发明名称
用于两点调制的数/模转换器的校准方法及两点调制电路

摘要
本发明提供了一种应用于两点调制的数/模转换器的校准方法，该校准方法包括：获取用于校准数/模转换器增益的控制信号的取值范围；利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。相应地，本发明还提供了一种可以实现上述校准方法的两点调制电路。由于本发明采用二分法的方式确定用于校准数/模转换器增益的控制信号的取值，因此可以极大地缩短数/模转换器的校准时间，以及提高数/模转换器的校准效率。
1. 一种应用于两点调制的数/模转换器的校准方法，该校准方法包括：
获取用于校准数/模转换器增益的控制信号的取值范围；
利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。
2. 根据权利要求1所述的校准方法，其中，利用二分法处理所述取值范围并从中确定
所述控制信号的校准输出值包括：
a1) 定义目标值以及根据二分法确定分界值；
a2) 将所述分界值和第一发射数据输入所述数/模转换器后，对分频信号中的时钟进行
统计得到第一时钟数；
a3) 将所述分界值和第二发射数据输入所述数/模转换器后，对所述分频信号中的时
钟进行统计得到第二时钟数；
a4) 计算所述第二时钟数和所述第一时钟数之间的差值得到第一时钟差，比较该第一
时钟差与目标值，并根据该比较结果从所述取值范围中确定包括所述校准输出值的子集；
a5) 重复执行所述步骤a1至所述步骤a4直至从所述取值范围中获得最逼近所述校准
输出值的数值元素，并根据所述数值元素确定所述校准输出值。
3. 根据权利要求2所述的校准方法，其中，根据所述数值元素确定所述校准输出值包
括：
b1) 将所述数值元素和所述第一发射数据输入所述数/模转换器后，对所述分频信号
中的时钟进行统计得到第三时钟数；
b2) 将所述数值元素和所述第二发射数据输入所述数/模转换器后，对所述分频信号
中的时钟进行统计得到第四时钟数；
b3) 计算所述第四时钟数和所述第三时钟数之间的差值得到第二时钟差；
b4) 若所述第一时钟差与所述目标值的绝对值大于所述第二时钟差与所述目标值差的
绝对值，则确定所述数值元素为所述控制信号的校准输出值，否则确定所述分界值为所
述控制信号的校准输出值。
4. 根据权利要求1至3中任一项所述的校准方法，该校准方法还包括：
在利用二分法处理所述取值范围之前，增大压控振荡器的容容管的容值至预定值。
5. 一种两点调制电路，该电路中的数/模转换器与校准模块连接，其中：
所述校准模块，用于获取用于校准数/模转换器增益的控制信号的取值范围，利用二
分法处理所述取值范围并从中确定所述控制信号的校准输出值。
6. 根据权利要求5所述的电路，其中，所述校准模块包括：
初始单元，用于定义目标值以及根据二分法确定分界值；
第一计数单元，用于所述分界值和第一发射数据输入所述数/模转换器后，对分频信
号中的时钟进行统计得到第一时钟数；
第二计数单元，用于所述分界值和第二发射数据输入所述数/模转换器后，对所述分
频信号中的时钟进行统计得到第二时钟数；
比较单元，用于计算所述第二时钟数和所述第一时钟数之间的差值得到第一时钟差，
比较该第一时钟差与目标值，并根据该比较结果从所述取值范围中确定包括所述校准输出
值的子集；
确定单元，用于触发所述初始单元、所述第一计数单元、所述第二计数单元以及所述比
较单元重复执行操作，直至从所述取值范围中获得最逼近所述校准输出值的数值元素，并根据所述数值元素确定所述校准输出值。

7. 根据权利要求5所述的电路，其中：
所述第一计数单元在所述数值元素和所述第一发射数据输入所述数/模转换器后，对所述分频信号中的时钟进行统计得到第三时钟数；
所述第二计数单元在所述数值元素和所述第二发射数据输入所述数/模转换器后，对所述分频信号中的时钟进行统计得到第四时钟数；
所述比较单元计算所述第四时钟数和所述第三时钟数之间的差值得到第二时钟差，并对所述第一时钟差与所述目标值差的绝对值和所述第二时钟差与所述目标值差的绝对值进行比较，若所述第一时钟差与所述目标值差的绝对值大于所述第二时钟差与所述目标值差的绝对值，所述确定单元确定所述数值元素为所述控制信号的校准输出值，否则确定单元确定所述分界值为所述控制信号的校准输出值。

8. 根据权利要求5至7中任一项所述的电路，该电路还包括：
容值调节模块，用于在利用二分法处理所述取值范围之前增大压控振荡器的变容管的容值至预定值。
用于两点调制的数 / 模转换器的校准方法及两点调制电路

