(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

2|) R
2} |00 0O 0 000

(10) International Publication Number

WO 2006/061251 Al

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 June 2006 (15.06.2006)

(51) International Patent Classification:
GOGF 17/30 (2006.01)

(21) International Application Number:
PCT/EP2005/013314

(22) International Filing Date:
12 December 2005 (12.12.2005)

(25) Filing Language: English

(26) Publication Language: English

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(30) Priority Data:
10 2004 059 755.3

11 December 2004 (11.12.2004) DE :
102005001 988.9 15 January 2005 (15.01.2005) DE ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
11/040,812 21 January 2005 (21.01.2005) US European (AT, BE, BG, CII, CY, CZ, DE, DK, EE, ES, Fl,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): SMAP-

PER TECHNOLOGIES GMBH [AT/AT]; Salurner-

strasse 22, 6330 Kufstein (AT). Declarations under Rule 4.17:

(72) as to applicant’s entitlement to apply for and be granted a

Inventors; and

(75)

Inventors/Applicants (for US only): HARDISTY, Mark
[GB/GB]; 7 Meadow Way, Great Bookham, Surrey Kt 23
3NY (GB). GUNTHER, Thiel [AT/DE]; M.-Geiger-Weg
3a, 83670 Bad Heilbrunn (DE).

patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

of inventorship (Rule 4.17(iv))

[Continued on next page]

(54) Title: PROCESS AND APPLIANCE FOR DATA PROCESSING AND COMPUTER PROGRAMME PRODUCT

user
' physical + logical

access

compute

ohy W acCcess {ical

data metadata

(57) Abstract: The present invention concerns an appliance, a process and a computer programme product for the processing of
& unstructured or semi-structured digital data in a file system. In order to create an appliance, a process and a computer programme
& product which allow simple, reliable, highperformance and purpose oriented management of every manner of digital, stored, un-

structured data, it is proposed that, it is functionally extended by providing a framework for further external logic to be inserted in

6/0612551 A1 | IV 0 O 0 OO

order to modify the filesystem’s behaviour and /or a structure is imposed onto unstructured or semi-structured data in real time by
enhancing existing namespace semantics and/or metadata and data are processed independently by physically and logically separat-
ing namespace and block handlers.

WO 2006/061251 A1 I} N0 A0VOH0 T 00 0100 0 00

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2006/061251 PCT/EP2005/013314

Process and appliance for data processing and computer

programme product

The present invention concerns a process or a method and an
appliance or an apparatus for data processing as well as a

corresponding computer programme product.

In the age of the information society, it is no longer the
creation, processing and distribution of energy but of
information which determines the extent of production leading
to economic growth; the information factor has become the main
resource. Information forms the basis for decisions and human
co-operation. At the same time, however, completely new and
separate criteria regarding the quality, cost and use of such

information are being applied.

Any form of general data which can be stored falls under the
heading of information, that is, language, sound and image
data in addition to text and numbers in their respective
digital data format and storage forms. Thus, the quantity of
available data which may also need to be processed in some way
is steadily increasing both in a global sense and for each
individual user. Whilst increasing CPU power and new
architectures render the creation, processing and transport of
an ever-increasing volume of data manageable within a

reasonable time frame, the long-term, safe administration of

WO 2006/061251 PCT/EP2005/013314

digitally-stored data presents a growing problem despite the

fact that sufficiently expanded storage space is available. At
the same time, it must be possible to permanently ensure that
the information contained in the respective digital data packs
can be accessed directly by the user at any time and at short

notice as and when required.

Thus managing unstructured data remains an unsolved problem.
According to Merrill Lynch, more than 85 percent of any
organisation’s data belong to that category. Unstructured data
refers to data which are hierarchically ranked objects of a
closed filesystem, i.e. not extensible functionality-wise.
While structured data which represent the form principle of a
database provide the means to retrieve. information accurately
and unambiguously, there have been no similar mechanisms for
unstructured data so far. Search engines, classification
software and others can be regarded as utilities rather than
real solutions and are limited to their individual
functionality. Thus it is the task of the present invention to
create a process, an appliance and a computer programme
product for data processing which allow simple, reliable,
high-performance and purpose oriented management of every
manner of digitally stored, unstructured or semi-structured
data. An appliance or apparatus, according to the present
invention, must be capable of being integrated as hardware
into all current personal computer and/or data processing

environments without basic adjustments having to be made.

According to the present invention, this task is solved by
using the distinguishing characteristics of the independent
claims. Thus, a method of processing unstructured or semi-
structured digital data in a file-based system is
characterized in that it is functionally extended by providing

a framework for further external logic to be inserted in order

WO 2006/061251 PCT/EP2005/013314

to modify the filesystem’s behaviour and /or a structure is
imposed onto unstructured or semi-structured data in real time
by enhancing existing namespace semantics and/or metadata and
data are processed independently by physically and logically

separating namespace and block handlers.

Any solution according to claim 1 is a system that may create
structures in the sense of an extensible framework to |
advantageously allow search, usability, management and
retrieval of information analog to the structured database

world.

Further characteristics are subject of the depending claims.
Thus a solution accdrding to the'present invention may
comprise any combination of the following core points to
describe a “Network Filesystem Switching”:

1. Thé extension of the existing filesystem’s semantics

2. The physical and logical separation of namespace

handling and physical block storage
3. The extension of the filesysteﬁ with external,

adaptable functionalities, i.e. plug-ins.

On this basis, a process according to the present invention is
able to deliver a distributed networked filesystem which is
customizable and extendable and uses enhanced fileéystem

semantics.

ﬁowever, it is important to note that in a preferred
embodiment of the invention it is possible to abolish the
existing, prior art separation of logical and physical access
to data. When data is accessed, therefore, logical access,
i.e. with user-defined criteria, is carried out Jjointly with
physical access, i.e. using the file path. In doing so, a

common access mechanism is implemented for both types of

~WO 2006/061251 PCT/EP2005/013314

access which is particularly constructed so as to remain
transparent or, in other words, unperceived by the user. In
other words this embodiment presents an extension of the
existing filesystem semantics for executing logical and
physical access jointly and'directly in the sense of not using

e.g. further software-tools.

Preferably, a logical access is carried out as access to
information by metadata like pathname, timestamps, additional
data-intrinsic or even extrinsic metadata and a combination of
all. This metadata forms the so called namespace. Physical
access is interpreted and executed any way known from the
state of the art as access to the bits and bytes being stored

on the accessed storage media. -

It is adﬁantageous to enhance semantics of an existingv
filesystem or namespace by a concept of added attributes.
Further, attributes may act liké files and allow a child
relationship to both, a directory and/or a file and/or another
attribute. Following this way an embodiment of the present
invention is characterized by the fact that the benefit of
this enhanced semantic is the logically grouping of files and
attached information, especially in the sense of enhanced
metadata. However, in a preferred embodiment of the invention
this grouping functionality belongs to the native semantics of
fhe process thus allowing these relationships to be maintained

atomically.

The process is carried out advantageously while preserving thé
atomicity of the sum of all partial transactions regarding all
data which is linked to the respective source data and/or
files. In this way, all meta data, which has been derived from
inside our outside the data, suffer the same fate as the data

itself. Consequently, when deleting the original data, it goes

WO 2006/061251 PCT/EP2005/013314

without saying that all logically connected data which was
derived from the deleted data by means of a process according

to the present invention, is likewise deleted.

In a further embodiment of the invention at least one
attribute is linked with a data type scheme. This linking
allows the introduction of e.g. constraints, validity schemes
etc.. Further, attributes may be indexed for fast further
retrieval, especially using B-Trees, B+-Trees, Hash-tables or

the like.

In a further basic embodiment of the invention, arbitrarily
pre-definable data subsets are extracted when accessing
unstructured and/or proprietary structured data. These
extracted data subsets are preferably stored as meta data in a
structured form. Thereby intrinsic data subsets, 1i.e.
extracted from the data itself, and/or extrinsic data i.e.
derived from outside the data, is used advantageously to
create the respective meta data. By use of a process or a
method according to the present invention in an embodiment,
meta data is created out of arbitrarily pre-definable data
subsets, namely on reading and/or writing or, as the case may
be, on storing unstructured and/or proprietary structured
data. Thus, any form of access to data is used in order to
generate corresponding meta data. Thus, arbitrarily pre-
definable data subsets are extracted when accessing
unstructured and/or proprietary structured data. Further the
extracted data subsets may be stored as meta data in a
structured form. In a preferred embodiment of the invention
intrinsic and/or extrinsic data subsets are used to form the
respective meta data. However, advantageously meta data may be
created from arbitrarily pre-definable data subsets when
unstructured and/or proprietary structured data is read and/or

written or stored, as the case may be.

WO 2006/061251 PCT/EP2005/013314

In a preferred embodiment of the invention a file path is
processed within the execution of the access mechanism which
has been enhanced by a Query-Interface. In a further
development of the present invention, the Query-Interface used
in the extended file path constitutes an enhancement of a
POSIX- or similar standard in the form of an XQuery-Standard

or similar standard.

In a further advantageous embodiment of the invention a
structure is given to unstructured data by attributes which
allows database-like retrieval, such that the query procedure
is incorporated into the data path. Further, the filesystem
may be extended by external functionality through plug-ins.
These plug-ins are referred to as so called SmApplets with
reference to the detailed description of embodiments of the

invention.

In an important, further development of the invention, data is
subject to a pre-defined and customizable rule and action
model or framework. In particular, based on the results of the
processing of a pre-defined and customizable rule and action
model or framework, well-defined decisions and/or actions are
carried out. The user is thus given the chance to actively
influence the type and choice of rules and actions, for
example by modifying the configuration. According to a
particularly advantageous embodiment of the present invention,
part-programmes or actions of the rule and action model are
carried out in the kernel of the operating system, the
execution being bound to rules and conditions. Advantageously,
this rule and action framework allows the plug-ins to be
executed within the scope of the filesystem and/or inbound to
the filesystem processing. Further these plug-ins allow the

filesystem behaviour to be modified and adapted according to

WO 2006/061251 PCT/EP2005/013314

the results of the processing. Thus, this modified behaviour
leads to a new logical, but transpérent access functionality
which is adaptive due to being bound to rules and actions.
However, these partial stages may be triggered by well defined
events, even events of the filesystem itself. The
aforementioned partial stages are executed automatically in a

further development of the present invention.

In a preferred embodiment of the invention several filesystems
are stacked on top of each other. Advantageously, the stacking
of filesystem layers may be done such that the sum of all
single transactions in each sublayer can be treated as a
single, atomic transaction, where the different filesystem
stacking layers all may be executed simultaneously in an

asynchronous or sequentially in a synchronous way.

Advantageously, in an embodiment of the invention logical
access, which is the access to the namespace, and physical
access, which is the access to bits and bytes on at least one
kind of storage media, are separated from each other. This
separation is hidden from the accessing mechanism. The
separation of namespace and block handlers may be done in a
physical, out of band way such that the handlers interact
using a network backplane. However, this separation of
namespace and block code on a network backplane advantageously
leads to a granular, horizontally highly scalable filesystem.
The new physical block handling concepts may be coupled with
existing namespace semantics and vice versa. Further, block
handling handlers may be unified in such a way that a virtual
block layer may be introduced which allows an existing
filesystem to be treated as a physical block device. According
to a preferred embodiment of the invention, this block
handling unification paired with the ease of coupling with

different namespace semantics ultimately is used for a

WO 2006/061251 PCT/EP2005/013314

virtualisation of existing storage environments, particularly

SAN and NAS environments.

According to a further development of the present invention, a
process under the present invention is carried out
particularly advantageously utilizing standardized software
and hardware interfaces. It 1s hereby executed as an
individual unit without interference in or modification to an
existing structure, in such a way that mutual interaction can
be avoided should retrofitting occur in an existing system.
Accordingly, an appliance or apparatus which implements a
process under the present invention is characterized by the
fact that resources are assigned to connect the appliance to
the standardized software and hardware interfaces of the
respective data processing installation or the respective
system network. A suitable appliance can therefore be
integrated as a closed unit into a data processing
installation without interference in or modification to an
existing structure of the same data processing installation as
it produces its own additional data according to the

disclosure of this description.

