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00000000
Title of the Invention
Method and System for Generating High Resolution Two-Dimensional Radar

Image

Field of the Invention

This invention relates generally to radar systems, and more particularly radar

imaging using distributed arrays and compressive sensing.

Background of the Invention

In order to locate targets in an area of interest, radar system transmits pulses and
processes received echoes reflected by the targets. The echoes can be characterized
as a weighted combination of delayed pulses, where complex weights depend on
specific target reflectivities. Given the pulses and echoes, radar images can be
generated in a range-azimuth plane according to corresponding weights and delays.
The azimuth resolution of the radar images depends on a size of an array

aperture,and a range resolution depends on a bandwidth of the pulses.

It can be difficult or expensive to construct a large enough aperture to achieve a
desired azimuth resolution. Therefore, multiple distributed sensing platforms, each
equiped with a relative small aperture array, can be used to collaboratively receive
echoes. Benefits of distributed sensing include flexibility of platform placement,
low operation and maintenance cost, and a large effective aperture. However,
distributed sensing requires more sophisticated signal processing compared to that
of a single uniform linear array. Conventional radar imaging methods typically

process the echoes received by each sensor platform individually using matched
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filter. Then, the estimates are combined in a subsequent stage. Generally, the
platforms are not uniformly distributed so that the radar images can exhibit
annoying artifacts, such as aliancing, ambiguity or ghost, making 1t difficult to

distinguish the targets.

As shown in Fig. 2, in prior art work 2D radar imaging 210 is applied
independently to data 201 received by each antenna array 200 to produce a
corresponding low resolution 2D radar image 211. The 2D low resolution images
are aligned and summed 220 to produce a 2D radar image 230 with artifacts, such

as aliasing, ambiguity or ghosts.

The performance of the imaging system can be improved using distributed sensing
and jointly processing all measurements using methods based on compressive
sensing (CS). CS enables accurate reconstruction of signals using a significantly
smaller sampling rate compared to the Nyquist rate. The reduction in the sampling
rate is achieved by using randomized measurements, improved signal models, and
non-linear reconstruction methods, see Non Patent Literature 1. In radar
applications, CS can achieve super-resolution images by assuming that the
received signal can be modeled as a linear combination of waveforms
corresponding to the targets and the underlying vector of target reflectivity is

sparse, see Non Patent Literatures 2-4.

Citation List
Non Patent Literature
INPL 1: Candes et al., “Robust uncertainty principles: Exact signal reconstruction

from highly incomplete frequency information,” IEEE Transactions on Information

Theory, vol. 52(2), February 2006
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NPL 2: Baraniuk et al., “Compressive radar imaging,” IEEE Radar Conference,
MA, April 2007

NPL 3: Herman et al., “High-resolution radar via compressed sensing,” IEEE
Trans. Signal Process., vol. 57, June 2009

NPL 4: Potter et al., “Sparsity and compressed sensing in radar imaging,”

Proceeding of the IEEE, vol. 98, pp. 1006-1020, June 2010

Summary of the Invention

The embodiments of the invention provide a method and system for generating an
radar image of an area of interest using a single static transmitter and multiple
spatially distributed static linear antenna arrays, and compressive sensing (CS).
The poses, e.g., locations and orientations, of the antenna arrays are known, and all
measurements are synchronized. The method improves the image quality by

imposing sparsity on complex coefficients of targets within the area of interest.

Specifically, the single transmitter emits radar pulses, and the multiple small
aperture distributed arrays receive echoes reflected by the targets. The multiple
arrays are uniform linear arrays randomly distributed with different locations and
orientations at a same side of the area of interest. Although the image resolution of
each array is low, due to the small aperture size, a high resolution is achieved by
combining signals received by all distributed arrays using a sparsity-driven

imaging method.

Compared to a conventional delay-and-sum imaging method, which typically

exhibits annoying artifacts, such as aliasing, ambiguity or ghost, the distributed
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small-aperture arrays and the sparsity-driven methods increases the resolution of

the images without artifacts.

Brief Description of the Drawings

Fig. 1 is a schematic of a radar imaging system according to embodiments of the

invention;

Fig. 2 is a flow diagram of a conventional radar imaging method; and

Fig. 3 is a flow diagram of a compressive sensing based distributed array imaging

method according to embodiments of the invention.

Detailed Description of the Preferred Embodiments

The embodiments of our invention provide a radar imaging method and system for
generating a radar image of an area of interest using a single transmit antenna and
multiple spatially distributed static linear antenna arrays, and compressive sensing

(CS).