技术领域
[0001] 本发明涉及通信技术领域，尤其涉及一种应用于两点调制的数 / 模转换器的校准方法及两点调制电路。

背景技术
[0002] 两点调制是指利用两条不同的调制通路对发射数据分别进行调制的方式。请参考图 1，图 1 是现有技术中一个优选实施例的两点调制电路的结构框图。如图 1 所示，所述两点调制电路包括锁相环 (PLL)、sigma-delta 调制器 (SDM)、数 / 模转换器 (DAC) 以及校准模块。具体地，锁相环包括振荡器 (XTAL)、鉴相 / 鉴频器 (PFD)、电荷泵 (CP)、低通滤波器 (LPF)、压控振荡器 (VCO) 以及分频器 (Divider)。其中，振荡器、鉴相 / 鉴频器、电荷泵、低通滤波器、压控振荡器依次连接，分频器接收压控振荡器的输出信号，分频器的输出信号输入鉴相 / 鉴频器，形成锁相环； sigma-delta 调制器的输出端接收信道数据和发射数据 (发射数据采用数字信号)， sigma-delta 调制器的输出端将输出信号提供给分频器，以控制分频器产生所需要的分频比；数 / 模转换器将发射数据转换为模拟信号后，将模数信号输入压控振荡器，校准模块提供控制信号给数 / 模转换器，该控制信号用于控制数 / 模转换器的增益。

[0003] 如图 1 所示，两点调制电路具有两条调制通路，其中， sigma-delta 调制器和分频器构成发射机的第一调制通路 (下文以 Path1 表示)，数 / 模转换器和压控振荡器构成发射机的第二调制通路 (下文以 Path2 表示)。两点调制电路同时受到该两条调制通路的控制。其中，Path1 在频域上的传输函数具有低通特性，而 Path2 在频域上的传输函数具有高通特性，也就是说，发射数据中的低频分量通过 Path1 进行调制，而发射数据中的高频分量通过 Path2 进行调制。在理想条件下，Path1 的增益和 Path2 的增益应该相等，从而使得发射机在整个频域上的传输曲线等于一个恒值。其中，Path1 的增益由 sigma-delta 调制器的增益和分频器的增益共同决定 (即 Path1 的增益等于 sigma-delta 调制器的增益乘以分频器的增益)，Path2 的增益由数 / 模转换器的增益和压控振荡器的增益共同决定 (即 Path2 的增益等于数 / 模转换器的增益乘以压控振荡器的增益)。在实际情况下，由于 sigma-delta 调制器和分频器采用数字逻辑设计，不受生产工艺等因素的影响，因此，Path1 的增益是可控的固定值；而数 / 模转换器和压控振荡器会受到半导体工艺以及温度等因素的影响，这种影响会造成数 / 模转换器和压控振荡器的增益误差，从而造成 Path2 的增益误差，进而造成发射机在整个频域上的传输曲线为一个非恒值，因此，需要对 Path2 的增益进行校准，使之与 Path1 的增益相等。

[0004] 在现有技术中，通常采用对数 / 模转换器的增益进行校准的方式来实现对 Path2 增益的校准，即，调整校准模块所输出的控制信号，利用该控制信号控制数 / 模转换器的增益，直至数 / 模转换器的增益与压控振荡器的增益的积 (即 Path2 的增益) 等于 Path1 的增益。通常校准模块所输出的控制信号具有一定的取值范围，不同数值的控制信号对应数 / 模转换器的不同增益。目前，采用遍历的方法从控制信号的取值范围中确定该控制信号的最终取值 (下文以校准输出值表示)。举例说明，控制信号的取值范围从 0000000 至 1111111，
数 / 模转换器校准时初始化控制信号的取值为 000000, 并判断 Path1 和 Path2 的增益是否相等，如果不相等则令控制信号的取值递增 1，继续判断 Path1 和 Path2 的增益是否相等，反复执行上述操作直至最终找到校准输出值，从而实现数 / 模转换器的校准。
[0005] 上述校准方式虽然可以准确地校准数 / 模转换器的增益，但是由于采用的是遍历方式，因此校准速度慢，校准效率低。

发明内容
[0006] 为了克服现有技术中的上述缺陷，本发明提供了一种应用于两点调制的数 / 模转换器的校准方法，该校准方法包括：
[0007] 获取用于校准数 / 模转换器增益的控制信号的取值范围；
[0008] 利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。
[0009] 相应地，本发明还提供了一种两点调制电路，该电路中的数 / 模转换器与校准模块连接，其中：
[0010] 所述校准模块，用于获取用于校准数 / 模转换器增益的控制信号的取值范围，利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。
[0011] 与现有技术相比，本发明具有以下优点：采用二分法的方式快速确定用于校准数 / 模转换器增益的控制信号的取值，从而可以极大地缩短数 / 模转换器的校准时间，以及提高数 / 模转换器的校准效率。

附图说明
[0012] 通过阅读参照以下附图所作的对非限制性实施例所作的详细描述，本发明的其它特征、目的和优点将会变得更明显：
[0013] 图 1 是现有技术中一个优选实施例的两点调制电路的结构框图；
[0014] 图 2 是根据本发明的应用于两点调制的数 / 模转换器的校准方法流程图；
[0015] 图 3 是根据本发明一个优选实施例的利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值的方法流程图；
[0016] 图 4 是根据本发明一个优选实施例的根据所述数值元素确定所述校准输出值的方法流程图；
[0017] 图 5 是根据本发明的两点调制电路的结构示意图。
[0018] 附图中相同或相似的附图标记代表相同或相似的部件。