In an important further development of the invention, the meta
data is set up in its own file system on the basis of the ‘
common access mechanism. The file system is optimized for the
rapid lookup of data content and/or attributes of data
content. In this way, this file system is characterized
particularly by allowing a bi-directional, atomic
interrelation between data and meta data. This means that, by
the same token, modification of the data causes a consistent
modification of the affected meta data and vice versa. This
allows data and its meta data to be processed independently of
one another, thus permitting varying views of the original

data stream with respect to format, partial-format etc.;

WO 2006/061251 PCT/EP2005/013314

however, every modification in one view leads to a mandatory
modification in all other wviews. Thus, it makes no difference
whether at least one modification is made to the original data
stream and/or one of the attributes as a component of the
associated meta data, as any modification is likewise

reproduced in the other associated part.

Therefore, an appliance in accordance with one embodiment of
the present invention involves a method of encompassing all
levels of the unstructured data, from its physical
representation through logical classification to its
information content, the information content being(edited and
adjusted to fall within a well-defined framework of actions

and/or decisions.

A process in accordance with the present invention is
advantageously embodied in a computer programme product, which
means, in particular, in any form of data carrier, for example
a CD-ROM. Thus, once imported into the main memory of a data
processing installation, this computer programme product
causes the execution of a process according to one or several

of the afore-mentioned criteria.

Further advantages and embodiments according to the present
invention as well as a corresponding appliance or apparatus,
can be described with reference to an implementation example

in greater detail by means of the following diagrams:

Figure 1: a systematic illustration of contemplatable solution

areas;

Figure 2: an illustration of primary methods to answer the

question “What does understanding data contents

WO 2006/061251 PCT/EP2005/013314

mean”: extractors and converters, extractors being a

special form of converters in this case;

Figure 3: a basic functionality which forms the basis of a
process in accordance with the present invention

which is named “SmApper”;

Figure 4: a chart to illustrate the requirement that SmApper
must be integrated transparently as an appliance

between Storage-Client and Storage-Server;

Figure 5: a chart as an illustration of stacking as a method
which allows the (strictly-speaking) one-dimensional

VES-process to be extended to several dimensions;

Figure 6: a chart to illustrate how SmApper uses the stacking

procedure;

Figure 7: a diagrammatic representation of how SmApper, as the
only meta data solution, spans all layers from the

physical representation to the information;

Figures 8 and 9: representations of SmApper’s fundamental
features as a tool to monitor and control
unstructured or semi-structured digital packs of

data and

Figure 10: a diagrammatic representation of how SmApper
controls the communication within different stages

or levels of data.

The following will serve as a systematic examination of the
chosen approach to the management of unstructured data by

means of structured meta data:

10

WO 2006/061251 PCT/EP2005/013314

1 The Problem Background

1.1 The structural challenge

One of the most challenging information technology issues is the
management, the usability and the retrieval of the Stored‘data in
an enterprise or organisation. Today, a single company’s storage
resource capacity is measured in petabytes; from a global point
of view, the 10 bytes or Exabyte limit has been surpassed years
ago. However, data is not just data, it’s segregated into
structured and unstructured data. Structured data couples content
and form or format. A database or database tablespace represents
the form. The content of a tablespace entry can be classified by
the description of the tablespace such as “town” or “customer

number” and therefore achieves a certain gquality.

Unstructured data has a file format and are objects of a
filesystem. The application which created the file dictates its
form, however does not necessarily exactly reflect the content.
Files can contain images, audio, graphics or text or a
combination. The filesystem provides the hierarchical sequence of
the files and allocates each file a dedicated path to its storage
block. Every file can be found by following this path. This
methodology lays the ground for a severe problem: In case the
path and/ or file name is unknown, the search for information is
aggravated, 1f not made impossible. Another difficult point is
that filesystems are proprietary, i.e. there is only very little
or no room for individual enhancements. While it is easy to
search and retrieve information from structured data, i.e. data
stored in a database, by using query tools, there is no such
mechanism for unstructured data so far. Search engines,
classification software and others can be regarded as utilities
rather than real solutions and are limited to their individual

functionality.

11

WO 2006/061251 PCT/EP2005/013314

1.2 The management challenge

A comparison of the quantity ratio between structured and
unstructured data shows the explosiveness of this management
challenge: According to Merrill Lynch, more than 85 percent of an
organisation’s data contributes to the category ‘unstructured
data’. As there is no central control available which is able to
manage unstructured data using standardised and widely automated
mechanisms, every point solution remains shortfall. Questions
such as Which data do we have? Where is it stored? Who is using
it? Which data is undesirable or as is the case with zombie data

dangerous? cannot be answered from a global point of view.

The consequences are not only massive losses in productivity.
Gartner Group analysts assume that employees spend 30 to 40
percent of their working time with managing (unstructured)
documents. Back in 1997 it was only 20 percent. The reason for
this increase grounds in the immense data flood and its lack of
manageability. Further consequences are e.g. negative cost
effects due to unseized storage consolidation opportunities or
additional staff expenses as soon as control bodies or
governmental agencies require information at short notice. Thus,
it is not enough to operate superficially for a basic and uniform
optimisation of the management, the usability and finally the
value of unstructured data: The point of departure must be the

organisational principle of unstructured data, the filesystem.

1.3 The Starting Point

The resource information has become a decisive factor for
production in the age of the information society. According to
the study “Data Powers of Ten” [1l] we produce new information
with a capacity of one to two exabyte per year. This equals about
10%® letters, or, in other words, almost all the words that have
ever been spoken. Information is the basis for decision processes

and human cooperation, which is one of the main reasons for the

12

WO 2006/061251 PCT/EP2005/013314

importance of digital information as a production factor. This
information, however, 1s completely subject to personal criteria
concerning quality, cost and benefit. Today’s information and
communication IaC technologies make information almost
universally available without losing any of its
individualization, depth or interactivity. If you know how to use
this resource, information, and above all digital information,
may be the most important asset of a company. Modern IaC systems

make this possible.

Current IaC systems basically comprise three components: data
processing, data transmission and data storage according to
Gartner, IDC and Forrester IT departments already spend more than
50 percent of their hardware investments on data storage systems.
Data storage systems have been optimized to store data and make
it available. From a technical point of view the nature of data
is insignificant. Radiographs, family pictures, emails, letters
of financial data are all treated the same way. Intelligent
handling of digital data today is still based on the application,
i.e. the many specialized programs and software such as SAP,

Microsoft Word, Adobe Photoshop etc..

The majority of today’s digital information is rich media data,
with content such as pictures, video, sound, graphics or other
non-text based information. It is only meta data that makes them
available for processing and commercial use. Examples of such
meta data is contract and legal information, serial numbers,
forms or comments that are needed for administration, easy

location of the data and its appropriate usage.

At present the administration and usage of the relevant meta data
and the original data are completely isolated from each other.
There is no consistent standard to regulate how meta data and

data can be stored and administered together. Meta data is stored

13

WO 2006/061251 PCT/EP2005/013314

in the same way as the original data as the storage
infrastructure does not recognize any difference. However, meta
data is usually more important for the cooperation than the
original data. Thus it is almost impossible to administer, let
alone find, unstructured data that cannot be saved into a
database, e.g. addresses. Various solutions to deal with this
problem do exist, but they either deal with a restricted type of
data, are proprietary and expensive or optimized for a very
specific use. In most cases there is simply no all-encompassing

solution available today.

1.4 Solution Areas = The System
The simple and purpose oriented management of digital data is one
of the biggest challenges currently faced. To solve this problem
you have to examine the specific interests and needs of each of
the following groups:

— Users

~ Business management

- IT specialists/systems

IT industry

The user’s point of view:

Simple, fast, direct - users want to find and read the
information that is relevant to them without paying too much
attention to the details of the technical solution. They don’t
want to be overwhelmed by an endless flow of information, but
they want exactly the data they need for processing and that is
relevant to their specific work area. If you have no CAD software
installed you have no use for an Autocad file. Furthermore, data
must be up-to-date. We all know the problem faced when trying to
retrieve a word document that has been saved under various names
(abc_l.doc, abc_2.doc 2 abc.doc etc.) but without any indication

of the latest version.

14

WO 2006/061251 PCT/EP2005/013314

The business point of view:

The core issue concerning digital cooperation for a company is:
how do we make sure that the right data of the right quantity and
quality are in the right place at the right time? Data has to be
transferred between a company’s organizational units based on
business related rules. This process specific approach has to be
independent of the underlying IT infrastructure -and especially

the storage infrastructure.

The IT point of view:

The “Information Lifecycle Management ITLM” describes the main
requirements of IT systems. Data has to be made available
according to its functional use and relative importance. It is
essential to understand the workflow between single departments
and units concerning data exchange and the quality requirements
for data storage, e.g. availability, speed of access, quality
data such as image resolution etc.. Also, all these requirements
should be reconciled with the total cost of ownership TCO of data
management, i.e. what costs incur to provide.data of the category

X.

For example: A company has to store financial data for several
years due to legal requirements. However, you do not expect that
every single subsidiary needs high speed access to this data at
any given time. Storing this data on tapes, CD-ROMS and the like
is a totally adequate method of archiving it.

A new way of object and data oriented data management can only
be successful if such tools or systems can be smoothly

integrated into the existing infrastructure.

The IT industry’s point of view:

Today the success of new products or new technologies are based
on the coordination with big software producers, ISVs such as
SAP, Oracle etc., and system integrators, Accenture, CGEY,

Bearing Point etc., who recommend the appropriate IT
15

WO 2006/061251 PCT/EP2005/013314

infrastructure needed to solve business problems. Intelligent
data management can be detached from the application itself thus
resulting in leaner applications with a better cost-effective
development process. Data management usually is no longer the
core competence of ISVs, so new features based on this might now
be realized while they had to be cut before due to the high
costs. From the system integrator’s point of view rule based data
management especially with regard to the Information Lifecycle
Management can offer big potentials for professional services. In
such a data management scenario system integrators also attach
great importance to the idea of infrastructure consolidation
concepts and an improved projection of business processes on IT

processes.

The solution system can be summarized in the diagram of Figure 1.
If you look at how these requirements are met today you will find
an overlapping of various markets and solution approaches. There
are different solutions from the point of view of manufacturers
of infrastructure components (above all data storage systems,
operation systems and file systems, databases) and manufacturers
of applications and user softwareN(Content Management Systems
CMS, file management systems FMS, Information Lifecycle
Management Systems ILM or Backup/Recovery Tools and Workflow and
Collaboration Systems).

The diagram of figure 1 describes the overlapping of the

different solution approaches.

2. The Solution

2.1 Extension of the existing filesystem semantics - Database
versus filesystem

Traditional filesystems work with the three categories

directory, file and link, the latter having not more than a

utility function. Due to the strictly hierarchical tree

structure of a filesystem there are unambiguous parent-child-

16

WO 2006/061251 PCT/EP2005/013314

relationships. All parents belong to the category directory.
Children can be a directories or files. A sequence of
directories plus file name defines the path leading to exactly

this file..

Databases, which represent the class of structured data per
definition, follow totally different relationship principles.

Ultimately they address three levels:

1. the physical definition of the structure fitting the
target storage hardware

2. the definition of a logical structure representing a data
scheme (data type, tables and relationships between the
tables)

3. the way of the internal processing (by using triggers,
stored procedures etc.) see suggestions for extendability

of existing filesystems below.

The logical structure dictates the frame and defines e.g. an

w

address dataset and which data types compose such a “new data
type” or table. So-called constraints provide the conditions
of the tables, such as the commitment to certain keys,
compulsory table spaces, validity areas etc.. It is for
example possible to define the validity of a table space
entry: Shall a table space xy always contain a numeric value

or are letters accepted as well? How many characters may it

contain? etc.

