(54) 发明名称
包括旋转式夹紧装置的包装设备和制作包装袋的方法

(57) 摘要
本发明提供了一种包括旋转式夹紧装置 (110) 的包装设备，所述的旋转式的夹紧装置包括长条状的支架 (121)，安装在所述的长条状的支架上并从所述长条状的支架向外突出的长条状的刀 (112)，所述的刀具有平行于所述的刀的平面的长条状的切削刃 (120)，以及热封口装置 (126, 128) 的至少一部分，所述热封口装置位于所述长条状的支架上的所述刀的两侧。同时，本发明还提供了一种包装方法。
1. 一种包括旋转式夹紧装置的包装设备，所述的旋转式夹紧装置包括长条状的支架，安装在所述的长条状的支架上并从所述长条状的支架向外突出的长条状的平面的刀，所述的刀具有平行于所述的刀的平面的长条状的切削刃，所述的支架被安装在能围绕旋转轴旋转的安装架上，所述的刀的所述的平面向所述的旋转轴倾斜，以及位于所述长条状的支架上的所述刀的相对两侧的热封口装置。

2. 根据权利要求 1 所述的包装设备，其中，所述的切削刃沿所述刀的中心延伸。

3. 根据权利要求 2 所述的包装设备，其中，所述的刀具有 1mm 到 3mm 的厚度。

4. 根据权利要求 1 至 3 中的任一项所述的包装设备，其中，所述的热封口装置包括从所述的长条状的支架向外突出的长条状的压紧板，所述的压紧板有两块，每一块压紧板沿着所述刀的各自的侧面延伸。

5. 根据权利要求 4 所述的包装设备，其中，所述的压紧板包括由弹性材料制成的板。

6. 根据权利要求 1 至 3 中的任一项所述的包装设备，还包括安装在所述的长条状支架对面的砧，以使所述的长条状的支架和所述的砧包括所述的旋转式夹紧装置的相对的爪，所述的砧具有作用表面以用于所述的刀进行切割动作。

7. 根据权利要求 6 所述的包装设备，其中，所述的刀和所述的砧相互排列以便于当所述的刀沿着所述的长条状的支架的旋转而旋转时，所述的刀的所述的切削刃逐渐接触所述的作用表面以使其间的接触点沿所述的切削刃纵向移动。

8. 根据权利要求 6 所述的包装设备，其中，所述的砧包括用于加热所述作用表面的加热器。

9. 根据前述任一项权利要求所述的包装设备的用途，其中所述的包装设备用于制作薄膜材料形成的枕型袋。

10. 一种制作包装袋的方法，所述的方法包括如下步骤：
 a. 提供包装膜形成的扁平的管；
 b. 使所述的扁平的管的一部分位于旋转式夹紧装置和砧之间，所述的旋转式夹紧装置具有长条状的平面的刀，所述的长条状的平面的刀具有平行于所述的刀的平面的长条状的切削刃；
 c. 使所述的旋转式夹紧装置围绕旋转轴旋转，所述刀的平面沿所述旋转轴倾斜；和
 d. 在所述刀的切割作用下将所述旋转式夹紧装置和所述砧的作用表面之间的扁平的管的部分进行切割，所述刀和所述砧相互排列以便于当所述刀旋转时，所述刀的切削刃与所述作用表面逐渐接触以使其间的接触点沿所述切削刃纵向移动。

11. 根据权利要求 10 所述的方法，其中，所述的切削刃沿所述刀的中心延伸。

12. 根据权利要求 10 所述的方法，其中，所述的刀具有 1mm 到 3mm 的厚度。

13. 根据权利要求 10 所述的方法，其中，所述的旋转式夹紧装置和所述的砧包括热封口装置，所述的热封口装置同时将所述的扁平的管的相对两侧热封在一起从而在所述的扁平的管的每一个被切开的末端的附近形成长条状的横向密封的封口。