Distributed Sensing System

As shown in Fig. 1, the radar imaging system includes one static transmit antenna
100, and a set of M distributed linear receive arrays 101. Each array has a set of
N,, (m = 1, ..., M) receive antennas. The antenna arrays are static and placed at

the same side of the area of interest with random orientations, within a

predetermined angular range.



(18) JP 2017-21013 A 2017.1.26

The transmit antenna is connected to a radar transmitter 120 that generates the
radar pulses. The receive arrays are connected to a radar receiver 130 to acquire
echoes of pulses reflected by targets in the area of interest. The transmitter and
receiver are connected to a processor 140 that performs the radar imaging method
to produce a high resolution two-dimensional (2D) radar image 370 as described in
detail below. The processor can also determine delays between the transmitted

pulse and the received echoes.

Compressive Sensing Based Distributed Array Imaging Method

As shown in Fig. 3, the distributed data 301 are processed using iterative
compressive sensing based procedures. We initialize 305 a dense residual signal
310 from distributed data 301 received as echoes from each distributed antenna
array 10. We generate 320 a 2D image 321 using the dense residual data 310. Next,
we apply a threshold and shrinkage process 330 to the 2D image 321, either in an
image domain or image gradient domain, to generate a sparse image 340. The
image is compared to the sparse image of a previous iteration to check for
convergence 350 of the images, or not. If a relative error between the two image is
smaller than a predetermined threshold, then we have converged to a high
resolution 2D image 370. Otherwise, we update 360 the residual signal 310 by

subtracting a signal corresponding to the current sparse image until convergence.

Details of the method are desribed below.

As shown in Fig. I, a time-domain radar pulse p(t) 105 is transmitted by the

transmit antenna 100 located at 1. For a single point target 102 located at 14, a
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radar echo 106 received by the n** element 101 at location 1,,,,, of the m*"

array can be expressed in the frequency domain as

. gyl n-ird

Y (w15, 1pn) = P(@)X(r)e™™ ¢ : (1

where P(w) isthe frequency spectrum of the emitted pulse, which can be

represented as

P(w)=f, p(t)e 1@t dt, (2)

where X(l;) is the reflectivity of the point target at the location Iy,
where the exponential term is Green’s function from the Jocation at lg to the

receive antenna at l,,,, via the location 1y.

Without loss of generality, there are K targets 102 in the area of interest 110,
where each target is composed of multiple stationary scattering centers. The size of
the array aperture is relatively small, such that the same scattering centers are

observed at all elements of the array.

We also discretize the area of interest, using a two-dimensional grid, where index i
denotes each gridpoint, with corresponding location 1; Consequently, the received
signal can be modeled as the superposition of radar echoes of all K objects in the
area of interest as follows

B |

Y (@5 lnn) = Zi P(@)X(1)e™® ¢ : (3)

The relationship (3) can be compactly denoted in a matrix-vector form Vo =

D Xy + €, (4)
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where v,,, ®,,, and X, represent the samples of the received signals, the
forward acquisition process, and the reflectivity corresponding to the m array,
respectively. Note that the vector e,, in the discretized model in Eq. (4)

represents the noise.

Assuming that the targets’ complex coefficients are identical as observed by all the
receivers, we can coherently combine all of the received data as

y=®x +e, (5)
where

y=[yy,....¥u), ®=[P,...,Py]|",and x =X, =X, =...= Xp.

Again, the vector e in Eq. (5) represents the measurement noise.

The goal of the image formation process is to determine the signal of interest X
from the array echoes y given the acquisition matrix @. In other words, the
objective is to solve a linear inverse problem. If the acquisition matrix @ is
invertible, then a straightforward choice is to use the inverse or the pseudoinverse
of @ to determine X, i.e.,

% = @ly, (6)

However, due to the size of the acquisition matrix @, the pseudo-inverse ot s
impossible to compute directly. The conventional delay-and-sum imaging method
uses the adjoint to estimate X

% = @'ly. (7
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In distributed sensing, the antenna arrays are generally non-uniformly distributed
in the spatial domain. Therefore, the sidelobes of the beamforming imaging results

are generally large, making it difficult to discriminate targets.
Compressive Sensing Imaging