具体实施方式
[0019] 为了更好地理解和阐释本发明，下面将结合附图对本发明作进一步的详细描述。
[0020] 本发明提供了一种应用于两点调制的数 / 模转换器的校准方法。请参考图 2，图 2 是根据本发明的应用于两点调制的数 / 模转换器的校准方法流程图。如图 2 所示，该校准方法包括以下步骤：
[0021] 在步骤 S101 中，获取用于校准数 / 模转换器增益的控制信号的取值范围；
[0022] 在步骤 S102 中，利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。
具体地，在步骤 S101 中，在两道调制电路中，校准模块输出控制信号至数 / 模转换器，该控制信号用于对数 / 模转换器增益的校准，其目的在于使得在两道调制中两道调制通路的增益相同。下文中，将两道调制通路增益相等时控制信号的取值称为校准输出值。通常情况下，控制信号具有一定的取值范围，在该取值范围内，当控制信号取不同数值时，数 / 模转换器相应产生不同的增益。为了获得校准输出值，首先要获取该控制信号的取值范围，进而才能在后续步骤中从该取值范围内确定校准输出值。

在本实施例中，控制信号为二进制数据。为了简便起见，下文中以 DAC_RANGE<4:0> 表示控制信号，以 DAC_RANGE<i>（0 ≤ i ≤ L+1）表示控制信号中第 i+1 位的数据，其中 L 为控制信号的长度。例如，若控制信号为 010000，则该控制信号可以表示为 DAC_RANGE<5:0>=010000，该控制信号的第 5 位可以表示为 DAC_RANGE<4>=1。

在步骤 S102 中，首先利用二分法将控制信号的取值范围划分为两个子集，接着判断该控制信号的校准输出值应该位于哪个子集内，然后将包括该校准输出值的子集作为控制信号的取值范围并重复上述步骤。如此一来，可以逐步缩小控制信号的取值范围，直至从取值范围中确定所有控制信号的校准输出值。

下面，以一个优选实施例对如何利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值进行说明。请参考图 3，图 3 是根据本发明一个优选实施例的利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值的方法流程图。如图所示，该方法包括以下步骤：

在步骤 S200 中，定义目标值以及根据二分法确定分界值。

具体地，首先定义目标值，该目标值用于后续判断校准输出值在控制信号取值范围内的位置。接着，基于控制信号的取值范围，利用二分法确定分界值，将该取值范围分为两个子集，其中，一个子集中的数值元素均大于分界值，另一个子集中的数值元素均小于分界值。

下面，对发射数据采用 GFSK（高斯频移键控）调制为例对后续步骤进行说明。对于 GFSK 调制，下文中将以第一发射数据表示发射数据 0，以第二数据表示发射数据 1。

在步骤 S201 中，将所述分界值和第一发射数据输入所述数 / 模转换器后，对分频信号中的时钟进行统计得到第一时钟数。

具体地，将输入两道调制电路的发射数据设置为第一发射数据（即数据 0），以及将该分界值作为控制信号提供给数 / 模转换器，使两道调制电路开始工作。此时，对压控振荡器的输出信号经分频后得到的分频信号中的时钟进行统计，得到第一时钟数。记录该第一时钟数。

在步骤 S202 中，将所述分界值和第二发射数据输入所述数 / 模转换器后，对所述分频信号中的时钟进行统计得到第二时钟数。

具体地，将输入两道调制电路的发射数据设置为第二发射数据（即数据 1），以及将该分界值作为控制信号提供给数 / 模转换器，使两道调制电路开始工作。此时，对压控振荡器的输出信号经分频后得到的分频信号中的时钟进行统计，得到第二时钟数。记录该第二时钟数。

需要说明的是，在步骤 S201 和步骤 S202 之前需要生成计数窗口，在该计数窗口内统计分频信号所包括的时钟数从而得到第一时钟数和第二时钟数。在一个优选实施例中，
利用晶振输出的参考时钟（该参考时钟的频率为 f_{ref}，周期为 T_{ref}）产生该计数窗口，其中，该计数窗口的宽度 W 等于 $N \times T_{\text{ref}}$，N 为整数。假设压控振荡器的输出信号的频率为 f_{vco}，周期为 T_{vco}，分频比为 M，则压控振荡器输出信号分频后所得到的分频信号的周期为 $M \times T_{\text{vco}}$，计数窗口的宽度应该为分频信号周期的整数倍，因此，可以得到计数窗口宽度与分频信号周期之间的关系如下：

$$N \times T_{\text{ref}} = K \times M \times T_{\text{vco}}$$ 其中 K 为整数。

[0036] 为了得到计数窗口的宽度，需要计算出 N 的值。

[0037] 对上式进行变形可以得到：

$$N \times f_{\text{vco}} = K \times M \times f_{\text{ref}}$$

[0038] 对上式继续进行变形可以得到：

$$N \times \Delta f_{\text{vco}} = \Delta K \times M \times f_{\text{ref}}$$ 其中，Δf_{vco} 表示压控振荡器输出信号的频率误差，ΔK 表示 K 的误差。