Referential constraints provide the relationship between the
tables. While one table contains the names and numbers of
customers, a second table may comprise the addresses. A
referential constraint matches both and delivers finally
customer addresses. Another point is the relationship between

the tables: Are they unambiguous or ambiguous. A typical

17

WO 2006/061251 PCT/EP2005/013314

example: May a customer have more than one address and vice
versa or not? What happens if a part of the address is
deleted? How does this affect other datasets involved? A
database executes the necessary internal checks to meet the
defined referential constraints and is able to deny rule
violations and to block any attempt to save the data on the
storage device. Ultimately, the variety of possibilities is
only limited by the characteristics of the database product,

such as e.g. SQL server, Oracle, DB2 or Informix.

2.2 Attributes extend the filesystem semantics

A filesystem does not go beyond the physical definition of the
first level and only organises the data’s allocation on the
storage device. There is a total lack of an inherent logic
which is comparable to a database’s logic. To balance this
shortfall and transfer the benefits of structured data to the
filesystem principle, SmApper extends the three already
described category types by a fourth type, the so called
attribute.

An attribute acts a) like a file and allows b) a child
relationship to both, a directory and a file plus another
attribute. Therefore a file gains the character of a directory

which collateé attributes - but no files.

The hierarchical directory/file sequence of the filesystem
semantics has been enhanced by an attribute and looks e.g.
like:
Home/gunther/ smapper. docltitle
directory
file
attribute

18

WO 2006/061251) PCT/EP2005/013314

The benefit of this enhanced semantic is the logical grouping
and aggregating of files and attached information especially
in the sense of enhanced metadata. As the grouping
functionality belongs to the native semantics of the (SmApper)
filesystem, these relationships can be maintained atomically.
This means for example that a file can only be successfully

deleted when all related attributes have been deleted as well.

Attributes can be linked with a data type scheme. Referring to
the example above, it can be guaranteed that “title” allows
only letters. Furthermore, it can be determined whether
“title” may contain a blank or that it is limited to a maximum
of 20 characters. This refers directly to the constraint

concept of the database world.

2.3 Virtual folders

By using the concept of virtual folders, it is possible to
combine two methodologies which at first glance seem to be
contradictory: the hierarchical path methodology of a
filesystem and a query language’s algebra of sets. A path
‘simply leads to a single file. However, the search for data
with a specific characteristic or feature provides x results
which are all part of an entity: x € E represents for example
all customers in a selected postcode area E. The virtual
folder allows this kind of query within a filesystem. Here,
the query targets key terms of the attributes instead of
database tables. SmApper uses xQuery as the query language, a
standard of the XML community, which can locate any point in
an XML document. A user generated query finally creates a
virtual folder bundling all files that meet the query
criteria. There is no specific software or knowledge required
to start queries as the query statement can be combined with a

POSIX compatible path.

19

WO 2006/061251 PCT/EP2005/013314

Thus, SmApper gives a structure to unstructured data which
allows a database-like retrieval process. One very important
point of this concept is the integration of the query

procedure into the path.

2.4 Separation of namespace and block code

The following observations require an understanding of the key
terms ‘filesystem’, ‘namespace’ and ‘metadata’ as well as
their context. Filesystems such as the original UNIX
filesystem UFS which was developed in the 1970s, its later
version Berkeley Fast File System FFS which appeared in the
1980s or Microsoft’s proprietary filesystem NTFS are
implemented as operation system OS routines. These routines
manage the directories and files and allocate physical block
storage. Filesystems represent the hierarchical structuring of
what is otherwise an anarchic depository of files while

visualising the system.

Key elements of a filesystem are the so-called namespace and
the allocated block code. Both provide the means to find, read
and write every file. The namespace contains a file’s name and
metadata and directs the way to its physical blocks on the
storage device. The block code handles the physical
organisation of the data bits on the storage device. The term
metadata, as used in the field of information technology IT,
is relatively new. However, the basic principle has been
applied in archives and libraries for centuries to enhance the
description, the categorization and retrieval of information
resources. Speaking in terms of the IT world, the metadata of
a file comprises file name, access rigﬁts, the date of the

last modification amongst others.

Filesystems are not just closed systems, but often integrate

namespace and block code as monolithic blocks. The reason for

20

WO 2006/061251 PCT/EP2005/013314

that can be found in the development of the UFS, the standard
for UNIX filesystems, see [18 - 22] for further reference. As
it had reached its limits, the first version UFS1 was revised
after several years. Along with functional enhancements, the
next version UFS2 separated the code basis for the namespace
part and the block part into two independently operating
instances which can nonetheless be merged. This separation
allowed two major steps: It became possible to carry on with
the semantics of UFS1 while independently optimizing the
physical organisation of the data blocks on its storage
device. Therefore UFS2 still contains the namespace code of
its predecessor UFSl. The block code, however, is handled by a
new filesystem store called Fast Filesystem Store FFS.
Furthermore, this separation makes it possible to replace the
block organisation code at anytime to address specific needs
of a storage device. However the design and implementation of
UFS2 missed one crucial point: OS independence. As a result,
there is no horizontal, “out-of-bound” scalability for the

single tasks of the filesystem.

If the handling of metadata, especially regarding the file
look-up, and the access to physical data blocks—-which define
a file’s content--scaled separately, a granular scalability
would arise which is not possible today. If this separation
happened in such a way that several instances of each code
handler were able to run in separate physical compute nodes,
e.g. server blades, a horizontal out-of-band scalability would
occur. Usually, it is only possible to scale in an “inband”
way by adding new processors because all handling happens
within the 0OS kernel. In other words, SmApper makes it
possible

a) to separate both building blocks of a filesystem and

b) 1link its handlers over an IP-based infrastructure.

21

WO 2006/061251 PCT/EP2005/013314

This ulﬁimately results in a granular, horizontally scalable
filesystem which uses Ethernet as the backplane instead of the

internal bus of a single computer.

2.5 Extendability of the existing filesystem functionality
with plug-ins
The variability and changeability of unstructured data causes
different symptoms when it comes to the management - see the
management challenge chapter above. Islands of information,
lack of knowledge about what, where, how and why data is
stored, data redundancy, security gaps, boundless growfh and
policy violations are the most frequent occurancies. No two
enterprises are exactly the same so that symptoms may vary and

may be more or less pronounced as an example can easily prove.

Today, many companies struggle with the data redundancy
problem. However, the severity of this problem is determined
by the decision regarding when a file i1s redundant and thus
when it could be de-duplicated. De-duplication means
eliminating duplicate and multiple copies of stored data
without losing information such as rights, properties and
access paths. Even 1f a file is just opened and instantly
closed again its metadata is changed; MS Word for example
automatically updates the date and time of the last access.
Although the content has not been altered, the file is no
longer the same due to the adjustment of the metadata. Then
the question arises whether the changes in the metadata should
be reported - e.g. due to privacy or compliance reasons — or
should only the file’s content be the sole criterion. Whether
de-duplication occurs or not depends on the criteria applied

in each case.

At this point it is already evident that there cannot be a
universal key to solving all problems of managing unstructured

22

WO 2006/061251 PCT/EP2005/013314

data. A successful concept for optimising the management of
unstructured data must provide a platform in the form of a
framework which can be created and customised individually to

address an enterprise’s specific, sometimes changing issue(s).

2.5.1 SmApplets

SmApper delivers on this promise with the so-called SmApplets,
deriving from the term Applet. An applet describes a small,
mostly Java-based application that is executed on a compute
target and is subject to particular constraints such as
specific security policies. A SmApplet represents code which
is integrated into the SmApper framework by using the sandbox
methodology. A sandbox is a protected space where software
processes can run without affecting their environment and also
serves as a security measure. The idea behind the SmApplets is
the application of the database modality of ‘stored

procedures’ to SmApper’s extended filesystem.

A SmApplet comprises two components, an executive layer and a
rule-based layer. If a pre-defined event occurs, a pre-defined
action is triggered. To achieve further granularity, this
action can be enhanced by applying a filter to for example a
dedicated date, a user group, a time or a key word. Obviously
this approach is very similar to a database’s stored
procedures: Database vendors provide a programming language
for their product which allows the writing of scripts that run
automatically after being triggered. Within the capabilities
of the programming language, stored procedures are
programmable at will and open up the possibility of extending
the database by a behavior-controlled, automated mechanism.

SmApper makes use of this peculiarity with its SmApplets.

2.5.2 Implications

23

WO 2006/061251 PCT/EP2005/013314

As SmApplets are universal and open, they can form the base
for policies which are definable at will. Having said this,
any action can be executed with and to the ,unstructured data’
which is now structured thanks to SmApper’s filesystem. Taking
business aspects into consideration, the previously
unmanageable data becomes manageable for existing enterprise
business processes—directly within the filesystem. SmApper’s
principal mission is not to write SmApplets but to deliver the
necessary platform and the SmApper filesystem. Independent
software vendors ISV have the opportunity of developing
dedicated plug-ins for specific issues which can be integrated
into the filesystem as extensions, thus making it more
intelligent. One and the same problem varies slightly from
customer to customer and is prioritized differently so that a
solution should be fully customizable. The system is able to
deliver on this as there are no limits to programming and

defining SmApplets.

A SmApplet-based rule engine can solve various problems. Here
are a couple of examples.

1. DeDuplication: elimination of duplicate and multiple
copies of stored data without losing information such
as rights, properties, etc.

2. Migration Services: transparent data movement and
migration as well as intelligent replication

3. ILM: classification of data and selection of the most
economic storage according to the value of data
throughout its lifecycle

4. Secure Campus: correction of rights to enforce security
guidelines and protect corporate values

5. “post It”: virtual attachment of a “Post-It” to any
kind of file without changing it

24

WO 2006/061251 PCT/EP2005/013314

6. Audit Trails: tracking of any changes to files.
Detalled reporting and statistics and automated audits

in real-time help to monitor compliance

2.6 Brief definition of the solution

In order to create a system that integrates all approaches
mentioned above and makes them compliant with the
heterogeneous requirements we assume that in principle the

following solution is needed:
e Ubiguitous data access must be possible.

e The system must be able to understand the contents of the
data and manage it accordingly; it must be possible to
create meta data.

e Rules must be set to manage data on the basis of business
processes.

e The solution must fit perfectly into the existing
infrastructure, it must be scalable and expandable.

The system shall allow data management of the next generation,
namely at the location where the data are stored. Thus the
solution must represent a transparent expansion of the storage
infrastructure and not be just another business application,
e.g. Enterprise Content Management Systems.

The key component of the solution is a layer that allows
business rules to be defined and to directly and easily ﬁap
not only data and meta data, but also their management,

storage location, life cycle and flow.

2.7 Detailed Requirements

In order to fulfill all the requirements for digital data
management discussed here, the following basic solution
requirements (afterwards also called system) must be

reconciled irrespective of the manner of implementation:

25

WO 2006/061251 PCT/EP2005/013314

Administration of Data and Meta Data

¢ The system is designed for unstructured data, that is, for
the administration of files - and not for databases, records
and so on

e Data and its meta data must be treated as a single unit

e It must be possible to separate the access, administration
and modification of data and meta data

¢ Each modification of the data must be reflected in the meta
data and vice versa where feasible and appropriate

e It must be possible to create meta data automatically from
the source data

e It must be possible to create meta data manually, that is by
interaction with the user

e It must be poséible to define which meta data should‘be

created from the source data
¢ The system must be able to ‘learn’ new datatypes at any time

e It must be possible to integrate external datatype-modules
from other datatype specialists into the system (in
compliance with pre-determined syntax and semantics) without
compromising the quality of the whole system

¢ The system must allow datatype conversion and abstraction

e It must be possible to retrieve meta data, or a definable
excerpt from the meta data, via a ‘Query-Language’

¢ Meta data, or a definable excerpt from the meta data, must
be capable of being exported automatically into non-system
environments, e.g. like billing applications, SAP-Systems
etc.

e It must be possible to provide several versions of the same
data — each version clearly distinguishable from another -
and to be able to assign accurately the relative
modifications of this data and meta data, with respect to

content, origin and time.

