实用新型名称

预装式变电站太阳能降温除湿装置

摘要

本实用新型公开了一种预装式变电站太阳能降温除湿装置，包括温湿度控制系统、太阳能电源模块、太阳能控制系统、蓄电池和控制器，太阳能电池板接太阳能控器，太阳能控制器接逆变器和蓄电池，逆变器接温湿度控制系统。本实用新型采用了太阳能这一绿色能源，有着取之不尽，用之不竭，可再生的特点，减少了污染物排放，有利于环境保护和可持续发展，当电网停电或预装式变电站运行时，也能对站内电气设备正常降温除湿，防止凝露，提高了预装式变电站设备的可靠性，保证了电网安全运行。
1、一种预装式变电站太阳能降温除湿装置，包括温湿度控制系统(2)，其特征在于：太阳能电源(1)包括太阳能电池板(3)、太阳能控制器(4)、蓄电池(5)和逆变器(6)，太阳能电池板(3)接太阳能控制器(4)，太阳能控制器(4)接逆变器(6)和蓄电池(5)，逆变器(6)接温湿度控制系统(2)。

2、根据权利要求1所述的预装式变电站太阳能降温除湿装置，其特征在于：温湿度控制系统(2)包括温湿度控制器(9)、降温装置(10)和除湿装置(11)；太阳能电源逆变器(6)接温湿度控制器(9)接降温装置(10)和除湿装置(11)。

3、根据权利要求2所述的预装式变电站太阳能降温除湿装置，其特征在于：在太阳能电源的逆变器(6)和温湿度控制器(9)中间连接有电源切换继电器(7)，电源切换继电器(7)连接市电(8)。

4、根据权利要求3所述的预装式变电站太阳能降温除湿装置，其特征在于：太阳能电池板(3)通过二极管(16)和(17)接到太阳能控制器(4)上。

5、根据权利要求4所述的预装式变电站太阳能降温除湿装置，其特征在于：电源切换继电器触点J₁、J₂接逆变器(6)，J₃、J₄接市电，J₅、J₆接温湿度控制器(9)。
预装式变电站太阳能降温除湿装置

技术领域

本实用新型涉及一种预装式变电站降温除湿设备。

背景技术

目前，公知的预装式变电站降温除湿装置都是靠预装式变电站自身电源，由温湿度控制器检测预装式变电站内部的温度和湿度，当预装式变电站高压开关室温度低于整定值时，开启加热元件升温除湿，达到整定值时，停止加热；当变压器室温度高于整定值时，启动风机通风降温，当温度低于整定值时，停止排风降温；当湿度高于整定值时，同时启动加热和排风，低于整定值时，停止除湿，使预装式变电站在允许的温、湿度环境中运行。这种预装式变电站降温除湿装置存在以下缺点：

一是浪费能源，在预装式变电站对外供电的同时，为降温除湿还要消耗自身一部分电能，不利于节能减排和环境保护。

二是在电网停电或预装式变电站退出运行时，预装式变电站温度降低，潮湿空气容易在预装式变电站内的高压开关设备上凝露，致使绝缘强度降低，通电运行时，容易造成击穿放电、短路等事故，危及设备安全和电网稳定运行。

发明内容

本实用新型的目的是提供一种节能环保，不消耗变电站自身电能且在系统停电或在预装式变电站退出运行时，仍能自动工作的预装式变电站降温除湿装置。

本实用新型采取的技术方案是：一种预装式变电站太阳能降温除湿装置，包括温湿度控制系统，太阳能电源包括太阳能电池板、太阳能控制器、蓄电池和逆变器，太阳能电池板接太阳能控制器，太阳能控制器接逆变器和蓄电池，逆变器接温湿度控制系统。

上述的预装式变电站太阳能降温除湿装置，温湿度控制系统包括温湿度控制器、降温装置和除湿装置；温湿度控制器接降温装置和除湿装置。

上述的预装式变电站太阳能降温除湿装置，在太阳能电源的逆变器和温湿度控制器中间连接有电源切换继电器，电源切换继电器连接市电。

上述的预装式变电站太阳能降温除湿装置，太阳能电池板通过二极管接到太阳能控制器上。

上述的预装式变电站太阳能降温除湿装置，其特征在于：电源切换继电器
触点 J₁ 、 J₂ 接逆变器， J₃ 、 J₄ 接市电， J₅ 、 J₆ 接温湿度控制器。

本实用新型的有益效果一是采用了太阳能这一绿色能源，有着取之不尽，用之不竭，可再生的特点，减少了污染物排放，有利于环境保护和可持续发展；二是在电网停电或预装式变电站停止运行时，也能对站内电气设备正常除湿的特点，防止凝露，提高了预装式变电站设备的可靠性，保证了电网安全运行；三是预装式变电站除湿一般是在温度低时工作，降温一般是在温度高时工作，二者刚好形成互补，提高了太阳能设备的利用率，降低了太阳能电源设备的成本，便于推广的特点。