[0041] 对上式继续进行变形可以得到：

$$N \times \Delta f_{\text{vco}} = \Delta K \times M \times \frac{f_{\text{ref}}}{f_{\text{vcomax}}}$$ 其中，ΔK_{max} 表示 ΔK 的最大值，Δf_{vcomax} 表示 Δf_{vco} 的最大值。

[0044] 在步骤 S203 中，计算所述第二时钟数和所述第一时钟数之间的差值得到第一时钟差，比较该第一时钟差与目标值，并根据该比较结果从所述取值范围中确定包括所述校准输出值的子集。在本实施例中，若第一时钟差小于目标值，说明校准输出值大于分界值，则缩小控制信号的取值范围，即将数值元素大于分界值的子集作为控制信号的取值范围；若第一时钟差大于目标值，说明校准输出值小于分界值，则缩小控制信号的取值范围，将数值元素小于分界值的子集作为控制信号的取值范围。

[0047] 在步骤 S204 中，重复执行所述步骤 S200 至所述步骤 S203 直至从所述取值范围中获得最逼近所述校准输出值的数值元素，并根据所述数值元素确定所述校准输出值。

[0048] 具体地，当缩小了控制信号的取值范围后，重新执行步骤 S200 至步骤 S203，进一步缩小控制信号的取值范围。如此一来，重复执行步骤 S200 至步骤 S203 可以将控制信号的取值范围缩小至最小，从而获得最逼近校准输出值的数值元素。

[0049] 由于最逼近校准输出值的数值元素是唯一的且通过与分界值的比较得到，因此可以知道，最逼近校准输出值的数值元素与分界值是相邻的关系，也就是说，若判断校准输出信号大于分界值，则最逼近校准输出值的数值元素等于分界值加 1，若判断校准输出信号小于分界值，则最逼近校准输出值的数值元素等于分界值减 1。优选地，还可以进一步对该数值元素和分界值进行验证，以保证获得最为准确的校准输出值。

[0050] 下面，将以一个优选实施例说明如何对最逼近校准输出值的数值元素和分界值进行验证。请参考图 4，图 4 是根据本发明一个优选实施例的根据所述数值元素确定所述校准输出值的方法流程图。
在步骤S2041中，将所述数值元素和所述第一发射数据输入所述数/模转换器后，对所述分频信号中的时钟进行统计得到第三时钟数。

具体地，将输入两点调制电路的发射数据设置为第一发射数据（即数据0），以及将该数值元素作为控制信号提供给数/模转换器，使两点调制电路开始工作。此时，对应压控振荡器的输出信号经分频后得到的分频信号中的时钟进行统计，得到第三时钟数。记录该第三时钟数。

在步骤S2042中，将所述数值元素和所述第二发射数据输入所述数/模转换器后，对所述分频信号中的时钟进行统计得到第四时钟数。

具体地，将输入两点调制电路的发射数据设置为第二发射数据（即数据1），以及将该分界值作为控制信号提供给数/模转换器，使两点调制电路开始工作。此时，对应压控振荡器的输出信号经分频后得到的分频信号中的时钟进行统计，得到第四时钟数。记录该第四时钟数。

在步骤S2043中，计算所述第四时钟数和所述第三时钟数之间的差值得到第二时钟差。

在步骤S2044中，若所述第一时钟差与所述目标值之间的绝对值大于所述第二时钟差与所述目标值之间的绝对值，则确定所述数值元素为所述控制信号的校准输出值；否则确定所述分界值为所述控制信号的校准输出值。

具体地，计算第一时钟差与目标值之间差的绝对值，得到第一绝对值；计算第二时钟差与目标值之间差的绝对值，得到第二绝对值。将第一绝对值与第二绝对值进行比较，其中，若第一绝对值大于第二绝对值，则认为与分界值相比，所述数值元素更逼近校准输出值，因此确定所述数值元素为控制信号的校准输出值；若第一绝对值小于第二绝对值，则认为与所述数值元素相比，分界值更逼近校准输出值，因此确定分界值为控制信号的校准输出值。

如果将执行步骤S200至步骤S203看作是一步校准操作的话，那么获得最逼近校准输出值所需要执行的步数和数/模转换器的控制信号的长度有关。具体地，若数/模转换器的控制信号的长度等于L，则获得最逼近校准输出值所执行的步数等于L。如果将对最逼近校准输出值的数值元素和分界值进行验证的步骤（即步骤S2041至S2044）也看作是一步校准操作的话，那么数/模转换器的整个校准过程所需要执行步数等于（L+1）。举例说明，若数/模转换器的控制信号的长度等于6，即控制信号的取值范围是从000000 至111111，在这种情况下，经过7步即可以确定数/模转换器控制信号的校准输出值，从而实现数/模转换器的校准。