14. 根据权利要求 13 所述的方法，其中，所述的热封口装置包括两块长条状的压紧板，每一块压紧板沿所述的刀和被加热的砧的各自的侧而延伸。

15. 根据权利要求 14 所述的方法，其中，所述的压紧板包括由弹性材料制成的板。

16. 根据权利要求 13 至 15 中的任一项所述的方法，其中，每个包装袋的被切开的边距
离所述的密封的封口是 0.5mm 至 1.5mm。

17. 根据权利要求 16 所述的方法，其中，每个包装袋的被切开的边距离所述的密封的封口约 1mm。

18. 根据权利要求 13 至 15 中的任一项所述的方法，其中，所述的密封的封口的宽度是 1mm 至 4mm。

19. 根据权利要求 18 所述的方法，其中，所述的密封的封口的宽度是 1mm 至 2mm。

20. 根据权利要求 10 至 15 中的任一项所述的方法，其中，所述的包装袋是薄膜材料形成的枕型袋。

21. 根据权利要求 20 所述的方法，其中，所述的包装袋中含有零食。
说明 书

包括旋转式夹紧装置的包装设备和制作包装袋的方法

技术领域
[0001] 本发明涉及包括旋转式夹紧装置的包装设备和制作包装袋的方法。

背景技术
[0002] 众所周知使用立式成型 - 充填 - 封口 (VFFS) 包装设备可以生产包装袋, 形式上可以是袋子, 枕形袋或零食袋, 如零食。将纵向已被封口的由热封塑料材料的包装薄膜卷形成的管状薄膜再输入夹紧装置中。在所述的夹紧装置处所述的薄膜形成扁平状的管。所述的夹紧装置形成一对垂直间隔开的横跨所述的管的密封的热封口, 所述的封口位于垂直相邻的包装袋之间。夹紧装置还切断位于该密封的封口之间的贯穿所述管的中间部分, 这样将含有已包装的产品的已密封的下包装袋与未封口的上包装袋打开。
[0003] 以这样方式, 已被密封的下面的封口成为下包装袋的上封口, 而已被密封的上面的封口成为下包装袋的下封口。然后上包装袋被填充产品, 管子向下前行通过夹紧装置, 然后当上包装袋的上边缘和下一个包装袋的下边缘位于夹紧装置的切口之间时重复上述循环。
[0004] 立式成型 - 充填 - 封口 (VFFS) 包装设备的这类夹紧装置的工作原理已知有多种。一类的夹紧装置使用连续的旋转式夹紧运动模式, 参考图 1 和 2 进行说明。
[0005] 参考图 1, 在这样的一种夹紧装置中, 刀 12 位于扁平的纵向密封的管 14 的一侧, 而在管 14 的另一侧放置一个硬的作用衬垫或砧 16, 其中管位于刀 12 和砧 16 之间。在与砧 16 的压力作用下促使刀 12 切断管 14 的薄膜, 通过挤压切割作用使刀片 18 和砧 16 之间的管 14 的薄膜断开。
[0006] 刀 12 和砧 16 同步并按图 1 中的箭头所示的相反的旋转方向进行旋转以使刀 12 和砧 16 咬合以切断位于其中间的其形式是如下所述的扁平的管的包装膜材料。
[0007] 刀 12 围绕 X 轴旋转, X 轴与管 14 的纵向 L 垂直且平行于砧 16 的表面和刀片 18 的切削刃 20。尽管没有表示出来, 但是可将多个刀 12 安装在沿 X 轴放置的同一个轴上并且相互之间以一定的角度间隔开, 以便于对于同一个轴上的每一个旋转周期来说, 由不同的刀 12 形成各个切口。同时相应的提供多个砧 16。
[0008] 同样如图 2 和 3 中所示的, 长条状的刀 12 被安装在安装架形式的长条状的支架 21 上。为了清楚说明, 在图 2 和 3 中对一些尺寸和角度进行了放大。
[0009] 刀 12 的底部容纳在长条状的支架 21 的长条状的槽 30 并将其牢固固定在其中。刀 12 的切割动作是渐进式的以便于在支架 21 中的刀 12 的连续旋转期间, 开始时刀 12 的一个纵向末端 22 首先接触砧 16, 并随后二者之间的接触点沿刀片 18 的切削刃 20 向刀 12 的另一个纵向末端 24 前进。为了实现这种渐进式的切割动作, 如图 2 和 3 所示, 刀片 18 的切削刃 20 以与刀 12 的平面呈角度 α 的方向进行研磨。一般的, 角度 α 是 2 度。因此, 当旋转接触进行时, 扁平的管 14 的整体的宽度不是同时被切开, 而是刀片 18 的接触点随着旋转动作的进行逐渐通过管 14。这种渐进式的切割动作类似于滚筒式草坪机的旋转式刀片的切割动作。
长条状的热封口装置 26, 28 位于砧 16 中和 / 或刀的长条状支架 21 以便于在扁平管 14 的横向切口 36 的两侧形成密封封口 32, 34, 其中横向切口 36 是由刀 12 形成的。热封口装置 26, 28 可采用多种形式，一般是横向延伸的在砧 16 和长条状的支架 21 的相对表面中形成的匹配的隆起和凹槽。