附图说明：

图 1 是本实用新型电路框图
图 2 是本实用新型电路原理图

具体实施方式

如图 1 和图 2 所示的预装式变电站太阳能降温除湿装置，包括太阳能电源 1 和温湿度控制系统 2 ，温湿度控制系统 2 接太阳能电源 1 ，太阳能电源 1 包括太阳能电池板 3 、太阳能控制器 4 、蓄电池 5 和逆变器 6 ，温湿度控制系统 2 包括温湿度控制器 9 、降湿装置 10 和除湿装置 11 ；太阳能电池板 3 接太阳能控制器 4 ，太阳能控制器 4 接逆变器 6 和蓄电池 5 ，逆变器 6 接温湿度控制器 9 ，温湿度控制器 9 接降湿装置 10 和除湿装置 11 ，在太阳能电源的逆变器 6 和温湿度控制器 9 中间连接有电源切换继电器 7 ；电源切换继电器 7 连接市电 8 ，太阳能电池板 3 通过二极管 16 和 17 接到太阳能控制器 4 上，电源切换继电器触点 J₁ 、 J₂ 接逆变器 6 ， J₃ 、 J₄ 接市电， J₅ 、 J₆ 接温湿度控制器 9 。

本实用新型的电路连接如下：

如图 2 所示在太阳能电池板正极引出线，经防止反充二极管 16 、 17 负极并联后接太阳能控制器①号端子，太阳能电池板负极并联后接太阳能控制器②号端子；储能蓄电池 5 正极接太阳能控制器③号端子，负极接④号端子；逆变器 6 的输入正极接太阳能控制器⑤号端子，输入负极接太阳能控制器⑥号端子；逆变器的交流输出端接市电切换继电器 7 线圈上端和继电器触点 J₃ 上，另一输出端接继电器线圈下端并和继电器触点 J₄ 相连； J₃ 、 J₄ 分别接市电输入端子 8 上， J₅ 接温湿度控制器 9 的电源输入上端，并与 WJ₁ 、 WJ₂ 的旋转触点相连， J₆ 接温湿度控制器 9 的电源输入下端，并与加热器 12 、降湿风扇 13 、 15 、时间继电器 14 下端相连；加热器上端接 WJ₃ 动触头，降湿风扇 13 上端接 WJ₄ 动触头并与时间继电器 14 线圈上端和 JS 延时闭合触点静触头相连；温度传感器 10 、湿度传感器 11 分别接温湿度控制器的温度和湿度输入端子。
本实用新型的工作原理及过程如下:

1. 当太阳光照射到太阳能电池板上时，在光电效应作用下，太阳能电池板输出电能，太阳能电池板正极经过反反充肖特极二极管隔离，进入太阳能控制器的正极输入端，负极并联后进太阳控制器负极输入端。太阳能控制器根据检测到的储能电池和负载状况，控制对蓄电池充电和向负载供电。

2. 与太阳能控制器负载输出端相连接的变电器，将太阳能的直流电源变换为220V50Hz的交流电源，这时，电源变换电器7线圈通电吸合，J₃、J₅、J₄、J₆接通，对温湿度控制器供电。

3. 温湿度控制器根据温度、湿度传感到的温、湿度信号进行判断，当温度低于下限时，WJ₁触头闭合，加热器开始工作，防止凝露，当温度上升到低温整定值时（下限+下限回差），WJ₁触头断开，停止加热；当温度高于上限时，WJ₂触头闭合，启动降温排风扇13，经时间继电器14延时后，启动第2组降温排风扇15，开始排风降温。时间继电器的作用是将风扇13、风扇15分开启动，避免对太阳能电源系统带来太大冲击。当温度下降到上限整定值时（上限-上限回差）WJ₁触点断开，排风降温停止工作；当湿度高于上限时WJ₁、WJ₂同时闭合，加热、排风同时工作，当湿度降至整定值（上限-上限回差）WJ₁、WJ₂断开，加热器、排风扇停止工作。

4. 当遇到长时间阴雨天气时，太阳能电池板不能正常发电，蓄电池放电电压降至下限时，太阳能控制器关闭负载，变电器停止工作，J₃、J₄断开，J₁、J₅、J₂、J₆闭合，接通市电，对温除湿装置供电，保证预装（箱）式变电站降温除湿功能正常运行。当太阳能电池重新受到阳光照射时，优先切换到太阳能供电。根据上述，可有效的实现本实用新型的任务。