下面，以一个具体的实施例对数/模转换器校准的整个过程（即确定校准输出值的整个过程）进行说明。

首先，获取用于校准数/模转换器增益的控制信号的取值范围，在本实施例中，假设控制信号的取值范围为000000 至111111。

接着，生成计数窗口。在本实施例中，两点调制电路采用GFSK的调制方式，以频率等于f_1和f_2的载波分别对应发射数据中的0和1，其中，f_1或f_2与中心频率f_c之间的频率偏移用\(\Delta f\)表示，那么发射机的最大频率偏移\(\Delta f_{\text{max}}\)等于2×\(\Delta f\)。在本实施例中\(\Delta f=160\text{KHz}\)，\(\Delta f_{\text{max}}=320\text{KHz}\)。为了在每一步校准操作（包括两次计数操作）中两次计数操作为统计第一时
钟数和第二时钟数（或统计第三时钟数和第四时钟数）中达到1%的校准精度，每一次计数操作中两点调制电路的最大频率误差 \(\Delta f_{\text{err max}} \) 为:

\[
\Delta f_{\text{err max}} = \Delta f_{\text{max}} \times 1% \div 2 = 320kHz \times 1% \div 2 = 1.6KHz
\]

[0062] 两点调制电路的最大频率误差是压控振荡器的输出频率，也是相等的，两点调制电路的最大频率误差也就是压控振荡器的最大频率误差，因此，\(\Delta f_{\text{vcomax}} = \Delta f_{\text{err max}} = 1.6KHz \)。在本实施例中，设定分频比 M 为 8，晶振输出的参考时钟的频率 \(f_{\text{ref}} \) 为 16MHz，\(\Delta K_{\text{max}} \) 为 2，由此，可以得到：

\[
N = \frac{\Delta K_{\text{max}} \times M \times f_{\text{ref}}}{f_{\text{vcomax}}^2} = \frac{2 \times 8 \times 16MHz}{1.6KHz} = 160000
\]

[0063] 因此，计数窗口的宽度 \(W \) 等于：

\[
N \times T_{\text{ref}} = N \times \frac{1}{f_{\text{ref}}} = 160000 \times \frac{1}{16MHz} = 10ms
\]

[0064] 接着，利用二分法处理所述取值范围并从中确定所述控制信号的校准时基准值。在本实施例中，控制信号的位数等于 6，因此整个校准过程包括 7 步校准操作，每一步校准操作均包括两次计数操作。下面将对该 7 步校准过程逐一进行说明。

[0065] 第一步校准操作如下：

[0066] 首先，定义目标值 \(\Delta k_{\text{target}} \)，设置分界值 DAC_RANGE<5:0>=100000，并令 \(i=5 \)。

[0067] 接着，执行第一次计数操作。即，设置发射数据为 0 (下文中用 DAC_IN 表示发射数据)，此时，在计数窗口内对分频信号中所包含的时钟数进行积分，得到第一时钟数 \(k_1 \)。

[0068] 然后，执行第二次计数操作。即，设置 DAC_IN=1，此时，在计数窗口内对分频信号中所包含的时钟数进行积分，得到第二时钟数 \(k_2 \)。

[0069] 接着，计算第二时钟数和第一时钟数的差值 \(k_2-k_1 \)，并将该差值 \(k_2-k_1 \) 与目标差值 \(\Delta k_{\text{target}} \) 进行比较，如果 \(k_2-k_1 < \Delta k_{\text{target}} \) 则说明数 / 模转换器的增益偏低，应该增加控制信号的取值，此时保持 DAC_RANGE<\(i \)\>=1 (即 DAC_RANGE<5>=1)，并令 \(i=i-1 \) (即 \(i=4 \))；如果 \(k_2-k_1 < \Delta k_{\text{target}} \) 则说明数 / 模转换器的增益偏高，应该减小控制信号的取值，此时设置 DAC_RANGE<\(i \)\>=0 (即 DAC_RANGE<5>=0)，并令 \(i=i+1 \) (即 \(i=4 \))。

[0070] 第二步校准操作如下：

[0071] 首先，定义目标值 \(\Delta k_{\text{target}} \)，该目标值与第一步校准操作中的目标值相同，重新设置分界值，即设置 DAC_RANGE<\(i \)\>=1 (即 DAC_RANGE<4>=1)。