如图 2 所示，刀 12 和热封口装置 26, 28 相互平行并且也平行于长条状支架 21 的侧面 40, 42, 其中长条状支架 21 与纵向 L 的方向垂直。因此，当纵向的方向是传统的垂直方向时，刀 12 和热封口装置 26, 28 是水平的。

现在已知的旋转式夹紧装置提供有效的热封口和切割机，这样可以在包装袋的相对末端可靠地形成密封的封口并通过刀的作用使相邻的包装袋被可靠地分离开。

然而，生产商越来越希望能降低与其产品有关的包装材料的使用量，特别是不仅降低包装材料和/或包装过程中的包装成本而且还要降低碳排放，用二氧化碳排放的吨数来表示。

现有的旋转式夹紧装置在管的纵向形成的密封的封口相对较宽，并且在相邻的密封的封口之间也存在材料的浪费，这是因为必须在相邻的密封的封口之间提供由刀的旋转切割动作进行切断的管的一部分薄膜材料。

因此，本领域需要一种用于包装设备中的旋转式夹紧装置，以及一种制作包装袋的方法，可允许降低包装材料的用量同时降低相关的包装成本和碳排放，即二氧化碳排放，同时在包装袋的相对两端仍然能够获得有效的密封的封口。

发明内容

本发明的目的至少可以部分满足这一需要。

因此，本发明提供了一种包括旋转式夹紧装置的包装设备，所述的旋转式夹紧装置包括长条状的结构，安装在所述的长条状的结构上并从所述长条状的结构向外突出的长条状的平面的刀，所述的刀具有平行于所述的刀的平面的长条状的切削刃，和位于刀的两侧的长条状结构上的热封口装置。

可选的，所述的支架安装在能围绕旋转轴旋转的安装架上，刀的平面向旋转轴倾斜。

一般的，切削刃沿刀的中心延伸。

在一个实施例中，刀具有 1 到 3mm 的厚度，可选择的，约 2mm。

优选的，热封口装置包括从长条状的结构向外突出的长条状的压紧板，具有两块压紧板，每一块沿刀的各自的侧面延伸。

压紧板包括由弹性材料制成的板。

旋转式夹紧装置还包括安装在长条状的支架对面的砧，以使长条状的支架和砧包括回旋转式夹紧装置的相对的爪，所述的砧具有作用表面以用于刀的切削作用。

优选的，刀和砧相互排列以便于当刀随着长条状的支架旋转而旋转时，刀的切削刃逐渐接触作用表面，其间的接触点沿切削刃纵向移动。

可选的，砧包括加热器以用于加热作用表面。

优选的，旋转式夹紧装置适用于形成由薄膜材料制成的筒形包装袋，可选地所述的包装袋用于包装零食。
本发明进一步提供了一种制作包装袋的方法，所述的方法包括如下步骤：a. 提供包装膜构成的扁平的管；b. 使扁平的管的一部分位于旋转式夹紧装置和砧之间，所述的旋转式夹紧装置具有长条状的平面的刀，它具有平行于刀的平面的长条状的切削刃；c. 使所述的旋转式夹紧装置围绕旋转轴旋转，所述刀的平面向旋转轴倾斜；和 d. 在刀的切削作用下将旋转式夹紧装置和砧的作用表面之间的扁平的管的部分进行切割，刀和砧相互排列以便于当刀旋转时，刀的切削刃与作用表面逐渐接触以使其间的接触点沿切削刃纵向移动。