In order to improve the imaging resolution of distributed sensing, we describe two
CS-based imaging methods. Our first method is based on enforcing image sparsity
directly in the spatial domain. However, since spatial-domain sparsity is not strictly
true for radar images, we also describe a post-processing step to further boost the
performance of conventional CS-based radar imaging in the presence of noise. The
second method circumvents the post-processing by imposing sparsity in the
gradient domain, which is a more realistic assumption for the radar imaging, where

images are often piecewise smooth.
Image-Domain Sparsity

A non-uniform array generally generates larger sidelobes than a uniform array of
the same size. Accordingly, in the first approach, we interpret the distributed
measurements as the downsampled versions of the data from larger distributed
uniform arrays, where cach large array has about the same aperture size (see dotted
lines in Fig. 1). Using noiseless version of equation (5), we represent the full data
on the larger uniform arrays as Vg, The vector g, includes the measured data

y and unmeasured data ¥ as follows

o = || = [2] ¥x ®)
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Here, E and E represent complementary down-sampling operators, respectively,

and ¥ denotes the measurement matrix for large uniform aperture arrays.

In conventional CS, the vector X is modeled as a sparse signal, which is generally
not true in radar imaging. Instead of simply treating X as a sparse signal, we
decompose X into sparse part X, and dense residual X,. as

X = X; +X,. 9)

Substituting this expression into Eq. (8), noisy measured data can be expressed as

y = E¥x, + E¥Yx, + e, (10)

Treating EWX, as an additional noise component, the estimate of the sparse
component X is given by

R = arg min|ly — EWx||7, s.t.1 X ll,, < N. (11)
X

The above problem can be solved by various compressive sensing solvers. We rely
on an iterative method based on Stagewide Orthogonal Matching Pursuit (STOMP),
see Donoho et al., “Sparse solution of underdetermined systems of linear equations
by stagewise orthogonal matching pursuit,” IEEE Trans. Information Theory,
February 2012, and Liu et al., “Random steerable arrays for synthetic aperture
imaging,” in IEEE International conference on Acoustics Speech and Signal

Processing (ICASSP), 2013.

Given the estimate X, we can estimate its contribution to the measured data as
EWR.. Assuming the residual data y, = y — EWX; is due to the dense part x,,

we use the adjoint process with line search to estimate it as follows
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o YﬁYr H
X, = mp— . 12
T Ve, ¢ (12)

We obtain the high resolution image by combining Eqs. (11) and (12) as follows
R =X +X,. (13)

Alternatively, we can estimate the missing data on the large uniform arrays using

the sparse estimate X, as

¥ = E¥X,. (14)

Combining Eqn. (14) with the measured data, we obtain an estimate of a full data

set for the large aperture arrays as

N =t re
Veunn = ETy + E E‘P‘xs (15)

Note that E is a selection operator, and its pseudoinverse ET fills missing data

with zeros.

Based on the estimated data, we can perform the imaging using a conventional
align-and-sum imaging method
— e
- ‘PH?fuil = ‘PH(ET:V + E E¥X;)
wHyg + PHETEWR,. (16)

b

The final images in Eq. (13) and (16) are not strictly sparse. The result in Eq. (13)
is generally sharper than that in (16), because the term W7W works as a low pass

filter, with filtering characteristics related to the large aperture measurement matrix
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W, In practice, because radar echoes are noisy, the final imaging result is visually

better when using Eq. (16).
Image Gradient-Domain Sparsity

We formulate the gradient-domain method as a minimization problem

&y = argmin 5 |y - ®x I}, + ATV(x)}, (17)

X

where TV denotes an isotropic total variation regularizer
TV(X) = X; I [Dx]; llg, (18)
= i v IDxx]i]* + [[Dyx]; . (19)

Here, A > 0 is the regularization parameter and [Dx}; = ([D,x];, [D,x];)
denotes the i*® component of the image gradient. Because the TV-term in Eq.

(17) is non-differentiable, we formulate the problem as the following equivalent

constrained optimization problem

(%, d) = arg ?in{% fly — ®x iI%Z—F AXi W[d];llg,d = Dx}.