26

WO 2006/061251 PCT/EP2005/013314

Smooth Integration into existing Environments

e It must be possible to store data in the usual fashion

without mandatory modifications to the client and/or server.
e The system must not impair existing security standards

¢ The system must be scalable in such a way that no existing

Service Level Agreements SLAs are lost or forfeit

e It must be possible to continue to use existing data storage

systems, networks and other infrastructure components

e It must be possible to integrate new technologies, in theory
at least, particularly with regard to storage aspects

e Access to data and meta data must be possible regardless of

location within the framework of the given infrastructure

Virtualization

e Rules must be able to describe which data should be stored

physically at which location and how often

e This physical storage location must be allowed to change
even during the life cycle of the data, contingent upon
definable rules

e The physical storage location must remain discernable for

access

3. Solution Design

3.1 Concept of the Base Types

SmApper focuses on file-based data. At this point, the
construction base type is introduced as a simpler abstraction
of the term file. A base type is most easily comprehended by
borrowing from the object-oriented design approach. According
to this model, a base type is a class with well-defined
properties, that are designated as attributes in the following
sections, and methods. A base type is nothing more than the

logical encapsulation of any file - in theory.

27

WO 2006/061251 PCT/EP2005/013314

Thus, a base type has as its primary attribute the binary
representation of the data contained in the respective file.
Further attributes are, for example, date fields, which
indicate when the data was last accessed or modified and so
on. The methods provided by a base type include, in
particular, the capability to access this binary data, to
modify it and render the respective condition of the data
persistent (in the file). A base type is a logical
construction, which is not made persistent in itself but is
merely a medium of describing a physical file and the methods
which can be applied to it. At this point it should be noted
that the distinction between a file, which is itself only a
logical construction of a file system - in order to classify
the actual physical blocks on the respective secondary storage
system - and the actual physical data characteristics - of the

blocks - has been waived in the following sections.

A base type and its methods and properties depend, therefore,
on the respective file to which this construction is applied
but also, of course, on the capabilities of the fundamental
file system. The actual instantiation of a base type results
in an object with an allocated file. The following will serve
as an illustration of the base type using C++ class, which is

however not fully implemented:

public class base_type {
public:

// con/destruction
base type(const char * filename);
“base type():
//methods
ssize t read(...)
ssize t write(...)

ssize t lseek(...)

28

WO 2006/061251 PCT/EP2005/013314

etc.
private:
// pointer to opaque data stream
void *m_data;
// where is my physical file
const char *m path;
// Filedescriptor
int f£d;

One of the basic requirements of the system is that it
considers data and meta data as a single unit. For this
reason, a new data type 1s introduced on the basis of the
base type known as the smap base type. The smap base type is
an extension of any base type and can be best described using
the term inheritance. A smap base type is derived from a

base type and then adds extra methods and attributes. Thus a
new, autonomous, encapsulated data type is created, which
represents the foundation for all further discussion in the
following sections. Each SmapType has a number of attributes
<0, n>. For example ‘pages’ which could be the number of pages

in an MS-Word document.

Attributes may have base type-intrinsic values abstracted from
the base type or extrinsic freely-defined values. Every
attribute has an explicit qualifier UID and is classified by a
data type. This could be either simple data types like int,
char etc. or complex data types like string, smap base type
etc.. Each attribute possesses a value that corresponds to the
data type as well as additional parameters which describe
further properties of the attribute. One example of the use of
such a parameter is scope=system, which indicates that the
attribute i1s a system attribute that may be read only and not

modified by the user. Moreover, attributes can be constructed

29

WO 2006/061251 PCT/EP2005/013314

hierarchically, e.g. there could be a subtitle in a document
which forms a child-relationship to a title-attribute. A
smap_base type offers methods for reading, setting, numbering

or iterating wvalues.

3.2 Extractors and Converters

As one of its core requirements, SmApper needs to be able to
understand data in form and content in order to allow
customizable decisions on the basis of this information. What
does it mean to understand data in form and content? Well this
will vary from one case to another. In one application context
‘comprehension’ may simply entail extracting the number of
pages of a Word document from its binary representation. . In
another context it may be necessary to extract the titles of

the individual chapters.

Iﬁ a more general sense, data comprehension can be defined as
follows:
1. Two methods are applied to the binary stream:
e data is extracted
e optional: specific function is applied to the extracted
data (=convert)
2. The new data set thus created must conform to a well-known
data type to which well-defined operations can be applied.

3. This data set must be associated with a context.

Figure 2 shows a diagrammatic representation of both methods:
the Extractor and the Converter. As demonstrated in the
diagram, an extractor is a set of extract patterns which
determine how much of which data is to be extracted to which
location within a binary stream. A converter, on the other
hand, extracts data and then applies a function on it. On
closer examination of this diagram we see that an extractor is

a special form of a converter, and is in fact a converter with

30

WO 2006/061251 PCT/EP2005/013314

a null-function per pattern. Thus, extractors are a special

form of converters.

With the assistance of the base types constructions and the
above-mentioned converters and extractors, we are now capable
of examining in greater detail the basic functions that

SmApper offers in the next section.

3.3. SmApper - Basic Functions

Figure 3 demonstrates the basic functions that SmApper
provides. These basics, which will be examined in depth in the
following sections, form the SmApper core system, with the aid
of which the actual modules (or applicafions) can then be
developed. The main tasks of the SmApper System are as

follows:

1. To generate a smap base type out of a base_type by
means of converters and extractors.

2. Access to the smap base_type (the actual file and the
attributes)

3. Additional functions on the basis of smap base types

(rules, actions)

When extractors and converters are applied, the data subsets
generated are assigned to attributes of the smap_base_types
and hence are brought into the correct (is to say definable)
context. The manner in which the smap base type manages its
attributes guarantees the data integrity of the individual
attributes. Or, to put this a different way, this means that
SmApper appends structured data to unstructured data.

Access to the attributes of a smap base type must be possible
by direct means and must, in addition, permit a Query-

Interface in order to locate attribute contents.

31

WO 2006/061251 PCT/EP2005/013314

Rules enable the forming of Boolean Expressions on these
attributes by means of attributes and permitted operators
which show ‘True’ or ‘False’ as a result. Rules access solely
the structured information of the smap_base type thereby
offering the possibility to reach a decision based on the
data. According to figure 3, rules run inbound as well as
outbound. Inbound means that the affected system component
runs in the kernel space of the SmApper (basic) operating
system while outbound means that the scope of the code segment

is user space. Please see Section 4.1 for further information.

In turn, actions enable programmes to be executed on the basis
of events and conditions or rules, in order to initiate

corresponding operations.

Together, rules and actions form the crucial unit enabling
decisions to be reached and actions to be carried out on the
basis of available data. The fundamental lemma, on which
SmApper 1is based and which, in addition, permits a distinction
to other implementations of related problems, reads as

follows:

SmApper guarantees the complete integrity of the

smap_base type. As soon as any modification to the base_type
is made, SmApper displays this automatically for the user
and/or the application programme atomically in the

smap base type. In the same way, any (permitted!)
modifications to the smap base type or its attributes are
automatically as well as atomically displayed in the

base type.

3.4 Network File I/O and Appliance

32

WO 2006/061251 PCT/EP2005/013314

It is one of SmApper’s basic requirements that it must be able
to integrate itself smoofhly into existing infrastructures -
.see the chapter of a brief definition of the solution above.
Moreover, SmApper restricts itself to unstructured data,
meaning file data. In addition, it must be possible to access
the data from any point in the network at any time. These
requirements make it absolutely essential to apply one of the
basic requirements to the implementation as follows,
particularly while taking the detailed requirements into
account, see the chapter dealing with detailed requirements

above:

e SmApper focuses on the Network File I/O

e SmApper must be intégrated %moothly into the Network File
I/0 communication, e.g. CIFS, NFS, DAFS, WebDav.

e This is only possible without modifying the Client/Server
and Storage Infrastructure by installing a Black Box
(appliance) that is integrated “invisibly” into the data

traffic between Storage-Client and Storage-Server.

The diagram of Figure 4 shows these basic reguirements of

SmApper

4. SmApper — the Implementation

SmApper must be able to handle every Network File I/O protocol
for Storage-Clients and for Storage-Servers even every storage
protocol (file and block) must be handled. In addition,
SmApper must have the ability to switch into the communication
between Storage-Client and Storage-Server, in order to
implement its additional functions smoothly. The only
technical alternative which permits such a procedure without
re-inventing the wheel each time and without having to
integrate itself into every imaginable protocol stack, is

known as stacking [2,3,5].
33

WO 2006/061251 PCT/EP2005/013314

4.1. Stacking and VES

Before we can explain the meaning of the term stacking, it is
necessary to define the meaning of VFS. VFS stands for Virtual
File System and stands for a layer, which has become a
standard part of modern operating systems and which enables
the homogenization of access to heterogeneous physical
filesystem implementations. VFS is a term from the Linux
kernel which may be known by a different name in other
operating systems and which, by its nature, is implemented
differently, for example the VNODE-layer under SOLARIS,
however, the purpose of this layer is always the same. When we
talk about VFS in the following paragraphs, we mean the

underlying concept and not the Linux- specific implementation.

A modern operating system must support a wide array of
different file systems: local file systems like NTFS, UFES,
XFS, ReiserFS, VxFS, ext2/3, FAT, CD-ROM file systems, to name
but a few. In addition, there are network file systems like

NFS, CIFS, DAFS, coda and others.

In order that an application does not have to control the
different implementations of the individual file systems, the
operating system core (kernel) abstracts the underlying
physical implementations with the help of the VFS-Layer and
compels the physical FS-implementations to abide by a. set of
pre-defined functions, which may be optionally implemented to
some degree. The VFS-Layer then ensures that each
implementation of the necessary function(s) of the physical
file system is retrieved when accessed [6, 7, 2]. Although the
individual kernel implementations were not developed with the
help of object-oriented language tools, on closer examination
this concept is about Function Overloading which can be easily

demonstrated therefore by Virtual functions. Thus, the VFS-

34

WO 2006/061251 PCT/EP2005/013314

Layer makes a set of virtual functions available, which (can)

then be overwritten by the real implementations.

Stacking constitutes a process that avails itself of the VFS
concept intensively and, in doing so, extends the process. A
conventional VFS implementation primarily allows for a VFS-
Layer that can retrieve N file systems. Stacking, however,
facilitates the retraction of the M VFS-layers as a matter of
principle, in which the VFS-layer at position M retrieves the
VFS-layer at position M-1 and so on until the actual physical

implementation of the underlying file system(s) is retrieved

[47].

Figure 5 illustrates this process showing, that stacking is a
method which allows the expansion of the primarily one-

dimensional VFS process into a multi-dimensional one [4].

A tangible alternative to the stacking concept is the one that
SmApper applies in order to control the problem of smooth
integration in the communication paths between user-defined
Storage-Clients and Storage-Servers. As figure 6 shows,
SmApper applies the stacking process in order to provide the
user/application programme with a virtual file system, which
the user perceives as an actual physical file system. This
virtual file system masks two (in principle n) actual physical
file systems, namely Phys. FS A which, in our illustration,
constitutes the actual path and storage-server the user wishes
to access. Phys. FS B of figure 6 denotes the so-called QZone
(see the section entitled QZone and Caching below) of a

SMAP FS (see section entitled SMAP_FS) where the

smap base type for every relevant file retrieved by Phys. FS A
is represented in terms of functionality, as demonstrated in

the chapter treating SmApper basic functions above.

35

WO 2006/061251 PCT/EP2005/013314

4.2 QZone and Caching

One of the essential basic functions of SmApper is the ability
to generate data subsets out of the original data stream with
the help of the illustrated extractors and make them
persistent as smap_base_ type-attributes using the SMAP FS.
SmApper makes it possible to execute the extraction completely
inbound (that is, while the data stream is being generated or
modified and so on) or outbound. The latter is particularly
important as there are certain extraction procedures which
require too much time to be executed inbound. In this case, or
if specified by the user, the data extraction must be effected
once the I/0 operation has been completed, i.e. in an

asynchronous manner.

According to figure 6 SmApper applies the stacking process in
order to combine all user-defined Phys. FS As with all Phys.
FS Bs (QZone of a SMAP FS) thus guaranteeing the persistent

connection between a base type and a smap_basé_type.