可选的，切削刃沿刀的中心延伸。一般的，刀的厚度为 1 至 3mm，可选地约 2mm。

优选的，旋转式夹紧装置和砧包括热封口装置，可同时将扁平的管的相对两侧热封在一起以在扁平管的每一个被切开的末端附近形成长条状的横向密封的封口。

优选的，热封口装置包括两块长条状的压紧板，每一块压紧板沿刀和加热的砧的各自的侧面延伸。压紧板可包括弹性材料制成的板。

优选的，每个包装袋的被切开的边缘距离热封口是 0.5 至 1.5mm，一般约是 1mm。

优选的，密封的封口具有 1 至 4mm 的宽度，可选 1 至 2mm。

一般的，包装袋是薄膜材料制成的枕型袋，可选的，所述包装袋含有零食。

本发明进一步提供了由本发明的方法制作的包装袋。

附图说明

下面将通过参考附图以举例的方式来描述本发明的实施例，其中，

图 1 是用于包装设备的已知的旋转式夹紧装置的侧面示意图；

图 2 是在图 1 中的已知的旋转式夹紧装置中使用的刀组件的平面示意图；

图 3 是在图 1 中的已知的旋转式夹紧装置中使用的刀的透视示意图；

图 4 是根据本发明的一个实施例的用于包装设备的旋转式夹紧装置的侧面示意图；

图 5 是在图 4 中的旋转式夹紧装置中使用的刀组件的平面示意图；

图 6 是在图 4 中的旋转式夹紧装置中使用的刀的透视示意图；和

图 7 是由图 4 中的旋转式夹紧装置制作的一对包装袋的侧面示意图。

具体实施方式

图 4 至 6 表示了根据本发明用于包装设备的旋转式夹紧装置的优选实施例，其具有旋转的旋转式夹紧运动模式。该装置的结构和工作方式与图 1-3 中的已知的装置类似，不同的是安装架和刀的结构被显著改进，以实现所希望的降低形成包装袋所需要的包装材料的用量。刀和砧同步旋转并以图 4 中箭头所示的相反旋转方向旋转以便于刀和砧咬合从而使位于其间的包装材料切断。

在图 4 的夹紧装置 110 中，刀 112 位于用以形成包装袋的由包装膜构成的扁平的纵向已被封口的管 114 的一侧，与图 1-3 中所示的已知的装置相似。坚硬的作用衬垫或砧 116 位于管 114 的另一侧，其中管 114 位于刀 112 和砧 116 之间。在与砧 116 的压力作用下刀 112 割管 114 的薄膜，通过压挤切割动作使刀片 118 和砧 116 之间管 114 的薄膜分离

刀 112 围绕 X 轴旋转，X 轴垂直于管 114 的纵向 L 并平行于砧 116 的表面和刀片
118 的切除刃 120。夹紧装置 110 围绕 X 轴安装, 例如通过安装支架 111 安装在沿 X 轴的一个轴上。

[0046] 特别是在图 5 和 6 中显示的, 长条状的刀 112 安装在安装架形式的长条状支架 121 上。为了清楚说明, 在图 5 和 6 中一些尺寸和角度被放大。

[0047] 刀 112 的下部容纳在长条状的支架 121 中的长条状的槽 130 中, 并被牢固固定在其中。刀 112 的切割作用是渐进式的, 以便于开始时刀 112 的一个纵向末端 122 首先接触砧 116, 并随接触点沿刀片 118 的切除刃 120 逐渐向刀 112 的另一纵向末端 124 前进。

[0048] 为了实现这样的渐进式的切割动作, 如图 5 和 6 所示的, 刀 112 以与长条状支架 120 的纵向呈 β 角的角度被安装。刀片 118 的切除刃 120 被研磨以与刀 112 的平面平行。一般的, β 角的角度是 2 度。

[0049] 长条状的热封口装置 126, 128 被置于砧 116 和 / 或刀的长条状支架 121 中以便于在扁平的管 114 的横向开口 136 相对两侧形成横向密封的封口 132, 134, 其中横向切口 136 由刀 112 产生。在所示的实施例中的装置内, 砧 116 是加热的方块, 长条状的压紧板 126, 128, 例如由弹性材料如热弹性橡胶构成, 分别被置于刀 112 的相对的两侧上。刀 112 和压紧板 126, 128 高出于长条状的支架 121 的安装表面 138。

[0050] 长条状压紧板 126, 128 平行于刀 112, 因此长条状的压紧板 126, 128 也以与长条状的支架 121 的纵向方向呈 β 角的方向被安装。刀 112 和压紧板 126, 128 因此以与长条状支架 121 的纵向呈 β 角的方向倾斜, 其中长条状支架 121 与纵向 L 垂直。因此, 当纵向的方向是垂直方向时, 刀 112 和压紧板 126, 128 与水平方向呈 β 角。

[0051] 当旋转接触前接时, 扁平的管 114 的整个宽度没有被同时切断, 相反随着旋转作用的进行, 刀片 118 的接触点逐渐通过管 114。压紧板 126, 128 局部性地向加热的砧 116 挤压管 114 的薄膜材料以形成两个间隔开的密封的封口 132, 134。

[0052] 一般的, 刀的宽度 (在图 5 和 6 中所示的尺寸 a) 是 1 到 3mm, 最常用的是 2mm, 并且, 切削刃 120 位于刀 112 的刀片 118 的整个长度的中心。

