19

4 Claims

ABSTRACT OF THE DISCLOSURE

Pipe bends of thermoplastic material are manufactured by thermoforming by shoving a sleeve-shaped pipe section which is closed at one end into a pipe bend mould which is symmetrically split in the longitudinal direction. The introduction is carried out with the help of a flexible core which is several times split longitudinally and which is pressed against the bottom of the pipe section. After cooling, the mould is opened and the core or its individual parts are pulled out of the pipe bend and the ends of the latter are trimmed.

The present invention relates to an apparatus for the manufacture of pipe bends of thermoplastic material by shoving a pipe section which has been heated up to the range of the optimum thermoforming temperature into a pipe bend mould.

By optimum thermoforming temperature there is meant the temperature range in which the plastic material yields to the shaping forces, but still possesses sufficient cohesion to withstand rupture under these forces. This temperature range which is generally desired in thermoforming processes is little pronounced in some thermoplastic materials. In some thermoplastics rubber-elastic behavior or plastic flow sets in in temperatures above the second order transition temperature; these materials cannot therefore be used for the thermoforming processes in question.

It has already been proposed to manufacture pipe bends from plates. The plates are made into semicups which are then welded to one another. The weld is often disturbing. This process is moreover rather complicated and correspondingly time-consuming.

Other processes which have generally been known from metal working yield wrinkled pipe bends when applied to thermoplastic materials or can be used only for a determined range of size. Examples of such processes are hot-bending after filling the pipe with sand and cold-bending.

It has also been proposed to make pipe bends by pressing heated pipes of thermoplastic material into a mould over a mandrel detachably connected with a rigid core which is adjusted to the shape of the pipe bend. In this process, however, compressions of the material occur which render the execution of the process difficult and, in the case of some thermoplastics, lead to a high proportion of rejects.

Now we have found that the above disadvantages of the known processes for the manufacture of pipe bends of thermoplastic materials can be avoided by heating a sleeve-shaped pipe section which is closed at one end up to the range of the optimum thermoforming temperature, chiling the sleeve bottom, shoving the pipe section with the bottom ahead into the mould with the help of a flexible core which is several times split longitudinally and which is pressed against the bottom, and withdrawing the individual parts of the core after cooling the pipe bend.

When the pipe section is introduced into the mould the individual parts of the core are displaced with respect to one another and the bottom of the pipe is slanted. This enables tearing and compressing of the material which generally occurs in the bending of pipes to be substantially prevented. The wall of the mould and the core remain in contact with the pipe material throughout bending and the motion of the pipe material with respect to the core is only small as is the pressure which is exerted on the wall of the mould. With the friction being considerably reduced as compared with the compression moulding technique, the mould fulfills the function of guiding.

The apparatus in accordance with the invention is not limited to determined nominal sizes of pipe, but is applicable to any extrudable pipe. It can be used with particular advantage for the shaping of pipes of large widths in the case of which the known shaping processes cannot be used or would be too complicated.

For making pipe bends, preferably short bends, it is advantageous to start from sleeves obtained by deep drawing. In special cases the pipe section to be shaped my advantageously be closed at one end by welding a bottom to it.

The device of the invention preferably comprises a mould which is symmetrically split in the longitudinal direction and a core which can be pulled out, wherein the core consists of laminae which can be displaced with respect to one another and is combined with a hemispherical pressure member lying loosely on the core and with a guide pipe which encloses the pressure member and part of the core and can be shifted in the mould.

Cores composed of laminae of, for example, polyethylene, readily follow the curvature of the pipe bend; the laminae can easily be displaced with respect to one another. The guide pipe which is also made of thermoplastic material, for example polyethylene, prevents the laminate from being pressed asunder and from jamming; it simultaneously serves to guide the pressure member.

As laminae it is also possible to use thin metallic strips or alternate strips of metal and of plastic material. The strips may be 0.5 mm. to 8 mm. thick. For smaller nominal sizes and smaller radii of curvature it is advantageous to use the thinner laminae.