As the extracted data could lead, in connection with rules and
actions (see the section on rules and actions), among other
things, to the physical storage location, the mode of storage
of the original data, the security attributes etc. being
modified, the original file must be buffered in the meantime.
SmApper provides the so-called Qzone (quarantine zone) for
this purpose; this constitutes a physical location which meets
all requirements (availability etc.) and offers, preferably, a

high-performance file system.

The QZone is not only essential in order to permit outbound-
SmApping but offers further advantages, as it can be regarded
as a caching-entity. To wit, SmApper has its own QZone-daemon
which determines the specific time that the actual physical

displacement of the buffered data to its designated

36

WO 2006/061251 PCT/EP2005/013314

destination (target-destination, as defined by the user at the
original I/0) should take place. The parameters for this
decision can be as diversified as with any other I/O operation
on a SmApper system. Moreover, it is of course possible to
displace the data to any other physical locatioh, as the

SMAP FS can restore the connection to the original path at any
time. An example of such a purposely delayed displacement out
of the QZone would arise if the QZone were accommodated on a
Nearline-Storage-System where files could remain until a
proportionately ﬁigh frequency of access requests would make a
displacement/copying to one or more other locations expedient.
Ideally, such a situation would arise within a concept like
the storage grid from Network Appliance, leading to a

. simplified Information Lifecycle Management approach, as the
preliminary storing entities are charged as caching-entities

in the Nearline-Storage of the above example.

4.3 SMAP FS

SmApper has to make the attributes of the instantiated
smap_base_ type object persistent and carry out the procedure
as efficiently as possible. Stacking allows us to execute this
transparently on a base type object in the course of every
permitted access and thus to trace every modification in an
atomic manner. The physical represehtation of the persistent
smap base type object is, in principle, independent of that of
the base type object. This means that, theoretically, every
physical management system (existing file systems, databases

etc.) could be considered for storage purposes.

The reasons why SmApper prefers a file system to a database

are as follows:

e The Stacking-Layer must be located in the kernel of the
selected Appliance-Operating-System. Access to the selected

37

WO 2006/061251 PCT/EP2005/013314

storage management system should take place within the

kernel for performance reasons (so that the data buffer does
not have to be copied back and forth between user-space and
kernel-space) which means that the management system has to
be implemented on the kernel side. This would seem to favor
choosing a file system as they are generally implemented on
the kernel side whereas database management systems tend to

run in user-space.

Attributes may be constructed hierarchically, see chapter
disclosing the concept of the Base Types above. Hierarchies
in databases may be mapped by relations, however,
performance suffers on moving lower down the hierarchy when
SQL normal forms are adhered to. In the same way, the
complexity of maintenance of the database schema increases

cumulatively.

SMAP _FS provides a mechanism (QZone) which allows the
buffering of files (caching), dispatching them to their
target destination only on a well-defined point in time. As
files would have to be treated as B(LOB) in a database,

performance would once again suffer.

Nevertheless, we would like to point out that while it is
technically feasible to draw on a database system as a
storége management system, it does not seem to be
advantageous to do so at this point in time; however, this
aspect may change in the future. One example of an
interesting implementation of a file system ‘on top’ of a
database is Michael A. Olson’s approach which tackles
features like querying and transaction security implicitly
but which seems unsuitable for SmApper with these benchmarks

[12,15].

38

WO 2006/061251 PCT/EP2005/013314

The reasons why SmApper implements its own file system

(SMAP FS) are as follows:

e The file system offered by SmApper must be optimized for so-
called Lookups. This means that any search for a
smap base type or a specific attribute of a smap base type
as the case may be, must be extremely high-performance.
Standard file systems often have to find a compromise
specifically for lookups between the optimized locating of
metadata entries(inodes) and guick access to actual blocks
of data. On the other hand, the SMAP FS stores the attribute
values in the inode itself which leads to much higher
performance but also means that only a pre-determined
maximum size or length of attribute values can be saved.
SMAP FS is based on the assumption that, in accordance with
the Pareto Analysis, at least 80 % of the attribute values
will fall within these pre-determined size limits. In all
other cases, the value within the SMAP FS-Inode refers to
the actual data stream of the original file, which permits a
retrieval of the attribute information but no (SMAP FS-

intrinsic) indexing.

e SMAP FS must permit smap base type objects to be identified
via an explicit path as well as by query using appropriate
attributes. Standard file systems do not implement query
interfaces even though exceptions like BeFS, the BeOS file

system, would seem to prove the rule [17].

e The file system must ensure that the integrity of a
smap_base type is protected at all times, see in addition
the system lemma of chapter disclosing SmApper basic

functions.

39

WO 2006/061251 PCT/EP2005/013314

e The file system must offer triggers, both conditional

triggers (rule based triggers) as well as unconditional.

e The file systems receives additional logic which allows it
to apply extractors and converters to data streams while
these are being written, which should lead to optimal

performance.

The complete design and the implementation description of the
SMAP FS lie well beyond the scope of this technical paper. At
this point, it will be sufficient to establish that SMAP_FS is
an optimized file system which will

e render smap fs type objects persistently available

e protect the integrity of persistent smap fs_type objects

e cnsure the permanent connection between base type object
and smap_base type object

e allow access to the attributes of the smap fs type object
(directly and indirectly by quefy)

e offer a mechanism which buffers the binary representation
of the base type object and later dispatch it to its
static or dynamic target destination

e offer versioning possibilities at file and block level.

4.4 Access to smap_base_types

One of the most important basic requirements of a SmApper
system is access to the extended attributes of the

smap _base type, see the section entitled ‘SmApper - the Basic
Requirements’. As the SmApper systems have to be capable of
being integrated smoothly into existing infrastructures,
access to attributes must occur without any kind of
proprietary protocol and must be based exclusively on

standards.

40

WO 2006/061251 PCT/EP2005/013314

SmApper solves this in a unique fashion by combining two

standards:
e Access via POSIX Standard (by path)

e Access via XQuery/XPath (by query)

Access to a base type occurs via path commands and via the
usual POSIX-API like open, read, llseek etc.. Extended
attributes of the smap base type are treated like individual
files and are therefore also accessible via a (specific) path
command as well as via POSIX-API. The following example will
serve to illustrate this: the title of the original file (an
MS Word document) /home/users/gth/hello.doc was extracted and
saved in the attribute title in the SMAP FS. Access to this
attribute now occurs via the path command

/home/users/gth/hello.doc?//title.

The delimiter serves only as an example here and can be
configured. The path command is specific in our example and
therefore delivers a SMAPFS-file handle when an open-request
is demanded. Finally, of course, the usual I/O operations can
be carried out using this file handle. Should the attribute
allow write-access then a write-syscall will only be
successful when the modifications are also reflected in the
original document (in our example /home/users/gth/hello.doc) -
during an outbound-operation the write-request will be
executed without modification to the original document. Should
the modification to the original document, which, will of
course, not take place until a later date, then fail, the file

would be labeled with the corresponding status in the QZone.
Should the path command not lead to a specific SMAP FS

attribute (suppose, in our example, there were several titles)

the path command would be treated as an access to a directory,

41

WO 2006/061251 PCT/EP2005/013314

in that the individual actual attributes could be treated by

means of iterative access.

The guery capacities of the SmApper namespace can be
illustrated in the following examples, however they act in the
same manner as in the above example (which is, in effect,

nothing more than a very simple query):

e hello.doc?//title[position() != 11:

e this delivers all the title attributes of the hello document
except the first.

e hello.doc?//contains (title[position() == 1],confidential):

e this delivers a file handle back to the hello document,

should the word ‘confidential’ appear in the first title
e hello.doc?//titel[position() == 1]/ subtitle:

e this delivers the subtitle of the first title attribute of
the hello document

The combination of the two standards POSIX, XQUERY enables the
SmApper systems to be integrated smoothly into existing
infrastructures, as the normal file access has not éhanged in
any way. Access to the extended information of the SMAP FS
also takes place using the standard file I/0, the sole change
being the extended path syntax that users, and in particular,
applications must use when attribute access is required. As,
though, this extended syntax conforms to the accepted
standards, its integration should not prove to be a huge

investment for application developers.

4.5 Rules and Actions

Rules and actions form SmApper’s actual compute-layer,
allowing decisions to be made and actions to be taken on the
basis of the extended information included in a smap base_type
as opposed to a base type. Rules offers the possibility of

forming Boolean Expressions using Boolean Operators AND, OR,
42

WO 2006/061251 PCT/EP2005/013314

NOT and datatype-specific operators, for example, ==, !=, <,

>, contains etc.

On the one hand, the attributes of smap base type can be
considered operands, or even, on the other hand, constants
like Literals, time commands like now, today, among others.
Rules constitute SmApper’s very simple model of the decision-
making body. An example for a rule is:

(this file.summary contains "ABC") AND

this file.uid == 1001) ||

(thishfile.size < 2048)

A rule always has access to all smap base type objects which
are located within its scope. There are three ways of bringing
an object into the scope:
1. Implicit: during a file system event, the object
this file is always located implicitly in the scope. This
is the file which led to the trigger event of the rule.
2. By path: a new object can be instantiated in the scope by
a definite SMAP_FS-Path, for example /smap mnt/x.doc?uid
3. By gquery: objects can be instantiated by gquery, see the

chapter entitled Access to smap base types.

In SmApper, rules constitute the authority which decides
whether an Action should be executed or not, and, if so,
whether Action A or Action B should be executed. An Action can
be any event from sending an email, the encrypting of data,
the moving/copying of files within the storage networks, to
access to a SAP system. SmApper even considers the extractors
and converters previously introduced as actions in the

broadest sense.

Owing to the diversity of potential actions, one of SmApper’s

basic requirements 1s that it must allow external, third-party

43

WO 2006/061251 PCT/EP2005/013314

applications to be accepted as actions. In the same way,
SmApper’s second and third basic requirements follow on: it
must ensure that the third-party application can in no way
compromise the operation of the SmApper appliance.
Furthermore, it must be capable of high-performance execution

of actions.

These basic requirements are implemented in one of the core
areas of SmApper’s own operating system, the SmAp-0S, which is
based on FreeBSD. While standard operating systems offer the
concept of processes and threads as lightweight processes,
actions exist in SmAp-0S as a third process abstraction layer,
which can be thought of as ultra-lightweight-processes. This
action .authority operates in a type of Virtual Machine (VM)
within the core of the SmAp-0S. This VM enables additional
security parameters to be determined, for example:
1. max_time: Maximum duration of the action’s execution in
the system
2. max _call depth: How many fork()/exec()- calls are
permitted?
3. max _file desc: How many file descriptors are permitted?
4. mem areas allowed: Access to which memory segments are
permitted (DMA etc.)?
5. max heap, max stack: How large may individual memory
segments be?
6. networking: Which network protocols are permitted?

7. pre-emptable: Can the action be interrupted?

However, the VM does not simply enable the performance of the
actions to be determined, in order to achieve a higher level

of security. The VM also provides a separate protected address
room, which severs standard processes (system programmes etc.)
and the kernel from actions. Should an action crash, then, in

a worst case scenario, it would only affect itself and other

44

WO 2006/061251 PCT/EP2005/013314

actions but not the rest or the core of the SmApper system.
Moreover, the separate address room provides the capacity fo
more efficient Context-Switching and for guicker process
creation (no more memory areas, which have to be copied etc.
As the SmAP-0OS now recognizes the concept of action processe
in addition to standard processes and real-time processes, a
more granulating scheduling is possible, again leading to

higher (or better adapted) performance.

In SmApper, rules and actions can be combined in a very simp
put unique way, by using the concept of conditional cloning.
With UNIX operating systems programmes are carried out in tw
stages: firstly, by calling up one of the fork() system call
(vfork(), clone() and so on) followed by one of the exec-
system calls. Forking creates a copy of the programme which
currently running in memory while the exec—-call loads a new
programme in the memory which can be carried out. UNIX
derivates, in particular BSD and Linux, have implemented
extremely efficient ways to start a proéramme(=process
creation) and yet this step still remains one of the most
expensive services offered by an operating system. SmAppers
conditional cloning allows the kernel to evaluate a rule
before calling up the fork() —syscalls and, depending on the
result, to execute the forking plus all the ensuing steps or

not.