[0053] 相反, 在图 1 至图 3 所示的已知的装置中, 由于切削刃 20 向刀 12 的平面倾斜, 因此刀 12 的宽度 (图 2 和 3 所示的尺寸 y) 必须比在本发明中的使用的刀 112 的宽度大很多, 一般 5mm, 才能满足刀片中切削刃的倾斜。在本发明的装置的刀中不需要这样的倾斜。相反, 刀 112 的切削刃 120 而片是平行的, 这不但降低了刀片的厚度而且还使刀的操作更容易。

[0054] 与现有装置中提供的具有倾斜刀片的平行安装的刀不同, 本发明的装置提供了具有平行的中心刀片的倾斜安装的刀。由于长条状的压紧板 126, 128 平行于刀 112, 所以刀 112 的全部组件和位于其相对两侧的长条状压紧板 126, 128 以向长条状支架 121 的纵向倾斜的方式被安装。

[0055] 设置长条状的由弹性材料构成的压紧板 126, 128 所提供的优势是以最小的宽度获得高强度的封口, 其中压紧板 126, 128 与具有平的表面的坚硬的加热的砧相互作用。压紧板 126, 128 在较小的表面区域施加较高压力, 从而提供的热封口比在较大的宽度上的较低压力提供的封口更强。因此, 与较宽的封口相比较窄的热封口可提供改进的密封性能和持久性。

[0056] 一般的, 刀 112 的组件和长条状的压紧板 126, 128 的总宽度是 8mm, 全部向长条
状的支架121的纵向方向倾斜，而在现有的装置中，刀112的组件和热封口装置26，28的总的宽度是20mm，全部平行于长条状支架21的纵向。
[0057] 在图7中示出了刀的结构和方向的变化所产生的结果。
[0058] 图7表示了两个相邻的包装袋200，202，它们已被刀112形成的切口分隔开。每个包装袋200，202都具有被切开的横边204，206，所述横边以与包装袋200，202的纵向呈β角的方向倾斜（图中是放大的）。所述的角度非常小以至于通常不被消费者注意到。在每个包装袋200，202的末端提供形成密封的封口208，210的热封口。与切开的横边204，206相邻的未被封口的零件212，214的宽度相当于刀的厚度的一半。因此，未被封口的零件212，214一般具有0.5到1.5mm的厚度，最典型的是1mm，这可以与图1至3中的已知的装置生产的对应的未被封口的零件212，214的厚度相对比。
[0059] 因此，对于根据本发明的实施例生产的每个包装袋来说，在对热封口的安全性没有任何影响的情况下通常可节省3mm长的包装膜材料。
[0060] 这种材料的节省是通过降低包装袋末端未被封口的材料的用量实现的，这部分对于形成密封的封口来说没有作用。
[0061] 此外，通过使用特定的抵靠在加热的砧的按压板使得热封口比现有的热封口更窄，从而大大节省了包装材料。一般的，热封口具有1mm到4mm的宽度，可选为1到2mm。
[0062] 这种薄膜材料的节省对于大量生产产品（如零食）具有潜在的巨大的影响。
[0063] 申请人和其相关的公司组成了世界上一家最大的零食公司中的一部分，据估测这种包装材料的节省的累计量相当于全球的包装材料成本每年节省数千万美元，更重要的是，每年节省约1.6万吨的二氧化碳的产生。本发明因此能够显著降低包装各种产品（特别是零食）产生的碳排放。
[0064] 本领域技术人员非常清楚上述举例中的角度和尺寸仅仅是说明根据本发明可以使用的角度大小和尺寸，并且这些参数可根据各种因素（包括包装袋的大小，形状和尺寸）被改变。
[0065] 本发明的夹紧装置和方法可用于生产各种产品的主包装袋，其中零重仅是优选的实例。所述的夹紧装置和方法也可用于生产副包装袋，例如多袋的包装。
[0066] 正如上面所述的已知的装置，在本发明的装置中，可将多个刀安置在沿旋转轴设置的一个公共轴上，并相互间以一定的角度隔开，以便于对于该公共轴的每一次循环来说，由各自的刀制作多个切口，并且相应的多个包装袋被该轴上的每一次的旋转周期的切割作用分离开。相应地提供多个砧。
[0067] 在可替换的实施例中，热封口装置可以是折边装置，和/或完整组件（即长条状的支柱和/或砧）的一个或两个侧面，可被加热。而且，长条状的热封口装置可被设置在砧和/或刀的长条状的支架内。
[0068] 对于本领域技术人员来说，还可以对在此记载的本发明的实施例进行其他的改进。