[0072] 接着，执行第一次计数操作。即，设置 DAC_IN=0，并在计数窗口内记录第一时钟数 \(k_3 \)。

[0073] 然后，执行第二次计数操作。即，设置 DAC_IN=1，并在计数窗口内记录第二时钟数 \(k_4 \)。

[0074] 接着，计算第二时钟数和第一时钟数的差值 \(k_4-k_3 \)，并将该差值 \(k_4-k_3 \) 与目标差值 \(\Delta k_{\text{target}} \) 进行比较，如果 \(k_4-k_3 < \Delta k_{\text{target}} \) 则说明数 / 模转换器的增益偏低，应该增加控制信号的取值，此时保持 DAC_RANGE<\(i \)\>=1 (即 DAC_RANGE<4>=1)，并令 \(i=i-1 \) (即 \(i=3 \))；如果 \(k_4-k_3 < \Delta k_{\text{target}} \) 则说明数 / 模转换器的增益偏高，应该减小控制信号的取值，此时设置 DAC_RANGE<\(i \)\>=0 (即 DAC_RANGE<4>=0)，并令 \(i=i+1 \) (即 \(i=3 \))。
第三步校准操作如下:

首先，定义目标值 Δk_{target}，该目标值与第一步校准操作中的目标值相同，重新设置分界值，即设置 $\text{DAC_RANGE}<1>=1$ (即 $\text{DAC_RANGE}<3>=1$)。

接着，执行第一次计数操作。即，设置 $\text{DAC_IN}=0$，并在计数窗口内记录第一时钟数 k_1。

然后，执行第二次计数操作。即，设置 $\text{DAC_IN}=1$，并在计数窗口内记录第二时钟数 k_2。

接着，计算第二时钟数和第一时钟数的差值 k_2-k_1，并将该差值 k_2-k_1 与目标差值 Δk_{target} 进行比较，如果 $k_2-k_1<\Delta k_{\text{target}}$ 则说明数 / 模转换器的增益偏低，应该增加控制信号的取值，此时保持 $\text{DAC_RANGE}<i>=1$ (即 $\text{DAC_RANGE}<2>=1$)，令 $i=i-1$ (即 $i=2$)；如果 $k_2-k_1<\Delta k_{\text{target}}$ 则说明数 / 模转换器的增益偏高，应该减小控制信号的取值，此时设置 $\text{DAC_RANGE}<i>=0$ (即 $\text{DAC_RANGE}<3>=0$)，令 $i=i+1$ (即 $i=2$)。

第四步校准操作如下:

首先，定义目标值 Δk_{target}，该目标值与第一步校准操作中的目标值相同，重新设置分界值，即设置 $\text{DAC_RANGE}<1>=1$ (即 $\text{DAC_RANGE}<2>=1$)。

接着，执行第一次计数操作。即，设置 $\text{DAC_IN}=0$，并在计数窗口内记录第一时钟数 k_1。

然后，执行第二次计数操作。即，设置 $\text{DAC_IN}=1$，并在计数窗口内记录第二时钟数 k_2。

接着，计算第二时钟数和第一时钟数的差值 k_2-k_1，并将该差值 k_2-k_1 与目标差值 Δk_{target} 进行比较，如果 $k_2-k_1<\Delta k_{\text{target}}$ 则说明数 / 模转换器的增益偏低，应该增加控制信号的取值，此时保持 $\text{DAC_RANGE}<i>=1$ (即 $\text{DAC_RANGE}<2>=1$)，令 $i=i-1$ (即 $i=1$)；如果 $k_2-k_1<\Delta k_{\text{target}}$ 则说明数 / 模转换器的增益偏高，应该减小控制信号的取值，此时设置 $\text{DAC_RANGE}<i>=0$ (即 $\text{DAC_RANGE}<2>=0$)，令 $i=i-1$ (即 $i=1$)。

第五步校准操作如下:

首先，定义目标值 Δk_{target}，该目标值与第一步校准操作中的目标值相同，重新设置分界值，即设置 $\text{DAC_RANGE}<1>=1$ (即 $\text{DAC_RANGE}<2>=1$)。

接着，执行第一次计数操作。即，设置 $\text{DAC_IN}=0$，并在计数窗口内记录第一时钟数 k_1。

然后，执行第二次计数操作。即，设置 $\text{DAC_IN}=1$，并在计数窗口内记录第二时钟数 k_2。

接着，计算第二时钟数和第一时钟数的差值 k_2-k_1，并将该差值 k_2-k_1 与目标差值 Δk_{target} 进行比较，如果 $k_2-k_1<\Delta k_{\text{target}}$ 则说明数 / 模转换器的增益偏低，应该增加控制信号的取值，此时保持 $\text{DAC_RANGE}<i>=1$ (即 $\text{DAC_RANGE}<1>=1$)，令 $i=i-1$ (即 $i=0$)；如果 $k_2-k_1<\Delta k_{\text{target}}$ 则说明数 / 模转换器的增益偏高，应该减小控制信号的取值，此时设置 $\text{DAC_RANGE}<i>=0$ (即 $\text{DAC_RANGE}<1>=0$)，令 $i=i-1$ (即 $i=0$)。

第六步校准操作如下:

首先，定义目标值 Δk_{target}，该目标值与第一步校准操作中的目标值相同，重新设置分界值，即设置 $\text{DAC_RANGE}<i>=1$ (即 $\text{DAC_RANGE}<0>=1$)。
接着，执行第一次计数操作。即，设置 DAC_IN=0，并在计数窗口内记录时钟数 k_1。