In order to allow this connection, SmApper has the capacity
load pre-compiled rules into the kernel, where they can be

connected with actions via Mapping Tables. This allows, for
instance, an application to be started at any time but only

when the rule has been complied with will it be carried out

r

)

S

le

@]

S

is

to

without even causing serious additional cost to the system. A

second means of establishing this connection 1is by calling up

the SmApper-specific fork if()-syscall (instead of the fork(

45

)_.

WO 2006/061251 PCT/EP2005/013314

syscalls) which contains the rule-context as a standard

parameter.

To summarize, SmApper permits the working or connection of

rules and actions at the following junctures:

1. Rule-/Actionframework: A daemon in the user space which is
available as a listener for events und pairs rules and
actions up. Events may be file system events or timerbased
events.

2. Conditional cloning: Carried out in the kernel, it allows
a rule-preprocessing before the forking and may either be
executed by successful action to rule mapping after a
standard-fork() or by a dedicated call of a fork if()-

syscall.

5 Applications

5.1 Features

The following is a list of technical features which a SmApper
appliance itself provides partly by means of system
implementation as shown in section of chapter the SmApper
implementation and partly by means of additional applications
(actions, rules etc). This 1list is not necessarily complete
but will indicate some of the possibilities available when

using SmApper.

Versioning: Versioning allows the user to create automatic
versions of a file. Essentially, SmApper offers three methods
of versioning:

- complete (each file is a completely new file including its
meta data, see WORM),

- modifications (only the modified blocks are saved) and

~ meta data (there is only a physical data file which always

corresponds to the last information; however the SMAP FS

46

WO 2006/061251 PCT/EP2005/013314
)
retains the attribute information of older versions as

read only) .

Semantic file access: This refers to the query-feature in
SMAP FS. The user is no longer only capable of accessing his
files by path but also by queries to the attributes of the
smap_base type objects.

Context sensitive security: All the attributes of a
smap_base type object may have different security levels. This
means that, for example, a user can see the title of a certain

document but may not read the contents.

Hidden files / parts of files: Depending on context-sensitive
security, it is also possible to make files, parts of files or
even whole directory trees invisible to certain users or user
groups. This would give executives, for instance, much higher

security levels when storing sensitive information.

Implicit copies: SMAP FS enables n copies of a file to be
created and maintained easily, even in different destinations

or file systems.

Conversions: n converters can be defined per scope. This
means, for instance, that an incoming TIFF file can be
converted automatically into a JPEG, or a thumbnail and a low-
resolution preview can be created. When all these new,
converted files are added to the original smap base type using
'attach', SmApper automatically reflects every modification to
the original file in the converted extracts. Further examples
of automatic converters include compression algorithms (ZIP

etc.) and encryption algorithms.

47

WO 2006/061251 PCT/EP2005/013314

Alerts/Notifications: The (rule-based) triggering function in
SMAP _FS allows every user and/or programme to be notified
automatically by alarm, message, text-message, email and so on
regarding any form of file access. This may be relevant for
security reasons but may also be an advantage as a workflow

feature or serve to relieve the system administrators.

Statistics: SmApper allows almost unlimited statistics to be
recorded via File I/0. Using this tool, it would not only be
conceivable to measure when and how often a particular file
was opened or modified but also which parts of it were
affected. Moreover, it would be possible to keep track of
accessing clients in order, for instancé, to acknowledge a
storage location which.does not correspond to user patterns
and therefore seems disadvantageous. Also analysis could be
made which would permit an evaluation of data to be performed
under the heading ,What does it contribute to the net product

of the company?’.

Réplication: Following on from implicit copies, replication
means that SmApper enables rule-based replications to be
carried out at file as well as block level. A useful
replication would mean for example that a file is replicated
automatically in a storage location which is more in keeping
with user patterns, in order to increase performance (see

Statistics).

Distributed data: As the SMAP FS cancels the direct connection
between logical file access and physical file location
permanently using the stacking layers, files or parts of files
can move within a storage grid in a rule-based way. In other
words, this capability merges the caching and storage

components which, until now, had been treated separately.

48

WO 2006/061251 PCT/EP2005/013314

Virtual directories: Using SMAP FS, files which are physically
located in completely separate tree structures or even
different file systems can be logically displayed as though
they are in one directory. To give a practical example, these
could be directories for project groups or virtual company

teams

Content integrity: SMAP FS safeguards the integrity of all
attributes of a smap base type object, from system-specific
attributes to user-defined attributes. This allows a file to
be given additional information, whose life cycle is equally

linked to the file as its contents.

Several file views: Using the capacity to extract and convert
data and then add it as an attribute (or an attribute object)
to the original file, it is possible to allow several ways of
viewing a file. For instance, a user could preview a CAD
document without having installed the CAD application.
Newspaper headline editors would be able to view the headline
only of a story without having to struggle with the rest of it
and even to modify it without needing the full editorial
system. As a further variation, there could be a network-
specific or even device-specific view of a file. A PDA for

example could get a lower resolution than a conventional PC.

, Combining of file parts: It is no problem at all to combine
several fragments of different files and combine them to
create a new file with SMAP FS. For example, it would be very
simple to write all the titles of Word documents in a new

document.

Audit trail: Using the versioning feature, it is possible to
show who modified what and when, at the binary data level as

well as at attribute level.

49

WO 2006/061251 PCT/EP2005/013314

Conditioned ACLs: SMAP FS allows not only rigid user/groups
entitlements to be assigned but also rule-based access rights.
One example of this is that a particular file may only be read
and modified by User Y on Day X. Only after 10 p.m. are all
users permitted to read the document. An embargo function for
product launches or for news items, which are subject to a
time blackout, for instance, would be feasible using this

feature.

Implementation of digital workflows: This means that SmApper
allows different stations in a file’s life cycle to become
capable of being automated. News wire pictures, for example,
which are sent to a publisher, could be processed
automatically and directed to the appropriate photo editors;
when they are finished, the pictures could be automatically

transferred to the repro directory and so on.

Shared task automation: Shared tasks include the printer, fax,
tape drives, CD writers, archives, microfilm areas etc. The
sending of data to these devices can be managed under rule-
based conditions which is equivalent to an intelligent,

adaptable spooler.

Multilingual feature: Documents or parts of documents can be
translated automatically and, using the “Several views per
file” feature, can even be opened in the appropriate language,

based, for instance, on the Client-IP address.

Scheduled tasks: Scheduled tasks allow all the above-mentioned
features to be carried out at any, pre-defined point in time
and not only “On demand”, that is, when File I/O has taken

place.

50

WO 2006/061251 PCT/EP2005/013314

Storage virtualization: SmApper is an implicit storage
virtualizer, meaning that n storage devices can be concealed
behind it. However, these devices can be perceived in a
different form, as m devices, by the user. Storage devices can
be combined in a rule-based fashion or may be connected

statically.

5.2 Modules
The following section introduces the core modules, which
SmApper offers in the form of feature packages. Feature
packages mean an interaction of features as presented in the
previous section. However, each module contains additional
tools and topics, which are only implemented within the
context of the module, e.g. configuration clients,
administrative clients etc.. The individual modules are as
follows:

¢ Information Lifecycle Management (ILM)

e Security

e Data management

o Workflow

Information Lifecycle Management (ILM)

The purpose of the module Information Lifecycle Management
(ILM) is to enable several physical storage systems (file
servers, local drives, (i)SANs) to be combined into logical
units and to be presented to the user as such, namely as “new”
storage resources. Moreover, it should facilitate a decision
based on rules regarding the location at which each file is to
be stored. Furthermore, it will allow the system to review
even in retrospect whether file X, which was stored at time y
in location z, should still be stored there at a pre-defined
point in time or whether fundamental parameters have been

modified, demanding a new decision. This module hereby allows

51

WO 2006/061251 PCT/EP2005/013314

the user to employ his storage infrastructure in the most

efficient and economical manner.

The factors which are of influence to this decision process
are the following:

e disk utilization

e proximity to user (latency)

e share access speed/user (stats)

. costs per MB

e storage technology

e security level (depending on whether the drives are

mirrored or not etc.)

fn order to be able to describe terms iike costs per MB,
security level etc. reasonably clearly , SmApper introduces
its own Device-Description-Language which allows
infrastructure elements managed or addressed by SmApper (hard
drives, printers, facsimile machines, CD writers, file servers
etc.) to be defined, this definition to be deposited in

SMAP FS where it is re-used as an object for ILM decisions. An
interesting approach, which deserves to be examined in greater
detail at this juncture, is presented in the technical paper
entitled “File Classification in self-storage-systems”. [15].
This approach assumes that the storage infrastructure
components are self-administering, self-configuring and self-
tuning, and are capable of not only describing and recording
statistically the behaviour patterns in the utilization of the
data stored on them but also of predicting them. This approach
would lead to documents being automatically classifiable,

which would bring supplementary facilitation in ILM concepts.

Security:
In its standard form, SmApper only skirts the subject of

security (that is, without the security module) and only then
52

WO 2006/061251 PCT/EP2005/013314

in as much as the security mechanisms of the fundamental
storage infrastructures are used, their results being binding
for SmApper. The security module provides SmApper with a more
thorough, more finely granulated data security mechanism. On
the one hand, this means that in this case SmApper has to
understand external security mechanisms (particularly Active
Directories and NIS/NIS+). On the other hand, most of the
features discussed in the previous section (context sensitive
security, hidden files/parts of files, alerts, conversions
etc.) allow a range of combinations of additional security
features, which is difficult to be achieved in this degree of

automation without SmApper.

Data management:
Under the heading of data management, we consider the
following topics:

e conversions

e versioning

¢ multilingual feature

e several views of a file

The goal of data management is to simplify to a large extent
the actual management of unstructured data via automation

using the aforementioned feature packages.

Workflow:

The purpose of the module 'Workflow’ is to describe‘the
digital lifecycle of a file, the relevant conditions, events
and rules and automate it as good as possible. This module is
specifically designed to replace so-called “Polling Daemons”
(which track directories according to input and then take
certain actions) but it is also designed to replace existing

spooling systems (for printers, file servers, burning

53

WO 2006/061251 PCT/EP2005/013314

processes etc). A further use for this module is to permit a

connection to a groupware environment.

6. Conclusion

6.1 Related Topics

When it is a question of research and possible methods of
resolution “Management of unstructured data using structured
meta data” is a very broad field. This section attempts to
demonstrate the basic direction of the various approaches to
the topic which are generically related in subject matter to
SmApper while, at the same time, offering a brief demarcation

to SmApper.

The first method of approach is based for the most part on the
concept of the so-called Semantic File Systems written by
Gifford et al [11]. In the same way as SmApper, the Semantic
File System allows data to be extracted via freely defined
programmes by means of so-called transducers, then to be saved
as Key Value Pairs and finally to be recalled using the query
concept of the virtual directories. Gifford’s approach enables
an indexed meta data structure to be set up parallel to the
original file system. The primary differences between the

Semantic File System as opposed to SmApper are as follows:

e it is implemented as a NFS file system, meaning that no
heterogeneous landscapes are possible (as opposed to the
VFS SmApper approach)

e it is implemented as software, meaning that maintenance
and support appear to be more complex when compared to
the SmApper appliance approach

e Semantic File Systems only permit intrinsic attributes
and therefore no additional, freely defined attributes
unlike SmApper

e attributes are always read only

e no actions, no rules

54

WO 2006/061251 PCT/EP2005/013314

e no specialized file system making meta data persistently

high-performance

¢ no meta data hierarchies

e only strings and integers are permitted as meta data
types

e the software runs in userspace resulting in lack of

performance in high-performance enterprise applications.

Based on Gifford et al, the so-called hierarchy and content
approach [13] shows the extension of the Semantic File Systems
concept in the sense that query results no longer provide
virtual directories but actual physical directories which can
then be modified by the user; although this allows for a high
degree of flexibility it also involves different challenges as
a result of inconsistency. This latter approach differs to the

same extent from SmApper as Gifford et al. does.