We solve the constrained optimization problem by designing an augmented
Lagrangian (AL) scheme, see Tao and J. Yang, “Alternating direction algorithms
for total variation deconvolution in image reconstruction,” TR 0918, Department
of Mathematics, Nanjing University, 2009. Specifically, by seeking the critical

points of the following cost

L(x,d,s) £

S I

Iy —®xlz,+ A% Id]; ll;,  (20)

+Refs"(d ~ Dx)} +5 I d - Dx I,
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where s is the dual variable that imposes the constraint d = Dx, and p > 0 is
the quadratic penalty parameter. Conventionally, an AL scheme solves the Eq. (20)
by alternating between a joint minimization step and a Lagrangian update step as

(Xk+1, dk+i) « arg gnin{L(X, d, sk)}, and (21)
X,

S1‘{+1 o Sk - p(dk+1 _ ka—i—l)‘ (22)

However, the joint minimization step (21) can be computationally intensive. To
circumvent this problem, we separate {(21) into a succession of simpler steps. This
form of separation is commonly known as the alternating direction method of
multipliers (ADMM) , see Boyd et al, “Distributed optimization and statistical
learning via the alternating direction method of multipliers,” Foundations and

Trends in Machine Learning, vol. 3, no. 1, pp. 1-22, 2011.

ADMM can be described as follows

d**! « arg min{£(x*,d, s*)} (23)
d

x**1 « arg min{£(x, d***, s%)} (24)
X

ghtl . gk + p(dk+1 — ka-l-l)" (25)

The step in Eq. 23 admits a closed-form solution

[d*1); « T(Dx* —s%/pli; A/p),

where i is the pixel number and T is the component-wise shrinkage function
T(y,7) & argmin{2 I x—y I3+ 71X ly,} (26)
XeC? 2

~ _ -
= max(ll y ll,,— 7,0) Ivle, .

The step in Eq. (23) reduces to a linear solution

x**1 = (¥ + pDFD)? (CDHy + pDH (d**T + s"/p)).
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1. A method for generating a high resolution two-dimensional (2D) radar image,
comprising steps:

transmitting a radar pulse by a transmit antenna at an area of interest;

receiving echoes, corresponding to a reflection of the radar pulse in the area
of interest, at a set of receive arrays, wherein each array includes a set of receive
antennas that are static and randomly distributed at different locations at a same
side of the area of interest with a random orientation within a predetermined
angular range;

sampling the echoes for each receive array to produce distributed data for
gach array; and

applying a compressive sensing (CS) procedure to the distributed data to
generate the high resolution 2D radar image, wherein the sampling and applying

steps are performed in a processor.

2. The method of claim 1, wherein the sampling is uniform.

3. The method of claim I, wherein an aperture size of the set of receive arrays is

larger than a single radar array.

4. The method of claim 1, further comprising:

initializing a residual signal using the received echoes, and wherein the CS
procedure includes iterative steps;

generating a two-dimensional (2D) radar image from the distributed residual

signal;
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applying a threshold and shrink process to the 2D radar image to produce a
sparse image for a current iteration;

comparing the sparse image of the current iteration to a sparse image of a
previous iteration, and if a relative error between the sparse image of the current
iteration and the sparse image of the previous iteration is smaller than a
predetermined threshold then the sparse image of the current iteration is the high
resulation 2D radar image, and otherwise:

subtracting the signal of the current sparse image from the dense residual

signal and iterating the generating, applying and comparing steps.

5. The method of claim 1, wherein the CS procedure reduces artifacts in the 2D

radar image.

6. The method of claim 1, wherein the CS procedure uses image domain sparsity in

an iterative reconstruction method.

7. The method of claim 1, wherein the CS procedure uses image gradient domain

sparsity in an iterative reconstruction method.

8. A system for generating a high resolution two-dimensional (2D} radar image,
comprising:
a transmit antenna configured to transmit a radar pulse at an area of interest;
a set of receive arrays configured to receive echoes corresponding to a
reflection of the radar pulse in the area of interest, wherein each array includes a
set of receive antennas that are static and randomly distributed at different
locations at a same side of the area of interest with a random orientation within a

predetermined angular range; and
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a processor configured to sample the echoes for each receive array to
produce distributed data for each array and then applying a compressive sensing

(CS) procedure to the distributed data to generate the high resolution 2D radar

image.

Abstract

A method and system for generating a high resolution two-dimensional (2D) radar
image, by first transmitting a radar pulse by a transmit antenna at an area of
interest and receiving echoes, corresponding to reflection of the radar pulse in the
area of interest, at a set of receive arrays, wherein each array includes and a set of
receive antennas that are static and randomly distributed at different locations at a
same side of the area of interest with a random orientation within a predetermined
angular range. The echoes are sampled for each receive array to produce
distributed data for each array. Then, a compressive sensing (CS) procedure is

applied to the distributed data to generate the high resolution 2D radar image.

Representative Drawing
Figure 1
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