然后，执行第二次计数操作。即，设置 DAC_IN=1，并在计数窗口内记录时钟数 k_2。

接着，计算第二时钟数和第一时钟数的差值 k_2-k_1，并将该差值 k_2-k_1 与目标差值 Δk_target 进行比较，如果 k_2-k_1<Δk_target 则说明数 / 模转换器的增益偏高，应该增加控制信号的取值，此时保持 DAC_RANGE(i)=1（即 DAC_RANGE<0>=1），并令 i=i-1，对 i 值进行判断发现 i<0，则记录 Δk_i=k_2-k_1，并令 DAC_RANGE<5:0> 加 1（即 DAC_RANGE<5:0>=DAC_RANGE<5:0>+1）以获得最逼近校准输出的数值值；如果 k_2-k_1<Δk_target 则说明数 / 模转换器的增益偏低，应该减小控制信号的取值，此时设置 DAC_RANGE<1>=0（即 DAC_RANGE<0>=0）以最逼近校准输出的数值值，并令 i=i-1，对 i 值进行判断发现 i<0，则记录 Δk_i=k_2-k_1。

第七步校准操作如下：

执行第一次计数操作。即，设置 DAC_IN=0，并在计数窗口内记录时钟数 k_1。

执行第二次计数操作。即，设置 DAC_IN=1，并在计数窗口内记录时钟数 k_2。

计算第四时钟和第三时钟的差值 Δk_3=k_4-k_1。

对 | Δk_2−Δk_target | 和 | Δk_1−Δk_target | 进行比较，若 | Δk_2−Δk_target | <| Δk_1−Δk_target |，则表示 Δk_2 更接近 Δk_target，将 DAC_RANGE<5:0> 的当前值（即最逼近校准输出的数值值）作为控制信号的校准输出值；若 | Δk_2−Δk_target |>| Δk_1−Δk_target |，则表示 Δk_1 更接近 Δk_target，将第六步校准操作中的分界值作为控制信号的校准输出值。

至此得到了数 / 模转换器控制信号的校准输出值，整个校准过程结束。

由于计数窗口的宽度等于完成一次计数操作的时间，而每一步校准包括两次计数操作，因此，每一步校准所花费的时间为 10ms×2=20ms。在本实施例中，数 / 模控制器的控制信号的位数等于 6，即整个校准过程包括 7 步校准操作，因此整个数 / 模转换器校准过程所花费的时间为 20ms×7=140ms。

优选地，在利用二分法处理所述取值范围之前，还可以增大压控振器的变容管的容值至预定值，从而相应地提高了压控振器的增益（压控振器的增益与变容管容值成线性比例关系），进而可以进一步缩短整个校准过程的时间。在前述具体实施例的基础上进行说明，将压控振器变容管的容值扩大为正常发射时变容管容值的 5 倍，相应地，压控振器的增益也变为正常发射时压控振器增益的 5 倍，此时，每一步校准操作中压控振器两次计数的频率偏移为 320KHz×5=1.6MHz，为了达到 1% 的增益校准精度，每一次计数的频率误差需要达到 1.6MHz×1%=0.016MHz=8KHz。如此一来，N 的取值仅为未扩大容值时的 1/5，即 32000，因此完成一次计数操作需要 2ms，完成一步校准操作需要 4ms，完成整个校准过程的 7 步校准操作需要 28ms，如此一来，整个校准过程的时间进一步被缩短。完成数 / 模转换器校准之后，将变容管的容值再恢复到正常值即可。

相应地，本发明还提供了一种两点调制电路。请参考图 5，图 5 是根据本发明的两点调制电路的结构示意图。如图所示，该电路中的数 / 模转换器与校准模块连接，其中：所述校准模块，用于获取用于校准数 / 模转换器增益的控制信号的取值范围，利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。
首先，对图5所示的两点调制电路的结构进行说明。如图5所示，所述两点调制电路包括调相环/σ-Delta调制器/数/模转换器以及校准模块。具体地，调相环包括晶振/鉴相/鉴频器/电荷泵/低通滤波器/压控振荡器以及分频器。其中，晶振/鉴相/鉴频器/电荷泵/低通滤波器/压控振荡器依次连接，分频器接收压控振荡器的输出信号，分频器的输出信号输入鉴相/鉴频器，形成调相环/σ-Delta调制器的输入端接收信道数据和发射数据（发射数据采用数字信号），σ-Delta调制器的输出端将输出信号提供给分频器，以控制分频器产生所需要的分频比数/模转换器将发射数据转换为模拟信号后，将该模拟信号输入压控振荡器，校准模块提供控制信号给数/模转换器，该控制信号用于控制数/模转换器的增益。