Sedar [14] presents a further, interesting alternative in the
form of a new file system as a storage location for meta data
and data by introducing the concept of semantic vectors. The.
aim here is to optimize the storage requirement of similar
blocks/files using semantic hashing. This approach appears to
be very interesting for future reference even though, at the
time of publication, it seemed to have a long way to go before
the implementation is realizable. The same is true of Gifford

et al as opposed to SmApper.

A further related concept to;thé SmApper paradigm is that of
the semantic web. [8, 9] The background of the semantic web
concept is best explained in the following quotation from the
article ‘The Semantic Web’ in the Scientific American: “.. The
Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation...” [8] The

55

WO 2006/061251 PCT/EP2005/013314

Semantic Web is based on the Resource Description Framework
(RDF), which, integrates a variety of applications, in
particular XML. The authors analyze the advantages and
disadvantages of using XML or XML/RDF as a description of the
smap_base type attributes but this has no fundamental bearing
on the whole concept. Thus the Semantic Web approach is not a
rival concept but could instead be viewed as synergetic to

SmApper, see also [16].

One highly interesting approach which could also lead to an
improvement in data management is the Storage Grid approach
followed by Network Appliance [10]. Storage Grid will be able
to aggregate physical storage devices in a logical way,
packaging them accordingly in front of the user - the whole
procedure independent of protocols, technology and even
physical locations. This concept could even make classical
storage virtualization solutions obsolete. At present,
however, only one manufacturer seems capable of realizing this
concept, namely Network Appliance, and even then it is merely
a concept which will be realizable solely by using the
equipment of that one manufacturer, though this could of
course change in time. From the SmApper viewpoint, Storage
Grid is an additive concept as storage virtualization is not
merely one of the core features of SmApper but in fact
imperative for SmApper to be able to implement its features.
On the contrary, SmApper allows to unleash the real power of a

grid.

There is a multitude of (particularly commercial but also open
source) applications, which reproduce parts of SmApper’s
functionality. Of particular note are Content-Management-
Systems, Groupware-Systems, ILM—Systemé as well as extended

storage concepts. To date, however, the authors are not aware

56

WO 2006/061251 PCT/EP2005/013314

of any concept that is capable of combining the advantages

outlined in the section entitled ‘What makes SmApper unique?’

6.2 What makes SmApper unique?
The uniqueness or innovation of SmApper can be considered from
two sides:

1. From an abstract solution oriented point of view

2. From a technical point of view

When it is a question of solution orientation, figure 7 will
help to demonstrate the innovative nature of the concept.
According to this Figure SmApper bypasses all layers from the
physical representation to information as the only meta data
solution. In contrast to all the other comparable state-of-
the-art solutions we have looked at, SmApper does not simply
focus on one of the two lower layers (physical data/logical
data) but also helps to bridge the gap between logical data
and information as such. SmApper achieves this by systemically
integrating its new data types (smap base types) by means of
rules and actions that although syntactically and semantically
defined, can be freely selected. This is the missing factor,
which we fail to find at all in any of the approaches

discussed here.

Or, in other words, figures 8 and 9 help to grasp the paradigm
shift made possible using SmApper. While, at present, physical
access to files (I want file X) and logical access (I want all
files which are important at this point in time and which I
have not yet read) run separately from one another, logical
access even having to be translated into physical access first
of all by a compute-layer (= application), SmApper’s namespace
concept by path/by query enables physical and logical access
to be executed simultaneously in a single standard-compliant

file-descriptor. Moreover, SmApper integrates the compute-

57

WO 2006/061251 PCT/EP2005/013314

layer into the access transaction by means of rules and
actions in such a way that it runs during access, or inbound,

which i1s also innovative.

Technologically speaking, it is primarily the symbiosis of
existing or similar models and their refinement, extension and
supplementation. Conceptually, SmApper can be defined as a
modified, enhanced semantic-file-system approach, which has
been extended by object-oriented data type integrity, access
methodology and persistence on the basis of stacking, whereby
the atomically guaranteed correlation between data and meta
data appears innovative. In addition, SmApper lays down a rule
and action model in order to be able to carry out decisions
and actions with these datatypes in a well-defined framework.
It is also a completely new idea to ihtegrate these
technological approaches in their entirety in a Blackbox-
Principle (appliance) in order to guarantee the end user
maximum simplicity and the ability to retain the existing

infrastructure.

In addition, contingent on its goal of managing enterprise
data, SmApper is streamlined for performance by its design and
its implementation. Every relevant, I/O—speci%ic part is
carried out in the kernel of the selected operating system.

Even parsing in the SMAP FS can be executed in the kernel.
Figure 9 shows how SmApper combines logicai and physical data

access and allows inbound computing during the access process.

6. 3 SmApper architecture and filesystem
The SmApper architecture builds a transparent, three-tiered

layer between the compute world and the storage network world.

58

WO 2006/061251 PCT/EP2005/013314

The architecture of SmApper is shown in the diagrammatic

representation of figure 10 in more detail:

1. vSpace
vSpace is the layer beneath the compute world. The term means

volume space and defines a rule-based volume manager.

2. nSpace/ aSpace
The nSpace layer represents the namespace part of the
filesystem and the application space, the location of the

SmApplets’ application framework.

3. iSpace

iSpace stands for information space and is split into iSpace B
and iSpace F. iSpace B is the block handler of a filesystem.
iSpace F makes it possible to lay a block code emulator over
an existing filesystem to simulate block access although a
filesystem is acting at the back-end. This trick provides a

seamless integration even with existing filesystems.

SmApper s vSpace or Volume Space controls the communication
between storage clients and storage servers which uses various
protocols such as NFS or WebDAV. vSpace implements a Virtual
Filesystem VFS framework which operates on the basis of the
so-called stacking methodology. A VFS provides homogeneous
access to virtually m heterogeneous filesystem
implementations. Stacking allows the parallel deployment of
virtually n VFS layers and thus controls the so-called data
path by switching synchronously or asynchronously the
transitions between the single VFS layers and therefore
indirectly the physical filesystem implementations. Lock and
Transaction Services ensure data integrity and transaction
execution. The layers “Name Space” and “Information Space”

" reflect SmApper s physical and logical separation of namespace

59

WO 2006/061251 PCT/EP2005/013314

and block handling. Each nSpace represents the namespace part
of a filesystem, while each aSpace represents the
corresponding SmApplets’ application and rule framework which,
as plug-ins, can extend the existing filesystem functionality.
Bach iSpace B represents a filesystem’s block handler, whereas
each iSpace F lays a block code emulator over an existing
filesystem thus simulating block-based access. Hence, SmApper
achieves seamless integration even with existing filesystems.
Thus, based on these three layers, SmApper is able to deliver
a distributed networked filesystem which is customizable and

extendable and uses enhanced filesystem semantics.

6.4 Challenges
The primary challenges in the further development of SmApper
can be divided into two groups:

1. Appliance

2. Software development

Appliance:

When the topic of appliance is involved, even the choice of
adequate hardware is a challenge in itself. The designing,
carrying out and testing alone of test and benchmark scenarios
in order to identify key performance criteria, whether for
small or large-scale enterprise operations, is highly complex.
The hardware should be modulated according to these results.
At the moment, SmApper is developing its prototypes on an
INTEL SR2300, a 2U-OEM-Server with a E7501-Motherboard, two
Xeon processors and 2 GB of memory. Further tests are required
to determine whether a concept based on serverblades would be

more adaptive to scaling performance levels in the long-term.

Software development:

60

WO 2006/061251 PCT/EP2005/013314

The greatest challenges within the framework of actual

software development are:

e time

e complexity of the kernel modules

e transaction security: what is the meaning of ‘atomic’ in the
scope of SmApper and how is this safeéuarded?

e development of parsers (specifically in badly documented

formats, e.g. MS Word formats higher than Word97)
e complexity in the development of a file system in general
e performance and stability of SMAP_F'S
e distributed SmApper appliances

e actions and rules: how is the stability of the whole system

safeguarded when carrying out the User-Code?

The illustration of Figure' 9 represents graphically SmApper’s
fundamental features once again as a tool to monitor and

control unstructured or semi-structured digital packs of data.

In the context of the description of an implementation example
according to the present invention the square brackets refer

to the following references:

[1] School of Information Management and Systems at the
University of California at Berkeley, How much
Information? 2000,
http://www.sims.berkeley.edu/research/projects/how-much-
info/index.html, (2000)

[2] S. R. Kleiman, Vnodes: An Architecture for Multiple File
System Types in Sun UNIX. USENIX Conf. Proc., pages 238-
47, Summer 1986.

[3] Erez Zadok, Jason Nieh, FiST: A Language for Stackable
File Systems, USENIX Technical Conference, June 2000

61

WO 2006/061251 PCT/EP2005/013314

[4]

[11]

[12]

(14]

Erez Zadok, Ion Badulescu, Alex Shender, Extending File
Systems Using Stackable Templates, USENIX Technical
Conference, June 1999

Erez Zzadok, Ion Badulescu, A Stackable File System
Interface For Linux, LinuxExpo 99, May 1999

Wolfgang Mauerer, Linux Kernelarchitektur Konzepte,
Strukturen und Algorithmen von Kernel 2.6, Carl Hanser
Verlag, Minchen, Wien, 2004

Robert Love, Linux Kernel Development A practical guide to
the design and implementation of the Linux kernel, Sams
Publishing, Indianapolis, 2004

Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic
Web, Scientific American, May 2001

W3C Semantic Web, http://www.w3.0rg/2001/sw/

Network Appliance, Inc;, Storage Grid Architecture,
http://www.netapp.com/news/press/2003/20031104.ppt, Slides
10-12, 2003

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, James
W. O'Toole, Jr., Semantic File Systems ACM Symposium on
Operating Systems Principles archive, Proceedings of the
thirteenth ACM symposium on Operating systems principles
table of contents, Pacific Grove, California, United
States, Seiten 16 - 25, 1991

Michael A. Olson, The Design and Implementation of the
Inversion File System, USENIX Technical Conference,
January 1993

Burra Gopal, Udi Manber, Integrating Content based Access
Mechanisms with Hierarchical File Systems USENIX Technical
Conference, February 1999

Mallik Mahalingam, Chungiang Tang, Zhichen Xu, Towards a
Semantic, Deep Archival File System USENIX conference on
File and Storage Technologies, 2002, Monterey, CA, USA.
Michael Mesnier, Eno Thereska, Gregory R. Ganger, Daniel

Ellard, Margo Seltzer, File classification in self-*

62

WO 2006/061251 PCT/EP2005/013314

[19]

[20]

[21]

[22]

storage systems, First International Conference on
Autonomic Computing, NY, May 2004

Sabin-Corneliu Buraga, An XML-based Semantic Description
of Distributed File Systems, RoEduNet International
Conference, Iasi, June 2003

Dominic Giampaolo, Practical File System Design with the
Be File System, Morgan Kaufmann Publishers Inc., (1999)
Marshall K. McKusick, George V. Neville-Neil, The Design
and Implementationhof the FreeBSD Operating System,
Addison-Wesley Professional, 2004

Marshall K. McKusick, William N. Joy, Samuel J. Leffler,
Robert S. Fabry, A Fast File System for UNIX, University
of California, Berkeley, USA, 1984

Storage Networking Industry Association, Common Internet
File System (CIFS) Technical Reference, www.snia.org, 2002
Sun Microsystems Inc., The NFS Distributed File Service,
NFS White Paper, 1995

Andrew S. Tanenbaum, Modern Operating Systems, Prentice

Hall, 1992

63

WO 2006/061251 PCT/EP2005/013314

Patent Claims

1. A process or a method of managing unstructured or semi-
structured digital data in a file system, characterized
in that
it is functionally extended by providing a framework
for furthér external logic to be inserted.in order to
modify the filesystem’s behaviour and /or
a structure is imposed onto unstructured or semi-
structured data in real time by enhancing existing
namespace semantics and/or
metadata and data are processed independently by
physically and logically separating namespace and block

handlers.

2. A process according to claim 1, characterized by the
fact that when data is accessed, logical access and
physical access are executed jointly, whereby a
particularly transparent, common access mechanism is

implemented for both types of access.

3. A process according one or several of the proceeding
claims characterized in that logical access is carried

out as access to information by metadata.