When it is intended to make pipe bends of small radii of curvature, cores consisting of individual rods, for example round rods, may advantageously be used.

Instead of a hemispherical or cup-shaped pressure member, it is also possible to use a plate fixed to the plunger so as to be articulated.

The mould may be of wood, plastics or metal. Moulds provided with heating and cooling means, for example channels for the passage of a heat exchange medium, are particularly suitable. The entire heat treatment, particularly heating, cooling and optionally tempering, may then be carried out in the mould. The chiling of the sleeve bottom may in this case be easily performed by blowing, for example, with air or by spraying, for example, with water. The core may be withdrawn after removal of the pipe bend from the mould. For this purpose it is advantageous to use a support for the bend and a pair of tongs for removing the core.

A device suitable for use in carrying out the process of the invention is illustrated diagrammatically by way of example in the accompanying drawing of which: FIG. 1 is a longitudinal section showing the position of the individual parts at the beginning of the shaping process; FIG. 2 is a longitudinal section showing the position of the individual parts at the end of the shaping process; FIG. 3 is a cross section on line I—II of FIG. 1.

In FIGS. 1 and 2, the half 1 of the pipe bend mould has not been shown in order to more clearly demonstrate the invention. The other half 2 is symmetric to half 1. The core is formed by laminae 3. The base of pressure
3 member 4, which is a hemisphere made of plastic, rests loosely on the core. The guide pipe 5 surrounds the hemisphere and the upper part of the core. The sleeve to be produced is denoted by 7. Fig. 3 which is a cross section of the mould and the core shows the position of the cooling and heating channels 6.

The following example serves to illustrate the invention, but is not intended to limit it.

EXAMPLE

To make a 90° bend from a polyethylene pipe having an outside diameter of 220 mm. and an inside diameter of 200 mm., a plane bottom was first welded to the pipe. For this purpose the bottom was heated to welding temperature in a heating furnace and one end of the pipe was heated, also to welding temperature, on a so-called "welding mirror," and pipe and bottom were then united by pressing one against the other.

The sleeve 7 so obtained was heated to a temperature of 150 to 152° C. The bottom was then chilled by immersion in cold water. A core consisting of laminae of polyethylene 3 2 mm. thick, was introduced into the pipe and the latter was drawn into the mould 2 with the help of the core. After cooling, the resulting pipe bend was removed from the mould together with the core and put in a clamping device and the core was withdrawn in small packs. Finally, the ends of the pipe bend were trimmed.

In the same manner, pipe bends can be made from other thermoplastics. For each thermoplastic material the appropriate forming temperature must be observed. The approximate appropriate forming temperature may be determined according to the data given in plastics vade mecum and trade catalogs. For rigid polyvinyl chloride this temperature is, for example, by about 50° C. lower, and for polypropylene, for example, by about 20° C. higher than the temperature given above for rigid low pressure polyethylene. The forming temperatures may vary with the modification used in a given case. The same considerations apply for the welding process for making the sleeve.

We claim:

1. A device for the manufacture of pipe bends of thermoplastic material comprising a pipe bend mould which is symmetrically split in the longitudinal direction and a core which can be pulled out, wherein the core consists of flexible laminate which can be displaced with respect to one another and is combined with a pressure member resting loosely on the core and with a guide pipe which surrounds the pressure member and part of the core and can be shifted in the mould.

2. The device of claim 1 wherein the core consists of flexible rods.

3. The device of claim 1 wherein the pressure member is hemispherical and cooperates with a plunger.

4. The device of claim 1 wherein the mould is provided with cooling and heating means.

References Cited

UNITED STATES PATENTS

3,083,409 4/1963 Crawford et al. 18—45
3,095,613 7/1963 Christensen et al. 249—184X
3,169,284 2/1965 Johnston.

FOREIGN PATENTS

80,518 4/1963 France.
1,142,307 9/1957 France.
597,031 8/1959 Italy.

J. HOWARD FLINT, Jr., Primary Examiner
U.S. Cl. X.R.

18—45, Reshape dig.; 249—183