下面，对校准模块的具体工作过程进行说明。

具体地，校准模块输出控制信号数/模转换器，该控制信号用于对数/模转换器增益的校准，其目的在于使得在两点调制中两条调制通道的增益相等。文中，将两条调制通道增益相等时控制信号的取值称为校准输出值。通常情况下，控制信号具有一定的取值范围，在该取值范围内，对控制信号取不同数值时，数/模转换器相应产生不同的增益。为了获得校准输出值，首先校准模要获取该控制信号的取值范围，进而才能在后续步骤中从该取值范围内确定校准输出值。

校准模块获取控制信号的取值范围后，首先利用二分法将控制信号的取值范围划分为两个子集，接着判断该控制信号的校准输出值应该位于哪个子集内，然后将包括该校准输出值的子集作为控制信号的取值范围并重复执行上述操作。如此一来，可以逐步缩小控制信号的取值范围，直至从取值范围中确定所述控制信号的校准输出值。

在一个优选实施例中，所述校准模块进一步包括初始单元、第一计数单元、第二计数单元、比较单元以及确定单元。下面对上述单元的工作过程进行描述，说明上述单元如何利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值。

具体地，初始单元用于定义目标值，该目标值用于后续判断校准输出值在控制信号取值范围内的位置。此外，初始单元还用于根据二分法确定分界值，将该取值范围分为两个子集，其中一个子集中的数值元素均大于分界值，另一个子集中的数值元素均小于分界值。

第一计数单元，用于所述分界值和第一发射数据输入所述数/模转换器后，对压控振荡器的输出信号经分频后得到的分频信号中的时钟进行统计得到第一时钟数。

第二计数单元，用于所述分界值和第二发射数据输入所述数/模转换器后，对压控振荡器的输出信号经分频后得到的分频信号中的时钟进行统计得到第二时钟数。

比较单元，用于计算所述第二时钟数和所述第一时钟数之间的差值得到第一时钟差，比较该第一时钟差与目标值，并根据该比较结果从所述取值范围中确定包括所述校准输出值的子集。在本实施例中，若第一时钟差小于目标值，说明校准输出值大于分界值，则缩小控制信号的取值范围，即将数值元素大于分界值的子集作为控制信号的取值范围；若第一时钟差大于目标值，说明校准输出值小于分界值，则缩小控制信号的取值范围，将数值元素小于分界值的子集作为控制信号的取值范围。

确定单元，用于触发所述初始单元、所述第一计数单元、所述第二计数单元以及所述比较单元重复执行操作，直至从所述取值范围中获得最逼近所述校准输出值的数值元
素，并根据所述数值元素确定所述校准输出值。

由于最逼近校准输出值的数值元素是唯一的且通过与分界值的比较而到，因此可以知道，最逼近校准输出值的数值元素与分界值是相邻的关系。优选地，还可以进一步对该数值元素和分界值进行验证，以保证获得最为准确的校准输出值。下面，将一个优选实施说明上述单元如何对最逼近校准输出值的数值元素和分界值进行验证。具体地，当确定单元获得所述校准输出值的数值元素后，所述第一校准单元在所述数值元素和所述第一发射数据输入所述数 / 模转换器后，对所述分频信号中的时钟进行统计得到第三时钟数；所述第二校准单元在所述数值元素和所述第二发射数据输入所述数 / 模转换器后，对所述分频信号中的时钟进行统计得到第四时钟数；所述比较单元计算所述第四时钟数和所述第三时钟数之间的差值得到第二时钟差，并对所述第一时钟差与所述目标值差的绝对值和所述第二时钟差与所述目标值差的绝对值进行比较，若所述第一时钟差与所述目标值差的绝对值大于所述第二时钟差与所述目标值差的绝对值，所述确定单元确定所述数值元素为所述控制信号的校准输出值，否则确定单元确定所述分界值为所述控制信号的校准输出值。

优选地，本发明所提供的两点校制电路进一步还包括容值调节模块，用于在利用二分法处理所述取值范围之前增大校振荡器的容容值至预定值，例预定值为正常发射时变容管容值的 5 倍。

与现有技术相比，本发明具有以下优点：采用二分法的方式快速确定用于校准数 / 模转换器增益的控制信号的取值，从而可以极大地缩短数 / 模转换器的校准时间，以及提高数 / 模转换器的校准效率。

以上所揭露的仅为本发明的几种较佳的实施例而已，当然不能以此来限定本发明之权利范围，因此依本发明权利要求所作的等同变化，仍属本发明所涵盖的范围。
图 1

图 2

获取用于校准数/模转换器增益的控制信号的取值范围

利用二分法处理所述取值范围并从中确定所述控制信号的校准输出值
图 3
将所述数值元素和所述第一发射数据输入所述数/模转换器后，对所述分频信号中的时钟进行统计得到第三时钟数

将所述数值元素和所述第二发射数据输入所述数/模转换器后，对所述分频信号中的时钟进行统计得到第四时钟数

计算所述第四时钟数和所述第三时钟数之间的差值得到第二时钟差

若所述第一时钟差与所述目标值差的绝对值大于所述第二时钟差与所述目标值差的绝对值，则确定所述数值元素为所述控制信号的校准输出值，否则确定所述分界值为所述控制信号的校准输出值。