4. A process according to one or several of the proceeding

claims which is characterized by the fact that existing
64

WO 2006/061251 PCT/EP2005/013314

filesystem or semantics are enhanced by a concept of

added attributes.

5. A process according to the proceeding claim which is
characterized by the fact that attributes act like
files and allow a child relationship to both, a

directory and/or a file and/or another attribute.

6. A process according to one or several of the proceeding
two claims which is characterized by logically grouping
of files and attached information, especially in the

sense of enhanced metadata.

7. A process according to one or several of the proceeding
claims which is characterized by the fact that this
grouping functionality belongs to the native semantics
of the process allowing these relationships to be

maintained atomically.

8. A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that the process is carried out while preserving the
atomicity of the sum of all partial transactions
regarding all data which is linked to the respective

source data and/or files.

9. A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that at least one attribute is linked with a data type
scheme, allowing the introduction of e.g. constraints,

validity schemes etc..

10. A process according to one or several of the afore-

mentioned claims which is characterized by the fact

65

WO 2006/061251 PCT/EP2005/013314

that attributes are indexed for fast further retrieval,
especially using B-Trees, B+-Trees, Hash-Tables or the

like.

11. A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that arbitrarily pre-definable data subsets are
extracted when accessing unstructured and/or

proprietary structured data.

12. A process according to the afore-mentioned claim which
is characterized by the fact that the extracted data

subsets are stored as meta data in a structured form.

13. A process according to one of the previous two afore-
mentioned claims which is characterized by the fact
that intrinsic and/or extrinsic data subsets are used

to form the respective meta data.

14. A process according to one of the last three afore-
mentioned claims which is characterized by the fact
that meta data is created from arbitrarily pre-
definable data subsets when unstructured and/or
proprietary structured data is read and/or written or

stored.

15. A process according to one or several of the afore-
mentioned claims which is characterized by the facf
that within the execution of the access mechanism a
file path is processed which has been enhanced by a

Query-Interface.

16. A process according to one or several of the afore-

mentioned claims which is characterized by the fact

66

WO 2006/061251 PCT/EP2005/013314

17.

18.

19.

20.

21.

22.

that the Query-Interface used in the extended file path
constitutes an enhancement of a POSIX- or similar
standard in the form of an XQuery-Standard or similar

standard.

A process according to one or several of the afore-
mentioned claims characterized in that a structure is
given to unstructured data by attributes whiéh allows
database-like retrieval, such that the query procedure

is incorporated into the data path.

A process according to one or several of the afore-
mentioned claims which 1s characterized by the fact
that the filesystem 1s extended by external
functionality through plug-ins (called SmApplets).

A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that data is subject to a pre-defined and customizable

rule and action framework.

A process according to the preceding claim
characterized in that this rule and action framework
allows the plug-ins to be executed within the scope of

the filesystem.

A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that this rule and action framework allows the plug-ins

to be executed inbound to the filesystem processing.

A process according to one or several of the afore-
mentioned claims which is characterized by the fact

that these plug-ins allow the filesystem behaviour to

67

WO 2006/061251 PCT/EP2005/013314

be modified and adapted according to the results of the

processing.

23. A process according to one or several of the afore-
mentioned claims characterized in that these partial

stages are triggered by well defined events.

24. A process according to one or several of the last six
afore-mentioned claims which is characterized by the
fact that these partial stages are executed

automatically.

25. A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that several filesystems are stacked on top of each

other.

26. A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that the stacking of filesystem layers is done such
that the sum of all single transactions in each'
sublayer can be treated as a single, atomic

transaction.

27. A process according to one or several of the two
preceding claims which is characterized by the fact
that the different filesystem stacking layers all are

executed simultaneously or sequentially.
28. A process according to one or several of the afore-

mentioned claims characterized in that logical access

and physical access are separated from each other.

68

WO 2006/061251 PCT/EP2005/013314

29.

30.

31.

32.

33.

A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that the separation of namespace and block handlers is
done in a physical, out of band way such that the

handlers interact using a network backplane.

A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that the new physical block handling concepts is

coupled with existing namespace semantics and vice

versa.

A'process according to one or several of the afore-
mentioned claims which is characterized by the fact
that block handling handlers are unified in such a way
that a virtual block layer is introduced which allows
an existing filesystem to be treated as a physical

block device.

A process according to one or several of the afore-

mentioned claims which is characterized by the fact

that this block handling unification paired with the
ease of coupling with different namespace semantics

ultimately is used for a virtualisation of existing

storage environments, particularly SAN and NAS

environments.

A process according to one or several of the afore-
mentioned claims which is characterized by the fact
that it is carried out in an individual unit by using
standardized software and hardware interfaces, without
interference in or modification to an existing

structure.

69

WO 2006/061251 PCT/EP2005/013314

34.

35.

36.

37.

An appliance to process unstructured, digital data in a
data processing installation which is characterized by
the fact that the appliance is designed to implement a
process according to one or several of the afore-
mentioned claims by assigning resources to connect the
appliance to the standardized software and hardware
interfaces of the respective data processing

installation or the respective system network.

An appliance according to the afore-mentioned claim
which is characterized by the fact that it is
integrated as a closed unit into a data processing
installation without interference in or modification to
an existing structure of the same data processing

installation.

An appliance according to one of the previous two
afore-mentioned claims which is characterized by the
fact that the appliance includes resources to encompass
all levels of the unstructured data, from its physical
representation through logical classification to its
information content, the information content being
edited and adjusted to fall within a well-defined

framework of actions and/or decisions.

A computer programme product which is characterized by
the fact that, once imported into the main or working
memory of a data processing installation, it causes the
execution of a process according to one or several of

the afore-mentioned claims 1 through 33.

70

WO 2006/061251 PCT/EP2005/013314

Requirements Solution Area Description
User's « search/find closing the gap between user /
point of view + data subsets data and information front end

« new specific applications

. * workflow
Business * rule-based access distributed cooperation business
point of view * billing system processes
* supervising

» integration in existing

IT- ls'_y'\sﬂtems ILM Back end —
point of view | = TH . virtualization dafapsrg’cf:g;:g“d
* more features
o i 1
IT-Indus?ry. . ;:tser?t?aslsof integration feﬁiris lg}ls
Pomt of view » consolidation revenue s
* mapping IT - business
processes
Figure 1
Client,
Application
Server,
PC etc.
:l—l " Network File I/O
(WebDAV, NFS, CIFS, DAFS)
v .
SmApper System
(Network) File I/O (NFS, CIFS,
DAFS)
< (Network) Block I/0 (SCSI, FCP,
iSCSI)

Storage Network

Figure 4

1/6

WO 2006/061251 PCT/EP2005/013314

1

n

EXTRACT ‘ EXTRACT

PATTERN PATTERN
Extractor
1 n
EXTRACT FUNCTION EXTRACT FUNCTION
PATTERN 1...n PATTERN 1...n
Convertor
1 n
EXTRACT FUNCTION EXTRACT FUNCTION
PATTERN = NOP* PATTERN = NOP
Extractor
Figure 2
INBOUND r OUTBOUND i
: FUNCTIONALITY |
: RULES :
I SMAP_BASE_TYPE ii
V| structurepineo | |
I H
I
BASE I BASE I
TYPE SMAP Py TYPE |
v '
I _ J
EXTRACT —-————————
CONVERT
BOOL-EXPRESSION CODE
RULES | ACTIONS

STRUCTURED SMAP_BASE_TYPES
INFORMATION FUNCTION/PROGRAMS

OUTBOUND

WO 2006/061251 PCT/EP2005/013314
U
_ S
User Process E
read() R
vfs_read()
- stack_fs_read() K
Stack-FS [* VFS E
vfs_read()
l phys_fs_read() R
N
phys. FS E
L

ldisk_read() ‘

Disk

Figur 5

User Process

l

Virtual FS V1
[smap/mark

Phys. FS A
[home/mark

Phys. FS B

[smapfs/mark

Figure 6

3/6

WO 2006/061251 PCT/EP2005/013314

Information
- T SmApper
: Rele- Im- - ! !
: Speed vance | portance Time Enduser :: Rules !
u I Actions I
I I
n it Apps |
I S | U
Logical Data
e A A A " Applications” ~ " T T T T TS
: Metadata | Scope Data Extractions l: SmApper :
I Semantics u Extractors !
: (Search Enaine) |, Converter 1
HAC, ‘o — O)) e .
SFS, .
SEDAR PhyS!Cal Data F SmApper |
— e e e e 1
ete.] : , ! Stacking |
! File System /DB ! Smap_FS 1
[o e P e —— e . e e, v vt s e ot e e -:L ________ H
1
! Protocols :
I . !
L PR PR 2 pr3| (Block)-Devices E
I
I 1
1

R ...Phyéical Ressources

Figure 7

4/6

WO 2006/061251 PCT/EP2005/013314

user
physical logical
access
physical
data metadata
Figure 8
user

' physical + logical
access

compute

data metadata

Figure 9
5/6

WO 2006/061251 PCT/EP2005/013314

NFS
HITPR
CIFs
FiP
WehDAV
shpangt i h}
SyiudTeansaction
K {5 .
| atpaced T ispacars
S Asymeie Tanseotion 2
#1 1L ; i &
| nSpnEce? i iSpeceR? :
Asynedie Hausackon
| ’ mpecel 1 iGpaseBi
COMMS_NSPACE (P) .
£ ' LY l

Event Islonng
et

Fvont listensd
- Evaitt

clsa shin

STy

Gacha
3 “ COMMS_ISPACE (IP)
W [
Block 1 otk D Rlogl 1D Bloek i
-+ Riggh Sysiiz -+ Bingk Sysi + Edtok SysiD + Bionk Sysid
Pah ela Date Mata Bada
& Gifssl Timpstamp Timcstamp
tizta Data teta Data e
| Hata Oad

e o - S A S o A S S o e A O A A S i A S i e I AR AU, M. e AR AU S S e AV A S e e A A o e S AN S S . R A A . i B S S R e SR S S et e S et o e e aim o

e s s o st o o o i o S s 0 i S et 0 2 B o o o o S B o S . S S i, B o ot i, o S o S e o 0 o o i S s . o ik

SCSt
Fibre Channel
iSCSI

Figure 10

6/6

aoedg sumjop

aoedg swepy

ageds uojewou|

INTERNATIONAL SEARCH REPORT

International application No

PC’P2005/013314

A. CLASSIFICATION OF SUBJECT MATTER
GO6F

30

According to Internationat Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

WO 02/17140 A (APPLE COMPUTER, INC)
28 February 2002 (2002-02-28)

1-4,
6-14,18,

page 6, Tine 30
page 7, lines 25-29

page 14, lines 6-8
page 15, lines 14,15
page 18, lines 1-4

page 9, 1ine 1 - page 11, line 24

22-37

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is nol
considered to be of patticular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

'P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered o involve an inventive step when the
document is combined with one or more other such docu-
meﬂ!s, such combination being obvious to a person skilled
in the art,

*&" document member of the same patent family

Date of the actual completion of the international search

14 February 2006

Date of mailing of the intemational search report

21/02/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Bykowski, A

Form PCT/ISA/210 {sscond sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Internztional application No

PCEP2005/013314

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

abstract

column 3, lines 38-46

column 5, lines 64-66

column 8

column 10, line 45 - column 11, line 48
column 14, lines 7-27

column 15

column 16, 1ine 52 - column 17, line 32

Gategory* | Citation of document, with indlc?tlon, where appropriate, of the relevant passages Relevant to claim No.
X US 6 356 863 Bl (SAYLE ROGER ANTHONY) 1-11,
12 March 2002 (2002-03-12) 13-37

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT —
i] International application No
.ormatlon on patent family members PC,P2005/013314
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 0217140 A 28-02-2002 EP 1399848 A2 24-03-2004 -
us 6842770 Bl 11-01-2005
US 2005091222 Al 28-04-2005
US 6356863 Bl 12-03-2002 AU 5782999 A 27-03-2000
EP 1112537 Al 04-07-2001
JP 2002524793 T 06-08-2002
WO 0014632 Al 16-03-2000

Form PCT/ISA/210 (patent tamily annex) (Aprll 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

